AN312 - Infineon

BF P843
BF P843 S iGe :C Ul tr a Lo w Noi s e R F
Transis tor in Dual -B and 2 .4 - 2.5 G Hz
& 5 - 6 G Hz Wi Fi / WLA N Ap plic atio n
(For 802.11a / b / g / n / ac Wireless LAN Applications)
App lic atio n N ote A N 312
Revision: Rev. 1.0
2013-03-14
RF and P r otecti on D evic es
Edition 2013-03-14
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Application Note AN312
Revision History: 2013-03-14
Previous Revision: No previous revision
Page
Subjects (major changes since last revision)
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™,
TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™
of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™
of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS
Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of
Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems
Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc.
SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software
Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™
of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™
of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
Application Note AN312, Rev. 1.0
3 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
List of Content, Figures and Tables
Table of Content
1
1.1
Introduction ........................................................................................................................................ 5
®
About Wi-Fi /Wireless LAN (WLAN) ................................................................................................... 5
2
2.1
2.2
BFP843 Overview ............................................................................................................................... 7
Features ............................................................................................................................................... 7
Key Applications of BFP843 ................................................................................................................. 7
3
3.1
3.2
3.3
BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications ............. 8
Description ........................................................................................................................................... 8
Performance Overview ......................................................................................................................... 9
Schematics and Bill-of-Materials ........................................................................................................ 10
4
Measurement Graphs ...................................................................................................................... 11
5
Evaluation Board and Layout Information .................................................................................... 19
6
Authors .............................................................................................................................................. 21
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Dual-Band Wi-Fi® Wireless LAN at 2.4 - 2.5 GHz and 5 - 6 GHz ....................................................... 6
BFP843 in SOT343 .............................................................................................................................. 7
Package and pin connections of BFP843 in Topview .......................................................................... 8
Schematic Diagram of the Application Circuit .................................................................................... 10
Wideband Insertion Power Gain of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 ......... 11
Reverse Isolation of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 ................................ 11
Noise Figure of BFP843 for 2.4 – 2.5 GHz ........................................................................................ 12
Noise Figure of BFP843 for 5 – 6 GHz .............................................................................................. 12
Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 .................................... 13
Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart) .............. 13
Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 .................................. 14
Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart) ........... 14
Plot of Broadband Stability k Factor ................................................................................................... 15
Plot of Broadband Stability µ Factor .................................................................................................. 15
Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 2400 MHz ............................... 16
Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 5500 MHz ............................... 16
rd
Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 2.4 GHz) ..................... 17
rd
Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 5.5 GHz) ..................... 17
OFF-Mode (Vcc = 0V, Icc = 0mA) S21 of Dual-Band WLAN LNA with BFP843 ............................... 18
Photo Picture of Evaluation Board of Dual-Band WLAN LNA with BFP843 ...................................... 19
Zoom-In of Photo Picture ................................................................................................................... 19
Layout Proposal for RF Grounding of the 2.4 – 6 GHz WLAN LNA with BFP843 ............................. 20
PCB Layer Information ....................................................................................................................... 20
List of Tables
Table 1
Table 2
Summary of Measurement Results ...................................................................................................... 9
Bill-of-Materials................................................................................................................................... 10
Application Note AN312, Rev. 1.0
4 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Introduction
1
Introduction
1.1
About Wi-Fi® /Wireless LAN (WLAN)
The Wi-Fi® function is one of the most important connectivity functions in notebooks, smart
phones and tablet PCs. Wi-Fi is a registered trademark made of the Wi-Fi Alliance created to
certify devices for wireless LAN (WLAN) applications based on the IEEE 802.11 standard.
The WLAN standard has evolved over the years from its legacy systems known as 802.111997, through 802.11a, b, g, and n, to the newest 802.11ac. Today the trend is rapidly
changing where Wi-Fi is not only used for high data rate access to internet but also for
content consumption such as streaming music and High Definition video on TVs, smart
phones, tablets, game consoles etc.
With the requirements on wireless data quality becoming more stringent than ever, the new
Wireless LAN standards are being developed by using higher order modulation schemes,
wider channels and multiple data streams.
