SiE802DF Vishay Siliconix N-Channel 30-V (D-S) MOSFET FEATURES PRODUCT SUMMARY • Halogen-free According to IEC 61249-2-21 Definition • TrenchFET® Gen II Power MOSFET • Ultra Low Thermal Resistance Using TopExposed PolarPAK® Package for Double-Sided Cooling • Leadframe-Based New Encapsulated Package - Die Not Exposed - Same Layout Regardless of Die Size • Low Qgd/Qgs Ratio Helps Prevent Shoot-Through • 100 % Rg and UIS Tested • Compliant to RoHS directive 2002/95/EC ID (A)a Silicon Limit RDS(on) (Ω)e VDS (V) 30 Package Qg (Typ.) Limit 0.0019 at VGS = 10 V 202 60 0.0026 at VGS = 4.5 V 173 60 50 nC Package Drawing www.vishay.com/doc?72945 PolarPAK 10 D 9 G 8 S 7 S 6 D 6 7 8 9 10 APPLICATIONS D D S G D 2 1 • VRM • DC/DC Conversion: Low-Side • Synchronous Rectification D G D 1 G 2 S S 3 4 Top View D 5 5 4 3 Bottom View S N-Channel MOSFET For Related Documents Top surface is connected to pins 1, 5, 6, and 10 Ordering Information: SiE802DF-T1-E3 (Lead (Pb)-free) SiE802DF-T1-GE3 (Lead (Pb)-free and Halogen-free) www.vishay.com/ppg?72985 ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted Parameter Drain-Source Voltage Gate-Source Voltage Symbol VDS VGS TC = 25 °C Continuous Drain Current (TJ = 150 °C) TC = 70 °C TA = 25 °C TA = 70 °C Pulsed Drain Current Continuous Source-Drain Diode Current Single Pulse Avalanche Current Avalanche Energy ID IDM TC = 25 °C TA = 25 °C IS L = 0.1 mH IAS EAS Limit 30 ± 20 202 (Silicon Limit) 60a (Package Limit) 60a 42.7b, c 34.2b, c 100 60a 4.3b, c 50 125 125 80 5.2b, c 3.3b, c - 55 to 150 260 Unit V A mJ TC = 25 °C TC = 70 °C PD W Maximum Power Dissipation TA = 25 °C TA = 70 °C Operating Junction and Storage Temperature Range TJ, Tstg °C Soldering Recommendations (Peak Temperature)d, e Notes: a. Package limited is 60 A. b. Surface Mounted on 1" x 1" FR4 board. c. t = 10 s. d. See Solder Profile (www.vishay.com/doc?73257). The PolarPAK is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection. e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components. Document Number: 72985 S09-1337-Rev. E, 13-Jul-09 www.vishay.com 1 SiE802DF Vishay Siliconix THERMAL RESISTANCE RATINGS Parameter t ≤ 10 s Maximum Junction-to-Ambienta, b Maximum Junction-to-Case (Drain Top) Steady State Maximum Junction-to-Case (Source)a, c Notes: a. Surface Mounted on 1" x 1" FR4 board. b. Maximum under Steady State conditions is 68 °C/W. c. Measured at source pin (on the side of the package). Symbol RthJA RthJC (Drain) RthJC (Source) Typical 20 0.8 2.2 Maximum 24 1 2.7 Unit °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted Parameter Symbol Test Conditions Min. VGS = 0 V, ID = 250 µA 30 Gate-Source Threshold Voltage Gate-Source Leakage VDS ΔVDS/TJ ΔVGS(th)/TJ VGS(th) IGSS Zero Gate Voltage Drain Current IDSS Typ. Max. Unit Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) Temperature Coefficient ID(on) a On-State Drain Current Drain-Source On-State Resistance a Forward Transconductancea Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current RDS(on) gfs Ciss Coss Crss Qg Qgs Qgd Rg td(on) tr td(off) tf td(on) tr td(off) tf IS ISM Pulse Diode Forward Currenta VSD Body Diode Voltage trr Body Diode Reverse Recovery Time Q Body Diode Reverse Recovery Charge rr ta Reverse Recovery Fall Time tb Reverse Recovery Rise Time Notes: a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %. b. Guaranteed