STMICROELECTRONICS L6561D013TR

L6561
POWER FACTOR CORRECTOR
1
■
■
■
■
■
■
■
■
■
■
2
FEATURES
Figure 1. Packages
VERY PRECISE ADJUSTABLE OUTPUT
OVERVOLTAGE PROTECTION
MICRO POWER START-UP CURRENT (50µA
TYP.)
VERY LOW OPERATING SUPPLY
CURRENT(4mA TYP.)
INTERNAL START-UP TIMER
CURRENT SENSE FILTER ON CHIP
DISABLE FUNCTION
1% PRECISION (@ Tj = 25°C) INTERNAL
REFERENCE VOLTAGE
TRANSITION MODE OPERATION
TOTEM POLE OUTPUT CURRENT: ±400mA
DIP-8/SO-8 PACKAGES
SO-8
DIP-8
Table 1. Order Codes
Part Number
Package
L6561
DIP-8
L6561D
SO-8
L6561D013TR
Tape & Reel
Realised in mixed BCD technology, the chip gives
the following benefits:
– micro power start up current
– 1% precision internal reference voltage
– (Tj = 25°C)
– Soft Output Over Voltage Protection
– no need for external low pass filter on the current sense
– very low operating quiescent current minimises power dissipation
The totem pole output stage is capable of driving
a Power MOS or IGBT with source and sink currents of ±400mA. The device is operating in transition mode and it is optimised for Electronic Lamp
Ballast application, AC-DC adaptors and SMPS.
DESCRIPTION
L6561 is the improved version of the L6560 standard Power Factor Corrector. Fully compatible
with the standard version, it has a superior performant multiplier making the device capable of working in wide input voltage range applications (from
85V to 265V) with an excellent THD. Furthermore
the start up current has been reduced at few tens
of mA and a disable function has been implemented on the ZCD pin, guaranteeing lower current
consumption in stand by mode.
Figure 2. Block Diagram
INV
1
2.5V
VOLTAGE
REGULATOR
VCC
COMP
MULT
2
3
-
CS
4
MULTIPLIER
+
OVER-VOLTAGE
DETECTION
5pF
+
-
40K
VCC
8
INTERNAL
SUPPLY 7V
20V
R
R1
Q
S
+
7
UVLO
DRIVER
GD
-
R2
VREF2
2.1V
1.6V
+
ZERO CURRENT
DETECTOR
STARTER
-
DISABLE
6
GND
June 2004
5
ZCD
D97IN547E
REV. 16
1/13
L6561
Table 2. Absolute Maximum Ratings
Symbol
Pin
IVcc
8
Iq + IZ; (IGD = 0)
Output Totem Pole Peak Current (2µs)
IGD
7
INV, COMP
MULT
1, 2, 3
CS
ZCD
Parameter
Value
Unit
30
mA
±700
mA
Analog Inputs & Outputs
-0.3 to 7
V
4
Current Sense Input
-0.3 to 7
V
5
Zero Current Detector
50 (source)
-10 (sink)
mA
mA
1
0.65
W
W
Junction Temperature Operating Range
-40 to 150
°C
Storage Temperature
-55 to 150
°C
Ptot
Power Dissipation @Tamb = 50 °C
Tj
Tstg
(DIP-8)
(SO-8)
Figure 3. Pin Connection (Top view)
INV
1
8
VCC
COMP
2
7
GD
MULT
3
6
GND
CS
4
5
ZCD
DIP8
Table 3. Thermal Data
Symbol
Rth j-amb
Parameter
Thermal Resistance Junction to ambient
SO 8
MINIDIP
Unit
150
100
°C/W
Table 4. Pin Description
N.
Name
Function
1
INV
Inverting input of the error amplifier. A resistive divider is connected between the output
regulated voltage and this point, to provide voltage feedback.
2
COMP
Output of error amplifier. A feedback compensation network is placed between this pin and the
INV pin.
3
MULT
Input of the multiplier stage. A resistive divider connects to this pin the rectified mains. A voltage
signal, proportional to the rectified mains, appears on this pin.
