HT16C23/HT16C23G RAM Mapping 56×4 / 52×8 LCD Driver Controller Features Applications • Operating voltage: 2.4 ~ 5.5V • Electronic meter • Internal 32kHz RC oscillator • Water meter • Bias: 1/3 or 1/4; Duty:1/4 or 1/8 • Gas meter • Internal LCD bias generation with voltage-follower buffers • Heat energy meter • I2C-bus interface • Games • Household appliance • Two Selectable LCD frame frequencies: 80Hz or 160Hz • Telephone • Consumer electronics • Up to 52 x 8 bits RAM for display data storage • Display patterns: ––56 x 4 patterns: 56 segments and 4 commons ––52 x 8 patterns: 52 segments and 8 commons General Description The HT16C23/HT16C23G device is a memory mapping and multi-function LCD controller driver. The Display segments of the device are 224 patterns (56 segments and 4commons) or 416 patterns (52 segments and 8commons). The software configuration feature of the HT16C23/HT16C23G device makes it suitable for multiple LCD applications including LCD modules and display subsystems. The HT16C23/ HT16C23G device communicates with most microprocessors / microcontrollers via a two-line bidirectional I2C-bus. • Versatile blinking modes • R/W address auto increment • Internal 16-step voltage adjustment to adjust LCD operating voltage • Low power consumption • Provides VLCD pin to adjust LCD operating voltage • Manufactured in silicon gate CMOS process • Package Type: 48LQFP, 64LQFP, Chip and Goldbump chip. Block Diagram Power_on reset VSS COM0 SDA SCL Internal RC Oscillator Timing generator I2C Controller Column /Segment driver output Display RAM 52*8bits 8 COM3 COM4/SEG0 COM7/SEG3 VDD VCCA2 VLCD - OP4 Internal voltage adjustment SEG4 + R - OP3 + R Segment driver output - OP2 + R - OP1 + LCD Voltage Selector SEG55 R LCD bias generator Rev. 1.20 1 January 27, 2015 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 COM2 SEG30 COM3 SEG29COM4/SEG0 SEG28COM5/SEG1 SEG27COM6/SEG2 SEG26COM7/SEG3 SEG25 SEG4 SEG24 SEG5 SEG6 SEG7 64 63 62 61 60 59 58 57 56 55 54 53 HT16C23 64 LQFP-A 17 18 19 20 21 22 23 24 25 26 27 28 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 HT16C23 64 LQFP-A 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG7 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Note: 1. Application at VDD ≤ VLCD or VLCD ≤ VDD. 2. When the 48-pin LQFP package is selected, this device does not support LCD 1/4 duty. 3. The VCCA2 pad is internally connected with the VLCD pad. Rev. 1.20 2 SEG44 COM1 SEG31 SEG45 COM0 SEG32 SEG46 SEG33 SEG47 VSS SEG48 SCL SEG34 SEG49 SDA SEG35 SEG50 SEG36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SEG51 VDD SEG52 SEG37 SEG53 SEG38 SEG40 SEG6 SEG41 SEG5 SEG42 SEG4 SEG43 COM7/SEG3 SEG44 COM6/SEG2 SEG45 COM5/SEG1 SEG46 COM4/SEG0 SEG47 COM3 SEG48 COM2 SEG49 COM1 SEG50 COM0 SEG51 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG52 SCL SEG53 VLCD 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 HT16C23 30 48 LQFP-A 29 28 27 26 25 1516 17 18 19 20 2122 23 24 VSS SDA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SEG54 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 VDD VLCD SEG39 SEG54 SEG40 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 48 47 46 45 44 43 42 41 40 39 38 37 SEG27 1 36 42 7 VDD 35 SEG26 2 41 HT16C23 8 SDA SEG25 3 34 SCL 64 LQFP-A 40 9 4 33 SEG24 VSS 39 10 5 32 SEG23 COM0 38 11 31 6 HT16C23 SEG22 COM1 7 37 30 48 LQFP-A SEG21 COM2 12 29 8 SEG20 COM3 36 13 28 9 SEG19 COM4 35 14 27 10 SEG18 COM5 34 15 11 26 SEG17 COM6 33 16 25 12 SEG16 COM7 17 18 19 20 22 2317 241825 28 23 2924 30 31 32 13 21 14 1516 1926 2027 2122 SEG23 SEG22 SEG21 SEG15 SEG14 SEG20 SEG13 SEG19 SEG12 SEG18 SEG11 SEG17 SEG10 SEG16 SEG9 SEG15 SEG8 SEG14 SEG7 SEG6 SEG13 SEG5 SEG12 SEG4 SEG11 SEG10 SEG9 SEG8 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG7 SEG41 SEG6 SEG42 SEG5 SEG43 SEG4 SEG44 COM7/SEG3 SEG45 COM6/SEG2 SEG46 COM5/SEG1 SEG47 COM4/SEG0 SEG48 COM3 SEG49 COM2 SEG50 COM1 SEG51 COM0 HT16C23/HT16C23G SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 VLCD VSS SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG52 SCL SEG53 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 HT16C23 48 LQFP-A 30 29 28 27 26 25 1516 17 18 19 20 2122 23 24 SDA SEG54 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 VDD SEG55 Pin Assignment 17 18 19 20 21 22 23 24 25 26 27 28 January 27, 2015 HT16C23/HT16C23G Pad assignment for COB SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 VLCD VCCA2 1 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD SDA SCL Option VSS COM0 COM1 COM2 COM3 COM4/SEG0 COM5/SEG1 COM6/SEG2 COM7/SEG3 SEG4 SEG5 SEG6 SEG7 50 49 48 47 46 45 44 43 42 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 (0, 0) N.C. 9 41 40 39 38 37 36 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 Chip size: 1843 x 2018μm2 Note: 1. The option (pad 5) must be bonded to VDD or floating. 2. The IC substrate should be connected to VSS in the PCB layout artwork. 