AN319 - Infineon

B GS 12P L 6
SP DT R F C MOS S w itc h
For Hig h Po wer A p plic atio ns
Applic atio n N ote A N 319
Revision: Rev. 1.0
2013-02-28
RF and P r otecti on D evic es
Edition 2013-06-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN
THIS APPLICATION NOTE.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
BGS12PL6
High Power Applications up to 35 dBm
Application Note AN319
Revision History: 2013-02-28
Previous Revision:
Page
Subjects (major changes since last revision)
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™,
TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™
of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™
of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS
Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of
Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems
Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc.
SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software
Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™
of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™
of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
Application Note AN319, Rev. 1.0
3 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
List of Content, Figures and Tables
Table of Content
1
Introduction ........................................................................................................................................ 6
2
2.1
2.2
2.3
2.4
BGS12PL6 Features ........................................................................................................................... 6
Main Features ...................................................................................................................................... 6
Functional Diagram .............................................................................................................................. 7
Pin Configuration .................................................................................................................................. 7
Pin Description ..................................................................................................................................... 7
3
3.1
3.2
3.3
Application .......................................................................................................................................... 8
LTE Band Switch .................................................................................................................................. 8
Antenna switch ..................................................................................................................................... 8
Application Board ................................................................................................................................. 9
4
4.1
4.2
4.3
4.4
4.5
Small Signal Characteristics ........................................................................................................... 10
Measurement Results ........................................................................................................................ 10
Forward Transmission ........................................................................................................................ 11
Reflection RFin Port ........................................................................................................................... 11
Isolation RF1 ...................................................................................................................................... 12
Isolation RF2 ...................................................................................................................................... 12
5
Intermodulation ................................................................................................................................ 13
6
Harmonic Generation ....................................................................................................................... 15
7
Power Compression Measurements on all RF Paths ................................................................... 17
8
Authors .............................................................................................................................................. 18
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
BGS12PL6 Functional Diagram ........................................................................................................... 7
Pin Configuration .................................................................................................................................. 7
Application LTE Switch ........................................................................................................................ 8
Antenna Switch with BGS12PL6 .......................................................................................................... 8
Photo of the Application Board ............................................................................................................. 9
Photos of De-embedding Boards ......................................................................................................... 9
PCB layer information .......................................................................................................................... 9
Forward Transmission Curves for RF Ports ....................................................................................... 11
Reflection RFin Port ........................................................................................................................... 11
Isolation RF1 ...................................................................................................................................... 12
Isolation RF2 ...................................................................................................................................... 12
Block Diagram of Intermodulation Measurement of RF Switch ......................................................... 13
Test Set-Up for IMD Measurements .................................................................................................. 14
IMD Results for Band I ....................................................................................................................... 14
IMD Results for Band V ...................................................................................................................... 14
Set-Up for Harmonics Measurement.................................................................................................. 15
nd
2 Harmonic at fc=830 MHz............................................................................................................... 15
rd
3 Harmonic at fc=830 MHz ............................................................................................................... 16
nd
2 Harmonic at fc=1800 MHz............................................................................................................. 16
rd
3 Harmonic at fc=1800 MHz ............................................................................................................. 16
Power Compression Measurement Results at fc=830 MHz ............................................................... 17
List of Tables
Table 1
Table 2
Pin Description (top view) .................................................................................................................... 7
Forward Transmission from RFIN Port to the Respective RF Port with All Other Ports Terminated
with 50Ω ............................................................................................................................................. 10
Application Note AN319, Rev. 1.0
4 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
List of Content, Figures and Tables
Table 3
Table 4
Table 5
Reflection RFin Port to the Respective RF Port with All Other Ports Terminated with 50Ω ............. 10
Reflection RF Port to the Respective RF Port with All Other Ports Terminated with 50Ω ................ 10
Test Conditions and Specifications of IMD Measurements ............................................................... 13
Application Note AN319, Rev. 1.0
5 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Introduction
1
Introduction
The BGS12PL6 general purpose RF MOS power switch is designed to cover a broad range of high power
applications from 30 MHz to 4 GHz, mainly in the transmit path of WCDMA and LTE mobile phones. The
symmetric design of its single pole double throw (SPDT) configuration, as shown in Figure 1 offers high design
flexibility.
This single supply chip integrates on-chip CMOS logic driven by a simple, single-pin CMOS or TTL compatible
control input signal. The 0.1 dB compression point exceeds the switch‟s maximum input power level of 35 dBm,
resulting in linear performance at all signal levels. The RF switch has a very low insertion loss of 0.33 dB in the
1 GHz, 0.42 dB in the 2 GHz and 0.6 dB in the 3 GHz range.
Unlike GaAs technology, external DC blocking capacitors at the RF ports are only required if DC voltage is
applied externally.
The BGS12PL6 RF switch is manufactured in Infineon‟s patented MOS technology, offering the performance of
GaAs with the economy and integration of conventional CMOS including the inherent higher ESD robustness.
2
The device has a very small size of only 0.7x 1.1 mm and a maximum height of 0.4 mm.
2
BGS12PL6 Features
2.1
Main Features