4
CS
Input to the comparator of the control loop. The current is sensed by a resistor and the resulting
voltage is applied to this pin.
5
ZCD
Zero current detection input. If it is connected to GND, the device is disabled.
6
GND
Current return for driver and control circuits.
7
GD
Gate driver output. A push pull output stage is able to drive the Power MOS with peak current of
400mA (source and sink).
8
VCC
Supply voltage of driver and control circuits.
(1) Parameter guaranteed by design, not tested in production.
2/13
L6561
Table 5. Electrical Characteristics
(VCC = 14.5V; Tamb = -25°C to 125°C;unless otherwise specified)
Symbol
Pin
Parameter
Test Condition
Min.
Typ.
Max.
Unit
18
V
SUPPLY VOLTAGE SECTION
VCC
8
Operating Range
after turn-on
11
VCC ON
8
Turn-on Threshold
11
12
13
V
VCC OFF
8
Turn-off Threshold
8.7
9.5
10.3
V
Hys
8
Hysteresis
2.2
2.5
2.8
V
20
50
90
µA
2.6
4
mA
4
5.5
mA
SUPPLY CURRENT SECTION
ISTART-U
8
Start-up Current
Iq
8
Quiescent Current
ICC
8
Operating Supply Current
Iq
8
Quiescent Current
8
VZ
8
Zener Voltage
before turn-on (VCC =11V)
CL = 1nF @ 70KHz
in OVP condition Vpin1 = 2.7V
1.4
2.1
mA
VPIN5 ≤150mV, VCC > VCC off
1.4
2.1
mA
VPIN5 ≤ 150mV, VCC < VCC off
20
50
90
µA
ICC = 25mA
18
20
22
V
Tamb = 25°C
2.465
2.5
2.535
V
12V < VCC < 18V
2.44
2.56
V
2
5
mV
-0.1
-1
ERROR AMPLIFIER SECTION
VINV
1
Voltage Feedback Input
Threshold
Line Regulation
IINV
1
GB
ICOMP
VCOMP
Input Bias Current
Voltage Gain
GV
VCC = 12 to 18V
60
80
Source Current
VCOMP = 4V, VINV = 2.4V
-2
-4
Sink Current
VCOMP = 4V, VINV = 2.6V
2.5
4.5
Upper Clamp Voltage
ISOURCE = 0.5mA
5.8
V
Lower Clamp Voltage
ISink = 0.5mA
2.25
V
0 to 3
0 to 3.5
V
VMULT = from 0V to 0.5V
VCOMP = Upper Clamp Voltage
1.65
1.9
VMULT = 1V VCOMP = 4V
0.45
0.6
0.75
1/V
1.6
1.7
1.8
V
-0.05
-1
µA
200
450
ns
0
15
mV
Gain Bandwidth
2
2
µA
Open loop
dB
1
MHz
-8
mA
mA
MULTIPLIER SECTION
VMULT
3
∆V CS
----------------∆V mult
Linear Operating Voltage
Output Max. Slope
K
Gain
CURRENT SENSE COMPARATOR
VCS
4
Current Sense Reference
Clamp
VMULT = 2.5V
VCOMP = Upper Clamp Voltage
ICS
4
Input Bias Current
VOS = 0
td (H-L)
4
Delay to Output
4
Current Sense Offset
ZERO CURRENT DETECTOR
VZCD
5
Input Threshold Voltage Rising
Edge
(1)
Hysteresis
(1)
0.3
0.5
0.7
V
VZCD
5
Upper Clamp Voltage
IZCD = 20µA
4.5
5.1
5.9
V
VZCD
5
Upper Clamp Voltage
IZCD = 3mA
4.7
5.2
6.1
V
2.1
V
3/13
L6561
Table 5. Electrical Characteristics (continued)
(VCC = 14.5V; Tamb = -25°C to 125°C;unless otherwise specified)
Symbol
Pin
Parameter
Test Condition
VZCD
5
Lower Clamp Voltage
IZCD = -3mA
IZCD
5
Sink Bias Current
1V ≤ VZCD ≤ 4.5V
IZCD
5
Source Current Capability
IZCD
5
Sink Current Capability
VDIS
5
Disable threshold
IZCD
5
Restart Current After Disable
Min.