3. VLCD (pad 68) and VCCA2 (pad 1) must be bonded together for the application at VDD ≤ VLCD or VLCD ≤ VDD. Internal voltage adjustment (IVA) set command VLCD (pad 68) SEG55 (pad 67) Note DE bit VE bit 0 0 Input Null ●●VLCD support internal bias voltage. 0 1 Input Null ●●Internal Voltage Adjustment is null ●●VLCD support internal bias voltage 1 0 Input Output ●●VLCD support internal bias voltage 1 1 Input Output ●●VLCD support internal bias voltage 4. VDD (pad2) and VCCA2 (pad 1) must be bonded together for the application at VLCD ≤ VDD. Internal voltage adjustment (IVA) set command VLCD (pad 68) SEG55 (pad 67) Note DE bit VE bit 0 0 Input Null ●●VLCD support internal bias voltage. 0 1 Output Null ●●Detect the internal bias voltage ●●VDD support internal bias voltage 1 0 Floating Output ●●VDD support internal bias voltage 1 1 Floating Output ●●VDD support internal bias voltage Rev. 1.20 3 January 27, 2015 HT16C23/HT16C23G Pad Coordinates for COB Unit: μm No Name X Y No Name X Y 1 VCCA2 -788.05 905.4 35 SEG23 780.15 -905.4 -582.35 2 VDD -783.15 572.25 36 SEG24 817.45 3 SDA -817.9 419.55 37 SEG25 817.45 -497.35 4 SCL -817.9 334.55 38 SEG26 817.45 -412.35 5 OPTION -817.9 249.55 39 SEG27 817.45 -327.35 6 VSS -817.9 164.55 40 SEG28 817.45 -242.35 7 COM0 -817.9 79.55 41 SEG29 817.45 -157.35 8 COM1 -817.9 -5.45 42 SEG30 817.45 -72.35 9 N.C. -484.014 -35.6 43 SEG31 817.45 12.65 10 COM2 -817.9 -90.45 44 SEG32 817.45 97.65 11 COM3 -817.9 -175.45 45 SEG33 817.45 182.65 12 COM4/SEG0 -817.9 -270.35 46 SEG34 817.45 267.65 13 COM5/SEG1 -817.9 -355.35 47 SEG35 817.45 352.65 14 COM6/SEG2 -817.9 -440.35 48 SEG36 817.45 437.65 15 COM7/SEG3 -817.9 -525.35 49 SEG37 817.45 522.65 16 SEG4 -817.9 -613.1 50 SEG38 817.45 607.65 17 SEG5 -817.9 -698.1 51 SEG39 741.95 905.4 18 SEG6 -817.9 -783.1 52 SEG40 656.95 905.4 19 SEG7 -817.9 -868.1 53 SEG41 571.95 905.4 20 SEG8 -494.85 -905.4 54 SEG42 486.95 905.4 21 SEG9 -409.85 -905.4 55 SEG43 401.95 905.4 22 SEG10 -324.85 -905.4 56 SEG44 316.95 905.4 23 SEG11 -239.85 -905.4 57 SEG45 231.95 905.4 24 SEG12 -154.85 -905.4 58 SEG46 146.95 905.4 25 SEG13 -69.85 -905.4 59 SEG47 61.95 905.4 26 SEG14 15.15 -905.4 60 SEG48 -23.05 905.4 27 SEG15 100.15 -905.4 61 SEG49 -108.05 905.4 28 SEG16 185.15 -905.4 62 SEG50 -193.05 905.4 29 SEG17 270.15 -905.4 63 SEG51 -278.05 905.4 30 SEG18 355.15 -905.4 64 SEG52 -363.05 905.4 31 SEG19 440.15 -905.4 65 SEG53 -448.05 905.4 32 SEG20 525.15 -905.4 66 SEG54 -533.05 905.4 33 SEG21 610.15 -905.4 67 SEG55 -618.05 905.4 34 SEG22 695.15 -905.4 68 VLCD -703.05 905.4 Rev. 1.20 4 January 27, 2015 HT16C23/HT16C23G Pad Assignment for Goldbump Chip 54 53 52 1 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (0, 0) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 51 50 49 48 47 46 45 44 43 42 41 40 39 38 Note: • VLCD (pad 21) must be connected to VCCA2 (pad 22) in the PCB layout for the application at VDD ≤ VLCD or VLCD ≤ VDD. Internal voltage adjustment (IVA) set command VLCD (pad 21) SEG55 (pad 14) Note DE bit VE bit 0 0 Input Null ●●VLCD support internal bias voltage. 0 1 Input Null ●●Internal Voltage Adjustment is null ●●VLCD support internal bias voltage 1 0 Input Output ●●VLCD support internal bias voltage 1 1 Input Output ●●VLCD support internal bias voltage • VDD (pad 19) must be connected to VCCA2 (pad 22) in the PCB layout for the application at VLCD ≤ VDD. Internal voltage adjustment (IVA) set command VLCD (pad 21) SEG55 (pad 14) Note DE bit VE bit 0 0 Input Null ●●VLCD support internal bias voltage. 0 1 Output Null ●●Detect the internal bias voltage ●●VDD support internal bias voltage 1 0 Floating Output ●●VDD support internal bias voltage 1 1 Floating Output ●●VDD support internal bias voltage Rev. 1.20 5 January 27, 2015 HT16C23/HT16C23G Pad Dimensions for Goldbump Chip Item Size Number Chip size - Chip thickness - X 2806 1, 3~15, 38~50, 52~94 Pad pitch 16~37 1080 Unit μm 508 μm 60 μm 87 Output pad Bump size Y μm 5~14, 39~48 60 40 μm 54~93 40 60 μm Input pad 17~22 67 67 μm 3, 4, 15, 38, 49, 50 60 40 μm Dummy pad 1, 52, 53, 94 40 60 μm 16, 23~37 67 Bump height All pad 67 18±3 μm μm Alignment mark Dimensions for Goldbump Chip Item Number Size Unit (-1330, 362.5) 10 m 10 m ALIGN_A 2 20 m 10 m 10 m 40 m 20 m μm 40 m (1310, 362.5) 10 m 10 m ALIGN_B 51 Rev. 1.20 6 40 m 10 m 10 m 20 m 20 m 20 m μm 20 m January 27, 2015 HT16C23/HT16C23G Pad Coordinates for Goldbump Chip Unit: μm No Name X Y No Name X Y 1 DUMMY -1290 444.5 48 SEG5 1308.5 151.25 3 DUMMY -1308.5 271.25 49 DUMMY 1308.5 211.25 4 DUMMY -1308.5 211.25 50 DUMMY 1308.5 271.25 5 SEG46 -1308.5 151.25 52 DUMMY 1290 444.5 6 SEG47 -1308.5 91.25 53 DUMMY 1230 444.5 7 SEG48 -1308.5 31.25 54 SEG6 1170 444.5 8 SEG49 -1308.5 -28.75 55 SEG7 1110 444.5 9 SEG50 -1308.5 -88.75 56 SEG8 1050 444.5 10 SEG51 -1308.5 -148.75 57 SEG9 990 444.5 11 SEG52 -1308.5 -208.75 58 SEG10 930 444.5 12 SEG53 -1308.5 -268.75 59 SEG11 870 444.5 13 SEG54 -1308.5 -328.75 60 SEG12 810 444.5 14 SEG55 -1308.5 -388.75 61 SEG13 750 444.5 15 DUMMY -1308.5 -448.75 62 SEG14 690 