Wi-Fi according to IEEE802.11b/g/n at 2.4 GHz widely implemented over years suffers from
interference from other devices such as cordless phones, microwave ovens, Bluetooth
devices etc. in the 2.4 GHz space. 802.11a/n operating at 5 GHz has less interference and
can transmit data at greater speeds (54 Mbps) but at the cost of reduced range. 802.11n
provides enhanced performance and range over prior 802.11 technologies by operating in
both the 2.4 GHz and 5 GHz. It adds two significant technologies: MIMO (Multiple inputMultiple output) and 40 MHz channels. With this, data rates up to 600Mbps (for 4 streams)
can be achieved in the 5GHz band. To cater to these high throughput requirements, major
performance criteria have to be fulfilled: sensitivity, strong signal capability and interference
immunity.
The Figure 1 shows one example of general block diagram of a dual band WLAN system.
Application Note AN312, Rev. 1.0
5 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Introduction
2.4 GHz LNA
Dual-Band WLAN:
2.4 – 6 GHz
Rx Diplexer
Rxg
Rxa
SPDT
Switch
5 GHz LNA
Txg
Transceiver
IC
2.4 GHz PA
ESD
Diode
Tx Diplexer
Power
Detector 5 GHz PA
Figure 1
Txa
Dual-Band Wi-Fi® Wireless LAN at 2.4 - 2.5 GHz and 5 - 6 GHz
A Wi-Fi router has to receive relatively weak signals from Wi-Fi enabled devices such as
mobile phones. Therefore, it should have high sensitivity to detect a weak signal in the
presence of strong interfering signals. We can improve the sensitivity of the receiver by using
a low noise amplifier (LNA) as a first block of the receiver front end to improve the signal-tonoise ratio (SNR) of the overall system. As an example, an increase in the sensitivity by 5 dB
corresponds to nearly double link distance.
WLAN systems are subject to co-channel interference and also interference from strong coexisting cellular signals. High linearity characteristics such as 3rd-order intercept point (IP3)
and 1dB compression point (P1dB) are required to improve an application's ability to
distinguish between desired signals and spurious signals received close together. This
avoids saturation, degradation of the gain and increased noise figure.
This application note is focusing on the LNA block, but Infineon does also support with RFswitches, TVS-diodes for ESD protection and RF Schottky diodes for power detection for
WLAN.
Application Note AN312, Rev. 1.0
6 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
BFP843 Overview
2
BFP843 Overview
2.1
Features
• Low noise broadband NPN RF transistor based on
Infineon´s reliable, high volume SiGe:C bipolar
technology
• High maximum RF input power and ESD robustness
• Unique combination of high RF performance,
robustness and ease of use
• Low noise figure: NFmin = 1.0 dB at 2.4 GHz and 1.2
dB at 5.5 GHz, 1.8 V, 8 mA
2
• High gain |S21| = 21.5 dB at 2.4 GHz and 15.5 dB
at 5.5 GHz, 1.8 V, 15 mA
• OIP3 = 23 dBm at 2.4 GHz and 20 dBm at 5.5 GHz,
1.8 V, 15 mA
• Ideal for low voltage applications e.g. VCC = 1.2 V
and 1.8 V (2.85 V, 3.3 V, 3.6 V requires
corresponding collector resistor)
• Low power consumption, ideal for mobile
applications
• Thin small flat Pb-free (RoHS compliant) and
halogen-free package
• Qualification report according to AEC-Q101
available
2.2
Figure 2
BFP843 in SOT343
Key Applications of BFP843
As Low Noise Amplifier (LNA) in:
• Wireless Communications: 2.4GHz Wireless LAN IEEE802.11b/g/n, 5-6 GHz Wireless
LAN IEEE802.11a/n/ac, WiMAX
• Satellite navigation systems (e.g. GPS, GLONASS, COMPASS...) and satellite C-band
LNB (1st and 2nd stage LNA)
• Broadband amplifiers: Dualband WLAN, multiband mobile phone, UWB up to 10 GHz
• ISM bands up to 10 GHz
Application Note AN312, Rev. 1.0
7 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications
3
BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless
LAN Applications
3.1
Description
BFP843 is a discrete SiGe:C hetero-junction bipolar transistor (HBT) specifically designed for
high performance dual band 2- 6 GHz band low noise amplifier (LNA) solutions for Wi-Fi
connectivity applications. This has been developed using Infineon’s latest B9HFM
technology. The key features of this technology are very high transition frequency (fT = 80
GHz) and low parasitics, which enable to achieve higher gain and lower noise figure
compared to the previous generation RF transistor BFR740L3RH. BFP843 features an
integrated on-chip R-C feedback network. The negative feedback reduces the effects of
performance variations of the amplifier. The design is therefore less sensitive to variations in
PCB layout resulting in an amplifier with broader bandwidth, easier impedance matching and
improved stability margin. However the price paid for using negative feedback is slight
degradation of noise figure and decrease in gain.