2 high-linearity TRx paths with power handling capability of up to 35 dBm

All ports fully symmetrical

No external decoupling components required

Very low insertion loss

Very low harmonic generation

High port-to-port-isolation

0.1 to 4 GHz coverage

High ESD robustness

On-chip control logic

Small lead and halogen free package TSLP-6-4 (0.7 x 1.1 mm )

RoHS compliant package
2
Application Note AN319, Rev. 1.0
6 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
BGS12PL6 Features
2.2
Functional Diagram
Figure 1
BGS12PL6 Functional Diagram
2.3
Pin Configuration
In Figure 2 the pin configuration in top view is given.
Figure 2
Pin Configuration
2.4
Pin Description
Table 1
Pin Description (top view)
Pin No.
Name
Pin Type
Function
1
RF2
I/O
RF port 2
2
GND
GND
3
RF1
I/O
4
Vdd
PWR
5
RFIN
I/O
RF port In
6
CTRL
I
Control Pin
Application Note AN319, Rev. 1.0
7 / 19
Ground
RF port 1
Supply Voltage
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Application
3
Application
3.1
LTE Band Switch
The next generation smart phones are required to support upto 15 different frequency bands and even more
number of band combinations. Often the number of pins on the transceiver is limited. An RF switch can be used
to expand the number of reception bands. One of the possible applications of this high power SPDT is an LTE
band switch which can be used after the Power Amplfier (PA) as shown in the figure below.
Main
Antenna
RF Transceiver IC
SPDT
Switch
BGS12PL6
PA
LTE
SPNT
Switch
Figure 3
Application LTE Switch
3.2
Antenna switch
Another application is the antenna switch for certain bands in LTE and CDMA.
Antenna
RF Transceiver IC
LTE
Figure 4
CDMA
SPDT
Switch
BGS12PL6
Antenna Switch with BGS12PL6
Application Note AN319, Rev. 1.0
8 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Application
3.3
Application Board
Below is a picture of the evaluation board used for the measurements (Figure 5). The board is designed so that
all connecting 50 Ohm lines have the same length.
In order to get accurate values for the insertion loss of the BGS12PL6 all influences and losses of the evaluation
board, lines and connectors have to be eliminated. Therefore a separate de-embedding board, representing the
line length is necessary (Figure 6).
The calibration of the network analyser (NWA) is done in severall steps:
- Perform full calibration on all NWA ports.
- Attach empty SMA connector at port 2 and perform “open” port extension. Turn port extensions on.
- Connect the “half” de-embedding board (Figure 6 left board) between port1 and port2, store this as a
s-parameter (s2p) file.
- Turn all port extentions off.
- Load the stored s-parameter file as de-embedding file for all used NWA ports
- Switch all port extentions on
- Check insertion loss with the de-embedding through board (Figure 6 right board)
Figure 5
Photo of the Application Board
Figure 6
Photos of De-embedding Boards
The construction of the PCB is shown in Figure 7.
Vias
Rodgers , 0.2mm
Copper
35µm
Figure 7
FR4, 0.8mm
PCB layer information
Application Note AN319, Rev. 1.0
9 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Small Signal Characteristics
4
Small Signal Characteristics
The small signal characteristics are measured at 25 °C with a 4-port Network Analyzer.
4.1
Measurement Results
In the following tables and graphs the most important RF parameters of the BGS12SL6 are shown. The markers
are set to the most important frequencies of the WDCDMA system.
Table 2
Forward Transmission from RFIN Port to the Respective RF Port with All Other Ports
Terminated with 50Ω
Frequency (MHz)
RF Path
RF1
RF2
Table 3
RF Path
RF1
RF2
RF1
RF2
1000
1710
1910
2170
2690
-0.38
-0.37
-0.39
-0.38
-0.39
-0.38
-0.46
-0.44
-0.47
-0.46
-0.51
-0.49
-0.58
-0.57
824
915
1000
1710
1910
2170
2690
-29.1
-29.2
-27.8
-28.1
-27.7
-27.9
-25.3
-25.4
-24
-23.9
-22.2
-22
-20
-19.6
Reflection RF Port to the Respective RF Port with All Other Ports Terminated with 50Ω
