VAISH SI7430DP

Si7430DP
Vishay Siliconix
N-Channel 150 V (D-S) MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
ID (A)a
RDS(on) (Ω)
150
0.045 at VGS = 10 V
26
0.047 at VGS = 8 V
25
• Halogen-free According to IEC 61249-2-21
Definition
• Extremely Low Qgd for Reduced dV/dt, Qgd and
Shoot-Through
• 100 % Rg Tested
• 100 % UIS Tested
• Compliant to RoHS Directive 2002/95/EC
Qg (Typ.)
23 nC
PowerPAK SO-8
S
6.15 mm
APPLICATIONS
5.15 mm
1
• Primary Side Switch
• Single-Ended Power Switch
S
2
S
3
D
G
4
D
8
D
7
D
G
6
D
5
Bottom View
S
Ordering Information: Si7430DP-T1-E3 (Lead (Pb)-free)
Si7430DP-T1-GE3 (Lead (Pb)-free and Halogen-free)
N-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted)
Parameter
Symbol
VDS
VGS
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current (TJ = 150 °C)
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
ID
IDM
Pulsed Drain Current
TC = 25 °C
TA = 25 °C
IS
Single Pulse Avalanche Current
Single Pulse Avalanche Energy
L = 0.1 mH
IAS
EAS
Maximum Power Dissipation
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
PD
Continuous Source-Drain Diode Current
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)d, e
TJ, Tstg
Limit
150
± 20
26
21
Unit
V
7.2b, c
5.7b, c
50
32
A
4.5b, c
20
20
64
44
mJ
5.2b, c
3.3b, c
- 55 to 150
260
W
°C
THERMAL RESISTANCE RATINGS
Parameter
Symbol
Typical
Maximum
Unit
RthJA
t ≤ 10 s
19
24
Maximum Junction-to-Ambientb, f
°C/W
RthJC
Maximum Junction-to-Case (Drain)
Steady State
1.5
1.8
Notes:
a. Based on TC = 25 °C.
b. Surface mounted on 1" x 1" FR4 board.
c. t = 10 s.
d. See solder profile (www.vishay.com/ppg?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed
copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed
and is not required to ensure adequate bottom side solder interconnection.
e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
f. Maximum under steady state conditions is 65 °C/W.
Document Number: 74282
S11-0212-Rev. C, 14-Feb-11
www.vishay.com
1
Si7430DP
Vishay Siliconix
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
Parameter
Symbol
Test Conditions
Min.
VDS
VGS = 0 V, ID = 250 µA
150
Typ.
Max.
Unit
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
ΔVDS/TJ
V
172
ID = 250 µA
mV/°C
VGS(th) Temperature Coefficient
ΔVGS(th)/TJ
Gate-Source Threshold Voltage
VGS(th)
VDS = VGS , ID = 250 µA
4.5
V
IGSS
VDS = 0 V, VGS = ± 20 V
± 100
nA
VDS = 150 V, VGS = 0 V
1
VDS = 150 V, VGS = 0 V, TJ = 55 °C
10
Gate-Source Leakage
Zero Gate Voltage Drain Current
IDSS
On-State Drain Currenta
ID(on)
Drain-Source On-State Resistancea
Forward Transconductancea
RDS(on)
gfs
VDS ≥ 10 V, VGS = 10 V
- 10
2.5
30
µA
A
VGS = 10 V, ID = 5 A
0.036
0.045
VGS = 8 V, ID = 5 A
0.0375
0.047
VDS = 15 V, ID = 5 A
23
Ω
S
Dynamicb
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Gate Resistance
Rg
Turn-on Delay Time
Rise Time
Rise Time
43
23
35
37
8
VDS = 75 V, VGS = 8 V, ID = 5 A
f = 1 MHz
1.3
21
18
22
33
6
10
VDD = 50 V, RL = 10 Ω
ID ≅ 5 A, VGEN = 10 V, Rg = 1 Ω
td(on)
16
24
tr
12
18
20
30
7
12
VDD = 50 V, RL = 10 Ω
ID ≅ 5 A, VGEN = 8 V, Rg = 1 Ω
nC
6.5
0.85
14
tf
Fall Time
28.5
12
td(off)
Turn-Off Delay Time
VDS = 75 V, VGS = 10 V, ID = 5 A
pF
tr
tf
Fall Time
Turn-On Delay Time
160
td(on)
td(off)
Turn-Off Delay Time
1735
VDS = 50 V, VGS = 0 V, f = 1 MHz
Ω
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulse Diode Forward
Currenta
Body Diode Voltage
IS
TC = 25 °C
32
ISM
VSD
50
IS = 3 A
