L6561 POWER FACTOR CORRECTOR 1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2 FEATURES Figure 1. Packages VERY PRECISE ADJUSTABLE OUTPUT OVERVOLTAGE PROTECTION MICRO POWER START-UP CURRENT (50µA TYP.) VERY LOW OPERATING SUPPLY CURRENT(4mA TYP.) INTERNAL START-UP TIMER CURRENT SENSE FILTER ON CHIP DISABLE FUNCTION 1% PRECISION (@ Tj = 25°C) INTERNAL REFERENCE VOLTAGE TRANSITION MODE OPERATION TOTEM POLE OUTPUT CURRENT: ±400mA DIP-8/SO-8 PACKAGES SO-8 DIP-8 Table 1. Order Codes Part Number Package L6561 DIP-8 L6561D SO-8 L6561D013TR Tape & Reel Realised in mixed BCD technology, the chip gives the following benefits: – micro power start up current – 1% precision internal reference voltage – (Tj = 25°C) – Soft Output Over Voltage Protection – no need for external low pass filter on the current sense – very low operating quiescent current minimises power dissipation The totem pole output stage is capable of driving a Power MOS or IGBT with source and sink currents of ±400mA. The device is operating in transition mode and it is optimised for Electronic Lamp Ballast application, AC-DC adaptors and SMPS. DESCRIPTION L6561 is the improved version of the L6560 standard Power Factor Corrector. Fully compatible with the standard version, it has a superior performant multiplier making the device capable of working in wide input voltage range applications (from 85V to 265V) with an excellent THD. Furthermore the start up current has been reduced at few tens of mA and a disable function has been implemented on the ZCD pin, guaranteeing lower current consumption in stand by mode. Figure 2. Block Diagram INV 1 2.5V VOLTAGE REGULATOR VCC COMP MULT 2 3 - CS 4 MULTIPLIER + OVER-VOLTAGE DETECTION 5pF + - 40K VCC 8 INTERNAL SUPPLY 7V 20V R R1 Q S + 7 UVLO DRIVER GD - R2 VREF2 2.1V 1.6V + ZERO CURRENT DETECTOR STARTER - DISABLE 6 GND June 2004 5 ZCD D97IN547E REV. 16 1/13 L6561 Table 2. Absolute Maximum Ratings Symbol Pin IVcc 8 Iq + IZ; (IGD = 0) Output Totem Pole Peak Current (2µs) IGD 7 INV, COMP MULT 1, 2, 3 CS ZCD Parameter Value Unit 30 mA ±700 mA Analog Inputs & Outputs -0.3 to 7 V 4 Current Sense Input -0.3 to 7 V 5 Zero Current Detector 50 (source) -10 (sink) mA mA 1 0.65 W W Junction Temperature Operating Range -40 to 150 °C Storage Temperature -55 to 150 °C Ptot Power Dissipation @Tamb = 50 °C Tj Tstg (DIP-8) (SO-8) Figure 3. Pin Connection (Top view) INV 1 8 VCC COMP 2 7 GD MULT 3 6 GND CS 4 5 ZCD DIP8 Table 3. Thermal Data Symbol Rth j-amb Parameter Thermal Resistance Junction to ambient SO 8 MINIDIP Unit 150 100 °C/W Table 4. Pin Description N. Name Function 1 INV Inverting input of the error amplifier. A resistive divider is connected between the output regulated voltage and this point, to provide voltage feedback. 2 COMP Output of error amplifier. A feedback compensation network is placed between this pin and the INV pin. 3 MULT Input of the multiplier stage. A resistive divider connects to this pin the rectified mains. A voltage signal, proportional to the rectified mains, appears on this pin. 4 CS Input to the comparator of the control loop. The current is sensed by a resistor and the resulting voltage is applied to this pin. 5 ZCD Zero current detection input. If it is connected to GND, the device is disabled. 6 GND Current return for driver and control circuits. 7 GD Gate driver output. A push pull output stage is able to drive the Power MOS with peak current of 400mA (source and sink). 