Typ.
Max.
0.3
0.65
1
3
V
µA
2
-3
Unit
-10
mA
10
mA
150
200
250
mV
-100
-200
-300
µA
IGDsource = 200mA
1.2
2
V
IGDsource = 20mA
0.7
VZCD < Vdis; VCC > VCCOFF
OUTPUT SECTION
VGD
7
Dropout Voltage
IGDsink = 200mA
IGDsink = 20mA
1
V
1.5
V
0.3
V
tr
7
Output Voltage Rise Time
CL = 1nF
40
100
ns
tf
7
Output Voltage Fall Time
CL = 1nF
40
100
ns
IGD off
7
IGD Sink Current
VCC =3.5V VGD = 1V
10
-
mA
5
OUTPUT OVERVOLTAGE SECTION
IOVP
2
OVP Triggering Current
35
40
45
µA
Static OVP Threshold
2.1
2.25
2.4
V
70
150
400
µs
RESTART TIMER
tSTART
3
Start Timer
OVER VOLTAGE PROTECTION OVP
The output voltage is expected to be kept by the operation of the PFC circuit close to its nominal value.
This is set by the ratio of the two external resistors R1 and R2 (see fig. 5), taking into consideration that
the non inverting input of the error amplifier is biased inside the L6561 at 2.5V.
In steady state conditions, the current through R1 and R2 is:
V out – 2.5
2.5V
- = I R2 = -----------I R1sc = ------------------------R1
R2
and, if the external compensation network is made only with a capacitor Ccomp, the current through Ccomp
equals zero.When the output voltage increases abruptly the current through R1 becomes:
V outsc + ∆V out – 2.5
I R1 = ---------------------------------------------------- = I R1sc + ∆I R1
R1
Since the current through R2 does not change, ∆IR1 must flow through the capacitor Ccomp and enter the
error amplifier.
This current is monitored inside the L6561 and when reaches about 37µA the output voltage of the multiplier is forced to decrease, thus reducing the energy drawn from the mains. If the current exceeds 40µA,
the OVP protection is triggered (Dynamic OVP), and the external power transistor is switched off until the
current falls approximately below 10µA.
However, if the overvoltage persists, an internal comparator (Static OVP) confirms the OVP condition
keeping the external power switch turned off (see fig. 4).Finally, the overvoltage that triggers the OVP
function is:
∆Vout = R1 · 40µA.
Typical values for R1, R2 and C are shown in the application circuits. The overvoltage can be set indepen-
4/13
L6561
dently from the average output voltage. The precision in setting the overvoltage threshold is 7% of the overvoltage value (for instance ∆V = 60V ± 4.2V).
3.1 Disable function
The zero current detector (ZCD) pin can be used for device disabling as well. By grounding the ZCD voltage the device is disabled reducing the supply current consumption at 1.4mA typical (@ 14.5V supply voltage).
Releasing the ZCD pin the internal start-up timer will restart the device.
Figure 4.
OVER VOLTAGE
VOUT nominal
ISC
40µA
10µA
E/A OUTPUT
2.25V
DYNAMIC OVP
STATIC OVP
D97IN592A
Figure 5. Overvoltage Protection Circuit
Ccomp.