Frequency (MHz)
RF Path
915
Reflection RFin Port to the Respective RF Port with All Other Ports Terminated with 50Ω
Frequency (MHz)
Table 4
824
824
915
1000
1710
1910
2170
2690
-29.8
-30.8
-29.4
-30.2
-29.3
-30.3
-26.2
-26.6
-25.3
-25.4
-23.7
-23.2
-20.2
-19.3
Application Note AN319, Rev. 1.0
10 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Small Signal Characteristics
4.2
Forward Transmission
Forward Transmission RF Ports
0
-0.5
[dB]
-1
824 MHz
-0.3708 dB
-1.5
2170 MHz
-0.4914 dB
1710 MHz
-0.4421 dB
915 MHz
-0.3774 dB
1910 MHz
-0.456 dB
2690 MHz
-0.5731 dB
-2
-2.5
RF1
RF2
-3
0
1000
2000
3000
Frequency (MHz)
Figure 8
Forward Transmission Curves for RF Ports
4.3
Reflection RFin Port
4000
5000
Reflection RFin Port
0
[dB]
-10
2690 MHz
-19.56 dB
-20
-30
RFin_RF1
RFin_RF2
-40
0
Figure 9
1000
2000
3000
Frequency (MHz)
4000
5000
Reflection RFin Port
Application Note AN319, Rev. 1.0
11 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Small Signal Characteristics
4.4
Isolation RF1
Isolation_RF1
0
-20
-40
2690 MHz
-25.22 dB
-60
-80
RF2_RF1
RF1_RFin
-100
0
Figure 10
Isolation RF1
4.5
Isolation RF2
1000
2000
3000
Frequency (MHz)
4000
5000
Isolation_RF2
0
-20
-40
2690 MHz
-24.66 dB
-60
-80
RF1_RF2
RF2_RFin
-100
0
Figure 11
1000
2000
3000
Frequency (MHz)
4000
5000
Isolation RF2
Application Note AN319, Rev. 1.0
12 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Intermodulation
5
Intermodulation
Another very important parameter of a RF switch is the large signal capability. One of the possible
intermodulation scenarios is shown in Figure 12. The transmission (Tx) signal from the main antenna is coupled
into the diversity antenna with high power.This signal (20 dBm) and a received Jammer signal (-15 dBm) are
entering the switch.
Coupled Tx
Signal from
main antenna
Jammer
(CW)
Receiver
Diversity
Antenna
RF Switch
IMD
Figure 12
Block Diagram of Intermodulation Measurement of RF Switch
nd
Special combinations of TX and Jammer signals produce 2
and 3rd order intermodulation products, which fall
in the RX band and interfere with the wanted RX signal.
In Table 5 frequencies for 3 bands and the intermodulation specifications for an undisturbed communication are
given.
Table 5
Test Conditions and Specifications of IMD Measurements
Test Conditions
(Tx = +20dBm, Bl = -15dBm,freq.in MHz,@25°C)
Band Tx Freq.
(MHz)
(MHz)
Rx Freq.
(MHz)
Intermodulation Specification
850
836.5
881.5
IMD2 Low
Jammer 1
(MHz)
45
IMD3
IMD2 High
Jammer 2 Jammer 3
(MHz)
(MHz)
791.5
1718
IMD2
(dBm)
IIP2
(dBm)
IMD3
(dBm)
IIP3
(dBm)
-105
110
-105
65
1900
1880
1960
80
1800
3840
-105
110
-105
65
2100
1950
2140
190
1760
4090
-105
110
-105
65
The test setup for the IMD measurements has to provide a very high isolation between RX and TX signals. As
an example the test set-up and the results for the high band are shown (Figure 13 and Figure 14).
For the RX/TX separation a professional duplexer with 80 dB isolation is used.
Application Note AN319, Rev. 1.0
13 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Intermodulation
Figure 14 and Figure 15 show the results for Band I and Band V. For each distortion scenario there is a min.
and a max. value given. This variation is caused by a phase shifter connected between the switch and the
duplexer. In the test set-up the phase shifter represents a non-ideal matching of the switch to 50 Ohm.
Load
-20dB
-3dB
Tx
K&L
Mini Circuits
(ZHL-30W-252 -S+)
Signal
Generator
Power
Amplifier
Duplexer
Tunable
Bandpass
Filter
Circulator
DUT
ANT
Phase Shifter /
Delay Line
TRx
-20dB
ANT
K&L
Tunable
Bandpass Filter
Signal
Generator
Rx
K& L
Tunable
Bandpass
Filter
Signal
Analyzer
Figure 13
Power reference plane
PTx = +20 dBm
PBl = -15 dBm
-3 dB
Test Set-Up for IMD Measurements
IMD Band - I
IMD2 low
IMD2 High
IMD3
fb = 190 MHz
fb = 4090 MHz
fb = 1760 MHz
Power
RF-port
Min
Max
Min
Max
Min
Max
P Tx = + 10dBm
RF1
-113,46
-102,93
-118,42