444.5 16 DUMMY -1007.85 -436.872 63 SEG15 630 444.5 17 SDA -920.85 -436.872 64 SEG16 570 444.5 18 SCL -833.85 -436.872 65 SEG17 510 444.5 19 VDD -746.85 -436.872 66 SEG18 450 444.5 20 VSS -594.45 -436.872 67 SEG19 390 444.5 21 VLCD -507.45 -436.872 68 SEG20 330 444.5 22 VCCA2 -420.45 -436.872 69 SEG21 270 444.5 23 DUMMY -234.45 -436.872 70 SEG22 210 444.5 24 DUMMY -147.45 -436.872 71 SEG23 150 444.5 444.5 25 DUMMY -60.45 -436.872 72 SEG24 90 26 DUMMY 26.55 -436.872 73 SEG25 30 444.5 27 DUMMY 113.55 -436.872 74 SEG26 -30 444.5 28 DUMMY 200.55 -436.872 75 SEG27 -90 444.5 29 DUMMY 287.55 -436.872 76 SEG28 -150 444.5 30 DUMMY 374.55 -436.872 77 SEG29 -210 444.5 31 DUMMY 461.55 -436.872 78 SEG30 -270 444.5 32 DUMMY 548.55 -436.872 79 SEG31 -330 444.5 444.5 33 DUMMY 635.55 -436.872 80 SEG32 -390 34 DUMMY 722.55 -436.872 81 SEG33 -450 444.5 35 DUMMY 809.55 -436.872 82 SEG34 -510 444.5 36 DUMMY 896.55 -436.872 83 SEG35 -570 444.5 37 DUMMY 983.55 -436.872 84 SEG36 -630 444.5 38 DUMMY 1308.5 -448.75 85 SEG37 -690 444.5 39 COM0 1308.5 -388.75 86 SEG38 -750 444.5 40 COM1 1308.5 -328.75 87 SEG39 -810 444.5 41 COM2 1308.5 -268.75 88 SEG40 -870 444.5 42 COM3 1308.5 -208.75 89 SEG41 -930 444.5 43 COM4/SEG0 1308.5 -148.75 90 SEG42 -990 444.5 44 COM5/SEG1 1308.5 -88.75 91 SEG43 -1050 444.5 45 COM6/SEG2 1308.5 -28.75 92 SEG44 -1110 444.5 46 COM7/SEG3 1308.5 31.25 93 SEG45 -1170 444.5 47 SEG4 1308.5 91.25 94 DUMMY -1230 444.5 Rev. 1.20 7 January 27, 2015 HT16C23/HT16C23G Alignment Mark Coordinates for Goldbump Chip No Name X Y No Name X Y 2 ALIGN_A -1330 362.5 51 ALIGN_B 1310 362.5 Pad Description Pad Name Type Description SDA I/O SCL I VDD — Positive power supply. VSS — Negative power supply, ground. Serial Data Input/Output for I C interface 2 Serial Clock Input for I2C interface VLCD — Power supply for LCD driver. COM0~COM3 O LCD Common outputs. COM4/SEG0~ COM7/SEG3 O LCD Common/Segment multiplexed driver outputs SEG4~SEG55 O LCD Segment outputs. VCCA2 — Power supply for LCD bias generator. Approximate Internal Connections COM0~COM7; SEG0~SEG55 SCL, SDA (for schmit Trigger type) VDD Vselect-on Vselect-off VSS Rev. 1.20 8 January 27, 2015 HT16C23/HT16C23G Absolute Maximum Ratings Supply Voltage ........................................................................................................................VSS-0.3V to VSS+6.5V Input Voltage ..........................................................................................................................VSS-0.3V to VDD+0.3V Storage Temperature ......................................................................................................................... -55°C to 150°C Operating Temperature ....................................................................................................................... -40°C to 85°C Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute Maximum Ratings” may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. D.C. Characteristics VSS = 0V; VDD =2.4V to 5.5V; Ta = -40 to +85°C. VCCA2 pad is connected to VDD Pad Symbol Parameter Test Condition VDD Condition Min. Typ. Max. Unit VDD Operating Voltage — — 2.4 — 5.5 V VLCD Operating Voltage — — 2.4 — 5.5 V 3V No load, VLCD=VDD, 1/3bias, fLCD=80Hz, LCD display on, Internal system oscillator on, DA0~DA3 are set to ”0000” — 25 40 μA — 35 50 μA No load, VLCD=VDD, 1/3bias fLCD=80Hz, LCD display off, Internal system oscillator on, DA0~DA3 are set to ”0000” — 2 5 μA — 4 10 μA — — 1 μA 5V No load, VLCD=VDD, LCD display off, Internal system oscillator off, — — 2 μA IDD Operating Current 5V 3V IDD1 Operating Current 5V 3V ISTB Standby Current VIH Input high Voltage — SDA ,SCL 0.7VDD — VDD V VIL Input low Voltage — SDA, SCL 0 — 0.3VDD V IIL Input leakage current — VIN=VSS or VDD -1 — 1 μA IOL Low level output current 3V 3 — — mA 5V VOL=0.4V SDA 6 — — mA IOL1 LCD COM Sink Current 3V VLCD=3V, VOL=0.3V 250 400 — μA 5V VLCD=5V, VOL=0.5V 500 800 — μA IOH1 LCD COM Source Current 3V VLCD=3V, VOH=2.7V -140 -230 — μA 5V VLCD=5V, VOH=4.5V -300 -500 — μA IOL2 LCD SEG Sink Current 3V VLCD=3V, VOL=0.3V 250 400 — μA 5V VLCD=5V, VOL=0.5V 500 800 — μA IOH2 LCD SEG Source Current 3V VLCD=3V, VOH=2.7V -140 -230 — μA 5V VLCD=5V, VOH=4.5V -300 -500 — μA Rev. 1.20 9 January 27, 2015 HT16C23/HT16C23G A.C. Characteristics Symbol VSS = 0V; VDD = 2.4 to 5.5V; Ta= -40 to +85°C. VCCA2 pad is connected to VDD Pad Parameter Test Condition Condition VDD Min. Typ. Max. Unit fLCD1 LCD Frame Frequency 4V 1/4 duty, Ta =25°C 72 80 88 Hz fLCD2 LCD Frame Frequency 4V 1/4 duty, Ta =25°C 144 160 176 Hz fLCD3 LCD Frame Frequency 4V 1/4 duty,Ta=-40 to +85°C 52 80 124 Hz fLCD4 LCD Frame Frequency 4V 1/4 duty, Ta=-40 to +85°C 104 160 248 Hz tOFF VDD OFF Times — VDD drop down to 0V 20 — — ms tSR VDD Slew Rate — 0.05 — — V/ms — Note: • If the conditions of Power on Reset timing are not satisfied during the power ON/OFF sequence, the internal Power on Reset (POR) circuit will not operate normally. • If