8 VCC Supply voltage of driver and control circuits. (1) Parameter guaranteed by design, not tested in production. 2/13 L6561 Table 5. Electrical Characteristics (VCC = 14.5V; Tamb = -25°C to 125°C;unless otherwise specified) Symbol Pin Parameter Test Condition Min. Typ. Max. Unit 18 V SUPPLY VOLTAGE SECTION VCC 8 Operating Range after turn-on 11 VCC ON 8 Turn-on Threshold 11 12 13 V VCC OFF 8 Turn-off Threshold 8.7 9.5 10.3 V Hys 8 Hysteresis 2.2 2.5 2.8 V 20 50 90 µA 2.6 4 mA 4 5.5 mA SUPPLY CURRENT SECTION ISTART-U 8 Start-up Current Iq 8 Quiescent Current ICC 8 Operating Supply Current Iq 8 Quiescent Current 8 VZ 8 Zener Voltage before turn-on (VCC =11V) CL = 1nF @ 70KHz in OVP condition Vpin1 = 2.7V 1.4 2.1 mA VPIN5 ≤150mV, VCC > VCC off 1.4 2.1 mA VPIN5 ≤ 150mV, VCC < VCC off 20 50 90 µA ICC = 25mA 18 20 22 V Tamb = 25°C 2.465 2.5 2.535 V 12V < VCC < 18V 2.44 2.56 V 2 5 mV -0.1 -1 ERROR AMPLIFIER SECTION VINV 1 Voltage Feedback Input Threshold Line Regulation IINV 1 GB ICOMP VCOMP Input Bias Current Voltage Gain GV VCC = 12 to 18V 60 80 Source Current VCOMP = 4V, VINV = 2.4V -2 -4 Sink Current VCOMP = 4V, VINV = 2.6V 2.5 4.5 Upper Clamp Voltage ISOURCE = 0.5mA 5.8 V Lower Clamp Voltage ISink = 0.5mA 2.25 V 0 to 3 0 to 3.5 V VMULT = from 0V to 0.5V VCOMP = Upper Clamp Voltage 1.65 1.9 VMULT = 1V VCOMP = 4V 0.45 0.6 0.75 1/V 1.6 1.7 1.8 V -0.05 -1 µA 200 450 ns 0 15 mV Gain Bandwidth 2 2 µA Open loop dB 1 MHz -8 mA mA MULTIPLIER SECTION VMULT 3 ∆V CS ----------------∆V mult Linear Operating Voltage Output Max. Slope K Gain CURRENT SENSE COMPARATOR VCS 4 Current Sense Reference Clamp VMULT = 2.5V VCOMP = Upper Clamp Voltage ICS 4 Input Bias Current VOS = 0 td (H-L) 4 Delay to Output 4 Current Sense Offset ZERO CURRENT DETECTOR VZCD 5 Input Threshold Voltage Rising Edge (1) Hysteresis (1) 0.3 0.5 0.7 V VZCD 5 Upper Clamp Voltage IZCD = 20µA 4.5 5.1 5.9 V VZCD 5 Upper Clamp Voltage IZCD = 3mA 4.7 5.2 6.1 V 2.1 V 3/13 L6561 Table 5. Electrical Characteristics (continued) (VCC = 14.5V; Tamb = -25°C to 125°C;unless otherwise specified) Symbol Pin Parameter Test Condition VZCD 5 Lower Clamp Voltage IZCD = -3mA IZCD 5 Sink Bias Current 1V ≤ VZCD ≤ 4.5V IZCD 5 Source Current Capability IZCD 5 Sink Current Capability VDIS 5 Disable threshold IZCD 5 Restart Current After Disable Min. Typ. Max. 0.3 0.65 1 3 V µA 2 -3 Unit -10 mA 10 mA 150 200 250 mV -100 -200 -300 µA IGDsource = 200mA 1.2 2 V IGDsource = 20mA 0.7 VZCD < Vdis; VCC > VCCOFF OUTPUT SECTION VGD 7 Dropout Voltage IGDsink = 200mA IGDsink = 20mA 1 V 1.5 V 0.3 V tr 7 Output Voltage Rise Time CL = 1nF 40 100 ns tf 7 Output Voltage Fall Time CL = 1nF 40 100 ns IGD off 7 IGD Sink Current VCC =3.5V VGD = 1V 10 - mA 5 OUTPUT OVERVOLTAGE SECTION IOVP 2 OVP Triggering Current 35 40 45 µA Static OVP Threshold 2.1 2.25 2.4 V 70 150 400 µs RESTART TIMER tSTART 3 Start Timer OVER VOLTAGE PROTECTION OVP The output voltage is expected to be kept by the operation of the PFC circuit close to its nominal value. This is set by the ratio of the two external resistors R1 and R2 (see fig. 5), taking into consideration that the non inverting input of the error amplifier is biased inside the L6561 at 2.5V. In steady state conditions, the current through R1 and R2 is: V out – 2.5 2.5V - = I R2 = -----------I R1sc = ------------------------R1 R2 and, if the external compensation network is made only with a capacitor Ccomp, the current through Ccomp equals zero.When