-113,63
-133,97
-125,14
P int = - 15dBm
RF2
-112,95
-102,45
-117,31
-113,76
-134,87
-126,04
P Tx = + 20dBm
RF1
-105,52
-96,24
-111,64
-107,45
-118,05
-106,35
P int = - 15dBm
RF2
-105,22
-95,58
-109,22
-106,19
-121,13
-108,86
Figure 14
IMD Results for Band I
IMD Band - V
IMD2 low
IMD2 High
IMD3
fb = 45 MHz
fb = 1718 MHz
fb = 791.5 MHz
Power
RF-port
Min
Max
Min
Max
Min
Max
P Tx = + 10dBm
RF1
-116,31
-106,04
-119,20
-110,94
-124,54
-116,64
P int = - 15dBm
RF2
-115,84
-106,67
-116,66
-111,30
-126,02
-121,25
P Tx = + 20dBm
RF1
-106,54
-97,06
-111,53
-105,13
-105,18
-98,54
P int = - 15dBm
RF2
-107,77
-98,87
-108,43
-103,60
-108,59
-102,33
Figure 15
IMD Results for Band V
Application Note AN319, Rev. 1.0
14 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Harmonic Generation
6
Harmonic Generation
Harmonic generation is another important parameter for the characterization of a RF switch. RF switches have
to deal with high RF levels up to 35 dBm. Harmonics are generated with such high RF power levels at the input
of the switch. These harmonics (2
nd
rd
and 3 ) can disturb the reception of other bands or cause distortion in other
RF applications (GPS, WLAN…) within the mobile phone.
Load
-20dB
Directional
Coupler
-20dB
Signal
Generator
Power
Amplifier
Circulator
Tunable
Bandpass
Filter
A
Power meter
Agilent
E4419B
-3dB
B
DUT
ANT
K&L
Signal
Analyzer
Figure 16
-20dB
Tunable
Bandstop
Filter
Tx
Directional
Coupler
Set-Up for Harmonics Measurement
The results for the harmonic generation at 830 MHz are shown in Figure 17 (2
nd
rd
harmonic) and Figure 18 (3
harmonic) for all RF ports. In Figure 19 and Figure 20 the results for 1800 MHz are given.
On the x-axis the input power is plotted and on the y- axis the generated harmonics in dBm.
H2 LB
0
-10
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
H2 (dBm)
-20
-30
-40
RF1
-50
RF2
-60
-70
-80
Figure 17
nd
2
Pin (dBm)
Harmonic at fc=830 MHz
Application Note AN319, Rev. 1.0
15 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Harmonic Generation
H3 LB
0
-10
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
-20
H3 (dBm)
-30
-40
RF1
-50
RF2
-60
-70
-80
-90
Figure 18
Pin (dBm)
rd
3 Harmonic at fc=830 MHz
H2 HB
0
-10
20 21 22 23 24 25 26 27 28 29 30 31 32 33
H2 (dBm)
-20
-30
-40
RF1
-50
RF2
-60
-70
-80
Figure 19
nd
2
Pin (dBm)
Harmonic at fc=1800 MHz
H3 HB
0
-10
20 21 22 23 24 25 26 27 28 29 30 31 32 33
-20
H3 (dBm)
-30
-40
RF1
-50
RF2
-60
-70
-80
-90
Figure 20
Pin (dBm)
rd
3 Harmonic at fc=1800 MHz
Application Note AN319, Rev. 1.0
16 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Power Compression Measurements on all RF Paths
7
Power Compression Measurements on all RF Paths
To judge the large signal capability of a switch, „power compression‟ is a widely used measurement.The output
power is measured while the input power increasing gradually. At a certain point the output power does not
follow the input power and the switch compresses the RF signal. In the diagram below (Figure 21) the IL is
plotted versus the injected input power. The input power can be increased up to 38 dBm and there is no
compression visible on any of the RF ports.
IL (dB)
P0.1dB > Spec
1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
P0.1dB > Spec
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 41
Pin (dBm)
Figure 21
Power Compression Measurement Results at fc=830 MHz
The measurements are done on large signal measurement setup which is not calibrated for Insertion Loss with
high precision. So the values here may differ with the actual IL values earlier in this report.
Application Note AN319, Rev. 1.0
17 / 19
2013-02-28
BGS12PL6
High Power Applications up to 35 dBm
Authors
8
Authors
Ralph Kuhn, Senior Staff Application Engineer of the Business Unit “RF and Protection Devices”
Andre Dewai, Application Engineer of the Business Unit “RF and Protection Devices”
Application Note AN319, Rev. 1.0
18 / 19
2013-02-28