Data Sheet(eng)

EM78P372N
8-Bit Microcontroller
with OTP ROM
Product
Specification
DOC. VERSION 1.3
ELAN MICROELECTRONICS CORP.
January 2015
Trademark Acknowledgments:
IBM is a registered trademark and PS/2 is a trademark of IBM.
Windows is a trademark of Microsoft Corporation.
ELAN and ELAN logo
are trademarks of ELAN Microelectronics Corporation.
Copyright © 2010~2015 by ELAN Microelectronics Corporation
All Rights Reserved
Printed in Taiwan
The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no
responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics
makes no commitment to update, or to keep current the information and material contained in this specification.
Such information and material may change to conform to each confirmed order.
In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or
other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information
or material.
The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and
may be used or copied only in accordance with the terms of such agreement.
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of
ELAN Microelectronics product in such applications is not supported and is prohibited.
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.
ELAN MICROELECTRONICS CORPORATION
Headquarters:
Hong Kong:
USA:
No. 12, Innovation 1st Road
Hsinchu Science Park
Hsinchu, TAIWAN 30076
Tel: +886 3 563-9977
Fax: +886 3 563-9966
[email protected]
http://www.emc.com.tw
Elan (HK) Microelectronics
Corporation, Ltd.
Flat A, 19F., World Tech Centre 95
How Ming Street, Kwun Tong
Kowloon, HONG KONG
Tel: +852 2723-3376
Fax: +852 2723-7780
Elan Information
Technology Group
(U.S.A.)
PO Box 601
Cupertino, CA 95015
U.S.A.
Tel: +1 408 366-8225
Fax: +1 408 366-8225
Shenzhen:
Shanghai:
Elan Microelectronics
Shenzhen, Ltd.
ELAN Microelectronics
Shanghai, Ltd.
8A Floor, Microprofit Building
Gaoxin South Road 6
Shenzhen Hi-tech Industrial Park
South Area, Shenzhen
CHINA 518057
Tel: +86 755 2601-0565
Fax: +86 755 2601-0500
[email protected]
6F, Ke Yuan Building
No. 5 Bibo Road
Zhangjiang Hi-Tech Park
Pudong New Area, Shanghai,
CHINA 201203
Tel: +86 21 5080-3866
Fax: +86 21 5080-0273
[email protected]
Contents
Contents
1
General Description .................................................................................................. 1
2
Features ..................................................................................................................... 1
3
Pin Assignment ......................................................................................................... 2
4
Pin Description.......................................................................................................... 3
5
Block Diagram ........................................................................................................... 5
6
Functional Description ............................................................................................. 6
6.1
Operational Registers......................................................................................... 6
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.1.11
6.1.12
6.1.13
6.1.14
6.1.15
6.1.16
6.1.17
6.1.18
6.1.19
6.1.20
6.1.21
6.1.22
6.1.23
6.1.24
6.1.25
6.2
R0 (Indirect Address Register)...........................................................................6
R1 (Time Clock/Counter) ....................................................................................6
R2 (Program Counter) and Stack........................................................................6
6.1.3.1 Data Memory Configuration .................................................................8
R3 (Status Register)............................................................................................9
R4 (RAM Select Register)...................................................................................9
Bank 0 R5 ~ R7 (Port 5 ~ Port 7)........................................................................9
Bank 0 R8 (AISR: ADC Input Select Register) .................................................10
Bank 0 R9 (ADCON: ADC Control Register) ....................................................12
Bank 0 RA (ADOC: ADC Offset Calibration Register) ......................................13
Bank 0 RB (ADDATA: Converted Value of ADC) ..............................................14
Bank 0 RC (ADDATA1H: Converted Value of ADC) .........................................14
Bank 0 RD (ADDATA1L: Converted Value of ADC) ..........................................15
Bank 0 RE (Interrupt Status 2 and Wake-up Control Register) ........................15
Bank 0 RF (Interrupt Status 2 Register)............................................................16
Bank 1 R5 (TBHP: Table Point Register for Instruction TBRD) ........................17
Bank 1 R6 (TBLP: Table Point Register for Instruction TBRD).........................17
Bank 1 R7 (PWMCON: PWM Control Register) ...............................................17
Bank 1 R8 (TMRCON: Timer Control Register)................................................18
Bank 1 R9 (PRD1: PWM1 Time Period) ...........................................................18
Bank 1 RA (PRD2: PWM2 Time Period)...........................................................19
Bank 1 RB (DT1: PWM1 Duty Cycle) ...............................................................19
Bank 1 RC (DT2:PWM2 Duty Cycle) ................................................................19
Bank 1 RE (LVD Interrupt and Wake-up Register) ...........................................19
Bank 1 RF (System Control Register)...............................................................20
R10 ~ R3F.........................................................................................................24
Special Purpose Registers ............................................................................... 24
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
A (Accumulator).................................................................................................24
CONT (Control Register)...................................................................................24
IOC50 ~ IOC70 (I/O Port Control Register) ......................................................25
IOC80 (Comparator Control Register) ..............................................................25
IOC90 (TMR1: PWM1 Timer)............................................................................25
Product Specification (V1.3) 01.06.2015
• iii
Contents
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15
6.2.16
6.3
TCC/WDT and Prescaler.................................................................................. 31
6.4
I/O Ports ........................................................................................................... 32
6.4.1
6.5
Usage of Port 5 Input Change Wake-up/Interrupt Function..............................35
Reset and Wake-up.......................................................................................... 35
6.5.1
6.5.2
Reset and Wake-up Operation .........................................................................35
6.5.1.1 Wake-up and Interrupt Modes Operation Summary ..........................38
6.5.1.2 Register Initial Values after Reset......................................................40
6.5.1.3 Controller Reset Block Diagram.........................................................45
T and P Status under the Status Register.........................................................45
6.6
Interrupt ............................................................................................................ 46
6.7
Analog-to-Digital Converter (ADC) ................................................................... 48
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.8
ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA) ...............................49
6.7.1.1 Bank 0 R8 (AISR: ADC Input Select Register) ..................................49
6.7.1.2 Bank 0 R9 (ADCON: ADC Control Register) .....................................50
6.7.1.3 RA (ADOC: AD Offset Calibration Register) ......................................52
6.7.1.4 Bank 1 RF (IRC Switch Register) ......................................................53
ADC Data Register (ADDATA/RB, ADDATA1H/RC, ADDATA1L/RD)...............53
ADC Sampling Time..........................................................................................53
AD Conversion Time .........................................................................................53
ADC Operation during Sleep Mode ..................................................................54
Programming Process/Considerations .............................................................55
6.7.6.1 Programming Process .......................................................................55
6.7.6.2 Sample Demo Programs....................................................................56
Dual Sets of PWM (Pulse Width Modulation) ................................................... 57
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
iv •
IOCA0 (TMR2: PWM2 Timer) ...........................................................................25
IOCB0 (Pull-down Control Register) .................................................................26
IOCC0 (Open-drain Control Register) ..............................................................26
IOCD0 (Pull-high Control Register)...................................................................27
IOCE0 (WDT Control Register and Interrupt Mask Register 2) ........................27
IOCF0 (Interrupt Mask Register).......................................................................28
IOC51 (High Sink Control Register 1)...............................................................29
IOC61 (High Sink Control Register 2)...............................................................29
IOC71 (High Driver Control Register 1) ............................................................30
IOC81 (High Driver Control Register 2) ............................................................30
IOCF1 (Pull-high Control Register) ...................................................................31
Overview ...........................................................................................................57
Increment Timer Counter (TMRX: TMR1 or TMR2)..........................................58
PWM Time Period (TMRX: TMR1 or TMR2).....................................................59
PWM Duty Cycle (DTX: DT1 or DT2; DLX: DL1 or DL2)..................................59
Comparator X....................................................................................................60
PWM Programming Process/Steps...................................................................60
Product Specification (V1.3) 01.06.2015
Contents
6.9
Timer/Counter................................................................................................... 60
6.9.1
6.9.2
6.9.3
6.9.4
6.9.5
Overview ...........................................................................................................60
Functional Description ......................................................................................60
Programming the Related Registers.................................................................61
Timer Programming Process/Steps ..................................................................61
PWM Cascade Mode ........................................................................................61
6.10 Comparator ...................................................................................................... 62
6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
External Reference Signal ................................................................................62
Comparator Outputs..........................................................................................63
Using Comparator as an Operation Amplifier ...................................................63
Comparator Interrupt.........................................................................................64
Wake-up from Sleep Mode ...............................................................................64
6.11 Oscillator .......................................................................................................... 65
6.11.1
6.11.2
6.11.3
6.11.4
Oscillator Modes ...............................................................................................65
Crystal Oscillator/Ceramic Resonators (Crystal) ..............................................66
External RC Oscillator Mode.............................................................................69
Internal RC Oscillator Mode..............................................................................70
6.12 Power-on Considerations ................................................................................. 70
6.12.1 Programmable WDT Time-out Period...............................................................70
6.12.2 External Power-on Reset Circuit.......................................................................71
6.12.3 Residual Voltage Protection..............................................................................71
6.13 Code Option ..................................................................................................... 72
6.13.1 Code Option Register (Word 0) ........................................................................72
6.13.2 Code Option Register (Word 1) ........................................................................74
6.13.3 Customer ID Register (Word 2) ........................................................................75
6.14 Low Voltage Detector/Low Voltage Reset ........................................................ 76
6.14.1 Low Voltage Reset ............................................................................................76
6.14.2 Low Voltage Detector ........................................................................................76
6.14.2.1 Bank 1 RE (LVD Interrupt and Wake-up Register) ............................76
6.14.2.2 Bank 0 RE (Interrupt Status 2 and Wake-up Control Register) .........77
6.14.3 Programming Process ......................................................................................78
6.15 Instruction Set .................................................................................................. 79
7
Absolute Maximum Ratings ................................................................................... 81
8
DC Electrical Characteristics ................................................................................. 81
8.1
AD Converter Characteristics........................................................................... 83
8.2
Comparator Characteristics.............................................................................. 84
8.3
OP Characteristics............................................................................................ 85
8.4
VREF 2V/3V/4V Characteristics....................................................................... 86
8.5
Device Characteristics...................................................................................... 86
9
AC Electrical Characteristics ............................................................................... 102
10
Timing Diagrams ................................................................................................... 103
Product Specification (V1.3) 01.06.2015
•v
Contents
APPENDIX
A
Ordering and Manufacturing Information ........................................................... 104
B
Package Type......................................................................................................... 105
C
Packaging Configuration...................................................................................... 106
C.1 EM78P372ND14 ............................................................................................ 106
C.2 EM78P372NSO14.......................................................................................... 107
C.3 EM78P372NSO16A ....................................................................................... 108
C.4 EM78P372ND18 ............................................................................................ 109
C.5 EM78P372NSO18.......................................................................................... 110
C.6 EM78P372ND20 .............................................................................................111
C.7 EM78P372NSO20.......................................................................................... 112
C.8 EM78P372NSS20 .......................................................................................... 113
C.9 EM78P372NMS10.......................................................................................... 114
C.10 EM78P372NQN16.......................................................................................... 115
C
Quality Assurance and Reliability ....................................................................... 116
C.1 Address Trap Detect....................................................................................... 116 Specification Revision History
Doc. Version
vi •
Revision Description
Date
0.9
Preliminary version
2010/06/21
0.91
Preliminary version
2010/07/19
0.92
Modified the IOCC0 Control Register
Modified the Bank 1-RF[3:0] Control Reigster
Modified the Bank 0-RA[2:0] Control Reigster
2010/08/06
1.0
Initial Version
Modified the Operating frequency range (DC ~ 16 MHz)
2010/12/10
1.1
1. Modified the Electrical Characteristics
2. Modified the Quality Assurance and Reliability section in the
Appendix.
2011/05/24
1.2
1. Added the EM78P372NQN16S Package Type
2. Deleted the EM78P372NSS10J/S Package Type.
3. Fixed the number of I/O discription in the Features section.
4. Added Ordering and Manufacturing Information.
5. Modified the instruction table
6. Modified the Part Number
7. Modifed the description about POR and LVR in the Features
section
2012/02/09
1.3
Modified the PWM System Block Diagram
2015/01/06
Product Specification (V1.3) 01.06.2015
EM78P372N
8-Bit Microcontroller with OTP ROM
1
General Description
The EM78P372N is an 8-bit microprocessor designed and developed with low-power and high-speed CMOS
technology. The device has an on-chip 2K×13-bit Electrical One Time Programmable Read Only Memory
(OTP-ROM). It provides a protection bit to prevent intrusion of user’s OTP memory code. Three Code option bits
are also available to meet user’s requirements.
With enhanced OTP-ROM features, the EM78P372N provides a convenient way of developing and verifying user’s
programs. Moreover, this OTP device offers the advantages of easy and effective program updates, using
development and programming tools. User can avail of the ELAN Writer to easily program his development code.
2
Features
„ CPU configuration
• 2K×13 bits on-chip ROM
• 80×8 bits on-chip registers (SRAM)
• 8-level stacks for subroutine nesting
• Less than 1.5 mA at 5V/4 MHz
• Typically 15 µA, at 3V/32kHz
• Typically 2 µA, during sleep mode
„ I/O port configuration
„
Fast set-up time requires only 0.8ms (VDD: 5V
Crystal: 4 MHz, C1/C2: 15pF) in XT mode and 10 µs in IRC
mode (VDD: 5V, IRC: 4 MHz)
„
Peripheral configuration
• 8-bit real time clock/counter (TCC) with selective signal
sources, trigger edges, and overflow interrupt
• 4 programmable Level Voltage Detector
(LVD) : 4.5V, 4.0V, 3.3V, 2.2V
• Power on reset and programmable level voltage reset
POR: 1.8V (Default), LVR: 4.0V, 3.5V, 2.7V
• 8-bit multi-channel Analog-to-Digital Converter with
12-bit resolution in Vref mode
• One pair of comparator or OP(offset voltage: smaller
than 10mV)
• Two Pulse Width Modulation (PWM) with 8-bit resolution
•
•
•
•
•
3 bidirectional I/O ports: P5, P6, P7
18 I/O pins
Wake-up port : P5
8 programmable pull-down I/O pins (P50 ~ P57)
16 programmable pull-high I/O pins (P50 ~ P57)
(P60 ~ P67)
• 8 programmable open-drain I/O pins (P60 ~ P67)
• 14 programmable high-sink current I/O pins (P51 ~
P54, P56 ~ P57) (P60 ~ P67)
• External interrupt : P60
„ Operating voltage range:
• 2.1V~5.5V at 0°C~70°C (commercial)
• 2.3V~5.5V at -40°C~85°C (industrial)
„ Operating frequency range (based on 2 clocks):
• Crystal mode: DC ~ 16 MHz, 4.5V;
DC ~ 8 MHz, 3V; DC ~ 4 MHz, 2.1V
• ERC mode: DC ~ 2 MHz, 2.1V;
• IRC mode
Oscillation mode: 16 MHz, 4 MHz, 1 MHz, 8 MHz
Drift Rate
Internal
RC
Temperature Voltage
Frequency (-40°C~85°C) (2.1V~5.5V) Process Total
4 MHz
±2%
16 MHz
±2%
8 MHz
±2%
1 MHz
±2%
±1%
*(2.1~5.5V)
±1%
*(4.5~5.5V)
±1%
*(3.0~5.5V)
±1%
*(2.1~5.5V)
±2%
±5%
±2%
±5%
±2%
±5%
±2%
±5%
* Operating voltage range
„ All the four main frequencies can be trimmed by
programming with six calibrated bits in the ICE300N
Simulator. OTP is auto trimmed by ELAN Writer.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
Ten available interrupts
• TCC overflow interrupt
• Input-port status changed interrupt (wake up from sleep
mode)
• External interrupt
• ADC completion interrupt
• Comparator status change interrupt
• Low voltage detect (LVD) interrupt
• PWM1~2 period match interrupt
• PWM1~2 duty match interrupt
„ Special Features:
• Programmable free running Watchdog Timer
(4.5 ms : 18 ms)
• Power saving Sleep mode
• Power-on voltage detector available
• High EFT immunity (better performance at 4 MHz or
below)
„ Package Type:
• 10-pin MSOP 118mil
: EM78P372NMS10J/S
• 14-pin DIP 300mil
: EM78P372ND14J/S
• 14-pin SOP 150mil
: EM78P372NSO14J/S
• 16-pin SOP 150mil
: EM78P372NSO16AJ/S
• 18-pin DIP 300mil
: EM78P372ND18J/S
• 18-pin SOP 300mil
: EM78P372NSO18J/S
• 20-pin DIP 300mil
: EM78P372ND20J/S
• 20-pin SOP 300mil
: EM78P372NSO20J/S
• 20-pin SSOP 209mil
: EM78P372NSS20J/S
• 16-pin QFN 3×3×0.8mm : EM78P372NQN16S
„
Note: These are Green products that do not contain
hazardous substances.
•1
EM78P372N
8-Bit Microcontroller with OTP ROM
Pin Assignment
16
P53/ADC3
1
P54/TCC/VREF
2
P55/ADC6/OSCO/ERCin
Figure 3-4 EM78P372ND20/SO20/SS20
P52/ADC2
Figure 3-3 EM78P372ND18/SO18
Figure 3-2 EM78P372NSO16A
P50/ADC0
Figure 3-1 EM78P372ND14/SO14
P51/ADC1/PWM2
3
15
14
13
12
P70/ADC5/OSCI/RCOUT
11
VDD
10
P67
9
P66/CIN-
EM78P372N-QFN16S
5
6
7
8
P64/CO
P65/CIN+
Figure 3-5 EM78P372NMS10
4
P61
VSS
3
P60//INT
P71//RESET
Figure 3-6 EM78P372NQN16S
2•
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
4
Pin Description
Name
P50
P51
P52
P53
P54
P55
P56
P57
P60//INT
Input
Type
Output
Type
P50
ST
CMOS
ADC0
AN
−
P51
ST
CMOS
ADC1
AN
−
PWM2
−
CMOS
PWM2 output
P52
ST
CMOS
Bidirectional I/O pin with programmable
pull-down, pull-high, high-driver, high-sink
and pin change wake-up.
ADC2
AN
−
P53
ST
CMOS
ADC3
AN
−
P54
ST
CMOS
TCC
ST
−
Real Time Clock/Counter clock input
VREF
AN
−
ADC external voltage reference
P55
ST
CMOS
ADC6
AN
−
OSCO
−
ERCin
AN
−
P56
ST
CMOS
Bidirectional I/O pin with programmable
pull-down, pull-high, high-driver, high-sink
and pin change wake-up.
P57
ST
CMOS
Bidirectional I/O pin with programmable
pull-down, pull-high, high-driver, high-sink
and pin change wake-up.
ADC7
ST
−
P60
ST
CMOS
/INT
ST
−
Function
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
XTAL
Description
Bidirectional I/O pin with programmable
pull-down, pull-high and pin change
wake-up.
ADC Input 0
Bidirectional I/O pin with programmable
pull-down, pull-high, high-driver, high-sink
and pin change wake-up.
ADC Input 1
ADC Input 2
Bidirectional I/O pin with programmable
pull-down, pull-high, high-driver, high-sink
and pin change wake-up.
ADC Input 3
Bidirectional I/O pin with programmable
pull-down, pull-high, high-driver, high-sink
and pin change wake-up.
Bidirectional I/O pin with programmable
pull-down, pull-high and pin change
wake-up.
ADC Input 6
Clock output of crystal/ resonator oscillator
External RC input pin
ADC Input 7
Bidirectional I/O pin with programmable
open-drain, pull-high, high-driver and high
sink.
External interrupt pin
•3
EM78P372N
8-Bit Microcontroller with OTP ROM
Name
P61~P63
P64/CO
P65/CIN+
P66/CIN-
Function
Input
Type
Output
Type
P61~P63
ST
CMOS
Bidirectional I/O pins with programmable
open-drain, pull-high, high-driver and high
sink.
P64
−
CMOS
Bidirectional I/O pins with programmable
open-drain, pull-high, high-driver and high
sink.
CO
ST
−
P65
ST
CMOS
CIN+
ST
−
P66
ST
CMOS
CIN-
ST
−
P67
ST
CMOS
ADC4
AN
−
PWM1
−
CMOS
P70
P70
−
Bidirectional I/O pin
ADC5
AN
−
ADC Input 5
OSCI
XTAL
−
Clock input of crystal/ resonator oscillator
P67/ADC4/PWM1
P70/ADC5/OSCI/
RCOUT
Bidirectional I/O pins with programmable
open-drain, pull-high, high-driver and high
sink.
Non-inverting end of comparator
Bidirectional I/O pins with programmable
open-drain, pull-high, high-driver and high
sink.
Inverting end of comparator
Bidirectional I/O pins with programmable
open-drain, pull-high, high-driver and high
sink.
ADC Input 4
PWM1 output
CMOS
Clock output of internal RC oscillator
Clock output of external RC oscillator
(open-drain)
P71
ST
CMOS
Bidirectional I/O pin (open-drain)
/RESET
ST
−
System reset pin
(should be external pull-high)
VDD
VDD
Power
−
Power
VSS
VSS
Power
−
Ground
Legend: ST: Schmitt Trigger input
AN: analog pin
XTAL: oscillation pin for crystal/resonator
4•
Comparator output
−
ROCUT
P71
Description
CMOS: CMOS output
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
5
Block Diagram
Figure 5-1 EM78P372N Block Diagram
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
•5
EM78P372N
8-Bit Microcontroller with OTP ROM
6
Functional Description
6.1 Operational Registers
6.1.1 R0 (Indirect Address Register)
R0 is not a physically implemented register. It is used as an indirect address pointer.
Any instruction using R0 as a pointer, actually accesses the data pointed by the RAM
Select Register (R4).
