TI TSW1405 High-Speed ADC Evaluation Board HDL User`s Guide

TI TSW1405 High-Speed ADC
Evaluation Board
HDL User’s Guide
May 2012
Reference Design RD1127
Introduction
The TSW1405EVM Low Cost Data Capture Card from Texas Instruments (TI) assists designers in prototyping and
evaluating the performance of high-speed ADCs that feature parallel/serial LVDS outputs. The evaluation module
features a powerful LatticeECP3™-35 FPGA. The FPGA can be used as a flexible and rapid prototyping environment for digital design, interfacing directly to the LVDS output of the TI ADC under evaluation. This HDL reference
design is available for users to get started with the evaluation board and capture ADC data using the TI High Speed
Data Converter Pro software.
Figure 1. Hardware Evaluation Overview
ADS EVM
TSW1405
High Speed Data Converter Pro
Currently, HDL reference designs targeting the LatticeECP3 device support the following TI device families:
• ADS41xx and ADS61xx single channel
• ADS62Pxx and ADS42xx dual channel
• ADS58C48 four channel
• ADS5400 dual bus
• ADS5463 single channel
• ADS5485 single channel
The HDL reference designs for these converters contain two primary modules for capturing the LVDS data from the
ADC.
• ADCIF – Contains the I/O logic and gearing functions for the LVDS pins. It also converts the double data rate
(DDR) input channel to a single data rate (SDR) parallel bus.
• DUMPMEM_TOP – Stores the channel’s parallel data to internal DPRAM. The ADC data extracts a SPI controller within the module. The High Speed Data Converter Pro software can import the data from this controller
through the USB port.
ADCIF module is the only design block required if the user desires to implement their own design using the
ADS41xx/ADS61xx, ADS62Pxx/ADS42xx, ADS58C48, ADS5400, ADS5463, ADS5485 with the LatticeECP3
device. The top level design instantiates the primary modules and connects them together. It also contains a LED
blinker circuit. This circuit flashes the LED when the LVDS clock output from the ADC is running and is available to
the FPGA. Figures 2 to 7 show the block diagrams for each respective ADC design.
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1
rd1127_01.2
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Figure 2. Single Channel ADC Block Diagram (ADS41xx/ADS61xx)
TSW1405_1ch_bit_wise
reset_n
ADCIF
DUMPMEM_TOP
clk_lvds_rx_p
sample 0
{[12:9], [7:4]}
lvds_rx_port0
[15:0]
17
lvds_rx_port1
port1
12
iDDRx2
sample 1
[15:0]
16
16
16
16
16
16
16
16
DUMPMEM_DP
DUMPMEM_WCTRL
DUMPMEM_RCTRL
spi_ss
spi_clk
DUMPMEM_SPI
spi_miso
ADC Clock Counter
LED
Figure 3. Dual Channel ADC Block Diagram (ADS62Pxx/ADS42xx)
TSW1405_2ch_bit_wise
reset_n
ADCIF
DUMPMEM_TOP
clk_lvds_rx_p
lvds_rx_port0
{[15:9], [7:1]}
17
[13:0]