the VDD voltage drops below the minimum voltage of operating voltage spec. during operating, the Power on Reset timing conditions must also be satisfied. That is, the VDD voltage must drop to 0V and remain at 0V for 20ms (min.) before rising to the normal operating voltage. A.C. Characteristics – I2C Interface Symbol fSCL tBUF tHD: STA Parameter Clock Frequency Condition VDD=2.4V to 5.5V VDD=3.0V to 5.5V — Bus Free Time Time in which the bus must be free before a new transmission can start Start Condition Hold Time After this period, the first clock pulse is generated Unit Min. Max. Min. Max. — 100 — 400 KHZ 4.7 — 1.3 — μs 4 — 0.6 — μs tLOW SCL Low Time — 4.7 — 1.3 — μs tHIGH SCL High Time — 4 — 0.6 — μs 4.7 — 0.6 — μs Only relevant for repeated START condition tSU: STA Start Condition Setup Time tHD: DAT Data Hold Time — 0 — 0 — ns tSU: DAT Data Setup Time — 250 — 100 — ns tR SDA and SCL Rise Time Note — 1 — 0.3 μs tF SDA and SCL Fall Time Note — 0.3 — 0.3 μs Stop Condition set-up Time — 4 — 0.6 — μs tAA Output Valid from Clock — — 3.5 — 0.9 μs tSP Input Filter Time Constant (SDA and SCL Pins) — 100 — 50 ns tSU: STO Noise suppression time Note: These parameters are periodically sampled but not 100% tested. Rev. 1.20 10 January 27, 2015 HT16C23/HT16C23G Timing Diagrams I2C Timing SDA tBUF tSU:DAT tf tLOW tHD:STA tr tSP SCL tHD:STA S tHD:DAT tHIGH tSU:STA tAA tSU:STO Sr P S SDA OUT Power On Reset Timing Rev. 1.20 11 January 27, 2015 HT16C23/HT16C23G Functional Description • Detection switch for the VLCD pin is disabled. Power-On Reset • Blinking function is switched off • Frame Frequency is set to 80Hz. When the power is applied, the device is initialized by an internal power-on reset circuit. The status of the internal circuits after initialization is as follows: Data transfers on the I2C-bus should be avoided for 1 ms following power-on to allow completion of the reset action. • All common / segment outputs are set to VDD when VCCA2 pad is connected to VDD pad. Display Memory – RAM Structure The display RAM is static 52 x 8-bits RAM which stores the LCD data. Logic “1” in the RAM bit-map indicates the “on” state of the corresponding LCD segment; similarly, logic 0 indicates the ‘off’ state. • All common / segment outputs are set to VLCD when VCCA2 pad is connected to VLCD pad. • The drive mode 1/4 duty output and 1/3 bias is selected for 64 pin LQFP package. • The drive mode 1/8 duty output and 1/3 bias is selected for 48 pin LQFP package. The contents of the RAM data are directly mapped to the LCD data. The first RAM column corresponds to the segments operated with respect to COM0. In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with COM1, COM2 and COM3 respectively. The following is a mapping from the RAM data to the LCD pattern: • The System Oscillator and the LCD bias generator are off state. • LCD Display is off state. • Internal voltage adjustment function is enabled. • The Segment / VLCD shared pin is set as the Segment pin. Output COM3 COM2 COM1 COM0 Output COM3 COM2 COM1 COM0 address SEG1 SEG0 00H SEG3 SEG2 01H SEG5 SEG4 02H SEG7 SEG6 03H SEG9 SEG8 04H SEG11 SEG10 05H SEG55 SEG54 D7 D6 D5 D4 1BH D3 D2 D1 D0 Data RAM Mapping of 56×4 Display Mode Rev. 1.20 12 January 27, 2015 HT16C23/HT16C23G Output COM7/ SEG3 COM6/ SEG2 COM5/ SEG1 COM4/ SEG0 COM3 COM2 COM1 COM0 address SEG4 00H SEG5 01H SEG6 02H SEG7 03H SEG8 04H SEG9 05H SEG55 33H D7 D6 D5 D4 D3 D2 D1 D0 Data RAM Mapping of 52×8 Display Mode MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 System Oscillator LCD Bias Generator The timing for the internal logic and the LCD drive signals are generated by an internal oscillator. The System Clock frequency (fSYS) determines the LCD frame frequency. During initial system power on the System Oscillator will be in the stop state. The full-scale LCD voltage (VOP) is obtained from (VLCD – VSS). The LCD voltage may be temperature compensated externally through the Voltage supply to the VLCD pin. Rev. 1.20 Fractional LCD biasing voltages, known as 1/3 or 1/4 bias voltage, are obtained from an internal voltage divider of four series resistors connected between VLCD and VSS. The centre resistor can be switched out of circuits to provide a 1/3bias voltage level configuration. 