6.1.2 R1 (Time Clock/Counter)
„
Incremented by an external signal edge which is defined by the TE bit (CONT-5)
through the TCC pin, or by the instruction cycle clock.
„
Writable and readable as any other registers.
„
The TCC prescaler counter is assigned to TCC
„
The contents of the CONT register is cleared whenever –
• a value is written to the TCC register
• a value is written to the TCC prescaler bits (Bits 3, 2, 1, 0 of the CONT register)
• there’s power-on reset, /RESET, or WDT time out reset
6.1.3 R2 (Program Counter) and Stack
Figure 6-1 Program Counter Organization
6•
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
„
R2 and hardware stacks are 11-bit wide. The structure is depicted in the table
under Section 6.1.3.1 Data Memory Configuration.
„
The configuration structure generates 2K×13 bits on-chip ROM addresses to the
relative programming instruction codes. One program page is 1024 words long.
„
The contents of R2 are all set to "0"s when a reset condition occurs.
„
"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus,
"JMP" allows the PC to jump to any location within a page.
„
"CALL" instruction loads the lower 10 bits of the PC, and PC+1 are pushed onto the
stack. Thus, the subroutine entry address can be located anywhere within a page.
„
"LJMP" instruction allows direct loading of the program counter bits (A0~A10).
Therefore, "LJMP" allows the PC to jump to any location within 2K (211).
„
"LCALL" instruction loads the program counter bits (A0 ~A10), and then PC+1 is
pushed onto the stack. Thus, the subroutine entry address can be located
anywhere within 2K (211)
„
"RET" ("RETL k", "RETI") instruction loads the program counter with the contents
of the top of the stack.
„
"ADD R2, A" allows a relative address to be added to the current PC, and the ninth
and above bits of the PC will increase progressively.
„
"MOV R2, A" allows loading of an address from the "A" register to the lower 8 bits of
the PC, and the ninth and tenth bits (A8 ~ A9) of the PC will remain unchanged.
„
Any instruction (except “ADD R2, A”) that is written to R2 (e.g., "MOV R2, A", "BC
R2, 6", etc.) will cause the ninth bit and the tenth bit (A8 ~ A9) of the PC to remain
unchanged.
„
All instructions are single instruction cycle (fclk/2) except “LCALL” and “LJMP”
instructions. The “LCALL” and “LJMP” instructions need two instruction cycles.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
•7
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.3.1
Data Memory Configuration
Figure 6-2 Data Memory Configuration
8•
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.4 R3 (Status Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RST
IOCS
−
T
P
Z
DC
C
Bit 7 (RST): Bit of reset type
Set to “1” if wake-up from sleep on pin change, comparator status
change, or AD conversion completed. Set to “0” if wake-up from other
reset types.
Bit 6 (IOCS): Select the Segment of IO control register
0: Segment 0 (IOC50 ~ IOCF0) selected
1: Segment 1 (IOC51 ~ IOCC1) selected
Bit 5: Not used, set to “0” at all time.
Bit 4 (T): Time-out bit. Set to “1” by the "SLEP" and "WDTC" commands or during
power on, and reset to “0” by WDT time-out (for more details, see Section
6.5.2, The T and P Status under Status Register).
Bit 3 (P): Power-down bit. Set to “1” during power-on or by a "WDTC" command and
reset to “0” by a "SLEP" command (see Section 6.5.2, The T and P Status
under Status Register for more details).
Bit 2 (Z): Zero flag. Set to "1" if the result of an arithmetic or logic operation is zero.
Bit 1 (DC): Auxiliary carry flag
Bit 0 (C): Carry flag
6.1.5 R4 (RAM Select Register)
Bit 7 (SBANK): Special Register 0x05~0x0F bank selection bit.
Bit 6 (BANK): Used to select Bank 0 or Bank 1 of the register
Bits 5 ~ 0: Used to select a register (Address: 00~0F, 10~3F) in indirect addressing
mode.
See the table under Section 6.1.3.1 Data Memory Configuration.
6.1.6 Bank 0 R5 ~ R7 (Port 5 ~ Port 7)
R5 and R6, P70 and P71 are I/O registers.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
•9
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.7 Bank 0 R8 (AISR: ADC Input Select Register)
The AISR register individually defines the I/O Port as analog input or as digital I/O.
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
ADE7
ADE6
ADE5
ADE4
ADE3
ADE2
ADE1
ADE0
Bit 7 (ADE7): AD converter enable bit of P57 pin
0: Disable ADC7, P57 functions as I/O pin
1: Enable ADC7 to function as analog input pin
Bit 6 (ADE6): AD converter enable bit of P55 pin
0: Disable ADC6, P55 functions as I/O pin
1: Enable ADC6 to function as analog input pin
Bit 5 (ADE5): AD converter enable bit of P70 pin
0: Disable ADC5, P70 functions as I/O pin
1: Enable ADC5 to function as analog input pin
Bit 4 (ADE4): AD converter enable bit of P67 pin
0: Disable ADC4, P67 functions as I/O pin
1: Enable ADC4 to function as analog input pin
Bit 3 (ADE3): AD converter enable bit of P53 pin
0: Disable ADC3, P53 functions as I/O pin
1: Enable ADC3 to function as analog input pin
Bit 2 (ADE2): AD converter enable bit of P52 pin
0: Disable ADC2, P52 functions as I/O pin
1: Enable ADC2 to function as analog input pin
Bit 1 (ADE1): AD converter enable bit of P51 pin
0: Disable ADC1, P51 functions as I/O pin
1: Enable ADC1 to function as analog input pin
Bit 0 (ADE0): AD converter enable bit of P50 pin
0: Disable ADC0, P50 functions as I/O pin
1: Enable ADC0 to function as analog input pin
10 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
NOTE
The P55/ADC6/OSCO/ERCin pin cannot be applied to OSCO and ADC6 at the same
time. If P55/ADC6/OSCO/ERCin functions as OSCO oscillator input pin, then ADE6
bit for R8 must be “0” and ADIS2~0 do not select “110”. The P55/ADC6/OSCO/ERCin
pin priority is as follows:
:
P55/ADC6/OSCO/ERCin Pin Priority
High
Medium
Low
OSCO/ERCin
ADC6
P55
The P70/ADC5/OSCI/RCOUT pin cannot be applied to OSCI and ADC5 at the same
time. If P70/ADC5/OSCI/RCOUT acts as OSCI oscillator input pin, then ADE5 bit for R8
must be “0” and ADIS2~0 do not select “101”. The P70/ADC5/OSCI/RCOUT pin priority
is as follows:
P70/ADC5/OSCI/ROCUT Pin Priority
High
Medium
Low
OSCI/RCOUT
ADC5
P70
The P67/ADC4/PWM1 pin cannot be applied to PWM1 and ADC4 at the same time.
If P67/ADC4/PWM1 functions as ADC4 analog input pin, then the P67/ADC4/PWM1
pin priority is as follows:
P67/ADC4/PWM1 Pin Priority
High
Medium
Low
ADC4
PWM1
P67
The P51/ADC1/PWM2 pin cannot be applied to PWM2 and ADC1 at the same time.
If P51/ADC1/PWM2 functions as ADC1 analog input pin, then the P51/ADC1/PWM2
pin priority is as follows:
P51/ADC1/PWM2 Pin Priority
High
Medium
Low
ADC1
PWM2
P51
The P50/ADC0 pin cannot be applied to ADC0 at the same time.
If P50/ADC0 functions as ADC0 analog input pin, then the P50/ADC0 pin priority is as
follows:
P50/ADC0 Pin Priority
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
High
Low
ADC0
P50
• 11
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.8 Bank 0 R9 (ADCON: ADC Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
VREFS
CKR1
CKR0
ADRUN
ADPD
ADIS2
ADIS1
ADIS0
Bit 7 (VREFS): The input source of Vref of the ADC
0: The Vref of the ADC is connected to Vdd (default value), and the
VREF/TCC/P54 pin carries out the function of P54 (default)
1: The Vref of the ADC is connected to VREF/TCC/P54
NOTE
„ The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If
P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 “TS” must
be “0”.
„ The VREF/TCC/P54 Pin Priority is as follows:
P54/TCC/VREF Pin Priority
High
Medium
Low
VREF
TCC
P54
Bit 6 and Bit 5 (CKR1 and CKR0): ADC Clock Rate Select
00 = 1 : 16 (default value)
01 = 1 : 4
10 = 1 : 64
11 = 1 : 1
Bit 4 (ADRUN): ADC starts to RUN
0: on completion of the conversion Reset by hardware. This bit cannot
be reset through software (default)
1: an A/D conversion is started. This bit can be set by software
Bit 3 (ADPD): ADC Power
0: ADC is in power down mode (default)
1: ADC is operating normally
12 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select
ADICS
ADIS2
ADIS1
ADIS0
Analog Input Select
0
0
0
0
ADIN0/P50
0
0
0
1
ADIN1/P51
0
0
1
0
ADIN2/P52
0
0
1
1
ADIN3/P53
0
1
0
0
ADIN4/P67
0
1
0
1
ADIN5/P70
0
1
1
0
ADIN6/P55
0
1
1
1
ADIN7/P57
1
0
X
X
OPOUT
1
1
X
X
Internal 1/4 VDD
These bits can only be changed when the ADIF bit and the ADRUN bit are both low.
See Section 6.1.13, RE (Interrupt Status 2 and Wake-up Control Register).
6.1.9 Bank 0 RA (ADOC: ADC Offset Calibration Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CALI
SIGN
VOF[2]
VOF[1]
VOF[0]
VREF1
VREF0
ADICS
Bit 7 (CALI): Calibration enable bit for ADC offset
0: Disable Calibration (default)
1: Enable Calibration
Bit 6 (SIGN): Polarity bit of the offset voltage
0: Negative voltage (default)
1: Positive voltage
Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits
VOF[2]
VOF[1]
VOF[0]
EM78P372N
0
0
0
0LSB
0
0
1
2LSB
0
1
0
4LSB
0
1
1
6LSB
1
0
0
8LSB
1
0
1
10LSB
1
1
0
12LSB
1
1
1
14LSB
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 13
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 2 ~ Bit 1 (VREF1 ~ VREF0): ADC internal reference voltage source
VREF1
VREF0
ADC Internal Reference Voltage
0
0
VDD (default)
0
1
4.0V ± 1%
1
0
3.0V ± 1%
1
1
2.0V ± 1%
„
„
NOTE
If VREF [1:0]=00, the internal reference will not turn on. If VREF [1:0]≠ 00, the
internal reference will turn on automatically. Moreover, the power of the internal
reference is irrelevant to ADC.
When using internal voltage reference, users need to wait for at least 50 µs when
doing it for the first time to enable and stabilize the voltage reference.
Un-stabilized reference makes conversion result inaccurate. After that, users
only need to wait for at least 6 µs whenever switching voltage reference.
Bit 0 (ADICS): ADC Internal Channel Select (select ADC internal 1/4 VDD or OP
output pin connected to ADC input)
0: Disable (default)
1: Enable
6.1.10 Bank 0 RB (ADDATA: Converted Value of ADC)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AD11
AD10
AD9
AD8
AD7
AD6
AD5
AD4
When AD conversion is completed, the result is loaded into the ADDATA. The ADRUN
bit is cleared and the ADIF is set. See Section 6.1.13, Bank 0 RE (Interrupt Status 2
and Wake-up Control Register).
RB is read only.
6.1.11 Bank 0 RC (ADDATA1H: Converted Value of ADC)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
“0”
“0”
“0”
“0”
AD11
AD10
AD9
AD8
When AD conversion is completed, the result is loaded into the ADDATA1H. The
ADRUN bit is cleared and the ADIF is set. See Section 6.1.13, Bank 0 RE (Interrupt
Status 2 and Wake-up Control Register).
RC is read only.
14 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.12 Bank 0 RD (ADDATA1L: Converted Value of ADC)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
When AD conversion is completed, the result is loaded into the ADDATA1L. The
ADRUN bit is cleared and the ADIF is set. See Section 6.1.13, RE (Interrupt Status 2
and Wake-up Control Register).
RD is read only
6.1.13 Bank 0 RE (Interrupt Status Register 2 and Wake-up
Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
/LVD
LVDIF
ADIF
CMPIF
ADWE
CMPWE
ICWE
LVDWE
Note: 1. RE <6, 5, and 4> can be cleared by instruction but cannot be set.
2. IOCE0 is the interrupt mask register.
3. Reading RE will result to “Logic AND” of the RE and IOCE0.
Bit 7 (/LVD): Low voltage Detector state. This is a read only bit. When the VDD pin
voltage is lower than LVD voltage interrupt level (selected by LVD1 and
LVD0), this bit will be cleared.
0: Low voltage is detected
1: Low voltage is not detected or LVD function is disabled (default)
Bit 6 (LVDIF): Low Voltage Detector Interrupt flag
LVDIF is reset to “0” by software.
Bit 5 (ADIF): Interrupt flag for analog to digital conversion. Set when AD conversion is
completed. Reset by software.
0: no interrupt occurs (default)
1: interrupt request
Bit 4 (CMPIF): Comparator Interrupt flag. Set when a change occurs in the
Comparator output. Reset by software.
0: no interrupt occurs (default)
1: interrupt request
Bit 3 (ADWE): ADC wake-up enable bit
0: Disable ADC wake-up (default)
1: Enable ADC wake-up
When AD Conversion enters sleep/idle mode, this bit must be set to
“Enable“.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 15
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 2 (CMPWE): Comparator wake-up enable bit
0: Disable Comparator wake-up (default)
1: Enable Comparator wake-up
When the Comparator enters sleep/idle mode, this bit must be set to
“Enable”.
Bit 1 (ICWE): Port 5 input change to wake-up status enable bit
0: Disable Port 5 input change to wake-up status (default)
1: Enable Port 5 input change to wake-up status
When Port 5 change enters sleep/idle mode, this bit must be set to
“Enable”.
Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit
0: Disable Low Voltage Detect wake-up (default)
1: Enable Low Voltage Detect wake-up
When the Low Voltage Detect is used to enter an interrupt vector or to
wake-up the IC from sleep/idle with Low Voltage Detect running, the
LVDWE bit must be set to “Enable“.
6.1.14 Bank 0 RF (Interrupt Status Register 2)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
DT2IF
DT1IF
PWM2IF
PWM1IF
EXIF
ICIF
TCIF
Note: 1. “1” means there is interrupt request, “0”
2. RF can be cleared by instruction but cannot be set.
3. IOCF0 is the interrupt mask register.
4. Reading RF will result to “logic AND” of the RF and IOCF0
Bit 7: Not used. Set to “0” all the time.
Bit 6 (DT2IF): PWM2 Duty Interrupt flag. Set when PWM2 Duty Match. Reset by
software.
Bit 5 (DT1IF): PWM1 Duty Interrupt flag. Set when PWM1 Duty Match. Reset by
software.
Bit 4 (PWM2IF): PWM2 Period Interrupt flag. Set when PWM2 period match. Reset
by software.
Bit 3 (PWM1IF): PWM1 Period Interrupt flag. Set when PWM1 period match. Reset
by software.
Bit 2 (EXIF): External interrupt flag. Set by falling edge on /INT pin. Reset by software.
Bit 1 (ICIF): Port 5 input status change interrupt flag. Set when Port 5 input changes.
Reset by software.
Bit 0 (TCIF): TCC overflow interrupt flag. Set when TCC overflows. Reset by
software.
16 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.15 Bank 1 R5 (TBHP: Table Point Register for Instruction
TBRD)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
MLB
-
-
-
-
RBit10
RBit9
RBit8
Bit 7 (MLB): Chooses the MSB or LSB machine code to move into the register.
The machine code is pointed by TBLP and TBHP register.
Bit 6 ~ Bit 3: Not used. Set to “0” at all time.
Bit 2 ~ Bit 0: Most 3 significant bits of address for program code
6.1.16 Bank 1 R6 (TBLP: Table Point Register for Instruction
TBRD)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RBit7
RBit6
RBit5
RBit4
RBit3
RBit2
RBit1
RBit0
Bit 7 ~ Bit 0: These are the least 8 significant bits of address for program code.
6.1.17 Bank 1 R7 (PWMCON: PWM Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
”0”
“0”
“0”
“0”
“0”
PWMCAS
PWM2E
PWM1E
Bit 7~ Bit 3: Not used bits. Read as “0” all the time
Bit 2 (PWMCAS): PWM Cascade Mode
0: Two Independent 8-bit PWM functions (default value)
1: 16-bit PWM Mode (Cascaded from two 8-bit ones)
Bit 1 (PWM2E): PWM2 enable bit
0: PWM2 is off (default value), and its related pin carries out the P51
function.
1: PWM2 is on, and its related pin is automatically set to output.
Bit 0 (PWM1E): PWM1 enable bit
0: PWM1 is off (default value), and its related pin carries out the P67
function.
1: PWM1 is on, and its related pin is automatically set to output.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 17
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.18 Bank 1 R8 (TMRCON: Timer Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
T2EN
T1EN
T2P2
T2P1
T2P0
T1P2
T1P1
T1P0
Bit 7 (T2EN): TMR2 enable bit
0: TMR2 is off (default value)
1: TMR2 is on
Bit 6 (T1EN): TMR1 enable bit
0: TMR1 is off (default value)
1: TMR1 is on
Bit 5 ~ Bit 3 (T2P2 ~ T2P0): TMR2 clock prescaler option bits
T2P2
T2P1
T2P0
Prescale
0
0
0
1:1 (default)
0
0
1
1:2
0
1
0
1:4
0
1
1
1:8
1
0
0
1:16
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 2 ~ Bit 0 (T1P2 ~ T1P0): TMR1 clock prescale option bits
T1P2
T1P1
T1P0
Prescale
0
0
0
1:1 (default)
0
0
1
1:2
0
1
0
1:4
0
1
1
1:8
1
0
0
1:16
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
6.1.19 Bank 1 R9 (PRD1: PWM1 Time Period)
The content of Bank 1-R9 is the time period (time base) of PWM1. The frequency of
PWM1 is the reverse of the period.
18 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.1.20 Bank 1 RA (PRD2: PWM2 Time Period)
The content of Bank 1-RA is the time period (time base) of PWM2. The frequency of
PWM2 is the reverse of the period.
6.1.21 Bank 1 RB (DT1: PWM1 Duty Cycle)
A specified value keeps the output of PWM1 to remain high until the value matches with
TMR1.
6.1.22 Bank 1 RC (DT2:PWM2 Duty Cycle)
A specified value keeps the output of PWM2 to remain high until the value matches with
TMR2.
6.1.23 Bank 1 RE (LVD Interrupt and Wake-up Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
LVDIE
LVDEN
LVD1
LVD0
-
-
-
EXWE
Bit 7 (LVDIE): Low voltage detector interrupt enable bit
0: Disable the low voltage detector interrupt (default)
1: Enable the low voltage detector interrupt
„
NOTE
When the detected low level voltage is used to enter an interrupt vector or enter
the next instruction, the LVDIE bit must be set to “Enable”.
Bit 6 (LVDEN): Low voltage detector enable bit
0: Disable the Low voltage detector function (default)
1: Enable the Low voltage detector function
Bit 5 ~ Bit 4: Low voltage detector level bits
LVDEN
LVD1, LVD0
1
11 (default)
1
10
1
01
1
00
0
××
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
LVD Voltage Interrupt Level
/LVD
Vdd ≤ 2.2V
0
Vdd > 2.2V
1
Vdd ≤ 3.3V
0
Vdd > 3.3V
1
Vdd ≤ 4.0V
0
Vdd > 4.0V
1
Vdd ≤ 4.5V
0
Vdd > 4.5V
1
N/A
1
• 19
EM78P372N
8-Bit Microcontroller with OTP ROM
NOTE
IF Vdd has crossover at LVD voltage in interrupt level as VDD varies, LVD interrupt
will occur.
Bit 3 ~ Bit 1: Not used. Set to “0” at all time.
Bit 0 (EXWE): External /INT wake-up enable bit
0: Disable External /INT pin wake-up (default)
1: Enable External /INT pin wake-up
6.1.24 Bank 1 RF (System Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
TIMERSC
CPUS
IDLE
SHS1
SHS0
RCM1
RCM0
Bit 7: Not used, fixed to "0" all the time.
Bit 6 (TIMERSC): TCC, PWM1, PWM2 clock source select.
0: Fs is used as Fc
1: Fm is used as Fc (default)
Bit 5 (CPUS): CPU Oscillator Source Select
0: Fs : sub frequency for WDT internal RC time base is 16kHz
1: Fm : main oscillator (Fm) (default)
When CPUS=0, the CPU oscillator selects the sub-oscillator and the
main oscillator is stopped.
Bit 4 (IDLE): Idle Mode Enable Bit.
From SLEP instruction, this bit will determine as to which mode to
activate.
0: IDLE = ‘0’ + SLEP instruction → sleep mode (default)
1: IDLE = ‘1’ + SLEP instruction → idle mode
20 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
„
CPU Operation Mode
Figure 6-3 CPU Operation Mode Diagram
Oscillator
(Normal Mode Source)
Crystal
1M ~ 16 MHz
ERC
2 MHz
IRC
1M, 4M, 8M, 16 MHz
CPU Mode Status
Sleep/Idle → Normal
Green → Normal
Sleep/Idle → Green
Sleep/Idle → Normal
Green → Normal
Sleep/Idle → Green
Sleep/Idle → Normal
Green → Normal
Sleep/Idle → Green
Oscillator Stable
Count from
1
2
Time (S)
Normal/Green (CLK)
0.5 ms ~ 2 ms
< 100 µs
< 5 µs
510 CLK
510 CLK
8 CLK
8 CLK
< 100 µs
< 2 µs
8 CLK
< 100 µs
NOTE
1
■ The oscillator stable time depends on the oscillator characteristics.
2
■ After the oscillator has stabilized, the CPU will count 510/8 CLK in Normal/Green
mode and continue to work in Normal/Green mode.
