TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide May 2012 Reference Design RD1127 Introduction The TSW1405EVM Low Cost Data Capture Card from Texas Instruments (TI) assists designers in prototyping and evaluating the performance of high-speed ADCs that feature parallel/serial LVDS outputs. The evaluation module features a powerful LatticeECP3™-35 FPGA. The FPGA can be used as a flexible and rapid prototyping environment for digital design, interfacing directly to the LVDS output of the TI ADC under evaluation. This HDL reference design is available for users to get started with the evaluation board and capture ADC data using the TI High Speed Data Converter Pro software. Figure 1. Hardware Evaluation Overview ADS EVM TSW1405 High Speed Data Converter Pro Currently, HDL reference designs targeting the LatticeECP3 device support the following TI device families: • ADS41xx and ADS61xx single channel • ADS62Pxx and ADS42xx dual channel • ADS58C48 four channel • ADS5400 dual bus • ADS5463 single channel • ADS5485 single channel The HDL reference designs for these converters contain two primary modules for capturing the LVDS data from the ADC. • ADCIF – Contains the I/O logic and gearing functions for the LVDS pins. It also converts the double data rate (DDR) input channel to a single data rate (SDR) parallel bus. • DUMPMEM_TOP – Stores the channel’s parallel data to internal DPRAM. The ADC data extracts a SPI controller within the module. The High Speed Data Converter Pro software can import the data from this controller through the USB port. ADCIF module is the only design block required if the user desires to implement their own design using the ADS41xx/ADS61xx, ADS62Pxx/ADS42xx, ADS58C48, ADS5400, ADS5463, ADS5485 with the LatticeECP3 device. The top level design instantiates the primary modules and connects them together. It also contains a LED blinker circuit. This circuit flashes the LED when the LVDS clock output from the ADC is running and is available to the FPGA. Figures 2 to 7 show the block diagrams for each respective ADC design. © 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1 rd1127_01.2 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Figure 2. Single Channel ADC Block Diagram (ADS41xx/ADS61xx) TSW1405_1ch_bit_wise reset_n ADCIF DUMPMEM_TOP clk_lvds_rx_p sample 0 {[12:9], [7:4]} lvds_rx_port0 [15:0] 17 lvds_rx_port1 port1 12 iDDRx2 sample 1 [15:0] 16 16 16 16 16 16 16 16 DUMPMEM_DP DUMPMEM_WCTRL DUMPMEM_RCTRL spi_ss spi_clk DUMPMEM_SPI spi_miso ADC Clock Counter LED Figure 3. Dual Channel ADC Block Diagram (ADS62Pxx/ADS42xx) TSW1405_2ch_bit_wise reset_n ADCIF DUMPMEM_TOP clk_lvds_rx_p lvds_rx_port0 {[15:9], [7:1]} 17 [13:0] lvds_rx_port1 port1 12 [13:0] [13:0] [13:0] sample 0 chan 0 sample 1 chan 0 sample 0 chan 1 sample 1 chan 1 16 16 16 16 16 16 16 16 DUMPMEM_DP DUMPMEM_WCTRL iDDRx2 DUMPMEM_RCTRL cap_chans 8 spi_ss spi_clk i lk DUMPMEM_SPI spi_miso ADC Clock Counter 2 LED TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Figure 4. Four Channel ADC Block Diagram (ADS58C48) TSW1405_2ch_bit_wise reset_n ADCIF DUMPMEM_TOP clk_lvds_rx_p {[28:17], [15:10], [7:2]} lvds_rx_port0 