L6561 POWER FACTOR CORRECTOR VERY PRECISE ADJUSTABLE OUTPUT OVERVOLTAGE PROTECTION MICROPOWERSTART-UPCURRENT (50µATYP.) VERY LOW OPERATING SUPPLY CURRENT (4mA TYP.) INTERNAL START-UP TIMER CURRENT SENSE FILTER ON CHIP DISABLE FUNCTION 1% PRECISION (@ T j = 25°C) INTERNAL REFERENCE VOLTAGE TRANSITION MODE OPERATION TOTEM POLE OUTPUT CURRENT: ±400mA DIP8/SO8 PACKAGES Minidip SO8 ORDERING NUMBERS: L6561 (Minidip) L6561D (SO8) Realised in mixed BCD technology, the chip gives the following benefits: - micro power start up current - 1% precision internal reference voltage (Tj = 25°C) - Soft Output Over Voltage Protection - no need for external low pass filter onthe current sense - verylow operating quiescent current minimises power dissipation The totem pole output stage is capable of driving a Power MOS or IGBT with source and sink currents of +/- 400mA. The device is operating in transition mode and it is optimised for Electronic Lamp Ballast application, AC-DC adaptors and SMPS. DESCRIPTION L6561 is the improved version of the L6560 standard Power Factor Corrector. Fully compatible with the standard version, it has a superior performant multiplier making the device capable of working in wide input voltage range applications (from 85V to 265V) with an excellent THD. Furthermore the start up current has been reduced at few tens of µA and a disable function has been implemented on the ZCD pin, guaranteeing lower current consumption in stand by mode. BLOCK DIAGRAM INV 1 2.5V VOLTAGE REGULATOR VCC COMP MULT 2 3 - CS 4 MULTIPLIER + OVER-VOLTAGE DETECTION + 40K 5pF - VCC 8 INTERNAL SUPPLY 7V R R1 20V Q S + 7 DRIVER UVLO GD - R2 VREF2 - 2.3V 1.8V ZERO CURRENT DETECTOR STARTER + DISABLE 6 GND April 1999 5 ZCD D97IN547B 1/11 L6561 ABSOLUTE MAXIMUM RATINGS Symbol Pin IVcc 8 ICC + IZ Parameter Value Unit 30 IGD 7 Output Totem Pole Peak Current (2µs) mA ±700 mA INV, COMP MULT 1, 2, 3 Analog Inputs & Outputs -0.3 to 7 V CS 4 Current Sense Input -0.3 to 7 V ZCD 5 Zero Current Detector 50 (source) -10 (sink) mA mA 1 0.65 W Junction Temperature Operating Range -25 to 150 °C Storage Temperature -55 to 150 °C Power Dissipation @Tamb = 50 °C Ptot Tj Tstg (Minidip) (SO8) PIN CONNECTION THERMAL DATA Symbol Rth j-amb Parameter Thermal Resistance Junction-ambient SO 8 MINIDIP Unit 150 100 °C/W PIN FUNCTIONS N. Name Function 1 INV 2 COMP Output of error amplifier. A feedback compensation network is placed between this pin and the INV pin. 3 MULT Input of the multiplier stage. A resistive divider connects to this pin the rectified mains. A voltage signal, proportional to the rectified mains, appears on this pin. 4 CS Inverting input of the error amplifier. A resistive divider is connected between the output regulated voltage and this point, to provide voltage feedback. Input to the comparator of the control loop. The current is sensed by a resistor and the resulting voltage is applied to this pin. 5 ZCD Zero current detection input. If it is connected to GND, the device is disabled. 6 GND Current return for driver and control circuits. 