BF P843 BF P843 S iGe :C Ul tr a Lo w Noi s e R F Transis tor in Dual -B and 2 .4 - 2.5 G Hz & 5 - 6 G Hz Wi Fi / WLA N Ap plic atio n (For 802.11a / b / g / n / ac Wireless LAN Applications) App lic atio n N ote A N 312 Revision: Rev. 1.0 2013-03-14 RF and P r otecti on D evic es Edition 2013-03-14 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Application Note AN312 Revision History: 2013-03-14 Previous Revision: No previous revision Page Subjects (major changes since last revision) Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Application Note AN312, Rev. 1.0 3 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications List of Content, Figures and Tables Table of Content 1 1.1 Introduction ........................................................................................................................................ 5 ® About Wi-Fi /Wireless LAN (WLAN) ................................................................................................... 5 2 2.1 2.2 BFP843 Overview ............................................................................................................................... 7 Features ............................................................................................................................................... 7 Key Applications of BFP843 ................................................................................................................. 7 3 3.1 3.2 3.3 BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications ............. 8 Description ........................................................................................................................................... 8 Performance Overview ......................................................................................................................... 9 Schematics and Bill-of-Materials ........................................................................................................ 10 4 Measurement Graphs ...................................................................................................................... 11 5 Evaluation Board and Layout Information .................................................................................... 19 6 Authors .............................................................................................................................................. 21 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Dual-Band Wi-Fi® Wireless LAN at 2.4 - 2.5 GHz and 5 - 6 GHz ....................................................... 6 BFP843 in SOT343 .............................................................................................................................. 7 Package and pin connections of BFP843 in Topview .......................................................................... 8 Schematic Diagram of the Application Circuit .................................................................................... 10 Wideband Insertion Power Gain of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 ......... 11 Reverse Isolation of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 ................................ 11 Noise Figure of BFP843 for 2.4 – 2.5 GHz ........................................................................................ 12 Noise Figure of BFP843 for 5 – 6 GHz .............................................................................................. 12 Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 .................................... 13 Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart) .............. 13 Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 .................................. 14 Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart) ........... 14 Plot of Broadband Stability k Factor ................................................................................................... 15 Plot of Broadband Stability µ Factor .................................................................................................. 15 Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 2400 MHz ............................... 16 Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 5500 MHz ............................... 16 rd Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 2.4 GHz) ..................... 17 rd Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 5.5 GHz) ..................... 17 OFF-Mode (Vcc = 0V, Icc = 0mA) S21 of Dual-Band WLAN LNA with BFP843 ............................... 18 Photo Picture of Evaluation Board of Dual-Band WLAN LNA with BFP843 ...................................... 19 Zoom-In of Photo Picture ................................................................................................................... 