+Vo
∆I
R1
1
2
-
X
E/A
+
R2
PWM
DRIVER
2.5V
2.25V
+
∆I
40µA
D97IN591
5/13
L6561
Figure 6. Typical Application Circuit (80W, 110VAC)
D1 BYT03-400
R3 (*)
D3 1N4150
240K
BRIDGE
+ 4 x 1N4007
FUSE 4A/250V
R2
100
D2
1N5248B
C1
1µF
250V
T
C6
R7 (*)
950K
10nF
C3 680nF
5
8
3
Vac
(85V to 135V)
R10
10K
NTC
2
1
7
L6561
-
C2
22µF
25V
Vo=240V
Po=80W
68K
R1
R9 (*)
950K
+
R5
MOS
STP7NA40
10
4
6
C7
10nF
R6 (*)
0.31
1W
R8
10K
1%
C5
100µF
315V
-
D97IN549B
(*) R3 = 2 x 120KΩ
R6 = 0.619Ω/2
R7 = 2 x 475KΩ, 1%
R9 = 2 x 475KΩ
TRANSFORMER
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A7)
primary 90T of Litz wire 10 x 0.2mm
secondary 11T of #27 AWG (0.15mm)
gap 1.8mm for a total primary inductance of 0.7mH
Figure 7. Typical Application Circuit (120W, 220VAC)
D1 BYT13-600
R3 (*)
D3 1N4150
440K
BRIDGE
+ 4 x 1N4007
FUSE 2A/250V
R2
100
D2
1N5248B
C1
560nF
400V
T
C6
R7 (*)
998K
10nF
68K
5
8
3
Vac
(175V to 265V)
R10
10K
NTC
(*) R3 = 2 x 220KΩ
R6 = 0.82Ω/2
R7 = 2 x 499KΩ, 1%
R9 = 2 x 909KΩ
2
1
7
L6561
-
C2
22µF
25V
Vo=400V
Po=120W
C3 1µF
R1
R9 (*)
1.82M
+
R5
MOS
STP5NA50
10
4
6
C7
10nF
R6 (*)
0.41
1W
R8
6.34K
1%
C5
56µF
450V
-
D97IN550B
TRANSFORMER
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8)
primary 90T of Litz wire 10 x 0.2mm
secondary 7T of #27 AWG (0.15mm)
gap 1.25mm for a total primary inductance of 0.8mH
Figure 8. Typical Application Circuit (80W, Wide-range Mains)
D1 BYT13-600
R3 (*)
D3 1N4150
240K
BRIDGE
+ 4 x 1N4007
FUSE 4A/250V
R2
100
D2
1N5248B
C1
1µF
400V
C6
R7 (*)
998K
12nF
R9 (*)
1.24M
8
3
R10
10K
C2
22µF
25V
C7
10nF
5
2
6
1
7
R5
MOS
STP8NA50
10
4
R6 (*)
0.41
1W
R8
6.34K
1%
D97IN553B
(*) R3 = 2 x 120KΩ
R6 = 0.82Ω/2
R7 = 2 x 499KΩ, 1%
R9 = 2 x 620KΩ
6/13
Vo=400V
Po=80W
C3 1µF
L6561
Vac
(85V to 265V)
+
68K
R1
-
NTC
T
TRANSFORMER
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8)
primary 90T of Litz wire 10 x 0.2mm
secondary 7T of #27 AWG (0.15mm)
gap 1.25mm for a total primary inductance of 0.8mH
C5
47µF
450V
-
L6561
Figure 9. Demo Board (EVAL6561-80) Electrical Schematic
NTC
2.5
D1
STTH1L06
R4
180 k
R5
180 k
T
D8
1N4150
C5 12 nF
100
BRIDGE
FUSE
4A/250V
W04M
+
C1
1 µF
400V
1N5248B
R6
68 k
R12
750 k
C3 470 nF
C23
1 µF
R2
750 k
5
8
2
1
L6561
3
-
Vac
(85V to 265V)
R50 12 k
D2
R1
750 k
Vo=400V
Po=80W
R11
750 k
R14
R7
33
C6
47 µF
MOS
STP8NM50
7
450V
4
6
R3
10 k
C2
10nF
C29
22 µF
25V
C4
100 nF
R16
91 k
D3 1N4148
C7
10 µF
35 V
R15
220
R9
0.41
R10
0.41
1W
1W
R13
9.53 k
-
THD REDUCER (optional)
Boost Inductor Spec (ITACOIL E2543/E)
E25x13x7 core, 3C85 ferrite
1.5 mm gap for 0.7 mH primary inductance
Primary: 105 turns 20x0.1 mm
Secondary: 11 turns 0.1mm
Figure 10. EVAL6561-80: PCB and Component Layout (Top view, real size 57x108mm)
Table 6. EVAL6561-80: Evaluation Results.