13 January 27, 2015 HT16C23/HT16C23G LCD Drive Mode Waveforms • When the LCD drive mode is selected as 1/4 duty and 1/3 bias, the waveform and LCD display is shown as follows: tLCD LCD segment LCD segment VLCD VLCD VLCD- Vop/3 VLCD- Vop/3 COM0 COM0 VLCD- 2Vop/3 VLCD- 2Vop/3 State1 State1 (on) (on) VSS VSS VLCD VLCD COM1 COM1 State2 State2 (off) (off) VLCD- Vop/3 VLCD- Vop/3 VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS VLCD VLCD COM2 COM2 VLCD- Vop/3 VLCD- Vop/3 VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS VLCD VLCD COM3 COM3 VLCD- Vop/3 VLCD- Vop/3 VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS VLCD VLCD VLCD- Vop/3 VLCD- Vop/3 SEG n SEG n VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS VLCD VLCD VLCD- Vop/3 VLCD- Vop/3 SEG n+1 SEG n+1 VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS VLCD VLCD VLCD- Vop/3 VLCD- Vop/3 SEG n+2 SEG n+2 VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS VLCD VLCD VLCD- Vop/3 VLCD- Vop/3 SEG n+3 SEG n+3VLCD- 2Vop/3 VLCD- 2Vop/3 VSS VSS Note: tLCD=1/fLCD Rev. 1.20 Waveforms for 1/4 duty drive mode with1/3 bias (VOP=VLCD-VSS) 14 January 27, 2015 HT16C23/HT16C23G • When the LCD drive mode is selected as 1/8 duty and 1/4bias, the waveform and LCD display is shown as follows: tLCD LCD segment LCD segment VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM0 VLCD- 2Vop/4 COM0 State1 State1 (on) (on) VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD State2 State2 (off) (off) VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM1 VLCD- 2Vop/4 COM1 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM2 VLCD- 2Vop/4 COM2 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM3 VLCD- 2Vop/4 COM3 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM4 VLCD- 2Vop/4 COM4 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM5 VLCD- 2Vop/4 COM5 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM6 VLCD- 2Vop/4 COM6 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 VLCD- 2Vop/4 COM7 VLCD- 2Vop/4 COM7 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 SEG n SEG n VLCD- 2Vop/4 VLCD- 2Vop/4 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 SEG n+1 VLCD- 2Vop/4 SEG n+1 VLCD- 2Vop/4 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 SEG n+2 VLCD- 2Vop/4 SEG n+2 VLCD- 2Vop/4 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS VLCD VLCD VLCD- Vop/4 VLCD- Vop/4 SEG n+3 VLCD- 2Vop/4 SEG n+3 VLCD- 2Vop/4 VLCD- 3Vop/4 VLCD- 3Vop/4 VSS VSS Note: tLCD=1/fLCD Rev. 1.20 Waveforms for 1/8 duty drive mode with1/4 bias (VOP=VLCD-VSS) 15 January 27, 2015 HT16C23/HT16C23G Segment Driver Outputs Blinker Function The LCD drive section includes 56 segment outputs SEG0~SEG55 or 52 segment outputs SEG4~SEG55 which should be connected directly to the LCD panel. The segment output signals are generated in accordance with the multiplexed column signals and with the data resident in the display latch. The unused segment outputs should be left open-circuit when less than 56 or 52 segment outputs are required. The device contains versatile blinking capabilities. The whole display can be blinked at frequencies selected by the Blink command. The blinking frequency is a subdivided ratio of the system frequency. The ratio between the system oscillator and blinking frequencies depends on the blinking mode in which the device is operating, as shown in the following table: Column Driver Outputs Blinking Mode The LCD drive section includes 4 column outputs COM0~COM3 or 8 column outputs COM0~COM7 which should be connected directly to the LCD panel. The column output signals are generated in accordance with the selected LCD drive mode. The unused column outputs should be left open-circuit if less than 4 or 8 column outputs are required. 0 0 Blink off 1 fSYS / 16384Hz 2 2 fSYS / 32768Hz 1 3 fSYS / 65536Hz 0.5 Frame Frequency The HT16C23/HT16C23G device provides two frame frequencies selected with Mode set command known as 80Hz and 160Hz respectively. Address Pointer The addressing mechanism for the display RAM is implemented using the address pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the address pointer by the Address pointer command. Rev. 1.20 Operating Mode Blinking Ratio Frequency (Hz) 16 January 27, 2015 HT16C23/HT16C23G Internal VLCD Voltage Adjustment • The internal VLCD adjustment contains four resistors in series and a 4-bit programmable analog switch which can provide sixteen voltage adjustment options using the VLCD voltage adjustment command. • The internal VLCD adjustment structure is shown in the diagram: VDD pad VCCA2 pad VE bit DE bit VLCD pad R Internal voltage adjustment R R R LCD Bias generator • The relationship between the programmable 4-bit analog switch and the VLCD output voltage is shown in the table: 1. When VCCA2 pad is connected to VDD pad DA3~DA0 00H Rev. 1.20 Bias 1/3 1/4 1.000*VDD 1.000*VDD 01H 0.944*VDD 0.957*VDD 02H 0.894*VDD 0.918*VDD 03H 0.849*VDD 0.882*VDD 04H 0.808*VDD 0.849*VDD 05H 0.771*VDD 0.818*VDD 06H 0.738*VDD 0.789*VDD 07H 0.707*VDD 0.763*VDD 08H 0.678*VDD 0.738*VDD 09H 0.652*VDD 0.714*VDD 0AH 0.628*VDD 0.692*VDD 0BH 0.605*VDD 0.672*VDD 0CH 0.584*VDD 0.652*VDD 0DH 0.565*VDD 0.634*VDD 0EH 0.547*VDD 0.616*VDD 0FH 0.529*VDD 0.600*VDD 17 Note Default value January 27, 2015 HT16C23/HT16C23G 2. When VCCA2 pad is connected to VLCD pad Bias 1/3 1/4 1.000*VLCD 1.000* VLCD 01H 0.944* VLCD 0.957* VLCD 02H 0.894* VLCD 0.918* VLCD 03H 0.849* VLCD 0.882* VLCD 04H 0.808* VLCD 0.849* VLCD 05H 0.771* VLCD 0.818* VLCD 06H 0.738* VLCD 0.789* VLCD 07H 0.707* VLCD 0.763* VLCD 08H 0.678* VLCD 0.738* VLCD 09H 0.652* VLCD 0.714* VLCD 0AH 0.628* VLCD 0.692* VLCD 0BH 0.605* VLCD 0.672*VDD 0CH 