AOTF4T60P 600V,4A N-Channel MOSFET General Description Product Summary • Trench Power AlphaMOS-II technology • Low RDS(ON) • Low Ciss and Crss • High Current Capability • RoHS and Halogen Free Compliant VDS @ Tj,max 700V IDM 16A RDS(ON),max < 2.1Ω Qg,typ 8.3nC Eoss @ 400V 1.6µJ Applications 100% UIS Tested 100% Rg Tested • General Lighting for LED and CCFL • AC/DC Power supplies for Industrial, Consumer, and Telecom TO-220F D G D S G S AOTF4T60P Orderable Part Number Package Type Form Minimum Order Quantity AOTF4T60P TO-220F Pb Free Tube 1000 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Drain-Source Voltage Symbol VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current TC=100°C C ID Maximum 600 Units V ±30 V 4* 2.5* A IDM 16 IAR 4 A Repetitive avalanche energy C EAR 8 mJ Single pulsed avalanche energy G MOSFET dv/dt ruggedness Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25°C Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds EAS 203 50 5 35 0.3 -55 to 150 mJ W W/°C °C 300 °C Maximum Units 65 3.6 °C/W °C/W Avalanche Current C L=1mH dv/dt PD TJ, TSTG TL Thermal Characteristics Parameter Symbol RθJA Maximum Junction-to-Ambient A,D Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev.1.0: May 2014 www.aosmd.com V/ns Page 1 of 6 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 600 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Breakdown Voltage Temperature Coefficient IDSS Zero Gate Voltage Drain Current ID=250µA, VGS=0V, TJ=150°C 700 ID=250µA, VGS=0V 0.55 VDS=600V, VGS=0V 1 10 Gate-Body leakage current VDS=0V, VGS=±30V VDS=5V, ID=250µA RDS(ON) VGS=10V, ID=2A gFS Forward Transconductance VDS=40V, ID=2A 3.2 VSD Diode Forward Voltage IS=1A,VGS=0V 0.78 IS ISM ±100 nA 5 V 1.75 2.1 Ω 1 V Maximum Body-Diode Continuous Current 4 A Maximum Body-Diode Pulsed Current C 16 A Coss Output Capacitance Co(er) Effective output capacitance, energy related H Crss Effective output capacitance, time related I Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=100V, f=1MHz Gate Source Charge Qgd S 522 pF 22 pF 20 pF 32 pF 2 pF 2.9 Ω VGS=0V, VDS=0 to 480V, f=1MHz VGS=0V, VDS=100V, f=1MHz f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs 3 µA 4.2 DYNAMIC PARAMETERS Input Capacitance Ciss Co(tr) V/ oC VDS=480V, TJ=125°C Gate Threshold Voltage Static Drain-Source On-Resistance IGSS VGS(th) V 8.3 VGS=10V, VDS=480V, ID=4A 15 nC 3.4 nC Gate Drain Charge 1.9 nC tD(on) Turn-On DelayTime 21 ns tr Turn-On Rise Time 19 ns tD(off) Turn-Off DelayTime VGS=10V, VDS=300V, ID=4A, RG=25Ω 25 ns tf trr Turn-Off Fall Time 11 ns IF=4A,dI/dt=100A/µs,VDS=100V 309 Qrr Body Diode Reverse Recovery Charge IF=4A,dI/dt=100A/µs,VDS=100V 2.7 ns µC Body Diode Reverse Recovery Time A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=2.6A, VDD=150V, RG=25Ω, Starting TJ=25°C. H. Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V(BR)DSS. I. Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V(BR)DSS. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1.0: May 2014 www.aosmd.com Page 2 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 9 7.5 VDS=40V 10V -55°C 10 7V 6.5V 4.5 3 ID(A) ID (A) 6 125°C 1 6V 25°C 1.5 VGS=5.5V 0 0.1 0 5 10 15 20 25 30 2 4 VDS (Volts) Figure 1: On-Region Characteristics Normalized On-Resistance 4 RDS(ON) (Ω) 8 10 3 5 3 VGS=10V 2 1 2.5 0 1.5 3 4.5 6 7.5 1.5 1 0.5 0 -100 9 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 1.2 1E+01 1.1 1E+00 IS (A) 1E+02 0 50 100 150 200 125°C 1E-01 0.9 1E-02 0.8 1E-03 0.7 -100 -50 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.3 1 VGS=10V ID=2A 2 0 BVDSS (Normalized) 6 VGS(Volts) Figure 2: Transfer Characteristics 25°C 1E-04 -50 0 50 100 150 200 TJ (°C) Figure 5: Break Down vs. Junction Temperature Rev.1.0: May 2014 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics Page 3 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=480V ID=4A 1000 Capacitance (pF) VGS (Volts) 12 9 6 Ciss 100 Coss 10 3 Crss 0 1 0 3 6 9 12 15 0.1 10 100 1000 VDS (Volts) Figure 8: Capacitance Characteristics 5 5 4 4 Current rating ID(A) Eoss(uJ) Qg (nC) Figure 7: Gate-Charge Characteristics 1 3 Eoss 2 1 3 2 1 0 0 0 100 200 300 400 500 600 VDS (Volts) Figure 9: Coss stored Energy 0 25 50 75 100 125 150 TCASE (°C) Figure 10: Current De-rating (Note F) 100 10µs ID (Amps) 10 RDS(ON) limited 100µs 1 1ms DC 10ms 0.1 0.1s 1s TJ(Max)=150°C TC=25°C 0.01 1 10 100 1000 VDS(Volts) Figure 11: Maximum Forward Biased Safe Operating Area for TO-220F Pb Free (Note F) Rev.1.0: May 2014 www.aosmd.com Page 4 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=3.6°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Single Pulse Ton T 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for TO-220F Pb Free (Note F) Rev.1.0: May 2014 www.aosmd.com Page 5 of 6 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds Vgs 90% + Vdd DUT VDC - Rg 10% Vgs Vgs td(on) tr td(off) ton tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 EAR= 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev.1.0: May 2014 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6