Ex 1 : The 4 MHz IRC wakes-up from Sleep mode to Normal mode,
the total wake-up time is 2 µs + 8 CLK @ 4 MHz.
Ex 2 : The 4 MHz IRC wakes-up from Sleep mode to Green mode,
the total wake-up time is 100 µs + 8 CLK @ 16kHz.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 21
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 3 ~ Bit 2 (SHS1 ~ SHS0): Sample and Hold Timing Select
(Recommend at least 4µs, TAD: Period of ADC Operating Clock).
SHS1
SHS0
Sample and Hold Timing(TAD)
0
0
1
1
0
1
0
1
2 x TAD
4 x TAD
8 x TAD
12 x TAD (default)
Bits 1 ~ 0 (RCM1 ~ RCM0): IRC mode select bits.
RCM 1
RCM 0
Frequency (MHz)
1
1
4
1
0
16
0
1
8
0
0
1
Bank 1 RF<1, 0> will be enabled.
Writer Trim IRC
4 MHz
16 MHz
8 MHz
1 MHz
Bank 1 RF<1,0>
Frequency
Operating Voltage
Range
Stable Time
RCM1
RCM0
1
1
4 MHz ± 2%
2.1V ~ 5.5V
< 5 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
1
1
4 MHz ± 10%
2.1V ~ 5.5V
< 6 µs
1
0
16 MHz ± 2%
4.5V ~ 5.5V
< 1.25 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
1
1
4 MHz ± 10%
2.1V ~ 5.5V
< 6 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 2%
3.0V ~ 5.5V
< 2.5 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
1
1
4 MHz ± 10%
2.1V ~ 5.5V
< 6 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 2%
2.1V ~ 5.5V
< 20 µs
NOTE
■ The initial values of Bank 1 RF<1, 0> will be kept the same as Word 1<6,5>.
■ If user changes the IRC frequency from A-frequency to B-frequency, the MCU needs
to wait for some time for it to work. The waiting time corresponds to the B-frequency.
22 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
For Example:
1st step When user selects the 4 MHz at the Writer, the initial values of Bank 1 RF<1,0>
would be “11”, the same as the value of Word 1<6,5> which is “11”.
If the MCU is free-running, it will work at 4 MHz ± 2%. Refer to the table below.
Writer Trim IRC
Bank 1 RF<1,0>
Frequency
Operating Voltage
Range
Stable
Time
RCM1
RCM0
1
1
4 MHz ± 2%
2.1V ~ 5.5V
< 5 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
4 MHz
2nd step If it is desired to set Bank 1 RF<1,0> = “10” while the MCU is working at 4 MHz
± 2%, the MCU needs to hold for 1.5 µs, then it will continue to work at 16 MHz
± 10%.
Writer Trim IRC
Bank 1 RF<1,0>
Frequency
Operating Voltage
Range
Stable
Time
RCM1
RCM0
1
1
4 MHz ± 2%
2.1V ~ 5.5V
< 5 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
4 MHz
3rd step If it is desired to set Bank 1 RF<1,0> = “00” while the MCU is working at 16
MHz ± 10%, the MCU needs to hold for 24 µs, then it will continue to work at
1 MHz ± 10%.
Writer Trim IRC
Bank 1 RF<1,0>
Frequency
Operating Voltage
Range
Stable
Time
RCM1
RCM0
1
1
4 MHz ± 2%
2.1V ~ 5.5V
< 5 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
4 MHz
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 23
EM78P372N
8-Bit Microcontroller with OTP ROM
4th step If it is desired to set Bank 1 RF<1,0> = “11” while the MCU is working at 1 MHz
± 10%, the MCU needs to hold for 5 µs, then it will continue to work at 4 MHz ±
2%.
Writer Trim IRC
4 MHz
Bank 1 RF<1,0>
Frequency
Operating Voltage
Range
Stable
Time
RCM1
RCM0
1
1
4 MHz ± 2%
2.1V ~ 5.5V
< 5 µs
1
0
16 MHz ± 10%
4.5V ~ 5.5V
< 1.5 µs
0
1
8 MHz ± 10%
3.0V ~ 5.5V
< 3 µs
0
0
1 MHz ± 10%
2.1V ~ 5.5V
< 24 µs
6.1.25 R10 ~ R3F
All of these are 8-bit general-purpose registers.
6.2 Special Purpose Registers
6.2.1 A (Accumulator)
Internal data transfer operation, or instruction operand holding usually involves the
temporary storage function of the Accumulator, which is not an addressable register.
6.2.2 CONT (Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
INTE
INT
TS
TE
PSTE
PST2
PST1
PST0
Note: The CONT register is both readable and writable.
Bit 6 is read only.
Bit 7 (INTE): INT signal edge
0: Interrupt occurs at the rising edge of the INT pin
1: Interrupt occurs at the falling edge of the INT pin
Bit 6 (INT): Interrupt Enable flag
0: Masked by DISI or hardware interrupt
1: Enabled by the ENI/RETI instructions
This bit is readable only.
Bit 5 (TS): TCC signal source
0: Internal instruction cycle clock. If P54 is used as I/O pin
1: Transition on the TCC pin
Bit 4 (TE): TCC signal edge
0: Increment if the transition from low to high takes place on the TCC pin
1: Increment if the transition from high to low takes place on the TCC pin.
24 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 3 (PSTE): Prescaler enable bit for TCC
0: Prescaler disable bit. TCC rate is 1:1.
1: Prescaler enable bit. TCC rate is set as Bit 2 ~ Bit 0.
Bit 2 ~ Bit 0 (PST2 ~ PST0): TCC prescaler bits
PST2
PST1
PST0
TCC Rate
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1:2
1:4
1:8
1:16
1:32
1:64
1:128
1
1
1
1:256
Note: Tcc Time-out period [1/FT x prescaler x (256 − Tcc cnt) x 1
Where FT = Fm or Fs, determined by Bank 1 RF TIMERSC bit.
6.2.3 IOC50 ~ IOC70 (I/O Port Control Register)
"0" defines the relative I/O pin as output
"1" sets the relative I/O pin into high impedance
6.2.4 IOC80 (Comparator Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
–
–
CMPOUT
COS1
COS0
–
–
–
Note: Bits 4~0 of the IOC80 register are both readable and writable.
Bit 5 of the IOC80 register is read only.
Bit 7 and Bit 6: Not used. Set to “0” all the time.
Bit 5 (CMPOUT): Result of the comparator output. This bit is readable only.
Bit 4 and Bit 3 (COS1 and COS0): Comparator/OP Select bits
COS1
COS0
Function Description
0
0
Comparator and OP are not used. P64, P65, and P66 are normal I/O pin
0
1
1
0
1
1
P65 and P66 are Comparator input pins and P64 is normal I/O pin
P65 and P66 are Comparator input pins and P64 is Comparator output
pin (CO)
Used as OP and P64 is OP output pin (CO)
Bits 2 ~ 0: Not used. Set to “0” all the time.
6.2.5 IOC90 (TMR1: PWM1 Timer)
6.2.6 IOCA0 (TMR2: PWM2 Timer)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 25
EM78P372N
8-Bit Microcontroller with OTP ROM
6.2.7 IOCB0 (Pull-down Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
/PD57
/PD56
/PD55
/PD54
/PD53
/PD52
/PD51
/PD50
The IOCB0 register is both readable and writable.
Bit 7 (/PD57): Control bit used to enable internal pull-down of the P57 pin.
0: Enable internal pull-down
1: Disable internal pull-down (default)
Bit 6 (/PD56): Control bit used to enable internal pull-down of the P56 pin.
Bit 5 (/PD55): Control bit used to enable internal pull-down of the P55 pin.
Bit 4 (/PD54): Control bit used to enable internal pull-down of the P54 pin.
Bit 3 (/PD53): Control bit used to enable internal pull-down of the P53 pin.
Bit 2 (/PD52): Control bit used to enable internal pull-down of the P52 pin.
Bit 1 (/PD51): Control bit used to enable internal pull-down of the P51 pin.
Bit 0 (/PD50): Control bit used to enable internal pull-down of the P50 pin.
6.2.8 IOCC0 (Open-drain Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
OD67
OD66
OD65
OD64
OD63
OD62
OD61
OD60
The IOCC0 register is both readable and writable.
Bit 7 (OD67): Control bit used to enable open-drain output of the P67 pin.
0: Disable open-drain output
1: Enable open-drain output
Bit 6 (OD66): Control bit used to enable open-drain output of the P66 pin.
Bit 5 (OD65): Control bit used to enable open-drain output of the P65 pin.
Bit 4 (OD64): Control bit used to enable open-drain output of the P64 pin.
Bit 3 (OD63): Control bit used to enable open-drain output of the P63 pin.
Bit 2 (OD62): Control bit used to enable open-drain output of the P62 pin.
Bit 1 (OD61): Control bit used to enable open-drain output of the P61 pin.
Bit 0 (OD60): Control bit used to enable open-drain output of the P60 pin.
26 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.2.9 IOCD0 (Pull-high Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
/PH57
/PH56
/PH55
/PH54
/PH53
/PH52
/PH51
/PH50
The IOCD0 register is both readable and writable.
Bit 7 (/PH57): Control bit used to enable internal pull-high of the P57 pin.
0: Enable internal pull-high
1: Disable internal pull-high
Bit 6 (/PH56): Control bit used to enable internal pull-high of the P56 pin.
Bit 5 (/PH55): Control bit used to enable internal pull-high of the P55 pin.
Bit 4 (/PH54): Control bit used to enable internal pull-high of the P54 pin.
Bit 3 (/PH53): Control bit used to enable internal pull-high of the P53 pin.
Bit 2 (/PH52): Control bit used to enable internal pull-high of the P52 pin.
Bit 1 (/PH51): Control bit used to enable internal pull-high of the P51 pin.
Bit 0 (/PH50): Control bit used to enable internal pull-high of the P50 pin.
6.2.10 IOCE0 (WDT Control Register and Interrupt Mask Register 2)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
WDTE
EIS
ADIE
CMPIE
PSWE
PSW2
PSW1
PSW0
Bit 7 (WDTE): Control bit used to enable Watchdog Timer
0: Disable WDT (default)
1: Enable WDT
WDTE is both readable and writable.
Bit 6 (EIS): Control bit used to define the function of the P60 (/INT) pin
0: P60, bidirectional I/O pin
1: /INT, external interrupt pin. In this case, the I/O control bit of P60
(Bit 0 of IOC60) must be set to "1".
NOTE
■ When EIS is "0", the path of /INT is masked. When EIS is "1", the status of the /INT
pin can also be read by way of reading Port 6 (R6). Refer to Figure 6-5 (I/O Port and
I/O Control Register Circuit for P60 (/INT)) under Section 6.4 (I/O Ports).
■ EIS is both readable and writable.
Bit 5 (ADIE): ADIF interrupt enable bit
0: disable ADIF interrupt
1: enable ADIF interrupt
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 27
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 4 (CMPIE): CMPIF interrupt enable bit
0: Disable CMPIF interrupt
1: Enable CMPIF interrupt
Bit 3 (PSWE): Prescaler enable bit for WDT
0: Prescaler disable bit, WDT rate is 1:1
1: Prescaler enable bit, WDT rate is set at Bit 2 ~ Bit 0
Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits
PSW2
PSW1
PSW0
WDT Rate
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
6.2.11 IOCF0 (Interrupt Mask Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
DT2IE
DT1IE
PWM2IE
PWM1IE
EXIE
ICIE
TCIE
Note: The IOCF0 register is both readable and writable.
Individual interrupt is enabled by setting to “1” its associated control bit in the IOCF0 and
in IOCEO Bits 4 and 5.
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.
Refer to Figure 6-7 Interrupt Input Circuit under Section 6 Interrupt.
Bit 7: Not used. Set to “0” at all time.
Bit 6 (DT2IE): DT2IE interrupt enable bit
0: Disable DT2IF interrupt
1: Enable DT2IF interrupt
Bit 5 (DT1IE): DT1IE interrupt enable bit
0: Disable DT1IF interrupt
1: Enable DT1IF interrupt
Bit 4 (PWM2IE): PWM2IE interrupt enable bit
0: Disable PWM2IF interrupt
1: Enable PWM2IF interrupt
Bit 3 (PWM1IE): PWM1IE interrupt enable bit
0: Disable PWM1IF interrupt
1: Enable PWM1IF interrupt
28 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 2 (EXIE): EXIF interrupt enable bit
0: Disable EXIF interrupt
1: Enable EXIF interrupt
Bit 1 (ICIE): ICIF interrupt enable bit
0: Disable ICIF interrupt
1: Enable ICIF interrupt
Bit 0 (TCIE): TCIF interrupt enable bit.
0: Disable TCIF interrupt
1: Enable TCIF interrupt
6.2.12 IOC51 (High Sink Control Register 1)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
HS57
HS56
-
HS54
HS53
HS52
HS51
-
Bit 7 (HS57): Output High Sink current Select for P57.
Bit 6 (HS56): Output High Sink current Select for P56.
Bit 5: Not used.
Bit 4 (HS54): Output High Sink current Select for P54.
Bit 3 (HS53): Output High Sink current Select for P53.
Bit 2 (HS52): Output High Sink current Select for P52.
Bit 1 (HS51): Output High Sink current Select for P51.
Bit 0: Not used.
HSxx
VDD = 5V, Sink Current
0
10 mA (in 0.1VDD)
1
25 mA (in 0.1VDD)
6.2.13 IOC61 (High Sink Control Register 2)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
HS67
HS66
HS65
HS64
HS63
HS62
HS61
HS60
Bit 7 (HS67): Output High Sink current Select for P67.
Bit 6 (HS66): Output High Sink current Select for P66.
Bit 5 (HS65): Output High Sink current Select for P65.
Bit 4 (HS64): Output High Sink current Select for P64.
Bit 3 (HS63): Output High Sink current Select for P63.
Bit 2 (HS62): Output High Sink current Select for P62.
Bit 1 (HS61): Output High Sink current Select for P61.
Bit 0 (HS60): Output High Sink current Select for P60.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 29
EM78P372N
8-Bit Microcontroller with OTP ROM
HSxx
VDD = 5V, Sink Current
0
10 mA (in 0.1VDD)
1
25 mA (in 0.1VDD)
6.2.14 IOC71 (High Driver Control Register 1)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
HD57
HD56
-
HD54
HD53
HD52
HD51
-
Bit 7 (HD57): Output High Driver current Select for P57.
Bit 6 (HD56): Output High Driver current Select for P56.
Bit 5: Not used.
Bit 4 (HD54): Output High Driver current Select for P54.
Bit 3 (HD53): Output High Driver current Select for P53.
Bit 2 (HD52): Output High Driver current Select for P52.
Bit 1 (HD51): Output High Driver current Select for P51.
Bit 0: Not used.
HDxx
VDD = 5V, Driver Current
0
3.7 mA (in 0.9VDD)
1
10 mA (in 0.9VDD)
6.2.15 IOC81 (High Driver Control Register 2)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
HD67
HD66
HD65
HD64
HD63
HD62
HD61
HD60
Bit 7 (HD67): Output High Driver current Select for P67.
Bit 6 (HD66): Output High Driver current Select for P66.
Bit 5 (HD65): Output High Driver current Select for P65.
Bit 4 (HD64): Output High Driver current Select for P64.
Bit 3 (HD63): Output High Driver current Select for P63.
Bit 2 (HD62): Output High Driver current Select for P62.
Bit 1 (HD61): Output High Driver current Select for P61.
Bit 0 (HD60): Output High Driver current Select for P60.
30 •
HDxx
VDD = 5V, Driver Current
0
3.7 mA (in 0.9VDD)
1
10 mA (in 0.9VDD)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.2.16 IOCF1 (Pull-high Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
/PH67
/PH66
/PH65
/PH64
/PH63
/PH62
/PH61
/PH60
Note: The IOCD0 register is both readable and writable.
Bit 7 (/PH67): Control bit used to enable pull-high of the P67 pin.
0: Enable internal pull-high
1: Disable internal pull-high
Bit 6 (/PH66): Control bit used to enable internal pull-high of the P66 pin.
Bit 5 (/PH65): Control bit used to enable internal pull-high of the P65 pin.
Bit 4 (/PH64): Control bit used to enable internal pull-high of the P64 pin.
Bit 3 (/PH63): Control bit used to enable internal pull-high of the P63 pin.
Bit 2 (/PH62): Control bit used to enable internal pull-high of the P62 pin.
Bit 1 (/PH61): Control bit used to enable internal pull-high of the P61 pin.
Bit 0 (/PH60): Control bit used to enable internal pull-high of the P60 pin.
6.3 TCC/WDT and Prescaler
There are two 8-bit counters available as prescalers for the TCC and WDT
respectively. The PST2 ~ PST0 bits of the CONT register are used to determine the
ratio of the TCC prescaler, and the PSW2 ~ PSW0 bits of the IOCE0 register are used
to determine the prescaler of WDT. The prescaler counter is cleared by the instructions
each time such instructions are written into TCC. The WDT and prescaler will be
cleared by the “WDTC” and “SLEP” instructions. Figure 6-3 depicts the block diagram
of TCC/WDT.
TCC (R1) is an 8-bit timer/counter. The TCC clock source can be internal clock
(Fm/Fs) or external signal input (edge selectable from the TCC pin). If TCC signal
source is from the internal clock, TCC will be incremented by 1 at every instruction
cycle (without prescaler). If TCC signal source is from an external clock, the TCC will
be incremented by 1 at every falling edge or rising edge of the TCC pin. The TCC pin
input time length (kept at High or Low level) must be greater than Fm clock or Fs clock,
determine by Bank 1 RF CPUS bit.
NOTE
The internal TCC will stop running when in sleep mode. However, during AD
conversion, when TCC is set to “SLEP” instruction, if the ADWE bit of the RE register is
enabled, the TCC will keep on running.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 31
EM78P372N
8-Bit Microcontroller with OTP ROM
The Watchdog Timer is a free running on-chip RC oscillator. The WDT will keep on
running even when the oscillator driver has been turned off (i.e., in sleep mode).
During normal operation or in sleep mode, a WDT time-out (if enabled) will cause the
device to reset. The WDT can be enabled or disabled any time during normal mode
through software programming. Refer to WDTE bit of IOCE0 register (Section 6.2.10
IOCE0 (WDT Control and Interrupt Mask Registers 2). With no prescaler, the WDT
time-out period is approximately 18ms1 or 4.5ms2.
Fs
Fm
MUX
0
TCC Pin
1
8-Bit Counter
Data Bus
MUX
8 to 1 MUX
TE (CONT)
TCC (R1)
Prescaler
TS (CONT)
WDT
8-Bit counter
8 to 1 MUX
TCC overflow
interrupt
PST2~0
(CONT)
Prescaler
WDTE
(IOCE0)
WDT Time out
PSW2~0
(IOCE0)
Figure 6-3 TCC and WDT Block Diagram
6.4 I/O Ports
The I/O registers (Port 5, Port 6, and Port 7) are bidirectional tri-state I/O ports. Port 5
is pulled-high and pulled-down internally by software. Likewise, P6 has its open-drain
output set through software. Port 5 features an input status changed interrupt (or
wake-up) function. Each I/O pin can be defined as "input" or "output" pin by the I/O
control register (IOC50 ~ IOC70). The I/O registers and I/O control registers are both
readable and writable. The I/O interface circuits for Port 5, Port 6, and Port 7 are
illustrated in Figures 6-4, 6-5, 6-6, and 6-7.
1
VDD=5V, WDT time-out period = 16.5ms ± 30% at 25°C
VDD=3V, WDT time-out period = 18ms ± 30% at 25°C
2
VDD=5V, WDT time-out period = 4.2ms ± 30% at 25°C
VDD=3V, WDT time-out period = 4.5ms ± 30% at 25°C
32 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
PCRD
Q
_
Q
PORT
Q
_
Q
P
R
D
PCW R
C LK
C
L
P
R
IO D
D
C LK
PDW R
C
L
PDRD
0
1
M
U
X
Note: Pull-high and Open-drain are not shown in the figure.
Figure 6-4 I/O Port and I/O Control Register Circuit for Port 6 and Port 7
PCRD
P
Q R D
_ CLK
Q C
L
Q P
R D
_ CLK
Q C
L
PORT
Bit 6 of IOCE0
P
R Q
CLK _
C Q
L
D
PCWR
IOD
PDWR
0
1
M
U
X
PDRD
INT
Note: Pull-high and Open-drain are not shown in the figure.
Figure 6-5 I/O Port and I/O Control Register Circuit for P60 (/INT)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 33
EM78P372N
8-Bit Microcontroller with OTP ROM
PCRD
Q
_
Q
P
R
D
CLK
PCWR
C
L
P50 ~ P57
Q
PORT
_
Q
0
1
P
R
IOD
D
CLK
PDWR
C
L
M
U
X
PDRD
TI n
D
P
R
CLK
C
L
Q
_
Q
Note: Pull-high (down) and Open-drain are not shown in the figure.
Figure 6-6 I/O Port and I/O Control Register Circuit for Ports 50~57
I O C F.1
R F.1
TI 0
TI 1
….