lvds_rx_port1
port1
12
[13:0]
[13:0]
[13:0]
sample 0 chan 0
sample 1 chan 0
sample 0 chan 1
sample 1 chan 1
16
16
16
16
16
16
16
16
DUMPMEM_DP
DUMPMEM_WCTRL
iDDRx2
DUMPMEM_RCTRL
cap_chans
8
spi_ss
spi_clk
i lk
DUMPMEM_SPI
spi_miso
ADC Clock Counter
2
LED
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Figure 4. Four Channel ADC Block Diagram (ADS58C48)
TSW1405_2ch_bit_wise
reset_n
ADCIF
DUMPMEM_TOP
clk_lvds_rx_p
{[28:17], [15:10], [7:2]}
lvds_rx_port0
17
lvds_rx_port1
12
iDDRx2
cap_chans
sample 0, chan 0
[11:0]
sample 1, chan 0
[11:0]
sample 0, chan 1
[11:0]
sample 1, chan 1
[11:0]
sample 0, chan 2
[11:0]
sample 1, chan 2
[11:0]
sample 0, chan 3
[11:0]
16
16
16
16
16
16
16
16
DUMPMEM_DP
DUMPMEM_WCTRL
DUMPMEM_RCTRL
spi_ss
spi_clk
DUMPMEM_SPI
spi_miso
Figure 5. Dual Bus ADC Block Diagram (ADS5400)
TSW1405_dual_bus
reset_n
ADCIF
clk_lvds_rx_p
lvds_rx_port0
12
lvds_rx_port1
17
DUMPMEM_TOP
iDDRx2
{[28:17],
[14:3]}
{[11:0], h’40}
{[11:0], h’40}
{[11:0], h’40}
{[11:0], h’40}
sample 0, chan A
sample 0, chan B
sample 1, chan A
sample 1, chan B
16
16
16
16
{[11:0], h’40}
{[11:0], h’40}
{[11:0], h’40}
{[11:0], h’40}
sample 2, chan A
sample 2, chan B
sample 3, chan A
sample 3, chan B
16
16
16
16
DUMPMEM_DP
DUMPMEM_WCTRL
DUMPMEM_RCTRL
spi_ss
spi_clk
DUMPMEM_SPI
spi_miso
ADC Clock Counter
3
LED
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Figure 6. Single Channel ADC Block Diagram (ADS5463)
TSW1405_sample_wise
reset_n
DUMPMEM_TOP
ADCIF
clk_lvds_rx_p
IDDRx2
lvds_rx_port1
12
lvds_rx_port0
[14:1]
17
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
sample 0
sample 0
sample 1
sample 1
16
16
16
16
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
sample 2
sample 2
sample 3
sample 3
16
16
16
16
DUMPMEM_DP
DUMPMEM_WCTRL
DUMPMEM_RCTRL
spi_ss
DUMPMEM_SPI
spi_clk
spi_miso
ADC Clock Counter
LED
Figure 7. Single Channel ADC Block Diagram (ADS5485)
TSW1405_1ch_edge_bit_wise
reset_n
DUMPMEM_TOP
ADCIF
clk_lvds_rx_p
IDDRx2
lvds_rx_port1
12
lvds_rx_port0
17
{[12:9], [7:4]}
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
sample 0
sample 0
sample 1
sample 1
16
16
16
16
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
{[13:0], 4’h0}
sample 2
sample 2
sample 3
sample 3
16
16
16
16
DUMPMEM_DP
DUMPMEM_WCTRL
DUMPMEM_RCTRL
spi_ss
DUMPMEM_SPI
spi_clk
spi_miso
ADC Clock Counter
LED
The input of the ADCIF module is the single or dual channel double data rate (DDR) output from the ADC. This
input is converted to two single data rate buses for each channel at half the rate of the ADC input clock. The single
channel design is capable of handling up to eight LVDS DDR inputs from the ADC. The dual channel design is
capable of handling up to seven LVDS DDR inputs for the ADC. Table 2 describes the ADCIF I/O for single and dual
channel designs.