the output voltage increases abruptly the current through R1 becomes: V outsc + ∆V out – 2.5 I R1 = ---------------------------------------------------- = I R1sc + ∆I R1 R1 Since the current through R2 does not change, ∆IR1 must flow through the capacitor Ccomp and enter the error amplifier. This current is monitored inside the L6561 and when reaches about 37µA the output voltage of the multiplier is forced to decrease, thus reducing the energy drawn from the mains. If the current exceeds 40µA, the OVP protection is triggered (Dynamic OVP), and the external power transistor is switched off until the current falls approximately below 10µA. However, if the overvoltage persists, an internal comparator (Static OVP) confirms the OVP condition keeping the external power switch turned off (see fig. 4).Finally, the overvoltage that triggers the OVP function is: ∆Vout = R1 · 40µA. Typical values for R1, R2 and C are shown in the application circuits. The overvoltage can be set indepen- 4/13 L6561 dently from the average output voltage. The precision in setting the overvoltage threshold is 7% of the overvoltage value (for instance ∆V = 60V ± 4.2V). 3.1 Disable function The zero current detector (ZCD) pin can be used for device disabling as well. By grounding the ZCD voltage the device is disabled reducing the supply current consumption at 1.4mA typical (@ 14.5V supply voltage). Releasing the ZCD pin the internal start-up timer will restart the device. Figure 4. OVER VOLTAGE VOUT nominal ISC 40µA 10µA E/A OUTPUT 2.25V DYNAMIC OVP STATIC OVP D97IN592A Figure 5. Overvoltage Protection Circuit Ccomp. +Vo ∆I R1 1 2 - X E/A + R2 PWM DRIVER 2.5V 2.25V + ∆I 40µA D97IN591 5/13 L6561 Figure 6. Typical Application Circuit (80W, 110VAC) D1 BYT03-400 R3 (*) D3 1N4150 240K BRIDGE + 4 x 1N4007 FUSE 4A/250V R2 100 D2 1N5248B C1 1µF 250V T C6 R7 (*) 950K 10nF C3 680nF 5 8 3 Vac (85V to 135V) R10 10K NTC 2 1 7 L6561 - C2 22µF 25V Vo=240V Po=80W 68K R1 R9 (*) 950K + R5 MOS STP7NA40 10 4 6 C7 10nF R6 (*) 0.31 1W R8 10K 1% C5 100µF 315V - D97IN549B (*) R3 = 2 x 120KΩ R6 = 0.619Ω/2 R7 = 2 x 475KΩ, 1% R9 = 2 x 475KΩ TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A7) primary 90T of Litz wire 10 x 0.2mm secondary 11T of #27 AWG (0.15mm) gap 1.8mm for a total primary inductance of 0.7mH Figure 7. Typical Application Circuit (120W, 220VAC) D1 BYT13-600 R3 (*) D3 1N4150 440K BRIDGE + 4 x 1N4007 FUSE 2A/250V R2 100 D2 1N5248B C1 560nF 400V T C6 R7 (*) 998K 10nF 68K 5 8 3 Vac (175V to 265V) R10 10K NTC (*) R3 = 2 x 220KΩ R6 = 0.82Ω/2 R7 = 2 x 499KΩ, 1% R9 = 2 x 909KΩ 2 1 7 L6561 - C2 22µF 25V Vo=400V Po=120W C3 1µF R1 R9 (*) 1.82M + R5 MOS STP5NA50 10 4 6 C7 10nF R6 (*) 0.41 1W R8 6.34K 1% C5 56µF 450V - D97IN550B TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8) primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm) gap 1.25mm for a total primary inductance of 0.8mH Figure 8. Typical Application Circuit (80W, Wide-range Mains) D1 BYT13-600 R3 (*) D3 1N4150 240K BRIDGE + 4 x 1N4007 FUSE 4A/250V R2 100 D2 1N5248B C1 1µF 400V C6 R7 (*) 998K 12nF R9 (*) 1.24M 8 3 R10 10K C2 22µF 25V C7 10nF 5 2 6 1 7 R5 MOS STP8NA50 10 4 R6 (*) 0.41 1W R8 6.34K 1% D97IN553B (*) R3 = 2 x 120KΩ R6 = 0.82Ω/2 R7 = 2 x 499KΩ, 1% R9 = 2 x 620KΩ 6/13 Vo=400V Po=80W C3 1µF L6561 Vac (85V to 265V) + 68K R1 - NTC T TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8) primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm) gap 1.25mm