TI 8
Figure 6-7 Port 5 Block Diagram with Input Change Interrupt / Wake-up
34 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.4.1 Usage of Port 5 Input Change Wake-up/Interrupt Function
(1) Wake-up
(2) Wake-up and Interrupt
(a) Before Sleep
(a) Before Sleep
1. Disable WDT
1. Disable WDT
2. Read I/O Port 5 (MOV R5,R5)
2. Read I/O Port 5 (MOV R5,R5)
3. Execute "ENI" or "DISI"
3. Execute "ENI" or "DISI"
4. Enable wake-up bit (Set RE ICWE =1)
4. Enable wake-up bit (Set RE
ICWE =1)
5. Execute "SLEP" instruction
(b) After wake-up
→ Next instruction
5. Enable interrupt (Set IOCF ICIE =1)
6. Execute "SLEP" instruction
(b) After wake-up
1. IF "ENI" → Interrupt Vector (006H)
2. IF "DISI" → Next instruction
(3) Interrupt
(a) Before Port 5 pin change
1. Read I/O Port 5 (MOV R5,R5)
2. Execute "ENI" or "DISI"
3. Enable interrupt (Set IOCF ICIE =1)
(b) After Port 5 pin changed (interrupt)
1. IF "ENI" → Interrupt Vector (006H)
2. IF "DISI" → Next instruction
6.5 Reset and Wake-up
6.5.1 Reset and Wake-up Operation
A reset is initiated by one of the following events:
1. Power-on reset
2. /RESET pin input "low"
3. WDT time-out (if enabled)
The device is kept in reset condition for a period of approximately 18ms3 (except in LXT
mode) after the reset is detected. When in LXT2 mode, the reset time is 500 ms. Two
choices (18ms3 or 4.5ms4) are available for WDT-time out period. Once a reset occurs,
the following functions are performed (the initial Address is 000h):
„
The oscillator continues running, or will be started (if in sleep mode).
„
The Program Counter (R2) is set to all "0".
3
VDD=5V, Setup time period = 16.5 ms ± 30%.
VDD=3V, Setup time period = 18 ms ± 30%.
4
VDD=5V, Setup time period = 4.2 ms ± 30%.
VDD=3V, Setup time period = 4.5 ms ± 30%.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 35
EM78P372N
8-Bit Microcontroller with OTP ROM
„
All I/O port pins are configured as input mode (high-impedance state)
„
The Watchdog Timer and prescaler are cleared
„
When power is switched on, the upper three bits of R3 is cleared
„
The IOCB0 register bits are set to all "1"
„
The IOCC0 register bits are set to all "0"
„
The IOCD0 register bits are set to all "1"
„
Bits 7, 5, and 4 of the IOCE0 register are cleared
„
Bits 5 and 4 of the RE register are cleared
„
RF and IOCF0 registers are cleared
Executing the “SLEP” instruction will assert the sleep (power down) mode (when
IDLE=”0”.). While entering into sleep mode, the Oscillator, TCC, TMR1 and TMR2 are
stopped. The WDT (if enabled) is cleared but keeps on running.
During AD conversion, when “SLEP” instruction is set; the Oscillator, TCC, TMR1 and
TMR2 keep on running. The WDT (if enabled) is cleared but keeps on running.
The controller can be awakened by:
Case 1 External reset input on /RESET pin
Case 2 WDT time-out (if enabled)
Case 3 Port 5 input status changes (if ICWE is enabled)
Case 4 Comparator output status changes (if CMPWE is enabled)
Case 5 AD conversion completed (if ADWE is enabled)
Case 6 Low Voltage Detector (if LVDWE is enabled)
The first two cases (1 and 2) will cause the EM78P372N to reset. The T and P flags of
R3 can be used to determine the source of the reset (wake-up). Cases 3, 4, 5 and 6 are
considered the continuation of program execution and the global interrupt ("ENI" or
"DISI" being executed) determines whether or not the controller branches to the
interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will
begin to execute from Address 0x06 (Case 3), 0×0F (Case 4), 0x0C (Case 5) and 0×21
(Case 6) after wake-up. If DISI is executed before SLEP, the execution will restart from
the instruction next to SLEP after wake-up.
Only one of Cases 2 to 6 can be enabled before entering into sleep mode. That is:
Case [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the
EM78P372N can be awakened only with Case 1 or Case 2. Refer to the
section on Interrupt (Section 6.6) for further details.
Case [b] If Port 5 Input Status Change is used to wake up the EM78P372N and the
ICWE bit of the RE register is enabled before SLEP, and WDT must be
disabled. Hence, the EM78P372N can be awakened only with Case 3.
Wake-up time is dependent on the oscillator mode. In RC mode, wake-up
time is 10 µs (for stable oscillators). In XT (4 MHz) mode, wake-up time is
800 µs (for stable oscillators), and in LXT2 mode, Wake-up time is 2~3s.
36 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Case [c] If the Comparator output status change is used to wake-up the EM78P372N
and the CMPWE bit of the RE register is enabled before SLEP, WDT must be
disabled by software. Hence, the EM78P372N can be awakened only with
Case 4. Wake-up time is dependent on the oscillator mode. In RC mode,
Wake-up time is 10 µs (for stable oscillators). In XT (4 MHz) mode, Wake-up
time is 800µs (for stable oscillators), and in LXT2 mode, Wake-up time is
2s~3s.
Case [d] If AD conversion completed is used to wake-up the EM78P372N and ADWE
bit of RE register is enabled before SLEP, WDT must be disabled by
software. Hence, the EM78P372N can be awakened only with Case 5. The
wake-up time is 16 TAD (ADC clock period).
Case[e] If Low voltage detector is used to wake-up the EM78P372N and the LVDWE
bit of Bank 0-RE register is enabled before SLEP, WDT must be disabled by
software. Hence, the EM78P372N can be awakened only with Case 6.
Wake-up time is dependent on the oscillator mode.
If Port 5 Input Status Change Interrupt is used to wake up the EM78P372N (as in Case
[b] above), the following instructions must be executed before SLEP:
BC
R3, 6
MOV
A, @00xx1110b
IOW
IOCE0
WDTC
MOV
R5, R5
ENI (or DISI)
MOV
A, @xxxxxx1xb
MOV
RE
MOV
A, @xxxxxx1xb
IOW
IOCF0
SLEP
; Select Segment 0
; Select WDT prescaler and Disable WDT
;
;
;
;
Clear WDT and prescaler
Read Port 5
Enable (or disable) global interrupt
Enable Port 5 input change wake-up bit
; Enable Port 5 input change interrupt
; Sleep
Similarly, if the Comparator Interrupt is used to wake up the EM78P372N (as in Case
[c] above), the following instructions must be executed before SLEP:
BC
MOV
R3, 6
A, @xxx10XXXb
IOW
MOV
IOC80
A, @00x11110b
IOW
IOCE0
WDTC
ENI (or DISI)
MOV
A, @xxx0x1xxb
MOV
SLEP
; Select Segment 0
; Select a comparator and P64 functions
; as CO pin
; Select WDT prescaler and Disable WDT,
; and enable comparator output status
; change interrupt
; Clear WDT and prescaler
; Enable (or disable) global interrupt
; Enable comparator output status
; change wake-up bit
RE
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
; Sleep
• 37
EM78P372N
8-Bit Microcontroller with OTP ROM
6.5.1.1 Wake-up and Interrupt Modes Operation Summary
The controller can be awakened from sleep mode and idle mode. The wake-up signals
are listed as follows.
Wake-up
Signal
Condition
Signal
EXWE = 0
EXIE = 0
EXWE = 0
EXIE = 1
Sleep Mode
DISI
ENI
Wake-up is invalid
Wake-up is invalid
Idle Mode
DISI
ENI
Wake-up is invalid
Wake-up is invalid
External
Green Mode
Normal Mode
DISI
DISI
ENI
Interrupt is invalid
ENI
Interrupt is invalid
Interrupt
Interrupt
Next
+
Next
+
Instruction Interrupt Instruction Interrupt
Vector
Vector
Wake up
Wake up
+
+
Interrupt is invalid
Interrupt is invalid
Next Instruction
Next Instruction
Wake up Wake up Wake up Wake up
Interrupt
Interrupt
EXWE = 1
+
+
+
+
Next
+
Next
+
EXIE = 1
Next
Interrupt
Next
Interrupt Instruction Interrupt Instruction Interrupt
Instruction Vector Instruction Vector
Vector
Vector
ICWE = 0
Wake-up is invalid
Wake-up is invalid
Interrupt is invalid
Interrupt is invalid
ICIE = 0
Interrupt
Interrupt
ICWE = 0
Next
+
Next
+
Wake-up is invalid
Wake-up is invalid
ICIE = 1
Instruction Interrupt Instruction Interrupt
Vector
Vector
Port 5
Wake up
Wake up
Pin change ICWE = 1
+
+
Interrupt is invalid
Interrupt is invalid
ICIE = 0
Next Instruction
Next Instruction
Wake up Wake up Wake up Wake up
Interrupt
Interrupt
ICWE = 1
+
+
+
+
Next
+
Next
+
ICIE = 1
Next
Interrupt
Next
Interrupt Instruction Interrupt Instruction Interrupt
Instruction Vector Instruction Vector
Vector
Vector
INT
EXWE = 1,
EXIE = 0
TCIE = 0
TCC
Overflow
Wake-up is invalid
TCIE = 1
ADWE = 0
ADIE = 0
AD
Conversion
complete
38 •
Wake-up is invalid
ADWE = 0
ADIE = 1
Wake-up is invalid
Wake-up is invalid
Interrupt is invalid
Interrupt is invalid
Wake up Wake up
Interrupt
Interrupt
+
+
Next
+
Next
+
Next
Interrupt Instruction Interrupt Instruction Interrupt
Instruction Vector
Vector
Vector
Wake-up is invalid
Wake-up is invalid
Interrupt is invalid
Interrupt is invalid
Interrupt
Interrupt
Next
+
Next
+
Instruction Interrupt Instruction Interrupt
Vector
Vector
Wake up
Wake up
+
+
Interrupt is invalid
Interrupt is invalid
Next Instruction
Next Instruction
Wake up Wake up Wake up Wake up
Interrupt
Interrupt
ADWE = 1,
+
+
+
+
Next
+
Next
+
ADIE = 1
Next
Interrupt
Next
Interrupt Instruction Interrupt Instruction Interrupt
Instruction Vector Instruction Vector
Vector
Vector
ADWE = 1
ADIE = 0
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Wake-up
Signal
Condition
Signal
Sleep Mode
DISI
ENI
CMPWE = 0
Wake-up is invalid
CMPIE = 0
Idle Mode
DISI
ENI
Wake-up is invalid
Green Mode
DISI
ENI
Interrupt is invalid
Normal Mode
DISI
ENI
Interrupt is invalid
Interrupt
Interrupt
Next
Next
+
+
Wake-up is invalid
Instruction Interrupt Instruction Interrupt
Vector
Vector
Wake up
Wake up
+
+
Interrupt is invalid
Interrupt is invalid
Next Instruction
Next Instruction
Interrupt
Interrupt
Wake up Wake up Wake up Wake up
+
+
Next
+
Next
+
+
+
Interrupt Instruction Interrupt Instruction Interrupt
Next
Interrupt
Next
Vector
Vector
Instruction Vector Instruction Vector
CMPWE = 0
Wake-up is invalid
CMPIE = 1
Comparator
Interrupt
CMPWE = 1
CMPIE = 0
CMPWE = 1
CMPIE = 1
PWM1
PWM1IE =
0
Wake-up is invalid
period
interrupt
PWM2
period
interrupt
Wake-up is invalid
PWM1IE =
1
PWM2IE =
0
PWM2IE =
1
DT1IE = 0
PWM1 duty
interrupt
DT1IE = 1
DT2IE = 0
PWM2 duty
interrupt
Low Voltage
Detector
WDT
Timeout
Low voltage
reset
DT2IE = 1
Interrupt is invalid
Interrupt is invalid
Interrupt is invalid
Interrupt
Interrupt
Wake up Wake up
+
+
Next
+
Next
+
Interrupt Instruction Interrupt Instruction Interrupt
Next
Vector
Vector
Instruction Vector
Wake-up is invalid
Wake-up is invalid
Interrupt is invalid
Interrupt
Interrupt
Wake up Wake up
Next
Next
+
+
+
+
Interrupt Instruction Interrupt Instruction Interrupt
Next
Vector
Vector
Instruction Vector
Wake-up is invalid
Wake-up is invalid
Interrupt is invalid
Interrupt
Interrupt
Wake up Wake up
Next
Next
+
+
+
+
Interrupt Instruction Interrupt Instruction Interrupt
Next
Vector
Vector
Instruction Vector
Wake-up is invalid
Wake-up is invalid
Interrupt is invalid
Interrupt is invalid
Interrupt is invalid
Interrupt
Interrupt
Wake up Wake up
+
+
Next
+
Next
+
Interrupt Instruction Interrupt Instruction Interrupt
Next
Vector
Vector
Instruction Vector
LVDWE = 0
Wake-up is invalid
LVDIE = 0
Wake-up is invalid
LVDWE = 0
Wake-up is invalid
LVDIE = 1
Wake-up is invalid
Interrupt is invalid
Interrupt is invalid.
Interrupt
Interrupt
+
+
Next
Next
Instruction Interrupt Instruction Interrupt
Vector
Vector
Wake up
Wake up
+
Interrupt is invalid. Interrupt is invalid.
+
Next Instruction
Next Instruction
Interrupt
Interrupt
Wake up Wake up Wake up Wake up
LVDWE = 1
Next
Next
+
+
+
+
+
+
Interrupt Instruction Interrupt Instruction Interrupt
Next
Interrupt
Next
LVDIE = 1
Vector
Vector
Instruction Vector Instruction Vector
LVWE = 1
LVDIE = 0
WDTE = 1
Wake up + Reset
Wake up + Reset
Reset
Reset
Wake up + Reset
Wake up + Reset
Reset
Reset
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 39
EM78P372N
8-Bit Microcontroller with OTP ROM
6.5.1.2
Register Initial Values after Reset
The following summarizes the initialized values for registers.
Address
Name
Reset Type
Bit Name
N/A
IOC50
IOC60
IOC70
IOC80
IOCB0
(PDCR)
IOCC0
(ODCR)
IOCD0
(PHCR1)
40 •
IOCE0
(WDTCR
& IMR2)
Bit 0
C54
C53
C52
C51
C50
–
–
–
–
–
–
Power-on
1
1
1
1
1
1
1
1
/RESET and WDT
1
1
1
1
1
1
1
1
P
P
P
P
P
P
P
P
C67
C66
C65
C64
C63
C62
C61
C60
Type
–
–
–
–
–
–
–
–
Power-on
1
1
1
1
1
1
1
1
/RESET and WDT
1
1
1
1
1
1
1
1
P
P
P
P
P
P
P
P
×
×
×
×
×
×
C71
C70
Power-on
0
0
0
0
0
0
1
1
/RESET and WDT
0
0
0
0
0
0
1
1
P
P
P
P
P
P
P
P
×
×
CMPOUT
COS1
COS0
×
×
×
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
/PD57
/PD56
/PD55
/PD54
/PD53
/PD52
/PD51
/PD50
Power-on
1
1
1
1
1
1
1
1
/RESET and WDT
1
1
1
1
1
1
1
1
P
P
P
P
P
P
P
P
OD67
OD66
OD65
OD64
OD63
OD62
OD61
OD60
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
/PH57
/PH56
/PH55
/PH54
/PH53
/PH52
/PH51
/PH50
Power-on
1
1
1
1
1
1
1
1
/RESET and WDT
1
1
1
1
1
1
1
1
P
P
P
P
P
P
P
P
Wake-up from Pin
Change
Bit Name
N/A
Bit 1
C55
Wake-up from Pin
Change
Bit Name
N/A
Bit 2
–
Wake-up from Pin
Change
Bit Name
N/A
Bit 3
C56
Wake-up from Pin
Change
Bit Name
N/A
Bit 4
–
Wake-up from Pin
Change
Bit Name
N/A
Bit 5
C57
Wake-up from Pin
Change
Bit Name
N/A
Bit 6
Type
Wake-up from Pin
Change
Bit Name
N/A
Bit 7
WDTC
EIS
ADIE
CMPIE
PSWE
PSW2
PSW1
PSW0
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Address
N/A
N/A
N/A
N/A
N/A
N/A
N/A
0×00
0×01
Name
Reset Type
Bit 7
Bit 6
Bit 5
×
DT2IE
DT1IE
IOCF0
(IMR)
Bit Name
Power-on
/RESET and WDT
Wake-up from Pin
Change
0
0
0
0
0
0
0
0
P
P
P
HS57
HS56
0
0
Bit Name
Power-on
IOC51
(HSCR1) /RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
IOC61
(HSCR2) /RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
IOC71
(HDCR1) /RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
IOC81
(HDCR2) /RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
IOCF1
(PHCR2) /RESET and WDT
Wake-up from Pin
Change
Bit Name
CONT
Power-on
/RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
R0 (IAR) /RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
R1 (TCC) /RESET and WDT
Wake-up from Pin
Change
Bit 2
Bit 1
Bit 0
EXIE
ICIE
TCIE
0
0
0
0
0
0
0
0
P
P
P
P
P
×
HS54
HS53
HS52
HS51
×
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
HS67
HS66
HS65
HS64
HS63
HS62
HS61
HS60
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
P
P
P
P
P
P
P
P
HD57
HD56
×
HD54
HD53
HD52
HD51
×
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
HD67
HD66
HD65
HD64
HD63
HD62
HD61
HD60
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
/PH67
/PH66
/PH65
/PH64
/PH63
/PH62
/PH61
/PH60
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
P
P
P
P
P
P
P
P
INTE
INT
TS
TE
PSTE
PST2
PST1
PST0
1
0
1
1
0
0
0
0
1
0
1
1
0
0
0
0
P
P
P
P
P
P
P
P
–
–
–
–
–
–
–
–
U
U
U
U
U
U
U
U
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
–
–
–
–
–
–
–
–
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
Bit 4
Bit 3
PWM2IE PWM1IE
• 41
EM78P372N
8-Bit Microcontroller with OTP ROM
Address
0×02
Name
R2 (PC)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit Name
Reset Type
–
–
–
–
–
–
–
–
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
Wake-up from Pin
Change
0×03
0×04
0×05
0×06
0×07
0×08
0×09
R3 (SR)
Bit Name
RST
IOCS
-
T
P
Z
DC
C
Power-on
0
0
0
1
1
U
U
U
/RESET and WDT
0
0
0
t
t
P
P
P
Wake-up from Pin
Change
1
P
P
t
t
P
P
P
Bit Name
SBANK
BS0
–
–
–
–
–
–
Power-on
0
0
U
U
U
U
U
U
R4 (RSR) /RESET and WDT
0
0
P
P
P
P
P
P
Wake-up from Pin
Change
0
P
P
P
P
P
P
P
Bit Name
P57
P56
P55
P54
P53
P52
P51
P50
Power-on
1
1
1
1
1
1
1
1
/RESET and WDT
1
1
1
1
1
1
1
1
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Bit Name
P67
P66
P65
P64
P63
P62
P61
P60
Power-on
1
1
1
1
1
1
1
1
/RESET and WDT
1
1
1
1
1
1
1
1
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Bit Name
–
–
–
–
–
–
P71
P70
Power-on
0
0
0
0
0
0
1
1
/RESET and WDT
0
0
0
0
0
0
1
1
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Bit Name
ADE7
ADE6
ADE5
ADE4
ADE3
ADE2
ADE1
ADE0
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
Wake-up from Pin
Change
0
0
0
0
P
P
P
P
Bit Name
VREFS
CKR1
CKR0
ADRUN
ADPD
ADIS2
ADIS1
ADIS0
Power-on
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
0
P
P
Bit Name
CALI
SIGN
VOF[2]
VOF[1]
VOF[0]
VREF1
VREF0
ADICS
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Bank 0
R5
Bank 0
R6
Bank 0
R7
Bank 0
R8
(AISR)
Bank 0
R9
/RESET and WDT
(ADCON)
Wake-up from Pin
Change
0×0A
42 •
Jump to Address 0x06 or continue to execute next instruction
Bank 0
RA
(ADOC)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Address
0×0B
Name
Bank 0
RB
(ADDATA)
0×0C
Bank 0
RC
(ADDATA1H)
0×0D
Bank 0
RD
(ADDATA1L)
0×0E
Bank 0
RE
(ISR2 &
WUCR)
Bank 0
0×0F
RF
(ISR2)
Bank 1
0×05
R5
(TBHP)
Bank 1
0×06
R6
(TBLP)
Bank 1
0×07
R7
(PWMCON)
Reset Type
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
Bit Name
Power-on
/RESET and
WDT
Wake-up from
Pin Change
AD11
AD10
AD9
AD8
AD7
AD6
AD5
AD4
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
P
P
P
P
P
P
P
P
×
×
×
×
AD11
AD10
AD9
AD8
0
0
0
0
U
U
U
U
0
0
0
0
U
U
U
U
P
P
P
P
P
P
P
P
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
P
P
P
P
P
P
P
P
/LVD
LVDIF
ADIF
CMPIF
ADWE
CMPWE
ICWE
LVDWE
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
×
DT2IF
DT1IF
EXIF
ICIF
TCIF
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
MLB
×
×
×
×
RBit10
RBit9
RBit8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
RBit7
RBit6
RBit5
RBit4
RBit3
RBit2
RBit1
RBit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
×
×
×
×
×
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
PWM2IF PWM1IF
PWMCAS PWM2E PWM1E
• 43
EM78P372N
8-Bit Microcontroller with OTP ROM
Address
Name
Bank 1
0×08
R8
(TMRCON)
Reset Type
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit Name
T2EN
T1EN
T2P2
T2P1
T2P0
T1P2
T1P1
T1P0
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Bit Name
Bank 1
0×09
R9
(PRD1)
Bank 1
0×0A
RA
Bank 1
0×0B
RB
(DT1)
Bank 1
0×0C
RC
(DT2)
Bank 1
0×0E
RE
(LVDCR &
WUCR)
Bank 1
0×0F
Power-on
0
0
0
0
0
0
0
0
/RESET and WDT
0
0
0
0
0
0
0
0
Wake-up from Pin
Change
P
P
P
P
P
P
P
P
Bit Name
Power-on
/RESET and WDT
(PRD2)
RF
(SCR)
0x10~0x3F R10~R3F
PWM1[7] PWM1[6] PWM1[5] PWM1[4] PWM1[3] PWM1[2] PWM1[1] PWM1[0]
PWM2[7] PWM2[6] PWM2[5] PWM2[4] PWM2[3] PWM2[2] PWM2[1] PWM2[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
DT1[6]
DT1[5]
DT1[4]
DT1[3]
DT1[2]
DT1[1]
DT1[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
DT2[6]
DT2[5]
DT2[4]
DT2[3]
DT2[2]
DT2[1]
DT2[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
LVDEN
LVD1
LVD0
×
×
×
EXWE
0
1
1
0
0
0
0
0
1
1
0
0
0
0
P
P
P
P
P
P
P
P
RCM1
RCM0
Wake-up from Pin
P
Change
DT1[7]
Bit Name
0
Power-on
0
/RESET and WDT
Wake-up from Pin
P
Change
DT2[7]
Bit Name
0
Power-on
0
/RESET and WDT
Wake-up from Pin
P
Change
LVDIE
Bit Name
0
Power-on
0
/RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
/RESET and WDT
Wake-up from Pin
Change
Bit Name
Power-on
/RESET and WDT
Wake-up from Pin
Change
-
TIMERSC
CPUS
IDLE
SHS1
SHS0
0
1
1
0
1
1
WORD1<6~5>
0
1
1
0
1
1
WORD1<6~5>
P
P
P
P
P
P
P
P
–
–
–
–
–
–
–
–
U
U
U
U
U
U
U
U
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Legend: “×” = not used
“u” = unknown or don’t care
44 •
“P” = previous value before reset
“t” = check “Reset Type” Table in Section 6.5.2
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.5.1.3
Controller Reset Block Diagram
VDD
D
Oscillator
Q
CLK
CLK
CLR
Power-on Reset
Voltage
Detector
ENWDTB
WDT Timeout
Reset
Setup time
WDT
/RESET
Figure 6-8 Controller Reset Block Diagram
6.5.2 T and P Status under the Status Register
A reset condition is initiated by one of the following events:
1. Power-on reset
2. /RESET pin input "low"
3. WDT time-out (if enabled)
The values of T and P as listed in the table below, are used to check how the processor
wakes up.