4
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Figure 8. ADCIF Module
ADCIF
clk_adc_ext
clk_adc
inv_data
dout1[15:0]
inv_clk
dout2[15:0]
lsb_first
dout3[15:0]
reset_n
dout4[15:0]
din[28:0]
dout5[15:0]
cap_depth[1:0]
dout6[15:0]
cap_format[2:0]
dout7[15:0]
cap_chans[7:0]
dout8[15:0]
Table 1. ADCIF Module NGO I/O Descriptions
ADCIF Signal
reset_n
TSW1405_1ch_bit_
wise
—
TSW1405_2ch_bit_
wise
—
TSW1405_4ch_bit_
wise
TSW1405_dual_bus
—
—
TSW1405_sample_
wise
—
TSW1405_1ch_edge
_bit_wise
—
Description
Design module reset
clk_adc_ext
—
—
—
—
—
—
Clock input
inv_data
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
—
inv_clk
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
—
lsb_first
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
—
din[28:0]
{din[12:9],din[7:4]} =
Channel 1 input [7:0]
din[7:1] =
Channel 1 input
din[28:23] =
Channel 1 input
din[14:3] =
Channel A input
din[14:1] = Channel 1
input
{din[12:9],din[7:4]} =
Channel 1 input
ADC DDR data input
din[15:9] =
Channel 2 input
din[15:10] = Channel 2 din[28:17] = Channel B
input
input
din[7:2] =
Channel 3 input
din[22:17] =
Channel 4 input
cap_depth[1:0]
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
—
cap_format[2:0] Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
—
cap_chans[7:0] Reserved
8’d0: Channel 1 – 2
samples/clock
8’d0: Channel 1 – 2
samples/clock
Reserved
Reserved
Reserved
8’d2: Channel 2 – 2
samples/clock
8’d2: Channel 2 – 2
samples/clock
Output control mux
8’d3: Dual channel – 4 8’d4: Channel 3 – 2
samples/clock
samples/clock
8’d8: Channel 4 – 2
samples/clock
8'd3: Channels 1 & 2 4 samples/clock
8'd12: Channels 3 & 4
- 4 samples/clock
8'd15: Channels 1, 2,
3 & 4 - 8 samples/clock
clk_adc
—
—
—
—
—
—
clk_adc =
clk_adc_ext/2
dout1[15:0]
Sample 0 Output
See Table 2,
dout1[1:0] = 2’b00
See Table 3,
dout1[3:0] = 4’b0000
Chan B, Sample 0
Output
Sample 0 Output,
dout1[1:0] = 2’b00
Sample 0 Output
Single data rate output
dout2[15:0]
Sample 0 Output
See Table 2,
dout2[1:0] = 2’b00
See Table 3,
dout2[3:0] = 4’b0000
Chan A, Sample 0
Output
Sample 0 Output,
dout2[1:0] = 2’b00
Sample 0 Output
Single data rate output
dout3[15:0]
Sample 0 Output
See Table 2,
dout3[1:0] = 2’b00
See Table 3,
dout3[3:0] = 4’b0000
Chan B, Sample 1
Output
Sample 1 Output,
dout3[1:0] = 2’b00
Sample 0 Outputs
Single data rate output
dout4[15:0]
Sample 0 Output
See Table 2,
dout4[1:0] = 2’b00
See Table 3,
dout4[3:0] = 4’b0000
Chan A, Sample 1
Output
Sample 1 Output,
dout4[1:0] = 2’b00
Sample 0 Output
Single data rate output
dout5[15:0]
Sample 1 Output
See Table 2,
dout5[1:0] = 2’b00
See Table 3,
dout5[3:0] = 4’b0000
Chan B, Sample 2
Output
Sample 2 Output,
dout5[1:0] = 2’b00
Sample 1 Output
Single data rate output
dout6[15:0]
Sample 1 Output
See Table 2,
dout6[1:0] = 2’b00