17 lvds_rx_port1 12 iDDRx2 cap_chans sample 0, chan 0 [11:0] sample 1, chan 0 [11:0] sample 0, chan 1 [11:0] sample 1, chan 1 [11:0] sample 0, chan 2 [11:0] sample 1, chan 2 [11:0] sample 0, chan 3 [11:0] 16 16 16 16 16 16 16 16 DUMPMEM_DP DUMPMEM_WCTRL DUMPMEM_RCTRL spi_ss spi_clk DUMPMEM_SPI spi_miso Figure 5. Dual Bus ADC Block Diagram (ADS5400) TSW1405_dual_bus reset_n ADCIF clk_lvds_rx_p lvds_rx_port0 12 lvds_rx_port1 17 DUMPMEM_TOP iDDRx2 {[28:17], [14:3]} {[11:0], h’40} {[11:0], h’40} {[11:0], h’40} {[11:0], h’40} sample 0, chan A sample 0, chan B sample 1, chan A sample 1, chan B 16 16 16 16 {[11:0], h’40} {[11:0], h’40} {[11:0], h’40} {[11:0], h’40} sample 2, chan A sample 2, chan B sample 3, chan A sample 3, chan B 16 16 16 16 DUMPMEM_DP DUMPMEM_WCTRL DUMPMEM_RCTRL spi_ss spi_clk DUMPMEM_SPI spi_miso ADC Clock Counter 3 LED TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Figure 6. Single Channel ADC Block Diagram (ADS5463) TSW1405_sample_wise reset_n DUMPMEM_TOP ADCIF clk_lvds_rx_p IDDRx2 lvds_rx_port1 12 lvds_rx_port0 [14:1] 17 {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} sample 0 sample 0 sample 1 sample 1 16 16 16 16 {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} sample 2 sample 2 sample 3 sample 3 16 16 16 16 DUMPMEM_DP DUMPMEM_WCTRL DUMPMEM_RCTRL spi_ss DUMPMEM_SPI spi_clk spi_miso ADC Clock Counter LED Figure 7. Single Channel ADC Block Diagram (ADS5485) TSW1405_1ch_edge_bit_wise reset_n DUMPMEM_TOP ADCIF clk_lvds_rx_p IDDRx2 lvds_rx_port1 12 lvds_rx_port0 17 {[12:9], [7:4]} {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} sample 0 sample 0 sample 1 sample 1 16 16 16 16 {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} {[13:0], 4’h0} sample 2 sample 2 sample 3 sample 3 16 16 16 16 DUMPMEM_DP DUMPMEM_WCTRL DUMPMEM_RCTRL spi_ss DUMPMEM_SPI spi_clk spi_miso ADC Clock Counter LED The input of the ADCIF module is the single or dual channel double data rate (DDR) output from the ADC. This input is converted to two single data rate buses for each channel at half the rate of the ADC input clock. The single channel design is capable of handling up to eight LVDS DDR inputs from the ADC. The dual channel design is capable of handling up to seven LVDS DDR inputs for the ADC. Table 2 describes the ADCIF I/O for single and dual channel designs. 4 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Figure 8. ADCIF Module ADCIF clk_adc_ext clk_adc inv_data dout1[15:0] inv_clk dout2[15:0] lsb_first dout3[15:0] reset_n dout4[15:0] din[28:0] dout5[15:0] cap_depth[1:0] dout6[15:0] cap_format[2:0] dout7[15:0] cap_chans[7:0] dout8[15:0] Table 1. ADCIF Module NGO I/O Descriptions ADCIF Signal reset_n TSW1405_1ch_bit_ wise — TSW1405_2ch_bit_ wise — TSW1405_4ch_bit_ wise TSW1405_dual_bus — — TSW1405_sample_ wise — TSW1405_1ch_edge _bit_wise — Description Design module reset clk_adc_ext — — — — — — Clock input inv_data Reserved Reserved Reserved Reserved Reserved Reserved — inv_clk Reserved Reserved Reserved Reserved Reserved Reserved — lsb_first Reserved Reserved Reserved Reserved Reserved Reserved — din[28:0] {din[12:9],din[7:4]} = Channel 1 input [7:0] din[7:1] = Channel 1 input