The BFP843 is housed in low-height 1.1mm SOT343 package specially fitting into modules. It
is also available in other packages, e.g. BFR843EL3 in TSLP-3-9 and BFP843F in TSFP-4-1
package.
The BFP843 has an integrated 1.5 kV HBM ESD protection which makes the device robust
against electrostatic discharge and extreme RF input power. The device offers its high
performance at low current and voltage and is especially well-suited for portable battery
powered applications in which energy efficiency is a key requirement.
Figure 3 shows the pin assignment of package of BFP843 in the top view:
B 1
4 E
XYs
E
2
3 C
BFPXXX
Figure 3
Package and pin connections of BFP843 in Topview
Application Note AN312, Rev. 1.0
8 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications
3.2
Performance Overview
Device:
BFP843
Application:
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
PCB Marking: BFP843 SOT343 M130130
(designed for 0402 SMD)
Table 1
Summary of Measurement Results
Parameter
Symbol
Value
Unit
DC Voltage
VCC
3.0
V
DC Current
ICC
13.8
mA
Frequency Range
Freq
2400
2500
5100
5500
5900
MHz
Gain (On Mode)
GON
19.6
19.4
15.3
14.7
14.2
dB
Gain (Off Mode)
GOFF
-21.6
-21.7
-27.3
-31.6
-41.5
dB
Note/Test Condition
SMA and PCB losses
(0.05 dB @ 2.4 GHz, 0.1 dB
@ 5 GHz) are subtracted
Noise Figure
NF
1.06
1.08
1.34
1.36
1.35
dB
Input Return Loss
RLin
12.0
12.1
25.0
21.4
16.7
dB
Output Return Loss
RLout
18.1
17.5
28.4
21.0
15.8
dB
Reverse Isolation
IRev
27.5
27.6
25.8
25.0
24.3
dB
Input P1dB
(On Mode)
IP1dBON
-12.3
-12.5
-8.4
-8.4
-7.4
dBm
Output P1dB
(On Mode)
OP1dBON
6.3
5.9
5.9
5.3
5.8
dBm
Input IP3
IIP3
-2.1
-3.0
1.4
1.3
1.3
dBm
Output IP3
OIP3
17.6
17.0
16.7
16.1
15.2
dBm Power @ Input: -25 dBm
Stability
k
Application Note AN312, Rev. 1.0
>1
9 / 22
--
Stability measured from
10MHz to 15GHz
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
BFP843 as Dual-Band LNA for 2.4 – 2.5 and 5.0 – 6.0 GHz Wireless LAN Applications
3.3
Schematics and Bill-of-Materials
Vcc= 3.0 V
All passives are “0402“ case size
Inductors: LQG
Capacitors: various
J3
DC Connector
I = ~13.0 mA
R1
100 Ω
R3
0Ω
C3
33 pF
R2
15 KΩ
L1
5.1 nH
J1
RF Port1
INPUT
J2
RF Port2
OUTPUT
C2
Q1: BFP843
C1
6.8 pF
6.8 pF
Total Component Count = 7
PCB = BFP843 SOT343 M130130
Layer spacing (top RF to internal ground plane): 0.2 mm
Figure 4
Table 2
Inductors = 1 (LQG)
Resistors = 3
Capacitors = 3
Schematic Diagram of the Application Circuit
Bill-of-Materials
Symbol
Value
Unit
Size
Manufacturer
Comment
C1
6.8
pF
0402
Various
Input DC block
C2
6.8
pF