Reset Type
RST
T
P
Power-on
0
1
1
/RESET during Operating mode
0
*P
*P
/RESET wake-up during Sleep mode
0
1
0
LVR during Operating mode
0
*P
*P
LVR wake-up during Sleep mode
0
1
0
WDT during Operating mode
0
0
1
WDT wake-up during Sleep mode
0
0
0
Wake-up on pin change during Sleep mode
1
1
0
*P: Previous status before reset
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 45
EM78P372N
8-Bit Microcontroller with OTP ROM
The following shows the events that may affect the status of T and P.
RST
T
P
Power-on
Event
0
1
1
WDTC instruction
*P
1
1
WDT time-out
SLEP instruction
0
*P
0
1
*P
Wake-up on pin changed during Sleep mode
1
1
0
0
*P: Previous value before reset
6.6 Interrupt
The EM78P372N has ten interrupts enumerated below:
1. PWM1~2 period match and duty cycle match overflow interrupt
2. Port 5 Input Status Change Interrupt
3. External interrupt [(P60, /INT) pin]
4. Analog to Digital conversion completed
5. When the comparators status changes
6. Low voltage detector Interrupt
Before the Port 5 Input Status Change Interrupt is enabled, reading Port 5 (e.g. "MOV
R5, R5") is necessary. Each Port 5 pin will have this feature if its status changes. The
Port 5 Input Status Change Interrupt will wake up the EM78P372N from sleep mode if it
is enabled prior to going into sleep mode by executing SLEP instruction. When wake
up occurs, the controller will continue to execute program in-line if the global interrupt is
disabled. If enabled, the global interrupt will branch out to the Interrupt Vector 006H.
External interrupt equipped with digital noise rejection circuit (input pulse less than
system clock time) is eliminated as noise. However, under Low Crystal oscillator
(LXT2) mode the noise rejection circuit will be disabled. Edge selection is possible with
INTE of CONT. When an interrupt is generated by the External interrupt (when
enabled), the next instruction will be fetched from Address 003H. Refer to Word 1
Bits 9 and 8, Section 6.14.2, Code Option Register (Word 1) for digital noise rejection
definition.
RF and RE are the interrupt status register that records the interrupt requests in the
relative flags/bits. IOCF0 and IOCE0 are Interrupt mask registers. The global interrupt
is enabled by the ENI instruction and is disabled by the DISI instruction. Once in the
interrupt service routine, the source of an interrupt can be determined by polling the flag
bits in RF. The interrupt flag bit must be cleared by instructions before leaving the
interrupt service routine to avoid recursive interrupts.
When interrupt mask bits is “Enable”, the flag in the Interrupt Status Register (RF) is set
regardless of the ENI execution. Note that the result of RF will be the logic AND of RF
and IOCF0 (refer to figure below). The RETI instruction ends the interrupt routine and
enables the global interrupt (the ENI execution).
46 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
When an interrupt is generated by the Timer clock/counter (when enabled), the next
instruction will be fetched from Address 009, 012, 015, 018 and 01BH (PWM1~2 period
match and duty match respectively).
When an interrupt generated by AD conversion is completed (if enabled), the next
instruction will be fetched from Address 00CH.
When an interrupt is generated by the Comparators (when enabled), the next
instruction will be fetched from Address 00FH (Comparator interrupt).
When an interrupt is generated by the Low Voltage Detect (when enabled), the next
instruction will be fetched from Address 021H (Low Voltage Detector interrupt).
Before an interrupt subroutine is executed, the contents of ACC and the R3 and R4
registers are saved first by the hardware. If another interrupt occurs, the ACC, R3, and
R4 will be replaced by the new interrupt. After an interrupt service routine is completed,
the ACC, R3, and R4 registers are restored.
VDD
D
Oscillator
Q
CLK
CLK
CLR
Power-On Reset
Low Voltage Reset
Setup time
WDTE
WDT
WDT Timeout
Reset
/RESET
Interrupt sources
ACC
Interrupt
occurs
Stack ACC
ENI/DISI
R3
RETI
R4
Stack R3
Stack R4
Figure 6-9 Interrupt Back-up Diagram
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 47
EM78P372N
8-Bit Microcontroller with OTP ROM
In EM78P372N, each individual interrupt source has its own interrupt vector as
depicted in the table below.
Interrupt Vector
Interrupt Status
Priority *
003H
External interrupt
2
006H
Port 5 pin change
3
009H
TCC overflow interrupt
4
00CH
AD conversion complete interrupt
5
00FH
Comparator interrupt
6
012H
PWM1 period match interrupt
7
015H
PWM2 period match interrupt
8
018H
PWM1 duty match interrupt
9
01BH
PWM2 duty match interrupt
10
021H
Low Voltage Detector interrupt
1
Note: *Priority: 1 = highest ; 10 = lowest priority
6.7 Analog-to-Digital Converter (ADC)
The analog-to-digital circuitry consists of an 8-bit analog multiplexer; three control
registers (AISR/R8, ADCON/R9, & ADOC/RA), three data registers (ADDATA/RB,
ADDATA1H/RC, and ADDATA1L/RD) and an ADC with 12-bit resolution as shown in
the functional block diagram below. The analog reference voltage (Vref) and the
analog ground are connected via separate input pins. Connecting to an external VREF
is more accurate than connecting to an internal VDD.
The ADC module utilizes successive approximation to convert the unknown analog
signal into a digital value. The result is fed to the ADDATA, ADDATA1H, and
ADDATA1L. Input channels are selected by the analog input multiplexer via the
ADCON register Bits ADIS2, ADIS1 and ADIS0.
48 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
OPOUT
VDD
VREFP
16 to 1 Analog switch
1/4 VDD PowerDet.
AD7
ADC
(Successive Approximation)
Power Down
Start to Convert
Fsub
Fmain/4
Fmain/1
4 to 1
MUX
Fmain/16
AD0
Fmain/64
7-0
AISR
2~0
6
ADCON
ADCON
5
4
ISR
4
11 10 9 8 7 6 5 4 3 2 1 0
IMR
ADDATA1H
ADDATA1L
4
3
1 0
ADCON
DATA BUS
Figure 6-10 Analog-to-Digital Conversion Functional Block Diagram
This is a 12-bit successive approximation register analog to digital converter (SAR
ADC). There are two reference voltages for SAR ADC. The positive reference voltage
can select internal AVDD, internal voltage sources or external input pin by setting the
VREFP and VPIS[1:0] bits in ADCR2. Connecting to external positive reference
voltage provides more accuracy than using internal AVDD.
6.7.1 ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA)
6.7.1.1
Bank 0 R8 (AISR: ADC Input Select Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
ADE7
ADE6
ADE5
ADE4
ADE3
ADE2
ADE1
ADE0
The AISR register individually defines the P5, P6 and P7 pins as analog inputs or as
digital I/O.
Bit 7 (ADE7): AD converter enable bit of P57 pin
0: Disable ADC7, P57 functions as I/O pin
1: Enable ADC7 to function as analog input pin
Bit 6 (ADE6): AD converter enable bit of P55 pin
0: Disable ADC6, P55 functions as I/O pin
1: Enable ADC6 to function as analog input pin
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 49
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 5 (ADE5): AD converter enable bit of P70 pin
0: Disable ADC5, P70 functions as I/O pin
1: Enable ADC5 to function as analog input pin
Bit 4 (ADE4): AD converter enable bit of P67 pin
0: Disable ADC4, P67 functions as I/O pin
1: Enable ADC4 to function as analog input pin
Bit 3 (ADE3): AD converter enable bit of P53 pin
0: Disable ADC3, P53 functions as I/O pin
1: Enable ADC3 to function as analog input pin
Bit 2 (ADE2): AD converter enable bit of P52 pin
0: Disable ADC2, P52 functions as I/O pin
1: Enable ADC2 to function as analog input pin
Bit 1 (ADE1): AD converter enable bit of P51 pin
0: Disable ADC1, P51 acts as I/O pin
1: Enable ADC1 acts as analog input pin
Bit 0 (ADE0): AD converter enable bit of P50 pin
0: Disable ADC0, P50 functions as I/O pin
1: Enable ADC0 to function as analog input pin
6.7.1.2
Bank 0 R9 (ADCON: ADC Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
VREFS
CKR1
CKR0
ADRUN
ADPD
ADIS2
ADIS1
ADIS0
The ADCON register controls the operation of the AD conversion and determines
which pin should be currently active.
Bit 7(VREFS): The input source of the ADC Vref
0: The ADC Vref is connected to Vdd (default value), and the
VREF/TCC/P54 pin carries out the P54 function
1: The ADC Vref is connected to VREF/TCC/P54
NOTE
The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If
P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 (TS) must be “0”.
The P54/TCC/VREF pin priority is as follows:
P54/TCC/VREF Pin Priority
50 •
High
Medium
Low
VREF
TCC
P54
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The prescaler of ADC oscillator clock rate
00 = 1: 16 (default value)
01 = 1: 4
10 = 1: 64
11 = 1: 1
System
Mode
Normal
Mode
Green
Mode
CKR[1:0]
Operating Clock
of ADC (FAD = 1 / TAD)
Max. FMain
(VDD = 2.5V ~ 3V)
Max. FMain
(VDD = 3V ~ 5.5V)
00
(default)
FOSC /16
4 MHz
16 MHz
01
FOSC /4
1 MHz
4 MHz
10
FOSC /64
16 MHz
−
11
FOSC /1
−
1 MHz
xx
−
16k/128kHz
16k/128kHz
Bit 4 (ADRUN): ADC starts to RUN
0: Reset upon completion of the conversion. This bit cannot be reset
though software.
1: AD conversion is started. This bit can be set by software.
Bit 3 (ADPD): ADC Power-down mode
0: Switch off the resistor reference to conserve power even while the
CPU is operating
1: ADC is operating
Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select
ADICS
ADIS2
ADIS1
ADIS0
Analog Input Select
0
0
0
0
ADIN0/P50
0
0
0
1
ADIN1/P51
0
0
1
0
ADIN2/P52
0
0
1
1
ADIN3/P53
0
1
0
0
ADIN4/P67
0
1
0
1
ADIN5/P70
0
1
1
0
ADIN6/P55
0
1
1
1
ADIN7/P57
1
0
X
X
OPOUT
x
Internal, 1/4 VDD
1
1
x
These bits can only be changed when the ADIF bit and the ADRUN bit are both Low.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 51
EM78P372N
8-Bit Microcontroller with OTP ROM
6.7.1.3
RA (ADOC: AD Offset Calibration Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CALI
SIGN
VOF[2]
VOF[1]
VOF[0]
VREF1
VREF0
ADICS
Bit 7 (CALI): Calibration enable bit for ADC offset
0: Disable Calibration
1: Enable Calibration
Bit 6 (SIGN): Polarity bit of offset voltage
0: Negative voltage
1: Positive voltage
Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits
VOF[2]
VOF[1]
VOF[0]
EM78P372N
0
0
0
0LSB
0
0
1
2LSB
0
1
0
4LSB
0
1
1
0
1
0
6LSB
8LSB
1
0
1
10LSB
1
1
0
12LSB
1
1
1
14LSB
Bit 2 ~ Bit 1: ADC internal reference voltage source.
VREF1
VREF0
ADC internal Reference Voltage
0
0
VDD
0
1
4.0V ± 1%
1
0
3.0V ± 1%
1
1
2.0V ± 1%
Bit 0 (ADICS): ADC Internal Channel Select (select ADC internal 1/4 VDD or OP
output pin connects to ADC input)
0: disable
1: enable
NOTE
1. If VREF [1:0]=00, internal reference will not turn on. If VREF[1:0]≠ 00, internal
reference will turn on automatically. Moreover, the power of internal reference is
irrelevant to ADC.
2. When using internal voltage reference, users need to wait for at least 50 µs when it
is the first time to enable and stabilize the voltage reference. Un-stabilized
reference makes conversion result inaccurate. After that, users only need to wait
for at least 6 µs whenever switching voltage references.
52 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.7.1.4
Bank 1 RF (IRC Switch Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
TIMERSC
CPUS
IDLE
SHS1
SHS0
RCM1
RCM0
Bits 3 ~ 2 (SHS1 ~ SHS0): Select AD sample and hold Timing Select. (Recommend at
least 4 µs, TAD: Period of ADC Operating Clock)
SHS1
SHS0
ADC Sample and Hold (TAD)
0
0
2 x TAD
0
1
4 x TAD
1
0
8 x TAD
1
1
12 x TAD (default)
6.7.2 ADC Data Register (ADDATA/RB, ADDATA1H/RC,
ADDATA1L/RD)
When the AD conversion is completed, the result is loaded into the ADDATA1H and
ADDATA1L. The ADIF is set if ADIE is enabled.
6.7.3 ADC Sampling Time
The accuracy, linearity, and speed of the successive approximation AD converter are
dependent on the properties of the ADC. The source impedance and the internal
sampling impedance directly affect the time required to charge the sample and hold
capacitor. The application program controls the length of the sample time to meet the
specified accuracy. The maximum recommended impedance for the analog source is
10 kΩ at VDD = 5V. After the analog input channel is selected; this acquisition time
must be done before AD conversion can be started.
6.7.4 AD Conversion Time
CKR[2:0] select the conversion time (TAD). This allows the MCU to run at maximum
frequency without sacrificing the accuracy of the AD conversion. The following tables
show the relationship between TAD and the maximum operating frequencies. TAD is 0.5
µs for 3V~5.5V and TAD is 2 µs for 2.5V~3V.
VDD = 3V ~ 5.5V (TAD is 1 µs)
System
Mode
Normal
Mode
Green Mode
CKR[1:0]
Operating Clock
of ADC
(FAD = 1 / TAD)
Max. FMain
(VDD = 3V ~ 5.5V)
Conversion Time
of One Word
(SHS[1:0] = 10*)
00
FMain / 16
16 MHz
14 µs
01
FMain / 4
4 MHz
14 µs
10
FMain / 64
-
-
11
FMain / 1
1 MHz
14 µs
xx
FSub
128kHz
157 µs
* Conversion Time = Sample and Hold (SHS [1:0]=10, 8 × TAD) + 12 × Bit Conversion Time
(12 × TAD) + Delay Time between setting ADSTART bit and starting first TAD.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 53
EM78P372N
8-Bit Microcontroller with OTP ROM
VDD = 2.5V ~ 3V (TAD is 4 µs)
System
Mode
Normal
Mode
Green Mode
Operating Clock
of ADC
(FAD = 1 / TAD)
Max. FMain
Conversion Time
of One Word
(VDD = 2.5V ~ 3V)
(SHS[1:0] = 10*)
00
FMain / 16
4 MHz
80 µs
01
FMain / 4
1 MHz
80 µs
10
FMain / 64
16 MHz
80 µs
11
FMain / 1
-
-
xx
-
128 kHz
157 µs
CKR[1:0]
*Conversion Time = Sample and Hold (SHS [1:0]=10, 8 × TAD) + 12 × Bit Conversion Time
(12 × TAD) + Delay Time between setting ADSTART bit and starting first TAD (0.5 × TAD).
NOTE
„ Pin not used as an analog input pin can be used as regular input or output pin.
„ During conversion, do not perform output instruction to maintain precision for all of
the pins.
6.7.5 ADC Operation during Sleep Mode
In order to obtain a more accurate ADC value and reduce power consumption, the AD
conversion remains operational during sleep mode. As the SLEP instruction is
executed, all the MCU operations will stop except for the Oscillator, TCC, PWM1,
PMW2 and AD conversion.
The AD Conversion is considered completed as determined by:
1. The ADRUN bit of the R9 register is cleared to “0”.
2. The ADIF bit of the BANK 0 RE register is set to “1”.
3. The ADWE bit of the BANK 0 RE register is set to “1”. Wakes up from ADC
conversion (where it remains in operation during sleep mode).
4. Wake up and execution of the next instruction if the ADIE bit of the IOCE0 is enabled
and the “DISI” instruction is executed.
5. Wake up and enters into Interrupt vector (Address 0x00C) if the ADIE bit of the
IOCE0 is enabled and the “ENI” instruction is executed.
6. Enters into an Interrupt vector (Address 0x00C) if the ADIE bit of the IOCE0 is
enabled and the “ENI” instruction is executed.
The results are fed into the ADDATA, ADDATA1H, and ADDATA1L registers when the
conversion is completed. If the ADIE is enabled, the device will wake up. Otherwise,
the AD conversion will be shut off, no matter what the status of the ADPD bit is.
54 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.7.6 Programming Process/Considerations
6.7.6.1
Programming Process
Follow these steps to obtain data from the ADC:
1. Write to the eight bits (ADE7: ADE0) on the R8 (AISR) register to define the
characteristics of R5 (digital I/O, analog channels, or voltage reference pin)
2. Write to the R9/ADCON register to configure the AD module:
a) Select the ADC input channel (ADIS2 : ADIS0)
b) Define the AD conversion clock rate (CKR1 : CKR0)
c) Select the VREFS input source of the ADC
d) Set the ADPD bit to 1 to begin sampling
3. Set the ADWE bit, if the wake-up function is employed
4. Set the ADIE bit, if the interrupt function is employed
5. Write “ENI” instruction, if the interrupt function is employed
6. Set the ADRUN bit to 1
7. Write “SLEP” instruction or Polling.
8. Wait for wake-up or for the ADRUN bit to be cleared to “0” , interrupt flag (ADIF) is
set “1,” or ADC interrupt occurs.
9. Read the ADDATA or ADDATA1H and ADDATA1L conversion data registers. If the
ADC input channel changes at this time, the ADDATA, ADDATA1H, and
ADDATA1L values can be cleared to ‘0’.
10. Clear the interrupt flag bit (ADIF).
11. For next conversion, go to Step 1 or Step 2 as required. At least two Tct is required
before the next acquisition starts.
NOTE
In order to obtain accurate values, it is necessary to avoid any data transition on the I/O
pins during AD conversion.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 55
EM78P372N
8-Bit Microcontroller with OTP ROM
6.7.6.2
Sample Demo Programs
R_0 == 0
PSW == 3
PORT5 == 5
PORT6 == 6
R_E== 0XE
; Indirect addressing register
; Status register
; Interrupt status register
B. Define a Control Register
IOC50 == 0X5
IOC60 == 0X6
IOCE0== 0XE
C_INT== 0XF
;
;
;
;
Control Register of Port 5
Control Register of Port 6
Interrupt Mask Register 2
Interrupt Mask Register
C. ADC Control Register
ADDATA == 0xB
ADDATA1H == 0xC
ADDATA1L == 0xD
AISR == 0x08
ADCON == 0x9
; The contents are the results of ADC[11:4]
; The contents are the results of ADC[11:8]
; The contents are the results of ADC[7:0]
; ADC input select register
; 7
6
5
4
3
2
1
0
; VREFS CKR1 CKR0 ADRUN ADPD ADIS2 ADIS1 ADIS0
D. Define Bits in ADCON
ADRUN == 0x4
ADPD == 0x3
; ADC is executed as the bit is set
; Power Mode of ADC
E. Program Starts
ORG 0
JMP INITIAL
; Initial address
ORG 0x0C
; Interrupt vector
JMP CLRRE
;
;(User program section)
;
CLRRE:
MOV A,RE
AND A, @0BXX0XXXXX ; To clear the ADIF bit, “X” by application
MOV RE,A
BS ADCON, ADRUN
; To start to execute the next AD conversion
; if necessary
RETI
INITIAL:
MOV A,@0B00000001 ; To define P50 as an analog input
MOV AISR,A
MOV A,@0B00001000 ; To select P50 as an analog input channel, and
; AD power on
MOV ADCON,A
; To define P50 as an input pin and set the
; clock rate at fosc/16
En_ADC:
MOV A, @0BXXXXXXX1 ; To define P50 as an input pin, and the others
; are dependent on applications
56 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
IOW PORT5
MOV A, @0BXXXX1XXX ;
;
MOV RE,A
MOV A, @0BXX1XXXXX ;
;
IOW IOCE0
ENI
;
BS ADCON, ADRUN
Enable the ADWE wake-up function of ADC, “X”
by application
Enable the ADIE interrupt function of ADC,
“X” by application
Enable the interrupt function
; Start to run the ADC
; If the interrupt function is employed, the following three lines
may be ignored
;If Sleep:
SLEP
;
;(User program section)
;
or
;If Polling:
POLLING:
JBC ADCON, ADRUN
JMP POLLING
; To check the ADRUN bit continuously;
; ADRUN bit will be reset as the AD conversion
; is completed
;
;(User program section)
6.8 Dual Sets of PWM (Pulse Width Modulation)
6.8.1 Overview
In PWM mode, PWM1 and PWM2 pins produce 8-bit resolution PWM output (see. the
functional block diagram below). A PWM output consists of a time period and a duty
cycle, and it keeps the output high. The baud rate of PWM is the inverse of the time
period. Figure 6-13 PWM Output Timing depicts the relation between a time period and
a duty cycle.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 57
EM78P372N
8-Bit Microcontroller with OTP ROM
Figure 6-12 PWM System Block Diagram
Period
Duty Cycle
PRD1 = TMR1
DT1 = TMR1
Figure 6-13 PWM Output Timing
6.8.2 Increment Timer Counter (TMRX: TMR1 or TMR2)
TMRX are 8-bit clock counters with programmable prescalers. They are designed for
the PWM module as baud rate clock generators. If employed, they can be turned off for
power saving by setting the T1EN bit [Bank 1-R8<6>] or T2EN bit [Bank 1-R8<7>] to
“0”.