See Table 3,
dout6[3:0] = 4’b0000
Chan A, Sample 2
Output
Sample 2 Output,
dout6[1:0] = 2’b00
Sample 1 Output
Single data rate output
dout7[15:0]
Sample 1 Output
See Table 2,
dout7[1:0] = 2’b00
See Table 3,
dout7[3:0] = 4’b0000
Chan B, Sample 3
Output
Sample 3 Output,
dout7[1:0] = 2’b00
Sample 1 Output
Single data rate output
dout8[15:0]
Sample 1 Output
See Table 2,
dout8[1:0] = 2’b00
See Table 3,
dout8[3:0] = 4’b0000
Chan A, Sample 3
Output
Sample 3 Output,
dout8[1:0] = 2’b00
Sample 1 Output
Single data rate output
5
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 2. Output Control Mux Settings for Dual Channel Designs
cap_chans Setting
Channel(s)
dout1
dout2
dout3
dout4
dout5
dout6
dout7
dout8
cap_chans = 0 or 1
Channel 1
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
cap_chans = 2
Channel 2
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
cap_chans = 4
Channel 3
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
cap_chans = 8
Channel 4
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
Channel 1
Sample 0 Sample 0 Sample 1 Sample 1
cap_chans = 3
cap_chans = 12
Channel 2
Channel 3
Sample 0 Sample 0 Sample 1 Sample 1
Channel 4
Channel 1
cap_chans = 15
Sample 0 Sample 0 Sample 1 Sample 1
Sample 0 Sample 0 Sample 1 Sample 1
Sample 0 Sample 1
Channel 2
Sample 0 Sample 1
Channel 3
Sample 0 Sample 1
Channel 4
Sample 0 Sample 1
Table 3. Output Control Mux Settings for Four Channel Designs
cap_chans
Setting
Channel(s)
cap_chans = 0 or 1
Channel 1
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
cap_chans = 2
Channel 2
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
cap_chans = 4
Channel 3
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
cap_chans = 8
Channel 4
Sample 0 Sample 0 Sample 0 Sample 0 Sample 1 Sample 1 Sample 1 Sample 1
Channel 1
Sample 0 Sample 0 Sample 1 Sample 1
cap_chans = 3
cap_chans = 12
dout2
dout3
dout4
Channel 2
Channel 3
Channel 2
dout5
dout6
dout7
dout8
Sample 0 Sample 0 Sample 1 Sample 1
Sample 0 Sample 0 Sample 1 Sample 1
Channel 4
Channel 1
cap_chans = 15
dout1
Sample 0 Sample 0 Sample 1 Sample 1
Sample 0 Sample 1
Sample 0 Sample 1
Channel 3
Sample 1 Sample 1
Channel 4
Sample 0 Sample 1
6
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 4. Single Channel Design Signal Names and Pinout
Signal Name
reset_n
LatticeECP3 Pin
Direction
C21
Input
Master Reset
Input
Clock from TI ADC
Input
TI ADC Channel 1 Data
SPI Clock
clk_lvds_rx_p
L4
clk_lvds_rx_n
M4
lvds_rx_port0_p[4]
AA1
lvds_rx_port0_n[4]
Y2
lvds_rx_port0_p[5]
T4
lvds_rx_port0_n[5]
T5
lvds_rx_port0_p[6]
U1
lvds_rx_port0_n[6]
U2
lvds_rx_port0_p[7]
N3
lvds_rx_port0_n[7]
P3
lvds_rx_port0_p[9]
L3
lvds_rx_port0_n[9]
L2
lvds_rx_port0_p[10]
N4
lvds_rx_port0_n[10]
P4
lvds_rx_port0_p[11]
N5
lvds_rx_port0_n[11]
P6
lvds_rx_port0_p[12]