0402
Various
Output DC block
C3
33
pF
0402
Various
L1
5.1
nH
0402
LQG
RF decoupling / blocking cap
RF decoupling / Output matching
R1
100
Ω
0402
Various
DC biasing
R2
15
kΩ
0402
Various
DC biasing
R3
0
Ω
0402
Various
Jumper
SOT343
Infineon Technologies
BFP843 SiGe:C Heterojunction
Bipolar RF Transistor
Q1
Application Note AN312, Rev. 1.0
10 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
4
Measurement Graphs
Insertion Power Gain InBand
25
2400 MHz
19.6 dB
5100 MHz
15.3 dB
20
5900 MHz
14.2 dB
2500 MHz
19.4 dB
15
5500 MHz
14.7 dB
10
5
0
100
Figure 5
2100
4100
6100
Frequency (MHz)
8100
10000
Wideband Insertion Power Gain of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843
Reverse Isolation
0
-10
-20
2400 MHz
-27.5 dB
-30
2500 MHz
-27.6 dB
5100 MHz
-25.8 dB
5900 MHz
-24.3 dB
5500 MHz
-25 dB
-40
100
Figure 6
2100
4100
6100
Frequency (MHz)
8100
10000
Reverse Isolation of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843
Application Note AN312, Rev. 1.0
11 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
Noise Figure_2G4_2G5
2
NF(dB)
1.5
2500 MHz
1.08 dB
2400 MHz
1.06 dB
1
0.5
0
2400
Figure 7
2420
2440
2460
Frequency (MHz)
2480
2500
Noise Figure of BFP843 for 2.4 – 2.5 GHz
Noise Figure_5G_6G
2
NF(dB)
1.5
1
5100 MHz
1.34 dB
5500 MHz
1.36 dB
5900 MHz
1.35 dB
0.5
0
5000
Figure 8
5200
5400
5600
Frequency (MHz)
5800
6000
Noise Figure of BFP843 for 5 – 6 GHz
Application Note AN312, Rev. 1.0
12 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
Input Matching
0
-5
2500 MHz
-12.1 dB
-10
-15
5900 MHz
-16.7 dB
2400 MHz
-12 dB
-20
5500 MHz
-21.4 dB
5100 MHz
-25 dB
-25
-30
0
Figure 9
2000
4000
6000
Frequency (MHz)
8000
10000
Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843
Swp Max
7000MHz
2.
0
6
0.
0.8
1.0
Input Matching Smith
0.
4
0
3.
0
4.
10.0
-3
.0
.0
-2
-1.0
-0.8
-0
.6
.4
-0
Figure 10
5.0
4.0
3.0
2.0
1.0
0.8
0.6
0.4
0.2
2400 MHz
r 0.759141
x -0.382397
-4
.0
-5.
0
0
10.0
-10.0
0.2
2
-0.
5.0
5500 MHz
r 1.01705
x 0.1706
Swp Min
2000MHz
Input Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart)
Application Note AN312, Rev. 1.0
13 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
Output Matching
0
-5
2500 MHz
-17.5 dB
-10
5500 MHz
-21 dB
-15
5900 MHz
-15.8 dB
-20
2400 MHz
-18.1 dB
-25
5100 MHz
-28.4 dB
-30
0
Figure 11
2000
4000
6000
Frequency (MHz)
8000
10000
Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843
Swp Max
7000MHz
2.
0
6
0.
0.8
1.0
Output Matching Smith
0.
4
0
4.
5.0
10.0
5.0
4.0
3.0
2.0
1.0
0.8
10.0
0.6
2400 MHz
r 1.13926
x -0.228552
0.4
0.2
0.2
0
0
3.