TMR1 and TMR2 are internal designs and cannot be read
58 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.8.3 PWM Time Period (TMRX: TMR1 or TMR2)
PWM Time Period (PRDX: PRD1 or PRD2). The PWM time period is defined by writing
to the PRDX register. When TMRX is equal to PRDX, the following events occur on the
next increment cycle:
1) TMR is cleared
2) The PWMX pin is set to “1”
3) The PWMX duty cycle is latched from DT1/DT2 to DL1/DL2
NOTE
The PWM output will not be set, if the duty cycle is “0”.
4) The PWMXIF pin is set to “1”
The following formula describes how to calculate the PWM time period:
⎛ 1 ⎞
Period = (PRDX + 1)× ⎜
⎟ × (TMRX prescale value )
⎝ FOSC ⎠
Example:
PRDX=49; Fosc=4 MHz; TMRX (0, 0, 0) = 1:1,
then
⎛ 1 ⎞
Period = (49 + 1) × ⎜
⎟ × 1 = 12.5
⎝ 4M ⎠
µS
6.8.4 PWM Duty Cycle (DTX: DT1 or DT2; DLX: DL1 or DL2)
The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX
to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared.
DTX can be loaded anytime. However, it cannot be latched into DLX until the current
value of DLX is equal to TMRX.
The following formula describes how to calculate the PWM duty cycle:
⎛ 1 ⎞ ⎛
⎟⎟ × ⎜ TMRX prescale value ⎞⎟
Duty Cycle= (DTX) × ⎜⎜
⎠
F
⎝ OSC ⎠ ⎝
Example:
DTX=10; Fosc=4 MHz; TMRX (0, 0, 0) = 1:1,
then
⎛ 1 ⎞
Duty Cycle = 10 × ⎜
⎟ × 1 = 2.5
⎝ 4M ⎠
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
µS
• 59
EM78P372N
8-Bit Microcontroller with OTP ROM
6.8.5 Comparator X
Changing the output status while a match occurs will simultaneously set the PWMXIF
(TMRXIF) flag.
6.8.6 PWM Programming Process/Steps
1. Load PRDX with the PWM time period.
2. Load DTX with the PWM Duty Cycle.
3. Enable the interrupt function by writing to the IOCF0, if required.
4. Set PWMX pin to be output by writing a desired value to BANK1-R7.
5. Load a desired value to Bank 1-R7 or Bank 1-R8 with TMRX prescaler value and
enable both PWMx and TMRX.
6.9 Timer/Counter
6.9.1 Overview
Timer 1 (TMR1) and Timer 2 (TMR2) (TMRX) are 8-bit clock counters with
programmable prescalers. They are designed for the PWM module as baud rate clock
generators. TMRX can be read only. The Timer 1 and Timer 2 will stop running when
sleep mode occurs with AD conversion not running. However, if AD conversion is
running when sleep mode occurs, the Timer 1 and Timer 2 will keep on running.
6.9.2 Functional Description
Fosc
1:1
1:2
1:4
1:8
1:16
1:64
1:128
1:256
To TMR1IF(PWM1IF)
MUX
reset
TMR1
Period
Match
Comparator
T1P2 T1P1 T1P0 T1EN
PRD1
Data Bus
Data Bus
PRD2
T2P2 T2P1 T2P0 T2EN
Fosc 1:1
1:2
1:4
1:8
1:16
1:64
1:128
1:256
Comparator
TMR2
reset
Period
Match
MUX
To TMR2IF(PWM2IF)
Figure 6-14 Timer Block Diagram
60 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Where:
Fosc: Input clock
Prescaler (T1P2, T1P1 and T1P0 / T2P2, T2P1 and T2P0): The options 1:1, 1:2, 1:4,
1:8, 1:16, 1:64, 1:128, and 1:256 are defined by TMRX. These are cleared when any
type of reset occurs.
TMR1 and TMR2: Timer X register. TMRX is increased until it matches with PRDX,
and then is reset to “0” (default value).
PRDX (PRD1, PRD2): PWM time period register
Comparator X (Comparator 1 and Comparator 2): Reset TMRX while a match
occurs. The TMRXIF (PWMXIF) flag is set at the same time.
6.9.3 Programming the Related Registers
When defining TMRX, refer to the operation of its related registers as shown in the
following table. It must be noted that the PWMX bits must be disabled if their related
TMRXs are utilized. That is, Bit 7 ~ Bit 3 of the PWMCON register must be set to “0”.
„
Related Control Registers of TMR1 and TMR2
Addr.
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0x07
PWMCON/R7
”0”
“0”
“0”
“0”
“0”
0x08
TMRCON/R8
T2EN T1EN T2P2 T2P1 T2P0
Bit 2
Bit 1
Bit 0
PWMCAS PWM2E PWM1E
T1P2
T1P1
T1P0
6.9.4 Timer Programming Process/Steps
1. Load PRDX with the Timer duration
2. Enable interrupt function by writing IOCF0, if required
3. Load a desired value for the TMRX prescaler and enable TMRX and disable PWM
6.9.5 PWM Cascade Mode
The PWM Cascade Mode merges two 8-bit PWM function to one 16-bit. In this Mode,
the necessary parameters are redefined as shown on the table below:
Parameter
DT (Duty)
PRD
(Period)
TMR
(Timer)
MSB (15~8)
DT2
PRD2
TMR2
LSB (7~0)
DT1
PRD1
TMR1
16-bit PWM
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 61
EM78P372N
8-Bit Microcontroller with OTP ROM
The prescaler of this 16-bit PWM uses the prescaler of the TMR1, the MSB of TMR is
counted when LSB carry and the PWM1IF bit/PWM1 Pin are redefined as the PWMIF
bit/PWM pin for this one.
DL
Fosc
latch
To PWMIF
(PWM1IF)
DT
1:1
1:2
1:4
1:8
1:16
1:64
1:128
1:256
Duty Cycle
Match
16-bit Comparator
MUX
PWM
(PWM1)
R
Q
TMR
reset
S
IOC51,2
16-bit Comparator
T1E
T1P2 T1P1 T1P0
N
Period
Match
PRD
Data Bus
Data Bus
Figure 6-14 Functional Block Diagram of 16-bit PWM (merged from two 8 bits)
6.10 Comparator
The EM78P372N has one
comparator which has two analog
inputs and one output. The
comparator can be employed to
wake up the system from
sleep/idle mode. The Figure at
the right shows the comparator
circuit.
Cin -
CMP
+
Cin+
CO
Cin Cin+
Output
10mV
Figure 6-15 Comparator Operating Mode
6.10.1 External Reference Signal
The analog signal that is presented at Cin– compares to the signal at Cin+, and the
digital output (CO) of the comparator is adjusted accordingly by taking the following
notes into considerations:
NOTE
„ The reference signal must be between Vss and Vdd.
„ The reference voltage can be applied to either pin of the comparator.
„ Threshold detector applications may be of the same reference.
„ The comparator can operate from the same or different reference sources.
62 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.10.2 Comparator Outputs
„
The compared result is stored in the CMPOUT of IOC80.
„
The comparator outputs are sent to CO (P64) by programming Bit 4 and Bit 3
<COS1, COS0> of the IOC80 register to <1,0>. See the table under Section 6.2.4,
IOC80 (Comparator Control Registers) for Comparator/OP select bits Function
description.
The following figure shows the Comparator Output block diagram.
To C0
F ro m O P I/O
CMRD
EN
Q
EN
D
Q
D
To CMPOUT
RESET
T o C P IF
CMRD
F ro m o th e r
c o m p a ra to r
Figure 6-16 Comparator Output Configuration
6.10.3 Using Comparator as an Operation Amplifier
The comparator can be used as an operation amplifier if a feedback resistor is
externally connected from the input to the output. In this case, the Schmitt trigger
function can be disabled for power saving purposes, by setting Bit 4, Bit 3 <COS1,
COS0> of the IOC80 register to <1,1>. See the table under Section 6.2.4, IOC80
(Comparator Control Registers) for Comparator/OP select bits function description.
NOTE
Under Operation Amplifier:
■ The CMPIE (IOCE0.4), CMPWE (BANK 0 RE.2), and CMPIF (BANK 0 RE.4) bits are
invalid.
■ The comparator interrupt is invalid.
■ The comparator wake-up is invalid.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 63
EM78P372N
8-Bit Microcontroller with OTP ROM
6.10.4 Comparator Interrupt
„
CMPIE (IOCE0.4) must be enabled for the “ENI” instruction to take effect
„
Interrupt is triggered whenever a change occurs on the comparator output pin
„
The actual change on the pin can be determined by reading the Bit CMPOUT,
IOC80<5>.
„
CMPIF (Bank 0 RE.4), the comparator interrupt flag, can only be cleared by
software
6.10.5 Wake-up from Sleep Mode
„
If the CMPWE bit of the Bank 0 RE register is set to “1,” the comparator remains
active and the interrupt remains functional, even under Sleep mode.
„
If a mismatch occurs, the change will wake up the device from Sleep mode.
„
The power consumption should be taken into consideration for the benefit of
energy conservation.
„
If the function is unemployed during Sleep mode, turn off the comparator before
entering into sleep mode.
The Comparator is considered completed as determined by:
1. COS1 and COS0 bits of IOC80 register setting selects Comparator.
2. CMPIF bit of Bank 0 RE register is set to “1”.
3. CMPWE bit of Bank 0 RE register is set to “1”. Wakes up from Comparator (where
it remains in operation during sleep/idle mode).
4. Waking-up and executing the next instruction, if CMPIE bit of IOCE0 is enabled and
the “DISI” instruction is executed.
5. Waking-up and entering into Interrupt vector (Address 0x00F), if CMPIE bit of
IOCE0 is enabled and the “ENI” instruction is executed.
6. Entering into Interrupt vector (Address 0x00F), if CMPIE bit of IOCE0 is enabled
and the “ENI” instruction is executed.
64 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.11 Oscillator
6.11.1 Oscillator Modes
The EM78P372N can be operated in six different oscillator modes, such as Crystal
Oscillator Mode (XT), High Crystal Oscillator Mode 1 (HXT1), High Crystal Oscillator
Mode 2 (HXT2), Low Crystal Oscillator Mode 1 (LXT1), Low Crystal Oscillator Mode 2
(LXT2), External RC Oscillator Mode (ERC), and RC Oscillator Mode with Internal RC
Oscillator Mode (IRC). User can select one of the six modes by programming the
OSC3, OSC2, OCS1, and OSC0 in the Code Option register.
The Oscillator modes defined by OSC3, OSC2, OCS1, and OSC0 are described below.
Oscillator Modes
OSC3
OSC2
OSC1
OSC0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
3
0
1
0
0
3
0
1
0
1
3
0
1
1
0
3
0
1
1
1
1
1
1
1
1
ERC (External RC oscillator mode);
P55/ERCin acts as ERCin
P70/RCOUT acts as P70
1
ERC (External RC oscillator mode);
P55/ERCin acts as ERCin
P70/RCOUT acts as RCOUT
2
IRC (Internal RC oscillator mode);
P55/ERCin acts as P55
P70/RCOUT acts as P70
(default)
2
IRC (Internal RC oscillator mode);
P55/ERCin acts as P55
P70//RCOUT acts as RCOUT
LXT1 (Frequency range of XT, mode is 100kHz ~ 1 MHz)
HXT1 (Frequency range of XT mode is 12 MHz ~ 16 MHz)
LXT2 (Frequency range of XT mode is 32.768kHz)
HXT2 (Frequency range of XT mode is 6 MHz ~ 12 MHz)
3
XT (Frequency range of XT mode is 1 MHz ~ 6 MHz)
1
In ERC mode, ERCin is used as oscillator pin. RCOUT/P70 is defined by Code Option Word 1
Bit 4 ~ Bit 1.
2
In IRC mode, P55 is normal I/O pin. RCOUT/P70 is defined by code option Word 1 Bit 4 ~ Bit 1.
3
In LXT1, LXT2, HXT1, HXT2 and XT modes; OSCI and OSCO are used as oscillator pins.
These pins cannot and should not be defined as normal I/O pins.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 65
EM78P372N
8-Bit Microcontroller with OTP ROM
The maximum operating frequency limit of the crystal / resonator at different VDDs are
as follows:
Conditions
Two clocks
VDD
Max. Freq. (MHz)
2.1V
4
3.0V
8
4.5V
16
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)
The EM78P372N can be driven by an external clock signal through the OSCI pin as
illustrated below.
OSCI
OSCO
Figure 6-17 External Clock Input Circuit
In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or
ceramic resonator to generate oscillation. Figure 6-18 below depicts such a circuit.
The same applies to the HXT1 mode, HTX2 mode, LXT1 mode, LXT2 and XT mode.
C1
OSCI
Crystal
OSCO
RS
C2
Figure 6-18 Crystal/Resonator Circuit
The following table provides the recommended values for C1 and C2. Since each
resonator has its own attribute, user should refer to the resonator specifications for the
appropriate values of C1 and C2. RS, a serial resistor, maybe required for AT strip cut
crystal or low frequency mode. Figure 6-21 is a PCB layout suggestion. When the
system works in Crystal mode (16 MHz), a 10 KΩ is connected between OSCI
and OSCO.
66 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Capacitor selection guide for crystal oscillator or ceramic resonators:
Oscillator Type
Frequency Mode
Frequency
LXT1
(100 K ~ 1 MHz)
Ceramic Resonators
XT
(1 M ~ 6 MHz)
LXT2 (32.768kHz)
LXT1
(100 K ~ 1 MHz)
Crystal Oscillator
XT
(1~6 MHz)
HXT2
(6~12 MHz)
HXT1
(12~20 MHz)
C1 (pF)
C2 (pF)
100kHz
200kHz
455kHz
60 pF
60 pF
40 pF
60 pF
60 pF
40 pF
1 MHz
1.0 MHz
2.0 MHz
4.0 MHz
30 pF
30 pF
30 pF
20 pF
30 pF
30 pF
30 pF
20 pF
32.768kHz
40 pF
40 pF
100kHz
200kHz
455kHz
1 MHz
1.0 MHz
2.0 MHz
4.0 MHz
60 pF
60 pF
40 pF
30 pF
30 pF
30 pF
20 pF
60 pF
60 pF
40 pF
30 pF
30 pF
30 pF
20 pF
6.0 MHz
6.0 MHz
8.0 MHz
12.0 MHz
30 pF
30 pF
20 pF
30 pF
30 pF
30 pF
20 pF
30 pF
12.0 MHz
30 pF
30 pF
16.0 MHz
20 pF
20 pF
Circuit diagrams for serial and parallel modes Crystal/Resonator:
330
330
C
OSCI
7404
7404
7404
Crysta l
Figure 6-19 Serial Mode Crystal/Resonator Circuit Diagram
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 67
EM78P372N
8-Bit Microcontroller with OTP ROM
7404
4.7K
10K
V dd
O SC I
10K
7404
C rystal
C1
10K
C2
Figure 6-20 Parallel Mode Crystal/Resonator Circuit Diagram
Figure 6-21 Parallel Mode Crystal/Resonator Circuit Diagram
68 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.11.3 External RC Oscillator Mode
For some applications that do not
require precise timing calculation, the
RC oscillator (Figure 6-22) could offer
an effective cost savings.
Nevertheless, it should be noted that
the frequency of the RC oscillator is
influenced by the supply voltage, the
values of the resistor (Rext), the
capacitor (Cext), and even by the
operation temperature. Moreover, the
frequency also changes slightly from
one chip to another due to the
manufacturing process variation.
Vcc
Rext
ERCin
Cext
Figure 6-22 External RC Oscillator Mode Circuit
In order to maintain a stable system frequency, the values of the Cext should be not
lesser than 20 pF, and the value of Rext should not be greater than 1 MΩ. If the
frequency cannot be kept within this range, the frequency can be affected easily by
noise, humidity, and leakage.
The smaller the Rext in the RC oscillator is, the faster its frequency will be. On the
contrary, for very low Rext values, for instance, 1 KΩ, the oscillator will become
unstable because the NMOS cannot correctly discharge the capacitance current.
Based on the above reasons, it must be kept in mind that all the supply voltage, the
operation temperature, the components of the RC oscillator, the package types, and
the PCB layout have certain effects on the system frequency.
The RC Oscillator frequencies:
Cext
20 pF
100 pF
300 pF
Rext
Average Fosc 5V, 25°C
Average Fosc 3V, 25°C
3.3k
2.064 MHz
1.901 MHz
5.1k
1.403 MHz
1.316 MHz
10k
750.0kHz
719.0kHz
100k
81.45kHz
81.33kHz
3.3k
647.0kHz
615.0kHz
5.1k
430.8kHz
414.3kHz
10k
225.8kHz
219.8kHz
100k
23.88kHz
23.96kHz
3.3k
256.6kHz
245.3kHz
5.1k
169.5kHz
163.0kHz
10k
88.53kHz
86.14kHz
100k
9.283kHz
9.255kHz
1
Note: : Measured based on DIP packages.
2
: The values are for design reference only.
3
: The frequency drift is ± 30%
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 69
EM78P372N
8-Bit Microcontroller with OTP ROM
6.11.4 Internal RC Oscillator Mode
The EM78P372N offers a versatile internal RC mode with default frequency value of
4 MHz. Internal RC oscillator mode has other frequencies (16 MHz, 1 MHz, and
8 MHz) that can be set by Code Option (Word 1), RCM1, and RCM0. The Table below
describes the EM78P372N internal RC drift with voltage, temperature, and process
variations.
Internal RC Drift Rate (Ta=25°C, VDD=5V, VSS=0V)
Drift Rate
Internal
RC
Frequency
Temperature
(-40°C ~+85°C)
4 MHz
±2%
16 MHz
±2%
8 MHz
±2%
1 MHz
±2%
Voltage
Process
Total
±2%
±5%
±2%
±5%
±2%
±5%
±2%
±5%
±1%
*(2.1~5.5V)
±1%
*(4.0~5.5V)
±1%
*(3.0~5.5V)
±1%
*(2.1~5.5V)
* Operating voltage range
Note: Theoretical values are for reference only. Actual values may vary depending on the actual
process.
6.12 Power-on Considerations
Any microcontroller is not warranted to start operating properly before the power supply
stabilizes in steady state. The EM78P372N POR voltage range is 1.8V ~ 1.9V. Under
customer application, when power is switched OFF, Vdd must drop below 1.8V and
remains at OFF state for 10µs before power can be switched ON again. Subsequently,
the EM78P372N will reset and work normally. The extra external reset circuit will work
well if Vdd rises fast enough (50ms or less). However, under critical applications, extra
devices are still required to assist in solving power-on problems.
6.12.1 Programmable WDT Time-out Period
The Option word (WDTPS) is used to define the WDT time-out period (18ms5 or
4.5ms6). Theoretically, the range is from 4.5ms or 18ms. For most crystal or ceramic
resonators, the lower the operation frequency is, the longer is the required set-up time.
70 •
5
VDD=5V, WDT time-out period = 16.5ms ± 30% at 25°C
VDD=3V, WDT time-out period = 18ms ± 30% at 25°C
6
VDD=5V, WDT time-out period = 4.2ms ± 30% at 25°C
VDD=3V, WDT time-out period = 4.5ms ± 30% at 25°C
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.12.2 External Power-on Reset Circuit
The circuits shown in the
following figure implement
an external RC to produce a
reset pulse. The pulse
width (time constant) should
be kept long enough to
allow the Vdd to reach the
minimum operating voltage.
This circuit is used when the
power supply has a slow
power rise time.
VDD
/RESET
R
Rin
D
C
Figure 6-23 External Power-on Reset Circuit
Because the current leakage from the /RESET pin is about ± 5 µA, it is recommended
that R should not be greater than 40KΩ. This way, the voltage at Pin /RESET is held
below 0.2V. The diode (D) functions as a short circuit at power-down. The “C”
capacitor is discharged rapidly and fully. Rin, the current-limited resistor, prevents high
current discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.
6.12.3 Residual Voltage Protection
When the battery is replaced, device power (Vdd) is removed but residual voltage
remains. The residual voltage may trip below Vdd minimum, but not to zero. This
condition may cause a poor power-on reset. Figure 6-24 and Figure 6-25 show how to
create a protection circuit against residual voltage.