0.584* VLCD 0.652* VLCD 0DH 0.565* VLCD 0.634* VLCD 0EH 0.547* VLCD 0.616* VLCD 0FH 0.529* VLCD 0.600* VLCD DA3~DA0 00H Note Default value I2C Serial Interface The device supports I2C serial interface. The I2C bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line, SDA, and a serial clock line, SCL. Both lines are connected to the positive supply via pull-up resistors with a typical value of 4.7KΩ. When the bus is free, both lines are high. Devices connected to the bus must have open-drain or open-collector outputs to implement a wiredor function. Data transfer is initiated only when the bus is not busy. Data Validity The data on the SDA line must be stable during the high period of the serial clock. The high or low state of the data line can only change when the clock signal on the SCL line is Low as shown in the diagram. SDA SCL Data line stable, Data valid Rev. 1.20 Chang of data allowed 18 January 27, 2015 HT16C23/HT16C23G START and STOP Conditions • A high to low transition on the SDA line while SCL is high defines a START condition. • A low to high transition on the SDA line while SCL is high defines a STOP condition. • START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition. • The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In some respects, the START(S) and repeated START (Sr) conditions are functionally identical. SDA SDA SCL SCL S P START condition STOP condition Byte Format Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit, MSB, first. P SDA Sr SCL S or Sr 1 2 7 9 8 1 2 3-8 P or Sr 9 ACK ACK Acknowledge • Each bytes of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level placed on the bus by the receiver. The master generates an extra acknowledge related clock pulse. • A slave receiver which is addressed must generate an acknowledge, ACK, after the reception of each byte. • The device that acknowledges must pull down the SDA line during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse. • A master receiver must signal an end of data to the slave by generating a not-acknowledge, NACK, bit on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9th pulse to not acknowledge. The master will generate a STOP or repeated START condition. Data Output by Transmitter not acknowledge Data Outptu by Receiver acknowledge SCL From Master S 1 2 START condition Rev. 1.20 7 8 9 clock pulse for acknowledgement 19 January 27, 2015 HT16C23/HT16C23G Slave Addressing • The slave address byte is the first byte received following the START condition form the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read or write operation to be performed. When the R/W bit is “1”, then a read operation is selected. A “0” selects a write operation. • The HT16C23/HT16C23G address bits are “0111110”. When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an acknowledge on the SDA line. Slave Address MSB LSB 0 1 1 1 1 1 0 R/W Write Operation Byte Writes Operation • Command Byte A Command Byte write operation requires a START condition, a slave address with an R/W bit, a command byte, a command setting byte and a STOP condition for a command byte write operation. Command byte Command setting BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 Slave Address S 0 1 1 1 1 1 0 0 Write ACK ACK 1st P ACK 2nd Command Byte Write Operation • Display RAM Single Data Byte A display RAM data byte write operation requires a START condition, a slave address with an R/W bit, a command byte, a valid Register Address byte, a Data byte and a STOP condition. Slave Address S 0 1 1 1 1 1 0 0 Write ACK Command byte Register Address byte BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 1st ACK 2nd Data byte D7 ACK D6 D5 D4 D3 D2 D1 P D0 ACK Display RAM Single Data Byte Write Operation Rev. 1.20 20 January 27, 2015 HT16C23/HT16C23G Display RAM Page Write Operation After a START condition the slave address with the R/W bit is placed on the bus followed with a command byte and the specified display RAM Register Address of which the contents are written to the internal address pointer. The data to be written to the memory will be transmitted next and then the internal address pointer will be incremented by 1 to indicate the next memory address location after the reception of an acknowledge clock pulse. After the internal address point reaches the maximum memory address, which is 1BH for 1/4 duty drive mode or 33H for 1/8 duty drive mode, the address pointer will be reset to 00H. Command byte Register Address byte BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 1st 2nd Slave Address S 0 1 1 1 1 1 0 0 Write Data byte D7 D6 D5 D4 ACK ACK ACK Data byte D3 D2 D1 D0 D7 D6 D5 D4 D3 Data byte D2 D1 D0 D7 D6 D5 2nd data 1st data D4 D3 D2 D1 Nth data ACK ACK P D0 ACK ACK N Bytes Display RAM Data Write Operation Display RAM Read Operation • In this mode, the master reads the HT16C23/HT16C23G data after setting the slave address. Following the R/W bit (=“0”) is an acknowledge bit, a command