R7
lvds_rx_port0_n[12]
Definition
T7
clk_spi
A20
Input
spi_miso
B19
Output
spi_ss
B20
Input
LED
F19
Output
ADC Clock Active Status
regbit
G18
Output
Reserved
7
SPI Data Out
SPI Source Select
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 5. Dual Channel Design Signal Names and Pinout
Signal Name
reset_n
LatticeECP3 Pin
Direction
Definition
C21
Input
Master Reset
clk_lvds_rx_p
L4
Input
Clock from TI ADC
clk_lvds_rx_n
M4
lvds_rx_port0_p[1]
R4
Input
TI ADC Channel 1 Data
SPI Clock
lvds_rx_port0_n[1]
T5
lvds_rx_port0_p[2]
R3
lvds_rx_port0_n[2]
R2
lvds_rx_port0_p[3]
B2
lvds_rx_port0_n[3]
C2
lvds_rx_port0_p[4]
AA1
lvds_rx_port0_n[4]
Y2
lvds_rx_port0_p[5]
T4
lvds_rx_port0_n[5]
T5
lvds_rx_port0_p[6]
U1
lvds_rx_port0_n[6]
U2
lvds_rx_port0_p[7]
N3
lvds_rx_port0_n[7]
P3
lvds_rx_port0_p[9]
L3
lvds_rx_port0_n[9]
L2
lvds_rx_port0_p[10]
N4
lvds_rx_port0_n[10]
P4
lvds_rx_port0_p[11]
N5
lvds_rx_port0_n[11]
P6
lvds_rx_port0_p[12]
R7
lvds_rx_port0_n[12]
T7
lvds_rx_port0_p[13]
E5
lvds_rx_port0_n[13]
E4
lvds_rx_port0_p[14]
P1
lvds_rx_port0_n[14]
R1
lvds_rx_port0_p[15]
M2
lvds_rx_port0_n[15]
M1
clk_spi
A20
Input
spi_miso
B19
Output
spi_ss
B20
Input
LED
F19
Output
ADC Clock Active Status
regbit
G18
Output
Reserved
8
SPI Data Out
SPI Source Select
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 6. Four Channel Design Signal Names and Pinout
Signal Name
reset_n
LatticeECP3 Pin
Direction
Definition
C21
Input
Master Reset
clk_lvds_rx_p
L4
Input
Clock from TI ADC
clk_lvds_rx_n
M4
lvds_rx_port0_p[2]
R3
lvds_rx_port0_n[2]
R2
Input
TI ADC Channel 1 Data
lvds_rx_port0_p[3]
B2
lvds_rx_port0_n[3]
C2
lvds_rx_port0_p[4]
AA1
lvds_rx_port0_n[4]
Y2
lvds_rx_port0_p[5]
T4
lvds_rx_port0_n[5]
U4
lvds_rx_port0_p[6]
U1
lvds_rx_port0_n[6]
U2
lvds_rx_port0_p[7]
N3
lvds_rx_port0_n[7]
P3
lvds_rx_port0_p[10]
N4
lvds_rx_port0_n[10]
P4
lvds_rx_port0_p[11]
N5
lvds_rx_port0_n[11]
P6
lvds_rx_port0_p[12]
R7
lvds_rx_port0_n[12]
T7
lvds_rx_port0_p[13]
E5
lvds_rx_port0_n[13]
E4
lvds_rx_port0_p[14]
P1
lvds_rx_port0_n[14]
R1
lvds_rx_port0_p[15]
M2
lvds_rx_port0_n[15]
M1
lvds_rx_port1_p[0]
V4
lvds_rx_port1_n[0]
V5
lvds_rx_port1_p[1]
V3
lvds_rx_port1_n[1]
W3
lvds_rx_port1_p[2]
Y3
lvds_rx_port1_n[2]
AA2
lvds_rx_port1_p[3]
W2
lvds_rx_port1_n[3]
Y1
lvds_rx_port1_p[4]
V1
lvds_rx_port1_n[4]
W1
lvds_rx_port1_p[5]
K4
lvds_rx_port1_n[5]
K5
lvds_rx_port1_p[6]
G3
lvds_rx_port1_n[6]
G2
lvds_rx_port1_p[7]
J2
lvds_rx_port1_n[7]
J1
lvds_rx_port1_p[8]
G1
9
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 6. Four Channel Design Signal Names and Pinout (Continued)
Signal Name
LatticeECP3 Pin
lvds_rx_port1_n[8]
H1
lvds_rx_port1_p[9]
E1
lvds_rx_port1_n[9]
F1
lvds_rx_port1_p[10]
D2
lvds_rx_port1_n[10]
D1
lvds_rx_port1_p[11]
B1
Direction
Definition
Input
TI ADC Channel 1 Data
(cont.)