VDD
VDD
33K
Q1
10K
/RESET
100K
1N4684
Figure 6-24 Residual Voltage Protection Circuit 1
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 71
EM78P372N
8-Bit Microcontroller with OTP ROM
VDD
VDD
R1
Q1
/RESET
R2
R3
Figure 6-25 Residual Voltage Protection Circuit 2
6.13 Code Option
EM78P372N has two Code Option Words and one Customer ID word that are not part
of the normal program memory.
Word 0
Word 1
Word 2
Bit 12 ~ Bit 0
Bit 12 ~ Bit 0
Bit12 ~ Bit 0
6.13.1 Code Option Register (Word 0)
Word 0
Bit
Bit 12
Mne
monic
Bit 11
TYPE1 TYPE0
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
WK_CLK
CLKS
LVR1
LVR0 RESETEN ENWDT NRHL
1
High
High
8 clock
High
High
High
Disable Disable 32/fc
0
Low
Low
32 clock
Low
Low
Low
Enable
Enable
8/fc
Bit 3
Bit 2 ~ 0
NRE
Protect
Enable Disable
Disable Enable
Bits 12 ~ 11 (TYPE1 ~ TYPE0): Type selection for EM78P372N (for UWTR)
TYPE 1, TYPE 0
MCU Type
Pin Not Used
00
EM78P372N-10Pin
Port 60 ~ 66 / 54 / 56 / 57 are output low.
01
EM78P372N-14Pin
Port 62 / 63 / 64 / 65 / 56 / 57 are output low.
10
EM78P372N-18Pin
Port 56 / 57 are output low.
11
EM78P372N-20Pin (Default)
X
Bit 10 (WK_CLK): Selecting 8 or 32 clocks wake up from sleep and idle mode (only
IRC mode)
0: IRC stable time + 32 clocks
1: IRC stable time + 8 clocks (default)
72 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 9 (CLKS): Instruction period option bit
0: Two oscillator periods
1: Four oscillator periods (default)
Bits 8 ~ 7 (LVR1 ~ LVR0): Low Voltage Reset Enable bits
LVR1, LVR0
VDD Reset Level
11
VDD Release Level
NA (Power-on Reset) (Default)
10
2.7V
2.9V
01
3.5V
3.7V
00
4.0V
4.2V
Bit 6 (RESETEN): RESET/P71 Pin Select Bit
0: P71 set to /RESET pin
1: P71 is general purpose input pin or open-drain for output Port
(default)
Bit 5 (ENWDT): Watchdog timer enable bit
0: Enable
1: Disable (default)
Bit 4 (NRHL): Noise rejection high/low pulses define bit. The INT pin is falling or rising
edge trigger.
0: Pulses equal to 8/fc is regarded as signal
1: Pulses equal to 32/fc is regarded as signal (default)
NOTE
The noise rejection function is turned off in the LXT2 and sleep mode.
Bit 3 (NRE): Noise Rejection Enable
0: Disable noise rejection
1: Enable noise rejection (default), but in Low Crystal oscillator (LXT)
mode, the noise rejection circuit is always disabled.
Bits 2 ~ 0 (Protect): Protect Bit
Protect Bits
Protect
0
Enable
1
Disable (default)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 73
EM78P372N
8-Bit Microcontroller with OTP ROM
6.13.2 Code Option Register (Word 1)
Word 1
Bit
Bit 12 Bit 11 Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
RCM1 RCM0 OSC3 OSC2 OSC1 OSC0
Bit 0
Mnemonic
C5
C4
C3
C2
C1
C0
RCOUT
1
High
High
High
High
High
High
High
High
High
High
High
High System_clk
0
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Open_
drain
Bits 12 ~ 7 (C5 ~ C0): Calibrator of internal RC mode C5~C0 must be set to “1” only
(auto-calibration).
Bit 6 ~ 5 (RCM1 ~ RCM0): RC mode selection bits
RCM 1
RCM 0
Frequency (MHz)
1
1
4 (Default)
1
0
16
0
1
8
0
0
1
Bits 4 ~ 1 (OSC3 ~ OSC0): Oscillator Modes Selection bits
Oscillator Modes
OSC3
OSC2
OSC1 OSC0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
3
0
1
0
0
3
0
1
0
1
3
0
1
1
0
3
0
1
1
1
1
1
1
1
1
ERC (External RC oscillator mode);
P55/ERCin acts as ERCin
P70/RCOUT acts as P70
1
ERC (External RC oscillator mode);
P55/ERCin acts as ERCin
P70/RCOUT acts as RCOUT
2
IRC (Internal RC oscillator mode);
P55/ERCin acts as P55
P70/RCOUT acts as P70 (default)
2
IRC (Internal RC oscillator mode);
P55/ERCin acts as P55
P70/RCOUT acts as RCOUT
LXT1 (Frequency range of XT, mode is 100kHz ~ 1 MHz)
HXT1 (Frequency range of XT mode is 12 MHz ~ 16 MHz)
LXT2 (Frequency range of XT mode is 32.768kHz)
HXT2 (Frequency range of XT mode is 6MHz ~ 12 MHz)
3
XT (Frequency range of XT mode is 1 MHz ~ 6 MHz)
1
In ERC mode, ERCin is used as oscillator pin. RCOUT/P70 is defined by code option Word 1
Bit 4 ~ Bit 1.
2
In IRC mode, P55 is normal I/O pin. RCOUT/P70 is defined by code option Word 1 Bit 4 ~ Bit 1.
3
74 •
In LXT1, LXT2, HXT1, HXT2 and XT modes; OSCI and OSCO are used as oscillator pins.
These pins cannot and should not be defined as normal I/O pins.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 0 (RCOUT): Instruction clock output enable bit in IRC or ERC mode.
0: RCOUT pin output instruction clock with open drain.
1: RCOUT pin output instruction clock (default)
6.13.3 Customer ID Register (Word 2)
Word 2
Bit
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Mnemonic
–
–
–
SFS
–
–
–
HLP
–
WDTPS
ID2
ID1
ID0
1
–
–
–
16KHz
–
–
–
High
–
18ms
High
High
High
0
–
–
–
128KHz
–
–
–
Low
–
4.5ms
Low
Low
Low
Bit 12: Not used (reserved). This bit is set to “1” all the time.
Bit 11: Not used, (reserved). This bit is set to “0” all the time.
Bit 10: Not used, (reserved). This bit is set to “1” all the time.
Bit 9 (SFS): Sub-oscillator select for GREEN mode and TCC, PWM1, PWM2 clock
source (Non-include WDT time-out and free run setup-up time)
0: 128kHz
1: 16kHz (default)
Bit 8: Not used, (reserved). This bit is set to “0” all the time.
Bit 7: Not used (reserved). This bit is set to “1” all the time.
Bit 6: Not used (reserved). This bit is set to “1” all the time.
Bit 5 (HLP): Power consumption selection
0: Low power consumption mode, applies to operating frequency at
400kHz or below 400kHz
1: High power consumption mode, applies to operating frequency above
400kHz (default)
(User selects LXT1 or LXT2 in crystal mode, HLP function automatically selects
low)
Bit 4: Not used, (reserved). This bit is set to “1” all the time.
Bit 3 (WDTPS): WDT Time-out Period
WDTPS
Watchdog Timer*
1
18 ms (Default)
0
4.5 ms
*Theoretical values, for reference only.
Bits 2 ~ 0: Customer’s ID code
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 75
EM78P372N
8-Bit Microcontroller with OTP ROM
6.14 Low Voltage Detector/Low Voltage Reset
The Low Voltage Reset (LVR) and the Low Voltage Detector (LVD) are designed for
unstable power situation, such as external power noise interference or in EMS test
condition.
When LVR is enabled, the system supply voltage (Vdd) drops below Vdd reset level
(VRESET) and remains at 10µs, a system reset will occur and the system will remain in
reset status. The system will remain at reset status until Vdd voltage rises above Vdd
release level. Refer to Figure 6-26 LVD/LVR Waveform.
If Vdd drops below the low voltage detector level, /LVD (Bit 7 of RE) is cleared to “0’ to
show a low voltage signal when LVD is enabled. This signal can be used for low
voltage detection.
6.14.1 Low Voltage Reset
LVR property is set at Bits 8 and 7 of Code Option Word 0. Detailed operation mode is
as follows:
Word 0
Bit 12
Bit 11 Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4 Bit 3 Bit 2~Bit 0
TYPE1 TYPE0 WK_CLK CLKS
LVR1
LVR0 RESETEN ENWDT NRHL
NRE
Protect
Bits 8~7 (LVR1 ~ LVR0): Low Voltage Reset Enable bits.
LVR1, LVR0
VDD Reset Level
VDD Release Level
11
10
01
NA (Power-on Reset)
2.7V
3.5V
2.9V
3.7V
00
4.0V
4.2V
6.14.2 Low Voltage Detector
LVD property is set and Register detailed operation mode is as follows:
6.14.2.1 Bank 1 RE (LVD Interrupt and Wake-up Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
LVDIE
LVDEN
LVD1
LVD0
-
-
-
EXWE
NOTE
■ Bank 1 RE< 6 > register is both readable and writable
■ Individual interrupt is enabled by setting its associated control bit in the Bank 1 RE
< 7 > to "1."
■ Global interrupt is enabled by the ENI instruction and is disabled by the DISI
instruction. Refer to Figure 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).
76 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Bit 7 (LVDIE): Low voltage Detector interrupt enable bit.
0: Disable Low voltage Detector interrupt
1: Enable Low voltage Detector interrupt
When the detected low level voltage state is used to enter an interrupt
vector or enter next instruction, the LVDIE bit must be set to “Enable“.
Bit 6 (LVDEN): Low Voltage Detector Enable bit
0: Disable Low voltage detector
1: Enable Low voltage detector
Bits 5 ~ 4 (LVD1 ~ LVD0): Low Voltage Detector level bits.
LVDEN
LVD1, LVD0
1
11
1
10
1
01
1
00
0
××
LVD voltage Interrupt Level
Vdd ≤ 2.2V
Vdd > 2.2V
Vdd ≤ 3.3V
Vdd > 3.3V
Vdd ≤ 4.0V
Vdd > 4.0V
Vdd ≤ 4.5V
Vdd > 4.5V
NA
/LVD
0
1
0
1
0
1
0
1
0
6.14.2.2 Bank 0 RE (Interrupt Status 2 and Wake-up Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
/LVD
LVDIF
ADIF
CMPIF
ADWE
CMPWE
ICWE
LVDWE
NOTE
■ Bank 0 RE < 6, 5, 4 > can be cleared by instruction but cannot be set.
■ Bank 1 RE and IOCE0 is the interrupt mask register.
■ Reading Bank 0 RE will result to "logic AND" of Bank 1 RE and IOCE0.
Bit 7 (/LVD): Low voltage Detector state. This is a read only bit. When the VDD pin
voltage is lower than LVD voltage interrupt level (selected by LVD1 and
LVD0), this bit will be cleared.
0: Low voltage is detected.
1: Low voltage is not detected or LVD function is disabled.
Bit 6 (LVDIF): Low Voltage Detector Interrupt flag
LVDIF is reset to “0” by software or hardware.
Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit.
0: Disable Low Voltage Detect wake-up.
1: Enable Low Voltage Detect wake-up.
When the Low Voltage Detect is used to enter an interrupt vector or to
wake up the IC from Sleep/Idle with Low Voltage Detect running, the
LVDWE bit must be set to “Enable”.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 77
EM78P372N
8-Bit Microcontroller with OTP ROM
6.14.3 Programming Process
Follow these steps to obtain data from the LVD:
1. Write to the two bits (LVD1: LVD0) on the LVDCR register to define the LVD level.
2. Set the LVDWE bit, if the wake-up function is employed.
3. Set the LVDIE bit, if the interrupt function is employed.
4. Write “ENI” instruction, if the interrupt function is employed.
5. Set LVDEN bit to 1
6. Write “SLEP” instruction or Polling /LVD bit.
7. Clear the low voltage detector interrupt flag bit (LVDIF) when Low Voltage Detector
interrupt occurred.
The LVD module uses the internal circuit. When LVDEN (Bit 6 of Bank 1-RE) is set to
“1”, the LVD module is enabled.
When LVDWE (Bit 0 of RE) is set to “1”, the LVD module will continue to operate during
sleep/idle mode. If Vdd drops slowly and crosses the detect point (VLVD), the LVDIF
(Bit 6 of RE) will be set to “1”, the /LVD (Bit 7 of RE) will be cleared to “0”, and the
system will wake up from Sleep/Idle mode. When a system reset occurs, the LVDIF will
be cleared.
When Vdd remains above VLVD, LVDIF is kept at “0” and /LVD is kept at “1”. When
Vdd drops below VLVD, LVDIF is set to “1” and /LVD is kept at “0”. If the ENI instruction
is executed, LVDIF will be set to “1”, and the next instruction will branch to interrupt
Vector 021H. The LVDIF is cleared to “0” by software. Refer to Figure 6-26 below.
LVDIF is cleared by
software
Vdd
VLVD
VRESET
LVDIF
Internal
Reset
<LVR Voltage drop
>LVR Voltage drop
Vdd < Vreset not longer than 10us, the system still keeps on operating
18ms
System occur reset
Figure 6-26 LVD/LVR Waveform
78 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
6.15 Instruction Set
Each instruction in the instruction set is a 13-bit word divided into an OP code and one
or more operands. Normally, all instructions are executed within one single instruction
cycle (one instruction consists of two oscillator time periods), unless the program
counter is changed by instructions "MOV R2,A," "ADD R2,A," or by instructions of
arithmetic or logic operation on R2 (e.g., "SUB R2,A," "BS(C) R2,6," "CLR R2," etc.).
In addition, the instruction set has the following features:
1. Every bit of any register can be set, cleared, or tested directly.
2. The I/O registers can be regarded as general registers. That is, the same instruction
can operate on I/O registers.
The following symbols are used in the Instruction Set table:
Convention:
R = Register designator that specifies which one of the registers (including operation and general
purpose registers) is to be utilized by the instruction.
Bits 6 and 7 in R4 determine the selected register bank.
b = Bit field designator that selects the value for the bit located in the register R and which affects
the operation.
k = 8 or 10-bit constant or literal value
Mnemonic
NOP
DAA
CONTW
SLEP
WDTC
IOW R
ENI
DISI
RET
RETI
CONTR
IOR R
MOV R,A
CLRA
CLR R
SUB A,R
SUB R,A
DECA R
DEC R
OR A,R
OR R,A
Operation
Status Affected
No Operation
Decimal Adjust A
A → CONT
0 → WDT, Stop oscillator
0 → WDT
A → IOCR
Enable Interrupt
Disable Interrupt
[Top of Stack] → PC
[Top of Stack] → PC, Enable Interrupt
CONT → A
IOCR → A
A→R
0→A
0→R
R-A → A
R-A → R
R-1 → A
R-1 → R
A ∨ VR → A
A ∨ VR → R
None
C
None
T, P
T, P
1
None
None
None
None
None
None
1
None
None
Z
Z
Z, C, DC
Z, C, DC
Z
Z
Z
Z
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 79
EM78P372N
8-Bit Microcontroller with OTP ROM
Mnemonic
Operation
Status Affected
SWAP R
JZA R
JZ R
BC R,b
BS R,b
JBC R,b
JBS R,b
CALL k
JMP k
MOV A,k
OR A,k
AND A,k
XOR A,k
RETL k
SUB A,k
BANK k
A&R→A
A&R→R
A⊕R→A
A⊕R→R
A+R→A
A+R→R
R→A
R→R
/R → A
/R → R
R+1 → A
R+1 → R
R-1 → A, skip if zero
R-1 → R, skip if zero
R(n) → A(n-1), R(0) → C, C → A (7)
R(n) → R(n-1), R(0) → C,
C → R(7)
R(n) → A(n+1), R(7) → C,
C → A(0)
R(n) → R(n+1), R(7) → C,
C → R(0)
R(0-3) → A(4-7),
R(4-7) → A(0-3)
R(0-3) ↔ R(4-7)
R+1 → A, skip if zero
R+1 → R, skip if zero
0 → R(b)
1 → R(b)
if R(b)=0, skip
if R(b)=1, skip
PC+1 → [SP], (Page, k) → PC
(Page, k) → PC
k→A
A∨k→A
A&k→A
A⊕k→A
k → A, [Top of Stack] → PC
k-A → A
k →R4(6)
LCALL k
PC+1→[SP], k→PC
None
LJMP k
k→PC
None
TBRD R
Else Bank1 R5.7=1, machine code (12~8) →
AND A,R
AND R,A
XOR A,R
XOR R,A
ADD A,R
ADD R,A
MOV A,R
MOV R,R
COMA R
COM R
INCA R
INC R
DJZA R
DJZ R
RRCA R
RRC R
RLCA R
RLC R
SWAPA R
Z
Z
Z
Z
Z, C, DC
Z, C, DC
Z
Z
Z
Z
Z
Z
None
None
C
C
C
C
None
None
None
None
2
None
3
None
None
None
None
None
None
Z
Z
Z
None
Z, C, DC
None
If Bank1 R5.7=0, machine code (7~0) → R
None
R(4~0), R(7~5)=(0,0,0)
Note: 1 This instruction is applicable to IOC50~IOCF0, IOC51 ~ IOCF1 only.
2
3
80 •
This instruction is not recommended for RF operation.
This instruction cannot operate under RF.
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
7
Absolute Maximum Ratings
Items
8
Rating
Temperature under bias
-40°C
to
85°C
Storage temperature
-65°C
to
150°C
Input voltage
Vss-0.3V
to
Vdd+0.5V
Output voltage
Vss-0.3V
to
Vdd+0.5V
Working Voltage
2.1V
to
5.5V
Working Frequency
DC
to
16 MHz
DC Electrical Characteristics
Ta= 25°C, VDD= 5.0V, VSS= 0V
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
32.768k
4
16
MHz
760
950
1140
kHz
FXT
Crystal: VDD to 5V
Two cycle with two clocks
ERC
ERC: VDD to 5V
R: 5.1KΩ, C: 100 pF
VIH1
Input High Voltage
(Schmitt Trigger)
Ports 5, 6, 7
0.7VDD
−
VDD+0.3
V
VIL1
Input Low Voltage
(Schmitt Trigger)
Ports 5, 6, 7
-0.3V
−
0.3VDD
V
VIHT1
Input High Threshold
Voltage (Schmitt Trigger)
/RESET
−
1.8
−
V
VILT1
Input Low Threshold
Voltage (Schmitt Trigger)
/RESET
−
1.1
−
V
VIHT2
Input High Threshold
Voltage (Schmitt Trigger)
TCC, INT
0.7VDD
−
VDD+0.3
V
VILT2
Input Low Threshold
Voltage (Schmitt Trigger)
TCC, INT
-0.3V
−
0.3VDD
V
IOH1
Output High Voltage
(Ports 5, 6, 7)
−
-3.7
−
IOH2
Output High Voltage
(Ports 51~54,
56~57,60~67)
IOL1
Output Low Voltage
(Ports 5, 6, 7)
IOL2
Output Low Voltage
(Ports 51~54,
56~57,60~67)
VOH = 0.9VDD
mA
−
-10
−
−
10
−
VOL = 0.1VDD
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
mA
−
25
−
• 81
EM78P372N
8-Bit Microcontroller with OTP ROM
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
Ta= 25°C
2.41
2.7
2.99
V
Ta= -40~85°C
2.14
2.7
3.25
V
Ta= 25°C
3.1
3.5
3.92
V
Ta= -40~85°C
2.73
3.5
4.25
V
Ta= 25°C
3.56
4.0
4.43
V
Ta= -40~85°C
3.16
4.0
4.81
V
LVR1
Low voltage reset level
LVR2
Low voltage reset level
LVR3
Low voltage reset level
IPH
Pull-high current
Pull-high active, input pin at VSS
−
70
−
µA
IPL
Pull-low current
Pull-low active, input pin at Vdd
−
40
−
µA
ISB1
Power down current
All input and I/O pins at VDD,
Output pin floating, WDT disabled
−
1.0
2.0
µA
ISB2
Power down current
All input and I/O pins at VDD,
Output pin floating, WDT enabled
−
−
10
µA
ICC1
Operating supply current
at two clocks (VDD = 3V)
/RESET= 'High', Fosc=32.768kHz
(Crystal type, CLKS="0"),
Output pin floating, WDT disabled
−
15
20
µA
ICC2
Operating supply current
at two clocks (VDD = 3V)
/RESET= 'High', Fosc=32.768kHz
(Crystal type,CLKS="0"),
Output pin floating, WDT enabled
−
15
25
µA
ICC3
Operating supply current
at two clocks
/RESET= 'High', Fosc=4 MHz
(Crystal type, CLKS="0"),
Output pin floating, WDT enabled
−
1.5
1.7
mA
ICC4
Operating supply current
at two clocks
/RESET= 'High', Fosc=10 MHz
(Crystal type, CLKS="0"),
Output pin floating, WDT enabled
−
2.8
3.0
mA
Note: 1. These parameters are hypothetical (not tested) and are provided for design reference
use only.
2. Data under Minimum, Typical, and Maximum (Min., Typ., and Max.) columns are based
on hypothetical results at 25°C. These data are for design reference only.
Internal RC Electrical Characteristics (Ta=25°C, VDD=5 V, VSS=0V)
Internal RC
Drift Rate
Temperature
Voltage
Min.
Typ.
Max.
4 MHz
25°C
5V
3.92 MHz
4 MHz
4.08 MHz
16 MHz
25°C
5V
15.68 MHz
16 MHz
16.32 MHz
1 MHz
25°C
5V
0.98 MHz
1 MHz
1.02 MHz
8 MHz
25°C
5V
7.84 MHz
8 MHz
8.16 MHz
Internal RC Electrical Characteristics (Ta=-40 ~ 85°C, VDD=2.1 ~ 5.5 V, VSS=0V)
Drift Rate
Internal RC
82 •
Temperature
Voltage
Min.