Vin (Vac)
Pin (W)
Vo (Vdc)
∆Vo (Vdc)
Po (W)
η (%)
w/o THD reducer
PF
THD (%)
with THD reducer
PF
THD (%)
85
87.2
400.1
14
80.7
92.8
0.999
3.7
0.999
2.9
110
85.2
400.1
14
80.7
94.7
0.996
5.0
0.996
3.2
135
84.2
400.1
14
80.7
95.8
0.989
6.2
0.989
3.7
175
83.5
400.1
14
80.7
96.6
0.976
8.3
0.976
4.3
220
83.1
400.1
14
80.7
97.1
0.940
10.7
0.941
5.6
265
82.9
400.1
14
80.7
97.3
0.890
13.7
0.893
8.1
7/13
L6561
Figure 13. Supply Current vs. Supply
Voltage
Figure 11. OVP Current Threshold vs.
Temperature
D94IN047A
D97IN548A
ICC
(mA)
IOVP
(µA)
10
41
5
1
0.5
40
0.1
0.05
39
CL = 1nF
f = 70KHz
TA = 25˚C
0.01
0.005
0
38
-50 -25
0
25
50
75
100 125 T (˚C)
Figure 12. Undervoltage Lockout Threshold
vs. Temperature
VCC-ON
(V)
D94IN044A
0
5
10
15
20
VCC(V)
Figure 14. Voltage Feedback Input Threshold
vs. Temperature
VREF
(V)
D94IN048A
13
2.50
12
11
VCC-OFF
(V)
10
2.48
9
-25
8/13
0
25
50
T (˚C)
75
100
125
2.46
-50
0
50
100
T (˚C)
L6561
Figure 15. Output Saturation Voltage vs. Sink
Current
VPIN7
(V)
D94IN046
Figure 17. Multiplier Characteristics
Family
VCS(pin4)
(V) upper voltage
D97IN555A
VCOMP(pin2)
(V)
clamp
VCC = 14.5V
SINK
2.0
1.6
3.5
5.0
4.5
1.4
1.2
4.0
1.5
3.2
1.0
0.8
1.0
3.0
0.6
0.5
0.4
2.8
0.2
2.6
0
0
100
200
300
400 IGD (mA)
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VMULT(pin3) (V)
Figure 16. Output Saturation Voltage vs.
Source Current
VPIN7
(V)
D94IN053
VCC = 14.5V
VCC -0.5
VCC -1.0
VCC -1.5
VCC -2.0
SOURCE
0
0
100
200
300
400 IGD (mA)
9/13
L6561
Figure 18. DIP-8 Mechanical Data & Package Dimensions
mm
inch
DIM.
MIN.
A
TYP.
MIN.
3.32
TYP.
MAX.
0.51
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
E
0.020
10.92
7.95
9.75
0.430
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0.260
I
5.08
0.200
L
Z
3.18
OUTLINE AND
MECHANICAL DATA
0.131
a1
D
10/13
MAX.
3.81
1.52
0.125
0.150
0.060
DIP-8
L6561
Figure 19. SO-8 Mechanical Data & Package Dimensions
mm
inch
DIM.
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.004
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D (1)
4.80
5.00
0.189
0.197
E
3.80
4.00
0.15
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
OUTLINE AND
MECHANICAL DATA
0˚ (min.), 8˚ (max.)
0.10
0.004
Note: (1) Dimensions D does not include mold flash, protrusions or gate burrs.
Mold flash, potrusions or gate burrs shall not exceed
0.15mm (.006inch) in total (both side).
SO-8
0016023 C
11/13
L6561
Table 7. Revision History
Date
Revision
January 2004
15
First Issue
June 2004
16
Modified the Style-look in compliance with the “Corporate Technical
Publications Design Guide”.
Changed input of the power amplifier connected to Multiplier (Fig. 2).
12/13
Description of Changes
L6561
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
13/13