7 GD Gate driver output. A push pull output stage is able to drive the Power MOS with peak current of 400mA (source and sink). 8 VCC Supply voltage of driver and control circuits. 2/11 L6561 ELECTRICAL CHARACTERISTICS (VCC = 14.5V; T amb = -25°C to 125°C; unless otherwise specified) SUPPLY VOLTAGE SECTION Symbol Pin VCC 8 Operating Range Parameter Test Condition after turn-on Min. Typ. 11 Max. Unit 18 V V VCC ON 8 Turn-on Threshold 11 12 13 VCC OFF 8 Turn-off Threshold 8.7 9.5 10.3 V Hys 8 Hysteresis 2.2 2.5 2.8 V Min. Typ. Max. Unit 20 50 90 µA 2.6 4 mA mA SUPPLY CURRENT SECTION Symbol Pin ISTART-U 8 Start-up Current Iq 8 Quiescent Current Operating Supply Current ICC Quiescent Current Iq VZ Parameter 8 Zener Voltage Test Condition before turn-on (VCC =11V) 4 5.5 in OVP condition Vpin1 = 2.7V CL = 1nF @ 70KHz 1.4 2.1 mA VPIN5 ≤ 150mV, VCC > VCC off 1.4 2.1 mA VPIN5 ≤ 150mV, VCC < VCC off 20 50 90 ICC = 25mA 18 20 22 µA V ERROR AMPLIFIER SECTION Symbol Pin VINV 1 IINV 1 GB VCOMP Parameter Typ. Max. Unit Tamb = 25°C 2.465 2.5 2.535 V 12V < VCC < 18V 2.44 Line Regulation VCC = 12 to 18V Test Condition Input Bias Current Voltage Gain GV ICOMP Min. Voltage Feedback Input Threshold 2 5 mV -0.1 -1 µA Open loop 60 80 Source Current VCOMP = 4V, VINV = 2.4V -2 -4 Sink Current VCOMP = 4V, VINV = 2.6V 2.5 4.5 Gain Bandwidth 2 2.56 2 dB 1 MHz -8 mA mA Upper Clamp Voltage ISOURCE = 0.5mA 5.8 V Lower Clamp Voltage ISink = 0.5mA 2.25 V MULTIPLIER SECTION Symbol Pin VMULT 3 ∆VCS ∆Vmult K Parameter Test Condition Linear Operating Voltage Min. Typ. Max. 0 to 3 0 to 3.5 Unit V Output Max. Slope VMULT = from 0V to 0.5V VCOMP = Upper Clamp Voltage 1.65 1.9 Gain VMULT = 1V VCOMP = 4V 0.45 0.6 0.75 1/V CURRENT SENSE COMPARATOR Symbol Pin Test Condition Min. Typ. Max. Unit VCS 4 Current Sense Reference Clamp Parameter VMULT = 2.5V VCOMP = Upper Clamp Voltage 1.6 1.7 1.8 V ICS 4 Input Bias Current VOS = 0 -0.05 -1 µA td (H-L) 4 Delay to Output 200 450 ns 4 Current Sense Offset 0 15 mV 3/11 L6561 ELECTRICAL CHARACTERISTICS (continued) ZERO CURRENT DETECTOR Symbol Pin VZCD 5 VZCD 5 VZCD Parameter Test Condition Min. Typ. Max. 2.1 Unit Input Threshold Voltage Rising Edge (1) V Hysteresis (1) 0.3 0.5 0.7 Upper Clamp Voltage IZCD = 20µA 4.5 5.1 5.9 V 5 Upper Clamp Voltage IZCD = 3mA 4.7 5.2 6.1 V VZCD 5 Lower Clamp Voltage IZCD = –3mA 0.3 0.65 1 V IZCD 5 Sink Bias Current 1V ≤ VZCD ≤ 4.5V V IZCD 5 Source Current Capability -3 -10 µA mA IZCD 5 Sink Current Capability 3 10 mA VDIS 5 Disable threshold IZCD 5 Restart Current After Disable VZCD < Vdis; VCC > VCCOFF 2 150 200 250 mV -100 -200 -300 µA OUTPUT SECTION VGD 7 Dropout Voltage IGDsource = 200mA 1.2 2 V IGDsource = 20mA 0.7 1 V 1.5 V IGDsink = 200mA IGDsink = 20mA tr 7 Output Voltage Rise Time C L = 1nF tf 7 Output Voltage Fall Time C L = 1nF IGD off 7 IGD Sink Current VCC =3.5V VGD = 1V 0.3 V 40 100 ns 40 100 ns 5 10 - mA OVP Triggering Current 35 40 45 µA Static OVP Threshold 2.1 2.25 2.4 V 70 150 400 µs OUTPUT OVERVOLTAGE SECTION IOVP 2 RESTART TIMER tSTART Start Timer (1) Parameter guaranteed by design, not tested in production. OVER VOLTAGE PROTECTION OVP The output voltage is expected to be kept by the operation of the PFC circuit close to its nominal value. This is set by the ratio of the two external resistors R1 and R2 (see fig. 2), taking into consideration that the non inverting input of the error amplifier is biased inside the L6561 at 2.5V. In steady state conditions, the current through R1 and R2 is: IR1sc = Vout − 2.5 2.5V = IR2 = R1 R2 and, if the external compensation network is made only with a capacitor Ccomp, the current through Ccomp equals zero. When the output voltage increases abruptly the current through R1 becomes: IR1 = 4/11 Voutsc + ∆VOUT − 2.5 = IR1sc + ∆IR1 R1 Since the current through R2 does not change, ∆IR1 must flow through the capacitor C comp and enter the error amplifier. This current is monitored inside the L6561 and when reaches about 37µA the output voltage of the multiplier is forced to decrease, thus reducing the energy drawn from the mains. If the current exceeds 40µA, the OVP protection is triggered (Dynamic OVP), and the external power transistor is switched off until the current falls approximately below 10µA. However, if the overvoltage persists, an internal comparator (Static OVP) confirms the OVP condition keeping the external power switch turned off (see fig. 1). Finally, the overvoltage that triggers the OVP function is: ∆Vout = R1 ⋅ 40µA. Typical values for R1, R2 and C are shown in the application circuits. The overvoltage can be set independently from the average output voltage. The precision in setting the overvoltage threshold is 7% of L6561 the overvoltage value (for instance ∆V = 60V ± 4.2V). for device disabling as well. By grounding the ZCD voltage the device is disabled reducing the supply current consumption at 1.4mA typical (@ 14.5V supply voltage). Releasing the ZCD pin the internal start-up timer will restart the device. Disable function The zero current detector (ZCD) pin can be used Figure 1. OVER VOLTAGE VOUT nominal ISC 40µA 10µA E/A OUTPUT 2.25V DYNAMIC OVP STATIC OVP D97IN592A Figure 2. Overvoltage Protection Circuit Ccomp. +Vo ∆I R1 1 2 - X E/A + R2 PWM DRIVER 2.5V 2.25V + ∆I 40µA D97IN591 5/11 L6561 Figure 3. Typical Application Circuit (80W, 110VAC) D1 BYT03-400 R3 (*) D3 1N4150 240K R2 100 D2 1N5248B BRIDGE + 4 x 1N4007 C1 1µF 250V FUSE 4A/250V T C6 R7 (*) 950K 10nF 68K 5 8 3 Vac (85V to 135V) R10 10K NTC 2 1 7 L6561 - C2 22µF 25V Vo=240V Po=80W C3 680nF R1 R9 (*) 950K + R5 MOS STP7NA40 10 4 6 C7 10nF R6 (*) 0.31 1W R8 10K 1% C5 100µF 315V - D97IN549B (*) R3 = 2 x 120KΩ R6 = 0.619Ω/2 R7 = 2 x 475KΩ, 1% R9 = 2 x 475KΩ TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A7) primary 90T of Litz wire 10 x 0.2mm secondary 11T of #27 AWG (0.15mm) gap 1.8mm for a total primary inductance of 0.7mH Figure 4. Typical Application Circuit (120W, 220VAC) D1 BYT13-600 R3 (*) D3 1N4150 440K BRIDGE + 4 x 1N4007 FUSE 2A/250V R2 100 D2 1N5248B C1 560nF 400V T C6 R7 (*) 998K 10nF C3 1µF R1 R9 (*) 1.82M 68K 5 8 Vac (175V