5500 MHz
r 1.03386
x 0.179201
-10.0
2
-0.
-4
.0
-5.
0
-3
.0
Figure 12
.0
-2
-1.0
-0.8
-0
.6
.4
-0
Swp Min
2000MHz
Output Matching of the 2.4 – 2.5 GHz & 5 – 6 GHz WLAN LNA with BFP843 (Smith Chart)
Application Note AN312, Rev. 1.0
14 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
Stability k Factor
2
1.5
1
0.5
0
0
5000
10000
15000
Frequency (MHz)
Figure 13
Plot of Broadband Stability k Factor
Stability Mu Factor
2.5
2
1.5
1
Mu2 factor
0.5
Mu1 factor
0
100
5100
10100
15000
Frequency (MHz)
Figure 14
Plot of Broadband Stability µ Factor
Application Note AN312, Rev. 1.0
15 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
Input 1dB Compression Point_2G4
20
-30 dBm
19.65 dB
Gain(dB)
15
-12.3 dBm
18.65 dB
10
5
0
-30
-20
-10
0
Pin (dBm)
Figure 15
Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 2400 MHz
Input 1dB Compression Point_5G5
20
Gain(dB)
15
-30 dBm
14.79 dB
-8.37 dBm
13.79 dB
10
5
0
-30
Figure 16
-25
-20
-15
Pin (dBm)
-10
-5
0
Input 1dB Compression Point of BFP843 Dual-Band WLAN LNA at 5500 MHz
Application Note AN312, Rev. 1.0
16 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
Output 3rd Order Intercept Point_2G4
0
2401 MHz
-5.28
2400 MHz
-5.28
Power (dBm)
-20
-40
2402 MHz
-50.5
2399 MHz
-51.1
-60
-80
-100
2398.5
Figure 17
2399.5
2400.5
Frequency (MHz)
2401.5
2402.5
rd
Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 2.4 GHz)
Output 3rd Order Intercept Point_5G9
0
Power (dBm)
5900 MHz
-10.7
5899 MHz
-11.1
-20
-40
5901 MHz
-63.5
5898 MHz
-63.6
-60
-80
-100
5897
Figure 18
5898
5899
5900
Frequency (MHz)
5901
5902
rd
Output 3 Order Intercept Point of Dual-Band WLAN LNA with BFP843 (at 5.5 GHz)
Application Note AN312, Rev. 1.0
17 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Measurement Graphs
OFF Mode S21
-10
5100 MHz
-27.3 dB
-20
2400 MHz
-21.6 dB
-30
5500 MHz
-31.6 dB
2500 MHz
-21.7 dB
-40
5900 MHz
-41.5 dB
-50
-60
0
Figure 19
2000
4000
6000
Frequency (MHz)
8000
10000
OFF-Mode (Vcc = 0V, Icc = 0mA) S21 of Dual-Band WLAN LNA with BFP843
Application Note AN312, Rev. 1.0
18 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Evaluation Board and Layout Information
5
Evaluation Board and Layout Information
Figure 20
Photo Picture of Evaluation Board of Dual-Band WLAN LNA with BFP843
Figure 21
Zoom-In of Photo Picture
Application Note AN312, Rev. 1.0
19 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Evaluation Board and Layout Information
0.4
mm
0.4
mm
0.4
mm
0.4
mm
0.3 mm via diameter
Figure 22
Layout Proposal for RF Grounding of the 2.4 – 6 GHz WLAN LNA with BFP843
Vias
FR4 Core, 0.2mm
Copper
35µm
Figure 23
FR4 Prepreg,
0.8mm
PCB Layer Information
Application Note AN312, Rev. 1.0
20 / 22
2013-03-14
BFP843
Dual-Band LNA for 2.4 - 6.0 GHz WLAN Applications
Authors
6
Authors
Xi Chen, Internship Student of Application Engineering of Business Unit “RF and Protection Devices”
Ahmed Shamsuddin, Application Engineer of Business Unit “RF and Protection Devices”
Application Note AN312, Rev. 1.0
21 / 22
2013-03-14
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG
AN312