SPI Clock
lvds_rx_port1_n[11]
C1
clk_spi
A20
Input
spi_miso
B19
Output
spi_ss
B20
Input
LED
F19
Output
ADC Clock Active Status
regbit
G18
Output
Reserved
SPI Data Out
SPI Source Select
Table 7. Dual Bus Design Signal Names and Pinout
Signal Name
reset_n
LatticeECP3 Pin
Direction
Definition
C21
Input
Master Reset
clk_lvds_rx_p
L4
Input
Clock from TI ADC
clk_lvds_rx_n
M4
lvds_rx_port0_p[3]
B2
Input
TI ADC Channel 1 Data
lvds_rx_port0_n[3]
C2
lvds_rx_port0_p[4]
AA1
lvds_rx_port0_n[4]
Y2
lvds_rx_port0_p[5]
T4
lvds_rx_port0_n[5]
U4
lvds_rx_port0_p[6]
U1
lvds_rx_port0_n[6]
U2
lvds_rx_port0_p[7]
N3
lvds_rx_port0_n[7]
P3
lvds_rx_port0_p[10]
N4
lvds_rx_port0_n[10]
P4
lvds_rx_port0_p[11]
N5
lvds_rx_port0_n[11]
P6
lvds_rx_port0_p[12]
R7
lvds_rx_port0_n[12]
T7
lvds_rx_port0_p[13]
E5
lvds_rx_port0_n[13]
E4
lvds_rx_port0_p[14]
P1
lvds_rx_port0_n[14]
R1
lvds_rx_port1_p[0]
V4
lvds_rx_port1_n[0]
V5
lvds_rx_port1_p[1]
V3
lvds_rx_port1_n[1]
W3
lvds_rx_port1_p[2]
Y3
lvds_rx_port1_n[2]
AA2
10
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 7. Dual Bus Design Signal Names and Pinout (Continued)
Signal Name
LatticeECP3 Pin
lvds_rx_port1_p[3]
W2
lvds_rx_port1_n[3]
Y1
lvds_rx_port1_p[4]
V1
lvds_rx_port1_n[4]
W1
lvds_rx_port1_p[5]
K4
lvds_rx_port1_n[5]
K5
lvds_rx_port1_p[6]
G3
lvds_rx_port1_n[6]
G2
lvds_rx_port1_p[7]
J2
lvds_rx_port1_n[7]
J1
lvds_rx_port1_p[8]
G1
lvds_rx_port1_n[8]
H1
lvds_rx_port1_p[9]
E1
lvds_rx_port1_n[9]
F1
lvds_rx_port1_p[10]
D2
lvds_rx_port1_n[10]
D1
Direction
Definition
Input
TI ADC Channel 1 Data
(cont.)
SPI Clock
lvds_rx_port1_p[11]
B1
lvds_rx_port1_n[11]
C1
clk_spi
A20
Input
spi_miso
B19
Output
spi_ss
B20
Input
SPI Data Out
SPI Source Select
LED
F19
Output
ADC Clock Active Status
regbit
G18
Output
Reserved
11
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 8. Sample-Wise Design Signal Names and Pinout
Signal Name
reset_n
LatticeECP3 Pin
Direction
Definition
C21
Input
Master Reset
clk_lvds_rx_p
L4
Input
Clock from TI ADC
clk_lvds_rx_n
M4
lvds_rx_port0_p[1]
R4
Input
TI ADC Channel 1 Data
SPI Clock
lvds_rx_port0_n[1]
T5
lvds_rx_port0_p[2]
R3
lvds_rx_port0_n[2]
R2
lvds_rx_port0_p[3]
B2
lvds_rx_port0_n[3]
C2
lvds_rx_port0_p[4]
AA1
lvds_rx_port0_n[4]
Y2
lvds_rx_port0_p[5]
T4
lvds_rx_port0_n[5]
T5
lvds_rx_port0_p[6]
U1
lvds_rx_port0_n[6]
U2
lvds_rx_port0_p[7]
N3
lvds_rx_port0_n[7]
P3
lvds_rx_port0_p[9]
L3
lvds_rx_port0_n[9]
L2
lvds_rx_port0_p[10]
N4
lvds_rx_port0_n[10]
P4
lvds_rx_port0_p[11]
N5
lvds_rx_port0_n[11]
P6
lvds_rx_port0_p[12]
R7
lvds_rx_port0_n[12]
T7
lvds_rx_port0_p[13]
E5
lvds_rx_port0_n[13]
E4
lvds_rx_port0_p[14]
P1
lvds_rx_port0_n[14]
R1
clk_spi