to 265V) 3 R10 10K NTC (*) R3 = 2 x 220KΩ R6 = 0.82Ω/2 R7 = 2 x 499KΩ, 1% R9 = 2 x 909KΩ 2 1 7 L6561 - C2 22µF 25V + Vo=400V Po=120W R5 MOS STP5NA50 10 4 6 C7 10nF R6 (*) 0.41 1W R8 6.34K 1% C5 56µF 450V - D97IN550B TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8) primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm) gap 1.25mm for a total primary inductance of 0.8mH Figure 5. Wide-Range Application (80W) D1 BYT13-600 R3 (*) D3 1N4150 240K BRIDGE + 4 x 1N4007 FUSE 4A/250V R2 100 D2 1N5248B C1 1µF 400V C6 R7 (*) 998K 12nF R9 (*) 1.24M 8 3 R10 10K C2 22µF 25V C7 10nF 5 2 6 1 7 R5 MOS STP8NA50 10 4 R6 (*) 0.41 1W R8 6.34K 1% D97IN553B (*) R3 = 2 x 120KΩ R6 = 0.82Ω/2 R7 = 2 x 499KΩ, 1% R9 = 2 x 620KΩ 6/11 Vo=400V Po=80W 68K L6561 Vac (85V to 265V) + C3 1µF R1 - NTC T TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8) primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm) gap 1.25mm for a total primary inductance of 0.8mH C5 47µF 450V - L6561 Figure 6. P.C. Board and Components Layout of the Figg. 3, 4 and 5 (1:1.25 scale) C O M P O N E N T S S I D E S O L D E R S I D E Figure 7. OVP Current Threshold vs. Temperature D94IN047A IOVP (µA) Figure 8. Undervoltage Lockout Threshold vs. Temperature VCC-ON (V) D94IN044A 13 41 12 40 11 VCC-OFF (V) 10 39 9 38 -25 -50 -25 0 25 50 75 100 125 T (°C) 0 25 50 T (°C) 75 100 125 7/11 L6561 Figure 9. Supply Current vs. Supply Voltage D97IN548A ICC (mA) Figure 10. Voltage Feedback Input Threshold vs. Temperature VREF (V) D94IN048A 10 5 2.50 1 0.5 0.1 2.48 0.05 C L = 1nF f = 70KHz TA = 25°C 0.01 0.005 0 2.46 0 5 10 15 20 VCC(V) Figure 11. Output Saturation Voltage vs. Sink Current VPIN7 (V) D94IN046 VCC = 14.5V -50 0 50 100 T (°C) Figure 12. Output Saturation Voltage vs. Source Current VPIN7 (V) D94IN053 VCC = 14.5V SINK 2.0 VCC -0.5 1.5 VCC -1.0 1.0 VCC -1.5 0.5 VCC -2.0 SOURCE 0 0 0 100 200 300 400 IGD (mA) Figure 13. Multiplier Characteristics Family VCS(pin4) (V) upper voltage D97IN555A VCOMP(pin2) (V) clamp 1.6 3.5 5.0 4.5 1.4 1.2 4.0 3.2 1.0 0.8 3.0 0.6 0.4 2.8 0.2 2.6 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VMULT(pin3) (V) 8/11 0 100 200 300 400 IGD (mA) L6561 mm DIM. MIN. A TYP. inch MAX. MIN. 3.32 TYP. MAX. 0.131 a1 0.51 B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022 b1 0.204 0.304 0.008 0.012 0.020 D E 10.92 7.95 9.75 0.430 0.313 0.384 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 6.6 0.260 I 5.08 0.200 L Z 3.18 OUTLINE AND MECHANICAL DATA 3.81 1.52 0.125 0.150 Minidip 0.060 9/11 L6561 mm DIM. MIN. TYP. A a1 inch MAX. MIN. TYP. 1.75 0.1 0.25 a2 MAX. 0.069 0.004 0.010 1.65 0.065 a3 0.65 0.85 0.026 0.033 b 0.35 0.48 0.014 0.019 b1 0.19 0.25 0.007 0.010 C 0.25 0.5 0.010 0.020 c1 45° (typ.) D (1) 4.8 5.0 0.189 0.197 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 3.81 0.150 F (1) 3.8 4.0 0.15 0.157 L 0.4 1.27 0.016 0.050 M S 0.6 0.024 8 ° (max.) (1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch). 10/11 OUTLINE AND MECHANICAL DATA SO8 L6561 .Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com 11/11