byte and the register address byte which is written to the internal address pointer. After the start address of the Read Operation has been configured, another START condition and the slave address transferred on the bus followed by the R/W bit (=“1”). Then the MSB of the data which was addressed is transmitted first on the I2C bus. The address pointer is only incremented by 1 after the reception of an acknowledge clock. That means that if the device is configured to transmit the data at the address of AN+1, the master will read and acknowledge the transferred new data byte and the address pointer is incremented to AN+2. After the internal address pointer reaches the maximum memory address, which is 1Bh for 1/4 duty drive mode or 33H for 1/8 duty drive mode, the address pointer will be reset to 00H. • This cycle of reading consecutive addresses will continue until the master sends a STOP condition. Command byte Register Address byte BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 Slave Address S 0 1 1 1 1 1 0 0 Write Device Address S 0 1 1 1 1 0 1 Read Rev. 1.20 2nd 1st D7 D6 D5 D4 D3 Data byte D2 D1 D7 D0 D6 D5 D4 D3 Data byte D2 D1 D0 D7 2nd data 1st data ACK ACK ACK ACK Data byte 1 P ACK 21 D6 D5 D4 D3 Nth data ACK D2 D1 D0 P NACK ACK January 27, 2015 HT16C23/HT16C23G Command Summary Display Data Input Command This command sends data from MCU to memory MAP of the HT16C23/HT16C23G device. Byte (MSB) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 (LSB) Bit0 Display Data Input/output Command 1st 1 0 0 0 0 0 0 0 Address pointer 2nd X X A5 A4 A3 A2 A1 A0 Function Note R/W Def W Display data start address of memory map W 00H Note: ●●Power on status: the address is set to 00H. ●●If the programmed command is not defined, the function will not be affected. ●●For 1/4 duty drive mode after reaching the memory location 1BH, the pointer will reset to 00H. ●●For 1/8 duty drive mode after reaching the memory location 33H, the pointer will reset to 00H. Drive Mode Command Function Driver mode setting command Duty and Bias setting Byte (MSB) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 (LSB) Bit0 1st 1 0 0 0 0 0 1 0 2nd X X X X X X Duty Bias Note R/W Def W No matter what “Duty” bit is set, 1/8 duty drive mode is only available for 48 LQFP. W 00H Note: Bit Duty Bias 0 1/4duty 1/3bias 1 1/4duty 1/4bias 1 0 1/8duty 1/3bias 1 1 1/8duty 1/4bias Duty Bias 0 0 ●●Power on status: The drive mode 1/4 duty output and 1/3 bias is selected. ●●If the programmed command is not defined, the function will not be affected. Rev. 1.20 22 January 27, 2015 HT16C23/HT16C23G System Mode Command This command controls the internal system oscillator on/off and display on/off. Function Byte (MSB) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 (LSB) Bit0 System mode setting command 1st 1 0 0 0 0 1 0 0 W System oscillator and Display on/off Setting 2nd X X X X X X S E W Note R/W Def 00H Note: Bit Internal System oscillator LCD Display X off off 0 on off 1 on on S E 0 1 1 ●●Power on status: Display off and disable the internal system oscillator. ●●If the programmed command is not defined, the function will not be affected. Frame Frequency Command This command selects the frame frequency. Byte (MSB) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 (LSB) Bit0 Frame frequency command 1st 1 0 0 0 0 1 1 0 W Frame frequency setting 2nd X X X X X X X F W Function Note R/W Def 00H Note: Bit F Frame Frequency 0 80Hz 1 160Hz ●●Power on status: Frame frequency is set to 80Hz. ●●If the programmed command is not defined, the function will not be affected. Rev. 1.20 23 January 27, 2015 HT16C23/HT16C23G Blinking Frequency Command This command defines the blinking frequency of the display modes. Byte (MSB) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 (LSB) Bit0 Blinking Frequency command 1st 1 0 0 0 1 0 0 0 W Blinking Frequency setting 2nd X X X X X X BK1 BK0 W Function Note R/W Def 00H Note: Bit Blinking Frequency BK1 BK0 0 0 Blinking off 0 1 2Hz 1 0 1Hz 1 1 0.5Hz ●●Power on status: Blinking function is switched off. ●●If the programmed command is not defined, the function will not be affected. Rev. 1.20 24 January 27, 2015 HT16C23/HT16C23G Internal Voltage Adjustment (IVA) Setting Command The internal voltage (VLCD) adjustment can provide sixteen kinds of regulator voltage adjustment options by setting the LCD operating voltage adjustment command. Function Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 IVA Command IVA Control 1st 2nd 1 X 0 X 0 DE 0 VE 1 0 1 Note R/W 0 Def W ●●The Segment/VLCD shared pin can be programmed via the “DE” bit. ●●The “VE” bit is used to enable or disable the internal voltage DA3 DA2 DA1 DA0 adjustment is supply voltage to bias voltage. ●●The DA3~DA0 bits can be used to adjust the VLCD output voltage. W 30H Note: Bit DE VE 0 0 1 1 0 1 0 1 Segment 55/ VLCD shared pin select VLCD VLCD Segment 55 Segment 55 Internal Voltage Adjustment Note off ●●The bias voltage is supplied by the external VLCD pin when VCCA2 is connected to VLCD. ●●The bias voltage is supplied by the external VLCD pin when VCCA2 is connected to VDD. ●●If the VLCD pin is connected to the VDD pin, the internal voltage follower (OP4) must be disabled by setting the DA3~DA0 bits as “0000”. on ●●When VCCA2 is connected to VLCD, internal voltage adjustment can not be used to adjust internal bias voltage. (Bias voltage is supplied by the external VLCD pin) ●●When VCCA2 is connected to VDD, internal voltage adjustment can not be used to adjust internal bias voltage when VLCD pin is supplies with external voltage.