din[28:23] = Channel 1 input din[14:3] = Channel A input din[14:1] = Channel 1 input {din[12:9],din[7:4]} = Channel 1 input ADC DDR data input din[15:9] = Channel 2 input din[15:10] = Channel 2 din[28:17] = Channel B input input din[7:2] = Channel 3 input din[22:17] = Channel 4 input cap_depth[1:0] Reserved Reserved Reserved Reserved Reserved Reserved — cap_format[2:0] Reserved Reserved Reserved Reserved Reserved Reserved — cap_chans[7:0] Reserved 8’d0: Channel 1 – 2 samples/clock 8’d0: Channel 1 – 2 samples/clock Reserved Reserved Reserved 8’d2: Channel 2 – 2 samples/clock 8’d2: Channel 2 – 2 samples/clock Output control mux 8’d3: Dual channel – 4 8’d4: Channel 3 – 2 samples/clock samples/clock 8’d8: Channel 4 – 2 samples/clock 8'd3: Channels 1 & 2 4 samples/clock 8'd12: Channels 3 & 4 - 4 samples/clock 8'd15: Channels 1, 2, 3 & 4 - 8 samples/clock clk_adc — — — — — — clk_adc = clk_adc_ext/2 dout1[15:0] Sample 0 Output See Table 2, dout1[1:0] = 2’b00 See Table 3, dout1[3:0] = 4’b0000 Chan B, Sample 0 Output Sample 0 Output, dout1[1:0] = 2’b00 Sample 0 Output Single data rate output dout2[15:0] Sample 0 Output See Table 2, dout2[1:0] = 2’b00 See Table 3, dout2[3:0] = 4’b0000 Chan A, Sample 0 Output Sample 0 Output, dout2[1:0] = 2’b00 Sample 0 Output Single data rate output dout3[15:0] Sample 0 Output See Table 2, dout3[1:0] = 2’b00 See Table 3, dout3[3:0] = 4’b0000 Chan B, Sample 1 Output Sample 1 Output, dout3[1:0] = 2’b00 Sample 0 Outputs Single data rate output dout4[15:0] Sample 0 Output See Table 2, dout4[1:0] = 2’b00 See Table 3, dout4[3:0] = 4’b0000 Chan A, Sample 1 Output Sample 1 Output, dout4[1:0] = 2’b00 Sample 0 Output Single data rate output dout5[15:0] Sample 1 Output See Table 2, dout5[1:0] = 2’b00 See Table 3, dout5[3:0] = 4’b0000 Chan B, Sample 2 Output Sample 2 Output, dout5[1:0] = 2’b00 Sample 1 Output Single data rate output dout6[15:0] Sample 1 Output See Table 2, dout6[1:0] = 2’b00 See Table 3, dout6[3:0] = 4’b0000 Chan A, Sample 2 Output Sample 2 Output, dout6[1:0] = 2’b00 Sample 1 Output Single data rate output dout7[15:0] Sample 1 Output See Table 2, dout7[1:0] = 2’b00 See Table 3, dout7[3:0] = 4’b0000 Chan B, Sample 3 Output Sample 3 Output, dout7[1:0] = 2’b00 Sample 1 Output Single data rate output dout8[15:0] Sample 1 Output See Table 2, dout8[1:0] = 2’b00 See Table 3, dout8[3:0] = 4’b0000 Chan A, Sample 3 Output Sample 3 Output, dout8[1:0] = 2’b00 Sample 1 Output Single data rate output 5 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 2. Output Control Mux Settings for Dual Channel Designs cap_chans Setting Channel(s) dout1 dout2 dout3 dout4 dout5 dout6 dout7 dout8 cap_chans = 0 or 1 Channel 1 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 cap_chans = 2 Channel 2 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 cap_chans = 4 Channel 3 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 cap_chans = 8 Channel 4 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 Channel 1 Sample 0 Sample 0 Sample 1 Sample 1 cap_chans = 3 cap_chans = 12 Channel 2 Channel 3 Sample 0 Sample 0 Sample 1 Sample 1 Channel 4 Channel 1 cap_chans = 15 Sample 0 Sample 0 Sample 1 Sample 