19 Layout Proposal for RF Grounding of the 2.4 – 6 GHz WLAN LNA with BFP843 ............................. 20 PCB Layer Information ....................................................................................................................... 20 List of Tables Table 1 Table 2 Summary of Measurement Results ...................................................................................................... 9 Bill-of-Materials................................................................................................................................... 10 Application Note AN312, Rev. 1.0 4 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Introduction 1 Introduction 1.1 About Wi-Fi® /Wireless LAN (WLAN) The Wi-Fi® function is one of the most important connectivity functions in notebooks, smart phones and tablet PCs. Wi-Fi is a registered trademark made of the Wi-Fi Alliance created to certify devices for wireless LAN (WLAN) applications based on the IEEE 802.11 standard. The WLAN standard has evolved over the years from its legacy systems known as 802.111997, through 802.11a, b, g, and n, to the newest 802.11ac. Today the trend is rapidly changing where Wi-Fi is not only used for high data rate access to internet but also for content consumption such as streaming music and High Definition video on TVs, smart phones, tablets, game consoles etc. With the requirements on wireless data quality becoming more stringent than ever, the new Wireless LAN standards are being developed by using higher order modulation schemes, wider channels and multiple data streams. Wi-Fi according to IEEE802.11b/g/n at 2.4 GHz widely implemented over years suffers from interference from other devices such as cordless phones, microwave ovens, Bluetooth devices etc. in the 2.4 GHz space. 802.11a/n operating at 5 GHz has less interference and can transmit data at greater speeds (54 Mbps) but at the cost of reduced range. 802.11n provides enhanced performance and range over prior 802.11 technologies by operating in both the 2.4 GHz and 5 GHz. It adds two significant technologies: MIMO (Multiple inputMultiple output) and 40 MHz channels. With this, data rates up to 600Mbps (for 4 streams) can be achieved in the 5GHz band. To cater to these high throughput requirements, major performance criteria have to be fulfilled: sensitivity, strong signal capability and interference immunity. The Figure 1 shows one example of general block diagram of a dual band WLAN system. Application Note AN312, Rev. 1.0 5 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Introduction 2.4 GHz LNA Dual-Band WLAN: 2.4 – 6 GHz Rx Diplexer Rxg Rxa SPDT Switch 5 GHz LNA Txg Transceiver IC 2.4 GHz PA ESD Diode Tx Diplexer Power Detector 5 GHz PA Figure 1 Txa Dual-Band Wi-Fi® Wireless LAN at 2.4 - 2.5 GHz and 5 - 6 GHz A Wi-Fi router has to receive relatively weak signals from Wi-Fi enabled devices such as mobile phones. Therefore, it should have high sensitivity to detect a weak signal in the presence of strong interfering signals. We can improve the sensitivity of the receiver by using a low noise amplifier (LNA) as a first block of the receiver front end to improve the signal-tonoise ratio (SNR) of the overall system. As an example, an increase in the sensitivity by 5 dB corresponds to nearly double link distance. WLAN systems are subject to co-channel interference and also interference from strong coexisting cellular signals. High linearity characteristics such as 3rd-order intercept point (IP3) and 1dB compression point (P1dB) are required to improve an application's ability to distinguish between desired signals and spurious signals received close together. This avoids saturation, degradation of the gain and increased noise figure. This application note is focusing on the LNA block, but Infineon does also support with RFswitches, TVS-diodes for ESD protection and RF Schottky diodes for power detection for WLAN. Application Note AN312, Rev. 1.0 6 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications BFP843 Overview 2 BFP843 Overview 2.1 Features • Low noise broadband NPN RF transistor based on Infineon´s reliable, high volume SiGe:C bipolar technology • High maximum RF input power and ESD robustness • Unique combination of high RF performance, robustness and ease of use • Low noise figure: NFmin = 1.0 dB at 2.4 GHz and 1.2 dB at 5.5 GHz, 1.8 V, 8 mA 2 • High gain |S21| = 21.5 dB at 2.4 GHz and 15.5 dB at 5.5 GHz, 1.8 V, 15 mA • OIP3 = 23 dBm at 2.4 GHz and 20 dBm at 5.5 GHz, 1.8 V, 15 mA • Ideal for low voltage applications e.g. VCC = 1.2 V and 1.8 V (2.85 V, 3.3 V, 3.6 V requires corresponding collector resistor) • Low power consumption, ideal for mobile applications • Thin small flat Pb-free (RoHS compliant) and halogen-free package • Qualification report according to AEC-Q101 available 2.2 Figure 2 BFP843 in SOT343 Key Applications of BFP843 As Low Noise Amplifier (LNA) in: • Wireless Communications: 2.4GHz Wireless LAN IEEE802.11b/g/n, 5-6 GHz Wireless LAN IEEE802.11a/n/ac, WiMAX • Satellite navigation systems (e.g. GPS, GLONASS, COMPASS...) and satellite C-band LNB (1st and 2nd stage LNA) • Broadband amplifiers: Dualband WLAN, multiband mobile phone, UWB up to 10 GHz • ISM bands up to 10 GHz Application Note AN312, Rev. 1.0 7 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications 3 BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications 3.1 Description BFP843 is a discrete SiGe:C hetero-junction bipolar transistor (HBT) specifically designed for high performance dual band 2- 6 GHz band low noise amplifier (LNA) solutions for Wi-Fi connectivity applications. This has been developed using Infineon’s latest B9HFM technology. The key features of this technology are very high transition frequency (fT = 80 GHz) and low parasitics, which enable to achieve higher gain and lower noise figure compared to the previous generation RF transistor BFR740L3RH. BFP843 features an integrated on-chip R-C feedback network. The negative feedback reduces the effects of performance variations of the amplifier. The design is therefore less sensitive to variations in PCB layout resulting in an amplifier with broader bandwidth, easier impedance matching and improved stability margin. However the price paid for using negative feedback is slight degradation of noise figure and decrease in gain. The BFP843 is housed in low-height 1.1mm SOT343 package specially fitting into modules. It is also available in other packages, e.g. BFR843EL3 in TSLP-3-9 and BFP843F in TSFP-4-1 package. The BFP843 has an integrated 1.5 kV HBM ESD protection which makes the device robust against electrostatic discharge and extreme RF input power. The device offers its high performance at low current and voltage and is especially well-suited for portable battery powered applications in which energy efficiency is a key requirement. Figure 3 shows the pin assignment of package of BFP843 in the top view: B 1 4 E XYs E 2 3 C BFPXXX Figure 3 Package and pin connections of BFP843 in Topview Application Note AN312, Rev. 1.0 8 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications 3.2 Performance Overview Device: BFP843 Application: Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications PCB Marking: BFP843 SOT343 M130130 (designed for 0402 SMD) Table 1 Summary of Measurement Results Parameter Symbol Value Unit DC Voltage VCC 3.0 V DC Current ICC 13.8 mA Frequency Range Freq 2400 2500 5100 5500 5900 MHz Gain (On Mode) GON 19.6 19.4 15.3 14.7 14.2 dB Gain (Off Mode) GOFF -21.6 -21.7 -27.3 -31.6 -41.5 dB Note/Test Condition SMA and PCB losses (0.05 dB @ 2.4 GHz, 0.1 dB @ 5 GHz) are subtracted Noise Figure NF 1.06 1.08 1.34 1.36 1.35 dB Input Return Loss RLin 12.0 12.1 25.0 21.4 16.7 dB Output Return Loss RLout 18.1 17.5 28.4 21.0 15.8 dB Reverse Isolation IRev 27.5 27.6 25.8 25.0 24.3 dB Input P1dB (On Mode) IP1dBON -12.3 -12.5 -8.4 -8.4 -7.4 dBm Output P1dB (On Mode) OP1dBON 6.3 5.9 5.9 5.3 5.8 dBm Input IP3 IIP3 -2.1 -3.0 1.4 1.3 1.3 dBm Output IP3 OIP3 17.6 17.0 16.7 16.1 15.2 dBm Power @ Input: -25 dBm Stability k Application Note AN312, Rev. 1.0 >1 9 / 22 -- Stability measured from 10MHz to 15GHz 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications 3.3 Schematics and Bill-of-Materials Vcc= 3.0 V All passives are “0402“ case size Inductors: LQG Capacitors: various J3 DC Connector I = ~13.0 mA R1 100 Ω R3 0Ω C3 33 pF R2 15 KΩ L1 5.1 nH J1 RF Port1 INPUT J2 RF Port2 OUTPUT C2 Q1: BFP843 C1 6.8 pF 6.8 pF Total Component Count = 7 PCB = BFP843 SOT343 M130130 Layer spacing (top RF to internal ground plane): 0.2 mm Figure 4 Table 2 Inductors = 1 (LQG) Resistors = 3 Capacitors = 3 Schematic Diagram of the Application Circuit Bill-of-Materials Symbol Value Unit Size Manufacturer Comment C1 6.8 pF 0402 Various Input DC block C2 6.8 pF 0402 Various Output DC block C3 33 pF 0402 Various L1 5.1 nH 0402 LQG RF decoupling / blocking cap RF decoupling / Output matching R1 100 Ω 0402 Various DC biasing R2 15 kΩ 0402 Various DC biasing R3 0 Ω 0402 Various Jumper SOT343 Infineon Technologies BFP843 SiGe:C Heterojunction Bipolar RF Transistor Q1 Application Note AN312, Rev. 1.0 10 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs 4 Measurement Graphs Insertion Power Gain InBand 25 2400 MHz 19.6 dB 5100 MHz 15.3 dB 20 5900 MHz 14.2 dB 2500 MHz 19.4 dB 15 5500 MHz 14.7 dB 10 5 0 100 Figure 5 2100 4100 6100 Frequency (MHz) 8100 10000 Wideband Insertion Power Gain of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 Reverse Isolation 0 -10 -20 2400 MHz -27.5 dB -30 2500 MHz -27.6 dB 5100 MHz -25.8 dB 5900 MHz -24.3 dB 5500 MHz -25 dB -40 100 Figure 6 2100 4100 6100 Frequency (MHz) 8100 10000 Reverse Isolation of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 Application Note AN312, Rev. 1.0 11 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs Noise Figure_2G4_2G5 2 NF(dB) 1.5 2500 MHz 1.08 dB 2400 MHz 1.06 dB 1 0.5 0 2400 Figure 7 2420 2440 2460 Frequency (MHz) 2480 2500 Noise Figure of BFP843 for 2.4 – 2.5 GHz Noise Figure_5G_6G 2 NF(dB) 1.5 1 5100 MHz 1.34 dB 5500 MHz 1.36 dB 5900 MHz 1.35 dB 0.5 0 5000 Figure 8 5200 5400 5600 Frequency (MHz) 5800 6000 Noise Figure of BFP843 for 5 – 6 GHz Application Note AN312, Rev. 1.0 12 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs Input Matching 0 -5 2500 MHz -12.1 dB -10 -15 5900 MHz -16.7 dB 2400 MHz -12 dB -20 5500 MHz -21.4 dB 5100 MHz -25 dB -25 -30 0 Figure 9 2000 4000 6000 Frequency (MHz) 8000 10000 Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 Swp Max 7000MHz 2. 0 6 0. 0.8 1.0 Input Matching Smith 0. 4 0 3. 0 4. 10.0 -3 .0 .0 -2 -1.0 -0.8 -0 .6 .4 -0 Figure 10 5.0 4.0 3.0 2.0 1.0 0.8 0.6 0.4 0.2 2400 MHz r 0.759141 x -0.382397 -4 .0 -5. 0 0 10.0 -10.0 0.2 2 -0. 5.0 5500 MHz r 1.01705 x 0.1706 Swp Min 2000MHz Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart) Application Note AN312, Rev. 1.0 13 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs Output Matching 0 -5 2500 MHz -17.5 dB -10 5500 MHz -21 dB -15 5900 MHz -15.8 dB -20 2400 MHz -18.1 dB -25 5100 MHz -28.4 dB -30 0 Figure 11 2000 4000 6000 Frequency (MHz) 8000 10000 Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 Swp Max 7000MHz 2. 0 6 0. 0.8 1.0 Output Matching Smith 0. 4 0 4. 5.0 10.0 5.0 4.0 3.0 2.0 1.0 0.8 10.0 0.6 2400 MHz r 1.13926 x -0.228552 0.4 0.2 0.2 0 0 3. 5500 MHz r 1.03386 x 0.179201 -10.0 2 -0. -4 .0 -5. 0 -3 .0 Figure 12 .0 -2 -1.0 -0.8 -0 .6 .4 -0 Swp Min 2000MHz Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart) Application Note AN312, Rev. 1.0 14 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs Stability k Factor 2 1.5 1 0.5 0 0 5000 10000 15000 Frequency (MHz) Figure 13 Plot of Broadband Stability k Factor Stability Mu Factor 2.5 2 1.5 1 Mu2 factor 0.5 Mu1 factor 0 100 5100 10100 15000 Frequency (MHz) Figure 14 Plot of Broadband Stability µ Factor Application Note AN312, Rev. 1.0 15 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs Input 1dB Compression Point_2G4 20 -30 dBm 19.65 dB Gain(dB) 15 -12.3 dBm 18.65 dB 10 5 0 -30 -20 -10 0 Pin (dBm) Figure 15 Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 2400 MHz Input 1dB Compression Point_5G5 20 Gain(dB) 15 -30 dBm 14.79 dB -8.37 dBm 13.79 dB 10 5 0 -30 Figure 16 -25 -20 -15 Pin (dBm) -10 -5 0 Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 5500 MHz Application Note AN312, Rev. 1.0 16 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs Output 3rd Order Intercept Point_2G4 0 2401 MHz -5.28 2400 MHz -5.28 Power (dBm) -20 -40 2402 MHz -50.5 2399 MHz -51.1 -60 -80 -100 2398.5 Figure 17 2399.5 2400.5 Frequency (MHz) 2401.5 2402.5 rd Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 2.4 GHz) Output 3rd Order Intercept Point_5G9 0 Power (dBm) 5900 MHz -10.7 5899 MHz -11.1 -20 -40 5901 MHz -63.5 5898 MHz -63.6 -60 -80 -100 5897 Figure 18 5898 5899 5900 Frequency (MHz) 5901 5902 rd Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 5.5 GHz) Application Note AN312, Rev. 1.0 17 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Measurement Graphs OFF Mode S21 -10 5100 MHz -27.3 dB -20 2400 MHz -21.6 dB -30 5500 MHz -31.6 dB 2500 MHz -21.7 dB -40 5900 MHz -41.5 dB -50 -60 0 Figure 19 2000 4000 6000 Frequency (MHz) 8000 10000 OFF-Mode (Vcc = 0V, Icc = 0mA) S21 of Dual-Band WLAN LNA with BFP843 Application Note AN312, Rev. 1.0 18 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Evaluation Board and Layout Information 5 Evaluation Board and Layout Information Figure 20 Photo Picture of Evaluation Board of Dual-Band WLAN LNA with BFP843 Figure 21 Zoom-In of Photo Picture Application Note AN312, Rev. 1.0 19 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Evaluation Board and Layout Information 0.4 mm 0.4 mm 0.4 mm 0.4 mm 0.3 mm via diameter Figure 22 Layout Proposal for RF Grounding of the 2.4 – 6 GHz WLAN LNA with BFP843 Vias FR4 Core, 0.2mm Copper 35µm Figure 23 FR4 Prepreg, 0.8mm PCB Layer Information Application Note AN312, Rev. 1.0 20 / 22 2013-03-14 BFP843 Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications Authors 6 Authors Xi Chen, Internship Student of Application Engineering of Business Unit “RF and Protection Devices” Ahmed Shamsuddin, Application Engineer of Business Unit “RF and Protection Devices” Application Note AN312, Rev. 1.0 21 / 22 2013-03-14 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG AN312