0.77
1.2
A
V
Body Diode Reverse Recovery Time
trr
63
95
ns
Body Diode Reverse Recovery Charge
Qrr
110
165
nC
Reverse Recovery Fall Time
ta
Reverse Recovery Rise Time
tb
IF = 5 A, dI/dt = 100 A/µs, TJ = 25 °C
49
14
ns
Notes:
a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %
a. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
www.vishay.com
2
Document Number: 74282
S11-0212-Rev. C, 14-Feb-11
Si7430DP
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
60
1.2
VGS = 10 V thru 7 V
0.9
ID - Drain Current (A)
ID - Drain Current (A)
48
VGS = 6 V
36
24
0.6
TC = 25 °C
0.3
VGS = 5 V
12
TC = 125 °C
TC = - 55 °C
0
0.0
1
2
3
4
5
0
4
6
8
VGS - Gate-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.055
2000
0.051
1600
0.047
VGS = 8 V
0.043
10
Ciss
1200
800
VGS = 10 V
Crss
Coss
400
0.039
0
0.035
0
10
20
30
40
50
0
60
20
40
60
80
ID - Drain Current (A)
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current and Gate Voltage
Capacitance
100
2.5
10
ID = 5 A
ID = 5 A
VDS = 50 V
VGS = 10 V
2.1
8
RDS(on) - On-Resistance
(Normalized)
VGS - Gate-to-Source Voltage (V)
2
VDS - Drain-to-Source Voltage (V)
C - Capacitance (pF)
R DS(on) - On-Resistance (Ω)
0
VDS = 75 V
6
VDS = 100 V
4
1.7
VGS = 8 V
1.3
0.9
2
0
0
6
12
18
24
30
0.5
- 50
- 25
0
25
50
75
100
125
Qg - Total Gate Charge (nC)
TJ - Junction Temperature (°C)
Gate Charge
On-Resistance vs. Junction Temperature
Document Number: 74282
S11-0212-Rev. C, 14-Feb-11
150
www.vishay.com
3
Si7430DP
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
0.20
TJ = 150 °C
10
IS - Source Current (A)
RDS(on) - Drain-to-Source On-Resistance (Ω)
100
1
TJ = 25 °C
0.1
0.01
ID = 5 A
0.16
0.12
TJ = 125 °C
0.08
TJ = 25 °C
0.04
0.00
0.001
0
0.2
0.4
0.6
0.8
1
1.2
0
2
200
0.5
160
Power (W)
VGS(th) (V)
8
10
On-Resistance vs. Gate-to-Source Voltage
1.0
ID = 5 mA
- 0.5
- 1.0
- 1.5
- 50
6
VGS - Gate-to-Source Voltage (V)
VSD - Source-to-Drain Voltage (V)
Source-Drain Diode Forward Voltage
0.0
4
120
80
40
- 25
0
25
50
75
100
125
150
0
0.001
0.01
0.1
1
TJ - Temperature (°C)
Time (s)
Threshold Voltage
Single Pulse Power, Junction-to-Ambient
10
100
Limited by RDS(on)*
ID - Drain Current (A)
10
1 ms
10 ms
1
100 ms
0.1
1s
TA = 25 °C
Single Pulse
0.01
0.01
10 s
DC
1
10
100
1000
VDS - Drain-to-Source Voltage (V)
* VGS > minimum VGS at which RDS(on) is specified
0.1
Safe Operating Area, Junction-to-Ambient
www.vishay.com
4
Document Number: 74282
S11-0212-Rev. C, 14-Feb-11
Si7430DP
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
30
ID - Drain Current (A)
24
18
12
6
0
0
25
50
75
100
125
150
0
25
TC - Case Temperature (°C)
85
2.5
68
2.0
51
1.5
Power (W)
Power (W)
Current Derating*
34
1.0
0.5
17
0.0
0
0
25
50
75
100
125
150
50
75
100
125
TC - Case Temperature (°C)
TA - Ambient Temperature (°C)
Power, Junction-to-Case
Power, Junction-to-Ambient
150
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
Document Number: 74282
S11-0212-Rev. C, 14-Feb-11
www.vishay.com
5
Si7430DP
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
Notes:
0.1
0.1
PDM
0.05
t1
t2
1. Duty Cycle, D =
0.02
t1
t2
2. Per Unit Base = RthJA = 65 °C/W
3. TJM - TA = PDMZthJA(t)
4. Surface Mounted
Single Pulse
0.01
10-4
10-3
10-2
10-1
1
Square Wave Pulse Duration (s)
10
100
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10 -4
10-3
10-2
10-1
1
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Case
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?74282.