1 Sample 0 Sample 0 Sample 1 Sample 1 Sample 0 Sample 1 Channel 2 Sample 0 Sample 1 Channel 3 Sample 0 Sample 1 Channel 4 Sample 0 Sample 1 Table 3. Output Control Mux Settings for Four Channel Designs cap_chans Setting Channel(s) cap_chans = 0 or 1 Channel 1 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 cap_chans = 2 Channel 2 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 cap_chans = 4 Channel 3 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 cap_chans = 8 Channel 4 Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1 Channel 1 Sample 0 Sample 0 Sample 1 Sample 1 cap_chans = 3 cap_chans = 12 dout2 dout3 dout4 Channel 2 Channel 3 Channel 2 dout5 dout6 dout7 dout8 Sample 0 Sample 0 Sample 1 Sample 1 Sample 0 Sample 0 Sample 1 Sample 1 Channel 4 Channel 1 cap_chans = 15 dout1 Sample 0 Sample 0 Sample 1 Sample 1 Sample 0 Sample 1 Sample 0 Sample 1 Channel 3 Sample 1 Sample 1 Channel 4 Sample 0 Sample 1 6 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 4. Single Channel Design Signal Names and Pinout Signal Name reset_n LatticeECP3 Pin Direction C21 Input Master Reset Input Clock from TI ADC Input TI ADC Channel 1 Data SPI Clock clk_lvds_rx_p L4 clk_lvds_rx_n M4 lvds_rx_port0_p[4] AA1 lvds_rx_port0_n[4] Y2 lvds_rx_port0_p[5] T4 lvds_rx_port0_n[5] T5 lvds_rx_port0_p[6] U1 lvds_rx_port0_n[6] U2 lvds_rx_port0_p[7] N3 lvds_rx_port0_n[7] P3 lvds_rx_port0_p[9] L3 lvds_rx_port0_n[9] L2 lvds_rx_port0_p[10] N4 lvds_rx_port0_n[10] P4 lvds_rx_port0_p[11] N5 lvds_rx_port0_n[11] P6 lvds_rx_port0_p[12] R7 lvds_rx_port0_n[12] Definition T7 clk_spi A20 Input spi_miso B19 Output spi_ss B20 Input LED F19 Output ADC Clock Active Status regbit G18 Output Reserved 7 SPI Data Out SPI Source Select TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 5. Dual Channel Design Signal Names and Pinout Signal Name reset_n LatticeECP3 Pin Direction Definition C21 Input Master Reset clk_lvds_rx_p L4 Input Clock from TI ADC clk_lvds_rx_n M4 lvds_rx_port0_p[1] R4 Input TI ADC Channel 1 Data SPI Clock lvds_rx_port0_n[1] T5 lvds_rx_port0_p[2] R3 lvds_rx_port0_n[2] R2 lvds_rx_port0_p[3] B2 lvds_rx_port0_n[3] C2 lvds_rx_port0_p[4] AA1 lvds_rx_port0_n[4] Y2 lvds_rx_port0_p[5] T4 lvds_rx_port0_n[5] T5 lvds_rx_port0_p[6] U1 lvds_rx_port0_n[6] U2 lvds_rx_port0_p[7] N3 lvds_rx_port0_n[7] P3 lvds_rx_port0_p[9] L3 lvds_rx_port0_n[9] L2 lvds_rx_port0_p[10] N4 lvds_rx_port0_n[10] P4 lvds_rx_port0_p[11] N5 lvds_rx_port0_n[11] P6 lvds_rx_port0_p[12] R7 lvds_rx_port0_n[12] T7 lvds_rx_port0_p[13] E5 lvds_rx_port0_n[13] E4 lvds_rx_port0_p[14] P1 lvds_rx_port0_n[14] R1 lvds_rx_port0_p[15] M2 lvds_rx_port0_n[15] M1 clk_spi A20 Input spi_miso B19 Output spi_ss B20 Input LED F19 Output ADC Clock Active Status regbit G18 Output Reserved 8 SPI Data Out SPI Source Select TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 6. Four Channel Design Signal Names and Pinout Signal Name reset_n LatticeECP3 Pin Direction Definition C21 Input Master Reset clk_lvds_rx_p L4 Input Clock from TI ADC clk_lvds_rx_n M4 lvds_rx_port0_p[2] R3 lvds_rx_port0_n[2] R2 Input TI ADC Channel 1 Data lvds_rx_port0_p[3] B2 lvds_rx_port0_n[3] C2 lvds_rx_port0_p[4] AA1 