(Recommend: can not be used) ●●When VCCA2 is connected to VDD, internal voltage adjustment can be used to adjust internal bias voltage when VLCD pin is floating and internal voltage adjustment is enable.(Bias voltage is supplied by the internal voltage adjustment) off ●●The bias voltage is supplied by the external VLCD pin when VCCA2 is connected to VLCD. ●●The bias voltage is supplied by the external VDD power when VCCA2 is connected to VDD. ●●The internal voltage-follower (OP4) is disabled automatically and DA3~DA0 don’t care. on ●●When VCCA2 is connected to VLCD, internal voltage adjustment can be used to adjust internal bias voltage when VLCD pin is supplies with external voltage and internal voltage adjustment is enable. (Bias voltage is supplied by the internal voltage adjustment) ●●When VCCA2 is connected to VDD, internal voltage adjustment can be used to adjust internal bias voltage when internal voltage adjustment is enable.(Bias voltage is supplied by the internal voltage adjustment) ●●Power on status: Enable the internal voltage Adjustment and the Segment/VLCD pin is set as the segment pin. ●●When the DA0~DA3 bits are set to “0000”, the internal voltage-follower (OP4) is disabled. When the DA0~DA3 bits are set to other values except “0000”, the internal voltage follower (OP4) is enabled. ●●If the programmed command is not defined, the function will not be affected. Rev. 1.20 25 January 27, 2015 HT16C23/HT16C23G Operation Flowchart Access procedures are illustrated below by means of the flowcharts. Initialization Power On Internal LCD bias and duty setting Internal LCD frame frequency setting Segment / VLCD shared pin setting LCD blinking frequency setting Next processing Rev. 1.20 26 January 27, 2015 HT16C23/HT16C23G Display Data Read/Write (Address Setting) Start Address setting Display RAM data write Display on and enable internal system clock Next processing Rev. 1.20 27 January 27, 2015 HT16C23/HT16C23G Segment / VLCD Shared Pin and Internal Voltage Adjustment Setting Start Set as Segment pin Internal voltage adjustment enable ? yes Segment / VLCD share pin setting The bias voltage is supplied by Programmable Internal voltage adjustment no The bias voltage is supplied by internal VDD power Rev. 1.20 Set as VLCD pin The external MCU can detect the voltage of VLCD pin yes Internal voltage adjustment enable ? no One external resistor must be connected between to VLCD pin and VDD pin to determine the bias voltage Next processing 28 January 27, 2015 HT16C23/HT16C23G Application Circuits 64-pin Package 1/4 Duty VLCD 0.1uF VDD 0.1uF VDD 4.7KΩ VLCD VDD 4.7KΩ COM0~COM3 COM0~COM3 SCL HOST HT16C23 LCD panel SDA SEG0~SEG54 SEG0~SEG54 VSS VSS VSS 1/8 Duty VLCD 0.1uF VDD 0.1uF VDD 4.7KΩ VLCD VDD 4.7KΩ COM0~COM7 COM0~COM7 SCL HOST HT16C23 LCD panel SDA SEG4~SEG54 SEG0~SEG50 VSS VSS VSS Rev. 1.20 29 January 27, 2015 HT16C23/HT16C23G 48-pin Package (The 48-pin Package Supports LCD 1/8 Duty only) VLCD 0.1uF VDD 0.1uF VDD 4.7KΩ VLCD VDD 4.7KΩ COM0~COM7 COM0~COM7 SCL HOST HT16C23 LCD panel SDA SEG4~SEG38 SEG0~SEG34 VSS VSS VSS Rev. 1.20 30 January 27, 2015 HT16C23/HT16C23G Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package information. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 1.20 31 January 27, 2015 HT16C23/HT16C23G 48-pin LQFP (7mm×7mm) Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. A — 0.354 BSC — B — 0.276 BSC — C — 0.354 BSC — D — 0.276 BSC — E — 0.020 BSC — F 0.007 0.009 0.011 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° ― 7° Symbol Rev. 1.20 Dimensions in mm Min. Nom. Max. A — 9.00 BSC — B — 7.00 BSC — C — 9.00 BSC — D — 7.00 BSC — E — 0.50 BSC — F 0.17 0.22 0.27 G 1.35 1.40 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° ― 7° 32 January 27, 2015 HT16C23/HT16C23G 64-pin LQFP (7mm×7mm) Outline Dimensions Symbol Min. Nom. Max. A — 0.354 BSC — B — 0.276 BSC — C — 0.354 BSC — D — 0.276 BSC — E — 0.016 BSC — F 0.005 0.007 0.009 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° — 7° Symbol Rev. 1.20 Dimensions in inch Dimensions in mm Min. Nom. Max. A — 9.0 BSC — B — 7.0 BSC — C — 9.0 BSC — D — 7.0 BSC — E — 0.4 BSC — F 0.13 0.18 0.23 G 1.35 1.40 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° — 7° 33 January 27, 2015 HT16C23/HT16C23G Copyright© 2015 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.20 34 January 27, 2015