AOW20C60 600V,20A N-Channel MOSFET General Description Product Summary The AOW20C60 is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability this part can be adopted quickly into new and existing offline power supply designs. VDS @ Tj,max 700 IDM 145A RDS(ON),max < 0.25Ω Qg,typ 52nC Eoss @ 400V 8.5µJ 100% UIS Tested 100% Rg Tested TO-262 Top View Bottom View G D D S S D G G S AOW20C60 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS VGS Gate-Source Voltage Continuous Drain Current TC=25°C TC=100°C ID AOW20C60 600 Units V ±30 V 20 11 A Pulsed Drain Current C IDM Avalanche Current C,J IAR 20 A Repetitive avalanche energy C,J EAR 200 mJ 1470 100 20 463 mJ V/ns 3.7 -55 to 150 W/ oC °C 300 °C AOW20C60 65 0.5 0.27 Units °C/W °C/W °C/W Single pulsed avalanche energy G EAS MOSFET dv/dt ruggedness dv/dt Peak diode recovery dv/dt TC=25°C PD Power Dissipation B Derate above 25oC TJ, TSTG Junction and Storage Temperature Range Maximum lead temperature for soldering TL purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Symbol Maximum Junction-to-Ambient A,D RθJA Maximum Case-to-sink A RθCS Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev.2.0 July 2013 www.aosmd.com 145 W Page 1 of 6 AOW20C60 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 600 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Breakdown Voltage Temperature Coefficient IDSS Zero Gate Voltage Drain Current ID=250µA, VGS=0V, TJ=150°C 700 V ID=250µA, VGS=0V 0.55 V/ oC VDS=600V, VGS=0V 1 VDS=480V, TJ=125°C 10 IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V, ID=250µA RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=10A gFS Forward Transconductance VDS=40V, ID=10A 25 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 ±100 3 µA 4 5 nΑ V 0.21 0.25 Ω 1 V S IS Maximum Body-Diode Continuous Current 20 A ISM Maximum Body-Diode Pulsed Current C 145 A DYNAMIC PARAMETERS Input Capacitance Ciss Coss Output Capacitance Co(er) Effective output capacitance, energy related H VGS=0V, VDS=100V, f=1MHz 3440 pF 145 pF 98 pF 185 pF VGS=0V, VDS=0 to 480V, f=1MHz Crss Effective output capacitance, time related I Reverse Transfer Capacitance VGS=0V, VDS=100V, f=1MHz 5 pF Rg Gate resistance VGS=0V, VDS=0V, f=1MHz 1 Ω Co(tr) SWITCHING PARAMETERS Total Gate Charge Qg Qgs Gate Source Charge Qgd 52 VGS=10V, VDS=480V, ID=20A 74 nC 22 nC Gate Drain Charge 14 nC tD(on) Turn-On DelayTime 74 ns tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time Qrr VGS=10V, VDS=300V, ID=20A, RG=25Ω 76 ns 100 ns 45 ns IF=20A,dI/dt=100A/µs,VDS=100V 665 Body Diode Reverse Recovery Charge IF=20A,dI/dt=100A/µs,VDS=100V 14 ns µC Body Diode Reverse Recovery Time A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=7A, VDD=150V, RG=25Ω, Starting TJ=25°C. H. Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V(BR)DSS. I. Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V(BR)DSS. J. L=1.0mH, VDD=150V, RG=25Ω, Starting TJ=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.2.0 July 2013 www.aosmd.com Page 2 of 6 AOW20C60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 1000 60 10V VDS=40V 48 -55°C 100 8V ID(A) ID (A) 36 6.5V 10 125°C 24 6V 1 12 25°C VGS=5.5V 0 0 5 10 15 20 25 0.1 30 2 VDS (Volts) Fig 1: On-Region Characteristics 6 8 10 VGS(Volts) Figure 2: Transfer Characteristics 0.5 Normalized On-Resistance 3 0.4 RDS(ON) (Ω) 4 VGS=10V 0.3 0.2 0.1 10 20 30 40 VGS=10V ID=10A 2 1.5 1 0.5 0 -100 0.0 0 2.5 50 -50 0 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 1E+02 1.2 40 1E+00 IS (A) BVDSS (Normalized) 1E+01 1.1 1 125°C 1E-01 25°C 1E-02 0.9 1E-03 0.8 -100 1E-04 -50 0 50 100 150 200 TJ (°C) Figure 5:Break Down vs. Junction Temperature Rev.2.0 July 2013 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOW20C60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 Ciss VDS=480V ID=20A Capacitance (pF) VGS (Volts) 12 9 6 1000 Coss 100 10 Crss 3 1 0 0 20 40 60 80 0.1 100 1 10 100 1000 VDS (Volts) Figure 8: Capacitance Characteristics 20 25 16 20 Current rating ID(A) Eoss(uJ) Qg (nC) Figure 7: Gate-Charge Characteristics 12 Eoss 8 4 15 10 5 0 0 0 100 200 300 400 500 600 0 25 50 75 100 125 150 TCASE (°C) Figure 10: Current De-rating (Note B) VDS (Volts) Figure 9: Coss stored Energy 1000 100 10µs ID (Amps) RDS(ON) limited 100µs 10 1ms DC 1 0.1 10ms TJ(Max)=150°C TC=25°C 0.01 1 10 100 1000 VDS (Volts) Figure 11: Maximum Forward Biased Safe Operating Area for AOW20C60 (Note F) Rev.2.0 July 2013 www.aosmd.com Page 4 of 6 AOW20C60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.27°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Single Pulse 0.01 Ton T 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOW20C60 (Note F) Rev.2.0 July 2013 www.aosmd.com Page 5 of 6 AOW20C60 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC DUT - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs + VDC 90% Vdd - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev.2.0 July 2013 L Isd + VDC - IF trr dI/dt IRM Vdd Vdd Vds www.aosmd.com Page 6 of 6