lvds_rx_port0_n[4] Y2 lvds_rx_port0_p[5] T4 lvds_rx_port0_n[5] U4 lvds_rx_port0_p[6] U1 lvds_rx_port0_n[6] U2 lvds_rx_port0_p[7] N3 lvds_rx_port0_n[7] P3 lvds_rx_port0_p[10] N4 lvds_rx_port0_n[10] P4 lvds_rx_port0_p[11] N5 lvds_rx_port0_n[11] P6 lvds_rx_port0_p[12] R7 lvds_rx_port0_n[12] T7 lvds_rx_port0_p[13] E5 lvds_rx_port0_n[13] E4 lvds_rx_port0_p[14] P1 lvds_rx_port0_n[14] R1 lvds_rx_port0_p[15] M2 lvds_rx_port0_n[15] M1 lvds_rx_port1_p[0] V4 lvds_rx_port1_n[0] V5 lvds_rx_port1_p[1] V3 lvds_rx_port1_n[1] W3 lvds_rx_port1_p[2] Y3 lvds_rx_port1_n[2] AA2 lvds_rx_port1_p[3] W2 lvds_rx_port1_n[3] Y1 lvds_rx_port1_p[4] V1 lvds_rx_port1_n[4] W1 lvds_rx_port1_p[5] K4 lvds_rx_port1_n[5] K5 lvds_rx_port1_p[6] G3 lvds_rx_port1_n[6] G2 lvds_rx_port1_p[7] J2 lvds_rx_port1_n[7] J1 lvds_rx_port1_p[8] G1 9 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 6. Four Channel Design Signal Names and Pinout (Continued) Signal Name LatticeECP3 Pin lvds_rx_port1_n[8] H1 lvds_rx_port1_p[9] E1 lvds_rx_port1_n[9] F1 lvds_rx_port1_p[10] D2 lvds_rx_port1_n[10] D1 lvds_rx_port1_p[11] B1 Direction Definition Input TI ADC Channel 1 Data (cont.) SPI Clock lvds_rx_port1_n[11] C1 clk_spi A20 Input spi_miso B19 Output spi_ss B20 Input LED F19 Output ADC Clock Active Status regbit G18 Output Reserved SPI Data Out SPI Source Select Table 7. Dual Bus Design Signal Names and Pinout Signal Name reset_n LatticeECP3 Pin Direction Definition C21 Input Master Reset clk_lvds_rx_p L4 Input Clock from TI ADC clk_lvds_rx_n M4 lvds_rx_port0_p[3] B2 Input TI ADC Channel 1 Data lvds_rx_port0_n[3] C2 lvds_rx_port0_p[4] AA1 lvds_rx_port0_n[4] Y2 lvds_rx_port0_p[5] T4 lvds_rx_port0_n[5] U4 lvds_rx_port0_p[6] U1 lvds_rx_port0_n[6] U2 lvds_rx_port0_p[7] N3 lvds_rx_port0_n[7] P3 lvds_rx_port0_p[10] N4 lvds_rx_port0_n[10] P4 lvds_rx_port0_p[11] N5 lvds_rx_port0_n[11] P6 lvds_rx_port0_p[12] R7 lvds_rx_port0_n[12] T7 lvds_rx_port0_p[13] E5 lvds_rx_port0_n[13] E4 lvds_rx_port0_p[14] P1 lvds_rx_port0_n[14] R1 lvds_rx_port1_p[0] V4 lvds_rx_port1_n[0] V5 lvds_rx_port1_p[1] V3 lvds_rx_port1_n[1] W3 lvds_rx_port1_p[2] Y3 lvds_rx_port1_n[2] AA2 10 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 7. Dual Bus Design Signal Names and Pinout (Continued) Signal Name LatticeECP3 Pin lvds_rx_port1_p[3] W2 lvds_rx_port1_n[3] Y1 lvds_rx_port1_p[4] V1 lvds_rx_port1_n[4] W1 lvds_rx_port1_p[5] K4 lvds_rx_port1_n[5] K5 lvds_rx_port1_p[6] G3 lvds_rx_port1_n[6] G2 lvds_rx_port1_p[7] J2 lvds_rx_port1_n[7] J1 lvds_rx_port1_p[8] G1 lvds_rx_port1_n[8] H1 lvds_rx_port1_p[9] E1 lvds_rx_port1_n[9] F1 lvds_rx_port1_p[10] D2 lvds_rx_port1_n[10] D1 Direction Definition Input TI ADC Channel 1 Data (cont.) SPI Clock lvds_rx_port1_p[11] B1 lvds_rx_port1_n[11] C1 clk_spi A20 Input spi_miso B19 Output spi_ss B20 Input SPI Data Out SPI Source Select LED F19 Output ADC Clock Active Status regbit G18 Output Reserved 11 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 8. Sample-Wise Design Signal Names and Pinout Signal Name reset_n LatticeECP3 Pin Direction Definition C21 Input Master Reset clk_lvds_rx_p L4 Input Clock from TI ADC clk_lvds_rx_n M4 lvds_rx_port0_p[1] R4 Input TI ADC