A20
Input
spi_miso
B19
Output
SPI Data Out
spi_ss
B20
Input
SPI Source Select
LED
F19
Output
ADC Clock Active Status
regbit
G18
Output
Reserved
12
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Table 9. Single Channel Edge Bit-Wise Design Signal Names and Pinout
Signal Name
reset_n
LatticeECP3 Pin
Direction
Definition
C21
Input
Master Reset
L4
Input
Clock from TI ADC
Input
TI ADC Channel 1 Data
A20
Input
SPI Clock
spi_miso
B19
Output
SPI Data Out
spi_ss
B20
Input
SPI Source Select
clk_lvds_rx_p
clk_lvds_rx_n
M4
lvds_rx_port0_p[4]
AA1
lvds_rx_port0_n[4]
Y2
lvds_rx_port0_p[5]
T4
lvds_rx_port0_n[5]
T5
lvds_rx_port0_p[6]
U1
lvds_rx_port0_n[6]
U2
lvds_rx_port0_p[7]
N3
lvds_rx_port0_n[7]
P3
lvds_rx_port0_p[9]
L3
lvds_rx_port0_n[9]
L2
lvds_rx_port0_p[10]
N4
lvds_rx_port0_n[10]
P4
lvds_rx_port0_p[11]
N5
lvds_rx_port0_n[11]
P6
lvds_rx_port0_p[12]
R7
lvds_rx_port0_n[12]
clk_spi
T7
LED
F19
Output
ADC Clock Active Status
regbit
G18
Output
Reserved
Hardware Validation
Hardware was validated using the ADS61B49EVM, ADS4249, ADS58C48, ADS5400, ADS5463, ADS5485,
TSW1405, two function generators and a DC power supply. The FPGA firmware was synthesized and programed
using Lattice Diamond® 1.4 design software. ADC results were analyzed through the Texas Instruments HighSpeed Data Converter Pro 1.0/1.04 GUI. The input clock frequency was set to 15 MHz at 1.5 Vpp and the ADC
input was set to 100 kHz at 4.5Vpp. The supply to the ADC board was 5V or 6V depending on the board.
13
TI TSW1405 High-Speed ADC Evaluation Board
HDL User’s Guide
Figure 9. Texas Instruments High-Speed Data Converter Pro 1.0 GUI
References
• Texas Instruments TSW1405, High-Speed ADC LVDS Evaluation System
• Texas Instruments ADS61xx, 14/12-Bit MSPS ADCs With DDR LVDS and Parallel CMOS Outputs Data Sheet
• Texas Instruments ADS4249, Dual-Channel, 14-Bit, 250-MSPS Ultralow-Power ADC Data Sheet
• Texas Instruments ADS58C48, Quad Channel IF Receiver with SNR Boost Data Sheet
• Texas Instruments ADS5400, 12-Bit, 1-GSPS Analog-to-Digital Converter Data Sheet
• Texas Instruments ADS5463, 12-Bit, 500-/550-MSPS Analog-to-Digital Converters
• Texas Instruments ADS5485, 16-Bit, 170/200-MSPS Analog-to-Digital Converters
Technical Support Assistance
Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)
e-mail: [email protected]
Internet: www.latticesemi.com
Revision History
Date
Version
February 2012
01.0
Initial release.
Change Summary
April 2012
01.1
Added support for the TI ADS58C48 four channel and TI ADS5400 dual
bus device families.
May 2012
01.2
Added support for the TI ADS5463 and TI ADS5485 single channel
ADCs.
14