for a total primary inductance of 0.8mH C5 47µF 450V - L6561 Figure 9. Demo Board (EVAL6561-80) Electrical Schematic NTC 2.5 D1 STTH1L06 R4 180 k R5 180 k T D8 1N4150 C5 12 nF 100 BRIDGE FUSE 4A/250V W04M + C1 1 µF 400V 1N5248B R6 68 k R12 750 k C3 470 nF C23 1 µF R2 750 k 5 8 2 1 L6561 3 - Vac (85V to 265V) R50 12 k D2 R1 750 k Vo=400V Po=80W R11 750 k R14 R7 33 C6 47 µF MOS STP8NM50 7 450V 4 6 R3 10 k C2 10nF C29 22 µF 25V C4 100 nF R16 91 k D3 1N4148 C7 10 µF 35 V R15 220 R9 0.41 R10 0.41 1W 1W R13 9.53 k - THD REDUCER (optional) Boost Inductor Spec (ITACOIL E2543/E) E25x13x7 core, 3C85 ferrite 1.5 mm gap for 0.7 mH primary inductance Primary: 105 turns 20x0.1 mm Secondary: 11 turns 0.1mm Figure 10. EVAL6561-80: PCB and Component Layout (Top view, real size 57x108mm) Table 6. EVAL6561-80: Evaluation Results. Vin (Vac) Pin (W) Vo (Vdc) ∆Vo (Vdc) Po (W) η (%) w/o THD reducer PF THD (%) with THD reducer PF THD (%) 85 87.2 400.1 14 80.7 92.8 0.999 3.7 0.999 2.9 110 85.2 400.1 14 80.7 94.7 0.996 5.0 0.996 3.2 135 84.2 400.1 14 80.7 95.8 0.989 6.2 0.989 3.7 175 83.5 400.1 14 80.7 96.6 0.976 8.3 0.976 4.3 220 83.1 400.1 14 80.7 97.1 0.940 10.7 0.941 5.6 265 82.9 400.1 14 80.7 97.3 0.890 13.7 0.893 8.1 7/13 L6561 Figure 13. Supply Current vs. Supply Voltage Figure 11. OVP Current Threshold vs. Temperature D94IN047A D97IN548A ICC (mA) IOVP (µA) 10 41 5 1 0.5 40 0.1 0.05 39 CL = 1nF f = 70KHz TA = 25˚C 0.01 0.005 0 38 -50 -25 0 25 50 75 100 125 T (˚C) Figure 12. Undervoltage Lockout Threshold vs. Temperature VCC-ON (V) D94IN044A 0 5 10 15 20 VCC(V) Figure 14. Voltage Feedback Input Threshold vs. Temperature VREF (V) D94IN048A 13 2.50 12 11 VCC-OFF (V) 10 2.48 9 -25 8/13 0 25 50 T (˚C) 75 100 125 2.46 -50 0 50 100 T (˚C) L6561 Figure 15. Output Saturation Voltage vs. Sink Current VPIN7 (V) D94IN046 Figure 17. Multiplier Characteristics Family VCS(pin4) (V) upper voltage D97IN555A VCOMP(pin2) (V) clamp VCC = 14.5V SINK 2.0 1.6 3.5 5.0 4.5 1.4 1.2 4.0 1.5 3.2 1.0 0.8 1.0 3.0 0.6 0.5 0.4 2.8 0.2 2.6 0 0 100 200 300 400 IGD (mA) 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VMULT(pin3) (V) Figure 16. Output Saturation Voltage vs. Source Current VPIN7 (V) D94IN053 VCC = 14.5V VCC -0.5 VCC -1.0 VCC -1.5 VCC -2.0 SOURCE 0 0 100 200 300 400 IGD (mA) 9/13 L6561 Figure 18. DIP-8 Mechanical Data & Package Dimensions mm inch DIM. MIN. A TYP. MIN. 3.32 TYP. MAX. 0.51 B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022 b1 0.204 0.304 0.008 0.012 E 0.020 10.92 7.95 9.75 0.430 0.313 0.384 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 6.6 0.260 I 5.08 0.200 L Z 3.18 OUTLINE AND MECHANICAL DATA 0.131 a1 D 10/13 MAX. 3.81 1.52 0.125 0.150 0.060 DIP-8 L6561 Figure 19. SO-8 Mechanical Data & Package Dimensions mm inch DIM. MIN. TYP. MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D (1) 4.80 5.00 0.189 0.197 E 3.80 4.00 0.15 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd OUTLINE AND MECHANICAL DATA 0˚ (min.), 8˚ (max.) 0.10 0.004 Note: (1) Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm (.006inch) in total (both side). SO-8 0016023 C 11/13 L6561 Table 7. Revision History Date Revision January 2004 15 First Issue June 2004 16 Modified the Style-look in compliance with the “Corporate Technical Publications Design Guide”. Changed input of the power amplifier connected to Multiplier (Fig. 2). 12/13 Description of Changes L6561 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 13/13