Channel 1 Data SPI Clock lvds_rx_port0_n[1] T5 lvds_rx_port0_p[2] R3 lvds_rx_port0_n[2] R2 lvds_rx_port0_p[3] B2 lvds_rx_port0_n[3] C2 lvds_rx_port0_p[4] AA1 lvds_rx_port0_n[4] Y2 lvds_rx_port0_p[5] T4 lvds_rx_port0_n[5] T5 lvds_rx_port0_p[6] U1 lvds_rx_port0_n[6] U2 lvds_rx_port0_p[7] N3 lvds_rx_port0_n[7] P3 lvds_rx_port0_p[9] L3 lvds_rx_port0_n[9] L2 lvds_rx_port0_p[10] N4 lvds_rx_port0_n[10] P4 lvds_rx_port0_p[11] N5 lvds_rx_port0_n[11] P6 lvds_rx_port0_p[12] R7 lvds_rx_port0_n[12] T7 lvds_rx_port0_p[13] E5 lvds_rx_port0_n[13] E4 lvds_rx_port0_p[14] P1 lvds_rx_port0_n[14] R1 clk_spi A20 Input spi_miso B19 Output SPI Data Out spi_ss B20 Input SPI Source Select LED F19 Output ADC Clock Active Status regbit G18 Output Reserved 12 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Table 9. Single Channel Edge Bit-Wise Design Signal Names and Pinout Signal Name reset_n LatticeECP3 Pin Direction Definition C21 Input Master Reset L4 Input Clock from TI ADC Input TI ADC Channel 1 Data A20 Input SPI Clock spi_miso B19 Output SPI Data Out spi_ss B20 Input SPI Source Select clk_lvds_rx_p clk_lvds_rx_n M4 lvds_rx_port0_p[4] AA1 lvds_rx_port0_n[4] Y2 lvds_rx_port0_p[5] T4 lvds_rx_port0_n[5] T5 lvds_rx_port0_p[6] U1 lvds_rx_port0_n[6] U2 lvds_rx_port0_p[7] N3 lvds_rx_port0_n[7] P3 lvds_rx_port0_p[9] L3 lvds_rx_port0_n[9] L2 lvds_rx_port0_p[10] N4 lvds_rx_port0_n[10] P4 lvds_rx_port0_p[11] N5 lvds_rx_port0_n[11] P6 lvds_rx_port0_p[12] R7 lvds_rx_port0_n[12] clk_spi T7 LED F19 Output ADC Clock Active Status regbit G18 Output Reserved Hardware Validation Hardware was validated using the ADS61B49EVM, ADS4249, ADS58C48, ADS5400, ADS5463, ADS5485, TSW1405, two function generators and a DC power supply. The FPGA firmware was synthesized and programed using Lattice Diamond® 1.4 design software. ADC results were analyzed through the Texas Instruments HighSpeed Data Converter Pro 1.0/1.04 GUI. The input clock frequency was set to 15 MHz at 1.5 Vpp and the ADC input was set to 100 kHz at 4.5Vpp. The supply to the ADC board was 5V or 6V depending on the board. 13 TI TSW1405 High-Speed ADC Evaluation Board HDL User’s Guide Figure 9. Texas Instruments High-Speed Data Converter Pro 1.0 GUI References • Texas Instruments TSW1405, High-Speed ADC LVDS Evaluation System • Texas Instruments ADS61xx, 14/12-Bit MSPS ADCs With DDR LVDS and Parallel CMOS Outputs Data Sheet • Texas Instruments ADS4249, Dual-Channel, 14-Bit, 250-MSPS Ultralow-Power ADC Data Sheet • Texas Instruments ADS58C48, Quad Channel IF Receiver with SNR Boost Data Sheet • Texas Instruments ADS5400, 12-Bit, 1-GSPS Analog-to-Digital Converter Data Sheet • Texas Instruments ADS5463, 12-Bit, 500-/550-MSPS Analog-to-Digital Converters • Texas Instruments ADS5485, 16-Bit, 170/200-MSPS Analog-to-Digital Converters Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: [email protected] Internet: www.latticesemi.com Revision History Date Version February 2012 01.0 Initial release. Change Summary April 2012 01.1 Added support for the TI ADS58C48 four channel and TI ADS5400 dual bus device families. May 2012 01.2 Added support for the TI ADS5463 and TI ADS5485 single channel ADCs. 14