www.vishay.com
6
Document Number: 74282
S11-0212-Rev. C, 14-Feb-11
Package Information
www.vishay.com
Vishay Siliconix
PowerPAK® SO-8, (Single/Dual)
L
H
E2
K
E4
θ
D4
W
1
M
1
Z
2
D5
D2
e
2
D1
D
2
D
3
4
θ
4
b
3
L1
E3
θ
A1
Backside View of Single Pad
H
K
E2
E4
L
1
D1
D5
2
D2
Detail Z
K1
2
E1
E
D3 (2x) D4
c
A
θ
3
4
Notes
1. Inch will govern.
2 Dimensions exclusive of mold gate burrs.
3. Dimensions exclusive of mold flash and cutting burrs.
E3
Backside View of Dual Pad
MILLIMETERS
DIM.
MIN.
A
0.97
A1
b
0.33
c
0.23
D
5.05
D1
4.80
D2
3.56
D3
1.32
D4
D5
E
6.05
E1
5.79
E2 (for AL product)
3.30
E2 (for other product)
3.48
E3
3.68
E4 (for AL product)
E4 (for other product)
e
K (for AL product)
K (for other product)
K1
0.56
H
0.51
L
0.51
L1
0.06

0°
W
0.15
M
ECN: C13-0702-Rev. K, 20-May-13
DWG: 5881
Revison: 20-May-13
b
D2
INCHES
NOM.
MAX.
MIN.
NOM.
MAX.
1.04
0.41
0.28
5.15
4.90
3.76
1.50
0.57 typ.
3.98 typ.
6.15
5.89
3.48
3.66
3.78
0.58 typ.
0.75 typ.
1.27 BSC
1.45 typ.
1.27 typ.
0.61
0.61
0.13
0.25
0.125 typ.
1.12
0.05
0.51
0.33
5.26
5.00
3.91
1.68
0.038
0
0.013
0.009
0.199
0.189
0.140
0.052
0.044
0.002
0.020
0.013
0.207
0.197
0.154
0.066
6.25
5.99
3.66
3.84
3.91
0.238
0.228
0.130
0.137
0.145
0.71
0.71
0.20
12°
0.36
0.022
0.020
0.020
0.002
0°
0.006
0.041
0.016
0.011
0.203
0.193
0.148
0.059
0.0225 typ.
0.157 typ.
0.242
0.232
0.137
0.144
0.149
0.023 typ.
0.030 typ.
0.050 BSC
0.057 typ.
0.050 typ.
0.024
0.024
0.005
0.010
0.005 typ.
1
0.246
0.236
0.144
0.151
0.154
0.028
0.028
0.008
12°
0.014
Document Number: 71655
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Application Note 826
Vishay Siliconix
RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single
0.260
(6.61)
0.150
(3.81)
0.050
0.174
(4.42)
0.154
(1.27)
0.026
(0.66)
(3.91)
0.024
(0.61)
0.050
0.032
0.040
(1.27)
(0.82)
(1.02)
Recommended Minimum Pads
Dimensions in Inches/(mm)
Return to Index
Return to Index
APPLICATION NOTE
Document Number: 72599
Revision: 21-Jan-08
www.vishay.com
15
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000