by design, not subject to production testing. ID = 250 µA VDS = VGS , ID = 250 µA VDS = 0 V, VGS = ± 20 V VDS = 30 V, VGS = 0 V VDS = 30 V, VGS = 0 V, TJ = 55 °C VDS ≥ 5 V, VGS = 10 V VGS = 10 V, ID = 23.6 A VGS = 4.5 V, ID = 21.3 A VDS = 15 V, ID = 23.6 A VDS = 15 V, VGS = 0 V, f = 1 MHz VDS = 15 V, VGS = 10 V, ID = 23.6 A VDS = 15 V, VGS = 4.5 V, ID = 23.6 A f = 1 MHz VDD = 15 V, RL = 1.5 Ω ID ≅ 10 A, VGEN = 4.5 V, Rg = 1 Ω VDD = 15 V, RL = 1.5 Ω ID ≅ 10 A, VGEN = 10 V, Rg = 1 Ω 1.5 V 32.2 - 6.4 2.2 IF = 10 A, dI/dt = 100 A/µs, TJ = 25 °C 2.7 ± 100 1 10 25 V nA µA A 0.0016 0.0021 156 7000 1200 500 105 50 21 14 1.1 45 195 45 20 25 20 65 10 TC = 25 °C IS = 10 A mV/°C 0.8 55 66 25 30 0.0019 0.0026 Ω S pF 160 75 1.65 70 300 70 30 40 30 100 15 60 100 1.2 85 105 nC Ω ns A V ns nC ns Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. www.vishay.com 2 Document Number: 72985 S09-1337-Rev. E, 13-Jul-09 SiE802DF Vishay Siliconix 100 20 80 16 I D - Drain Current (A) I D - Drain Current (A) TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 60 VGS = 10 V thru 4 V 40 12 8 TC = 125 °C 3V 20 4 25 °C - 55 °C 0 0.0 0.1 0.2 0.3 0 0.0 0.4 0.5 1.5 2.0 2.5 3.0 3.5 VGS - Gate-to-Source Voltage (V) VDS - Drain-to-Source Voltage (V) Output Characteristics Transfer Characteristics 10 000 0.0025 8000 0.0023 Ciss C - Capacitance (pF) RDS(on) - On-Resistance (Ω) 1.0 VGS = 4.5 V 0.0021 0.0019 6000 4000 2000 VGS = 10 V 0.0017 Coss Crss 0 0.0015 0 20 40 60 80 0 100 10 15 20 25 ID - Drain Current (A) VDS - Drain-to-Source Voltage (V) On-Resistance vs. Drain Current and Gate Voltage Capacitance 30 1.6 10 VGS = 4.5 V, 10 V ID = 23.6 A ID = 23.6 A 1.4 VDS = 15 V 6 VDS = 24 V 4 (Normalized) 8 R DS(on) - On-Resistance VGS - Gate-to-Source Voltage (V) 5 1.2 1.0 0.8 2 0 0 20 40 60 80 Qg - Total Gate Charge (nC) Gate Charge Document Number: 72985 S09-1337-Rev. E, 13-Jul-09 100 120 0.6 - 50 - 25 0 25 50 75 100 125 150 TJ - Junction Temperature (°C) On-Resistance vs. Junction Temperature www.vishay.com 3 SiE802DF Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 0.0040 RDS(on) - Drain-to-Source On-Resistance (Ω) I S - Source Current (A) 100 TJ = 150 °C 10 TJ = 25 °C ID = 23.6 A 0.0035 0.0030 0.0025 TA = 125 °C 0.0020 TA = 25 °C 0.0015 0.0010 1 0.0 0.2 0.4 0.6 0.8 0 1.0 2 4 6 8 10 VGS - Gate-to-Source Voltage (V) VSD - Source-to-Drain Voltage (V) On-Resistance vs. Gate-to-Source Voltage Source-Drain Diode Forward Voltage 2.6 50 2.4 40 ID = 250 µA Power (W) VGS(th) (V) 2.2 2.0 1.8 30 20 1.6 10 1.4 1.2 - 50 - 25 0 25 50 75 100 125 0 0.01 150 0.1 1 10 100 TJ - Temperature (°C) Time (s) Threshold Voltage Single Pulse Power, Junction-to-Ambient 1000 1000 Limited by R DS(on)* I D - Drain Current (A) 100 1 ms 10 ms 10 100 ms 1 0.1 0.01 0.1 TA = 25 °C Single Pulse 1s 10 s DC 1 10 100 VDS - Drain-to-Source Voltage (V) * VGS > minimum VGS at which RDS(on) is specified Safe Operating Area, Junction-to-Ambient www.vishay.com 4 Document Number: 72985 S09-1337-Rev. E, 13-Jul-09 SiE802DF Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 140 250 120 Power Dissipation (W) ID - Drain Current (A) 200 150 100 Package Limited 100 80 60 40 50 20 0 0 0 25 50 75 100 TC - Case Temperature (°C) Current Derating* 125 150 25 50 75 100 125 150 TC - Case Temperature (°C) Power Derating, Junction-to-Case * The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit. Document Number: 72985 S09-1337-Rev. E, 13-Jul-09 www.vishay.com 5 SiE802DF Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted Normalized Effective Transient Thermal Impedance 2 1 Duty Cycle = 0.5 0.2 Notes: 0.1 PDM 0.1 0.05 t1 t2 1. Duty Cycle, D = 0.02 t1 t2 2. Per Unit Base = RthJA = 55 °C/W 3. TJM - TA = PDMZthJA(t) Single Pulse 0.01 10-4 10-3 10-2 4. Surface Mounted 10-1 1 10 100 600 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Ambient Normalized Effective Transient Thermal Impedance 2 1 Duty Cycle = 0.5 0.2 0.1 0.1 0.05 0.02 Single Pulse 0.01 10-4 10-3 10-2 10-1 1 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Case (Drain Top) Normalized Effective Transient Thermal Impedance 2 1 Duty Cycle = 0.5 0.2 0.1 0.1 0.05 0.02 Single Pulse 0.01 10-4 10-3 10-2 10-1 1 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Source Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72985. www.vishay.com 6 Document Number: 72985 S09-1337-Rev. E, 13-Jul-09 Package Information Vishay Siliconix POLARPAK™ OPTION L M4 Product datasheet/information page contain links to applicable package drawing. 10 9 8 7 6 D G S S D M2 M1 M3 D G S 1 2 3 S 4 c D 5 A (Top View) b1 H4 H1 7 S 8 S 9 G b1 H1 10 D K4 6 D θ H3 b2 H2 b3 θ P1 K3 Z P1 T5 θ T3 M3 View A E E1 T2 T4 T1 T3 θ T5 M4 A b4 K4 A1 K3 P1 b4 P1 K2 K1 D1 D 0.26 b5 S 4 b5 S 3 G 2 D 1 b5 View A (Bottom View) 0.13 0.25 DETAIL Z D 5 0.39 A 0.20 0.33 0.58 Document Number: 72945 Revision: 11-Aug-08 www.vishay.com 1 Package Information Vishay Siliconix MILLIMETERS INCHES DIM MIN. NOM. MAX. MIN. NOM. MAX. A 0.75 0.80 0.85 0.030 0.031 0.033 A1 0.00 - 0.05 0.000 - 0.002 b1 0.48 0.58 0.68 0.019 0.023 0.027 b2 0.41 0.51 0.61 0.016 0.020 0.024 b3 2.19 2.29 2.39 0.086 0.090 0.094 b4 0.89 1.04 1.19 0.035 0.041 0.047 b5 0.23 0.33 0.43 0.009 0.013 0.017 c 0.20 0.25 0.30 0.008 0.010 0.012 D 6.00 6.15 6.30 0.236 0.242 0.248 D1 5.74 5.89 6.04 0.226 0.232 0.238 E 5.01 5.16 5.31 0.197 0.203 0.209 E1 4.75 4.90 5.05 0.187 0.193 0.199 H1 0.23 - - 0.009 - - H2 0.45 - 0.56 0.018 - 0.022 H3 0.31 0.41 0.51 0.012 0.016 0.020 H4 0.45 - 0.56 0.018 - 0.022 K1 4.22 4.37 4.52 0.166 0.172 0.178 K2 1.08 1.13 1.18 0.043 0.044 0.046 K3 1.37 - - 0.054 - - K4 0.24 - - 0.009 - - M1 4.30 4.50 4.70 0.169 0.177 0.185 M2 3.43 3.58 3.73 0.135 0.141 0.147 M3 0.22 - - 0.009 - - M4 0.05 - - 0.002 - - P1 0.15 0.20 0.25 0.006 0.008 0.010 T1 3.48 3.64 4.10 0.137 0.143 0.161 T2 0.56 0.76 0.95 0.022 0.030 0.037 T3 1.20 - - 0.047 - - T4 3.90 - - 0.153 - - T5 0 0.18 0.36 0.000 0.007 0.014 θ 0° 10° 12° 0° 10° 12° ECN: T-08441-Rev. C, 11-Aug-08 DWG: 5946 Notes Millimeters govern over inches. www.vishay.com 2 Document Number: 72945 Revision: 11-Aug-08 Application Note 826 Vishay Siliconix RECOMMENDED MINIMUM PADS FOR PolarPAK® Option L and S 7.300 (0.287) 0.510 (0.020) 0.510 (0.020) 0.410 (0.016) 0.955 (0.038) 0.955 (0.038) 4.520 (0.178) 6.310 (0.248) 0.895 (0.035) + 0.895 (0.035) 2.290 (0.090) 0.580 (0.023) 0.580 (0.023) 0.510 (0.020) APPLICATION NOTE Recommended Minimum for PolarPAK Option L and S Dimensions in mm/(Inches) No External Traces within Broken Lines Dot indicates Gate Pin (Part Marking) Return to Index www.vishay.com 6 Document Number: 73491 Revision: 21-Jan-08 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000