Typ.
Max.
4 MHz
-40°C ~85°C
2.1V~5.5V
3.80 MHz
4 MHz
4.20 MHz
16 MHz
-40°C ~85°C
2.1V~5.5V
15.2 MHz
16 MHz
16.8 MHz
1 MHz
-40°C ~85°C
2.1V~5.5V
0.95 MHz
1 MHz
1.05 MHz
8 MHz
-40°C ~85°C
2.1V~5.5V
7.60 MHz
8 MHz
8.40 MHz
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
8.1 AD Converter Characteristics
Vdd=5V, Vss=0V, Ta= 25°C
Symbol
VAREF
VASS
VAI
Parameter
Analog reference voltage
Ivref
Analog supply current
Ivdd
IAI2
IVref
Min.
Typ.
2.5
−
Vdd
V
Vss
−
Vss
V
−
VASS
−
VAREF
V
VAREF=VDD=5.0V,
VASS=0.0V, FS*1=100kHz,
FIN*1=1kHz
(VREF is internal VDD)
VAREF=VDD=5.0V,
VASS=0.0V, FS*1=100kHz,
FIN*1=1kHz
(VREF is external VREF pin)
−
−
1400
µA
−
−
10
µA
−
−
900
µA
−
−
500
µA
−
12
−
Bits
VAREF - VASS ≥ 2.5V
Analog input voltage
Ivdd
IAI1
Condition
Analog supply current
−
Max. Unit
RN
Resolution
INL
Integral Nonlinearity
VAREF=VDD=5.0V
VASS=0.0V, FS*1=100kHz,
*1
FIN =1kHz
−
−
±4
LSB
DNL
VAREF=VDD=5.0V
Differential nonlinear error VASS=0.0V, FS*1=100kHz,
FIN*1=1kHz
−
−
±1
LSB
FSE
Full scale error
VAREF=VDD=5.0V
VASS=0.0V, FS*1=100kHz
−
−
±8
LSB
OE
Offset error
VAREF= Vdd=5.0V
VASS=0.0V, FS*1=100kHz
−
−
±4
LSB
ZAI
External impedance of
ADC input channel.
−
−
10
KΩ
0.5
−
−
µs
2
−
−
µs
4
−
−
µs
16
−
−
µs
VDD=2.5~5.5V,
VASS = 0.0V
14
−
24
TAD
VDD=2.5~5.5V, VASS=0.0V
0.5
−
−
TAD
−
−
2
LSB
−
±3
−
%
TAD
Tsh
TCN
Period of ADC clock
Sample and Hold Time
AD conversion time
(Include S/H Time)
TADD1
AD delay time between
setting “ADRUN” and
starting 1st TAD
PSRR
Power Supply Rejection
Ratio
V1/4VDD
Accuracy for 1/4 VDD
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
−
VDD=3~5.5V, VASS = 0.0V,
FIN*1=1kHz
VDD=2.5~3V, VASS = 0.0V,
*1
FIN =1kHz
VDD=3~5.5V,
VASS = 0.0V, Ta=25°C
VDD=2.5~3V,
VASS = 0.0V, Ta=25°C
VAREF= 2.5V,
VAREF=2.5V, VASS=0V,
*1
*1
VIN =0V~2.5V, FS =25kHz
• 83
EM78P372N
8-Bit Microcontroller with OTP ROM
Note:
1. FS is Sample Rate, that is to say, conversion rate. FIN is freq. of input test sine wave
2. The parameters are theoretical values and have not been tested. Such parameters are
for design reference only.
3. There is no current consumption when ADC is off other than minor leakage current.
4. AD conversion result will not decrease with an increase of input voltage and no missing
code.
5. These parameters are subject to change without further notice.
8.2 Comparator Characteristics
Vdd = 5.0V, Vss=0V, Ta = 25°C
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
VOS
Input offset voltage
−
−
−
10
mV
Vcm
Input common-mode
voltage range
−
GND
−
VDD
V
ICO
Supply current of
comparator
Co=0V, Ta= -40~85C
−
160
−
uA
TRS
Response time
VREF=1.0V, VRL=5V,
RL=5.1k, CL=15p (Note1)
−
1
−
us
TLRS
Large signal response VREF=2.5V, VRL = 5V,
2
time
RL = 5.1k (Note )
−
250
−
ns
−
12
−
mA
−
0.2
0.4
V
IOL
Output sink current
VSAT
Saturation voltage
Vi(-) = 1V, Vi(+) = 0V,
3
Vo = GND+0.5V (Note )
Vi(-)=1V, Vi(+)=0V,
3
IOL <= 4mA (Note )
Note: 1. These parameters are hypothetical (not tested) and provided for design reference use
only.
2. The response time specified is at 0V~VDD input step with 1/2*VDD overdrive.
3. The driving ability is determined by the digital output block.
84 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
8.3 OP Characteristics
Vdd = 5.0V, Vss=0V, Ta= 25°C
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
VOS
Input offset voltage
Vin+=0V
−
−
10
mV
SR
Slew rate
Ta= -40~85°C
−
1.5
−
V/µs
IVR
Input voltage range
0
−
5
V
−
123
−
mV
−
4.68
−
V
−
Vip=0V,IL=1.0mA
OVS
Output voltage swing
Ta= -40~85°C
Vip=5V, IL=1.0mA
Ta= -40~85°C
IOP
Supply current of OP
Ta= -40~85°C
−
255
−
µA
PSRR
Power supply rejection ratio Ta= -40~85°C
−
75
−
dB
CMRR Common mode reject ratio
0V≦VCM≦VDD
−
90
−
dB
GBP
RL=1Meg, CL=100p
−
2.6
−
MHz
Gain bandwidth product
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 85
EM78P372N
8-Bit Microcontroller with OTP ROM
8.4 VREF 2V/3V/4V Characteristics
Vdd = 5.0V, Vss=0V, Ta= -40 to 85°C
Symbol
Parameter
VDD
Power Supply
IVDD
DC Supply
Current
Vref
Accuracy for Vref
Condition
Min.
Typ.
Max.
Unit
–
2.1
−
5.5
V
No load
−
−
250
µA
2V, 3V, 4V
−
±1
1.75
%
−
30
50
µs
−
Vref + 0.2*
−
V
VDD=VDDmin - 5.5V,
Warn
Time ready for
Cload = 19.2pf
up time voltage reference
Rload=15.36KΩ
VDDmin
Minimum
Power Supply
−
*VDDmin : can work at (Vref+0.1V), but will have a poor PSRR.
8.5 Device Characteristics
The graphs provided in the following pages were derived based on a limited
number of samples and are shown here for reference only. The device
characteristics illustrated herein are not guaranteed for its accuracy. In some
graphs, the data maybe out of the specified warranted operating range.
3.5
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at 85℃
3.0
Vih/Vil (V)
2.5
2.0
VIH
VIL
1.5
1.0
0.5
0.0
2.3
3.0
3.5
4.0
VDD (V)
4.5
5.0
5.5
Figure 8-1 (a) Vih/Vil vs VDD @ 85°C
86 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
3.5
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at 70℃
3.0
Vih/Vil (V)
2.5
2.0
VIH
VIL
1.5
1.0
0.5
0.0
2.1
2.3
3.0
3.5
4.0
VDD (V)
4.5
5.0
5.5
Figure 8-1 (b) Vih/Vil vs VDD @ 70°C
3.5
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at 25℃
3.0
Vih/Vil (V)
2.5
2.0
VIH
VIL
1.5
1.0
0.5
0.0
2.1
2.3
3.0
3.5
4.0
VDD (V)
4.5
5.0
5.5
Figure 8-1 (c) Vih/Vil vs VDD @ 25°C
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 87
EM78P372N
8-Bit Microcontroller with OTP ROM
3.5
P5/P6/P7 Vih/Vil vs VDD ( Input pin with schmit inverter) at 0℃
3.0
Vih/Vil (V)
2.5
2.0
VIH
VIL
1.5
1.0
0.5
0.0
2.1
2.3
3.0
3.5
4.0
VDD (V)
4.5
5.0
5.5
Figure 8-1 (d) Vih/Vil vs VDD @ 0°C
3.5
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at -40℃
3.0
Vih/Vil (V)
2.5
2.0
VIH
VIL
1.5
1.0
0.5
0.0
2.3
3.0
3.5
4.0
VDD (V)
4.5
5.0
5.5
Figure 8-1 (e) Vih/Vil vs VDD @ -40°C
88 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
P5/P6/P7 Ioh1 vs Voh at VDD=5V
0
Ioh1 (mA)
-5
-10
85℃
25℃
-40℃
-15
-20
-25
0.5
1.0
1.5
2.0
2.5
3.0
Voh (V)
3.5
4.0
4.5
Figure 8-2 (a) Voh vs Ioh1, VDD=5V
P5/P6/P7 Ioh1 vs Voh at VDD=3V
0
Ioh1 (mA)
-2
-4
85℃
25℃
-40℃
-6
-8
-10
0.3
0.6
0.9
1.2
1.5
1.8
Voh (V)
2.1
2.4
2.7
Figure 8-2 (b) Voh vs Ioh1, VDD=3V
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 89
EM78P372N
8-Bit Microcontroller with OTP ROM
P51~P54,P56~P57/P60~P67 Ioh2 vs Voh at VDD=5V
0
Ioh2 (mA)
-10
-20
85℃
25℃
-40℃
-30
-40
-50
0.5
1.0
1.5
2.0
2.5
3.0
Voh (V)
3.5
4.0
4.5
Figure 8-2 (c) Voh vs Ioh2, VDD=5V
P51~P54,P56~P57/P60~P67 Ioh2 vs Voh at VDD=3V
0
Ioh2 (mA)
-5
85℃
-10
25℃
-40℃
-15
-20
-25
0.3
0.6
0.9
1.2
1.5
1.8
Voh (V)
2.1
2.4
2.7
Figure 8-2 (d) Voh vs Ioh2, VDD=3V
90 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
P5/P6/P7 Iol1 vs Vol at VDD=5V
60
50
Iol1 (mA)
40
85℃
30
25℃
-40℃
20
10
0
0.5
1.0
1.5
2.0
2.5
3.0
Vol (V)
3.5
4.0
4.5
Figure 8-2 (e) Vol vs Iol1, VDD=5V
P5/P6/P7 Iol1 vs Vol at VDD=3V
35
30
Iol1 (mA)
25
85℃
20
25℃
-40℃
15
10
5
0
0.3
0.6
0.9
1.2
1.5
1.8
Vol (V)
2.1
2.4
2.7
Figure 8-2 (f) Vol vs Iol1, VDD=3V
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 91
EM78P372N
8-Bit Microcontroller with OTP ROM
P51~P54,P56~P57/P60~P63 Iol2 vs Vol at VDD=5V
120
105
Iol2 (mA)
90
75
85℃
25℃
60
-40℃
45
30
15
0
0.5
1.0
1.5
2.0
2.5
3.0
Vol (V)
3.5
4.0
4.5
Figure 8-2 (g) Vol vs Iol2, VDD=5V
P51~P54,P56~P57/P60~P63 Iol2 vs Vol at VDD=3V
60
50
Iol2 (mA)
40
85℃
25℃
30
-40℃
20
10
0
0.3
0.6
0.9
1.2
1.5
1.8
Vol (V)
2.1
2.4
2.7
Figure 8-2 (h) Vol vs Iol2, VDD=3V
92 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
P5/P6 IPH vs Temperature at VDD=3V&5V
0
-10
-20
IPH (uA)
-30
-40
3.0V
5.0V
-50
-60
-70
-80
-90
-100
-40
-20
0
25
50
70
85
Temperature(℃)
Figure 8-3 (a) IPH vs Temperature
P5 IPL vs Temperature at VDD=3V&5V
50
IPL(uA)
40
30
3.0V
5.0V
20
10
0
-40
-20
0
25
50
Temperature(℃)
70
85
Figure 8-3 (b) IPL vs Temperature
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 93
EM78P372N
8-Bit Microcontroller with OTP ROM
Typical ICC1 and ICC2 vs Temperature at VDD=5V
31.0
30.0
29.0
Current(uA)
28.0
27.0
ICC1
ICC2
26.0
25.0
24.0
23.0
22.0
21.0
-40
-20
0
25
50
Temperature (℃)
70
85
Figure 8-4 (a) Typical Operating Current ICC1/ICC2 vs Temperature (VDD=5V)
Typical ICC1 and ICC2 vsTemperature at VDD=3V
14.5
14.0
Current(uA)
13.5
13.0
ICC1
ICC2
12.5
12.0
11.5
11.0
10.5
-40
-20
0
25
50
Temperature(℃)
70
85
Figure 8-4 (b) Typical Operating Current ICC1/ICC2 vs Temperature (VDD=3V)
94 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
Typical ICC3 and ICC4 vs Temperature at VDD=5V
3.5
3.0
Current (mA)
2.5
2.0
ICC3
ICC4
1.5
1.0
0.5
0.0
-40
-20
0
25
50
Temperature (℃)
70
85
Figure 8-4 (c) Typical Operating Current ICC3/ICC4 vs Temperature (VDD=5V)
Typical ICC3 and ICC4 vs Temperature at VDD=3V
2.5
Current(mA)
2.0
1.5
ICC3
ICC4
1.0
0.5
0.0
-40
-20
0
25
50
Temperature(℃)
70
85
Figure 8-4 (d) Typical Operating Current ICC3/ICC4 vs Temperature (VDD=3V)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 95
EM78P372N
8-Bit Microcontroller with OTP ROM
3.0
P5 Wake-up time vs VDD when Sleep to Normal in XTAL Mode(4MHz)
2.5
Time(ms)
2.0
85℃
1.5
25℃
-40℃
1.0
0.5
0.0
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-5 (a) Sleep Wake-up Time vs Operating Voltage (XTAL=4MHz)
3.5
P5 Wake-up time vs VDD when Sleep to Normal in IRC Mode(4MHz)
Time(us)
3.3
3.1
85℃
25℃
-40℃
2.9
2.7
2.5
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-5 (b) Sleep Wake-up Time vs Operating Voltage (IRC=4 MHz)
96 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
3.0
P5 Wake-up time vs VDD when Idle to Normal in XTAL Mode(4MHz)
2.5
Time(ms)
2.0
85℃
1.5
25℃
-40℃
1.0
0.5
0.0
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-5 (c) Idle Wake-up Time vs Operating Voltage (XTAL=4 MHz)
3.5
P5 Wake-up time vs VDD when Idle to Normal in IRC Mode(4MHz)
Time(us)
3.3
3.1
85℃
25℃
-40℃
2.9
2.7
2.5
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-5 (d) Idle Wake-up Time vs Operating Voltage (IRC=4 MHz)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 97
EM78P372N
8-Bit Microcontroller with OTP ROM
WDT Time_out Period vs VDD in Normal in Crystal mode(4MHz)
35.0
30.0
Time(ms)
25.0
85℃
20.0
25℃
15.0
-40℃
10.0
5.0
0.0
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-6 (a) WDT Timer Time Out vs Operating Voltage (XTAL=4 MHz)
WDT Time_out Period vs VDD in Normal in IRC mode(4MHz)
35.0
30.0
Time(ms)
25.0
85℃
20.0
25℃
15.0
-40℃
10.0
5.0
0.0
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-6 (b) WDT Timer Time Out vs Operating Voltage (IRC=4 MHz)
98 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
35.0
Power On Reset Time vs VDD in Normal in XTAL Mode(4MHz)
30.0
Time(ms)
25.0
20.0
85℃
25℃
15.0
-40℃
10.0
5.0
0.0
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-7 (a) Power-on Reset Time vs Operating Voltage (XTAL=4 MHz)
35.0
Power On Reset Time vs VDD in Normal in IRC Mode(4MHz)
30.0
Time(ms)
25.0
20.0
85℃
25℃
15.0
-40℃
10.0
5.0
0.0
2.3
3.0
3.5
4.0
VDD(V)
4.5
5.0
5.5
Figure 8-7 (b) Power-on Reset Time vs Operating Voltage (IRC=4 MHz)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 99
EM78P372N
8-Bit Microcontroller with OTP ROM
Typical ICO vs Temperature
220
Current (uA)
200
180
ICO at 3V
160
ICO at 5V
140
120
100
-40
-20
0
25
50
70
85
Temperature (℃)
Figure 8-8 ICMP vs Temperature
Typical IAI1 and IAI2 vs Temperature
1.6
1.4
Current (mA)
1.2
1.0
IAI1_Ivdd
0.8
IAI2_Ivdd
0.6
IAI2_Ivref
0.4
0.2
0.0
-40
-20
0
25
50
Temperature (℃)
70
85
Figure 8-9 AD Current vs Temperature
100 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
LVR Level vs Temperature
5.0
4.5
VDD (V)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-40
-20
0
25
50
70
Temperature(℃)
4.0release
3.5reset
2.7release
1.8reset
4.0reset
2.7reset
85
3.5release
1.8release
Figure 8-10 LVR Level vs Temperature
Comparator of Offset voltage vs Temperature
6.0
Offset voltage (mV)
5.0
4.0
0.1V
2.5V
3.0
4.9V
2.0
1.0
0.0
-40
-20
0
25
50
Temperature(℃)
70
85
Figure 8-11 CMP Offset voltage vs Temperature (V+ is variable)
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 101
EM78P372N
8-Bit Microcontroller with OTP ROM
9
AC Electrical Characteristics
Ta=25°C, VDD=5V ± 5%, VSS=0V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Dclk
Input CLK duty cycle
–
45
50
55
%
Tins
Instruction cycle time
(CLKS="0")
Crystal type
125
–
DC
ns
Tpor
Delay Time after
Power-On-Reset release
FSS0=1
(16kHz)
–
16 ± 30%
–
ms
Crystal type
–
WSTO + 510/Fm
–
Delay time after
µs
–
WSTO + 8/Fs
–
us
–
WSTO + 8/Fm
–
µs
–
WSTO + 8/Fs
–
µs
/Reset, WDT, and LVR
release
Trstrl
IRC type
Trsth1
Hold Time after /RESET
pin reset
–
–
1 µs
–
–
Trsth2
Hold Time after LVR
pin reset
–
–
1 µs
–
–
Twdt
Watchdog timer time-out
FSS0=1 (16kHz)
–
16 ± 30%
–
ms
Tset
Input pin setup time
–
–
0
–
ns
Thold
Input pin hold time
–
15
20
25
ns
Tdelay
Output pin delay time
Cload=20 pF
Rload=1MΩ
–
20
–
ns
Note: 1. WSTO: The waiting time of Start-to-Oscillation
2. These parameters are hypothetical (not tested) and are provided for design reference
only.
3. Data under minimum, typical, and maximum (Min., Typ. and Max.) columns are based
on hypothetical results at 25°C. These data are for design reference use only.
*. Tpor and Twdt are 16 ± 30% ms at FSS0=1(16kHz), Ta=-40°~85°C, and VDD=2.1~5.5V
102 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
10 Timing Diagrams
AC Test Input / Output Waveform
Note: AC Testing: Input is driven at VDD-0.5V for Logic “1”, and GND+0.5V for Logic “0”
Timing measurements are made at 0.75V for Logic “1”, and 0.25VDD for Logic “0”
Figure 10-1a AC Test Input / Output Waveform Timing Diagram
Reset Timing (CLK = "0")
Figure 10-1b Reset Timing Diagram
TCC Input Timing (CLKS = "0")
Figure 10-1c TCC Input Timing Diagram
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 103
EM78P372N
8-Bit Microcontroller with OTP ROM
APPENDIX
A
104 •
Ordering and Manufacturing Information
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
B
Package Type
OTP MCU
Package Type
Pin Count
Package Size
MSOP
10
118 mil
EM78P372ND14J/S
DIP
14
300 mil
EM78P372NSO14J/S
SOP
14
150 mil
EM78P372NSO16AJ/S
SOP
16
150 mil
EM78P372ND18J/S
DIP
18
300 mil
EM78P372NSO18J/S
SOP
18
300 mil
EM78P372ND20J/S
DIP
20
300 mil
EM78P372NSO20J/S
SOP
20
300 mil
EM78P372NSS20J/S
SSOP
20
209 mil
QFN
16
3*3*0.8mm
EM78P372NMS10J/S
EM78P372NQN16S
For product code "J".
These are Green products and complies with RoHS specifications
Part No.
EM78P372NxJ/xS
Electroplate type
Pure Tin
Ingredient (%)
Sn: 100%
Melting point (°C)
232°C
Electrical resistivity
(µΩ-cm)
11.4
Hardness (hv)
8~10
Elongation (%)
>50%
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 105
EM78P372N
8-Bit Microcontroller with OTP ROM
C
Packaging Configuration
C.1
EM78P372ND14
Figure C-1 EM78P372N 14-pin PDIP Package Type
106 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
C.2
EM78P372NSO14
Figure C-2 EM78P372N 14-pin SOP Package Type
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 107
EM78P372N
8-Bit Microcontroller with OTP ROM
C.3
EM78P372NSO16A
Symbal
A
A1
A2
b
c
E
H
D
L
e
θ
b
Min
1.350
0.100
1.300
0.330
0.190
3.800
5.800
9.800
0.600
Normal
Max
1.750
0.250
1.500
0.510
0.250
4.000
6.200
10.000
1.270
1.400
1.27(TYP)
0
8
e
A2
c
TITLE:
SOP-16L(150MIL) PACKAGE OUTLINE
DIMENSION
File :
NSO16
Edtion: A
Unit : mm
Scale: Free
Material:
Sheet:1 of 1
Figure C-3 EM78P372N 16-pin SOP Package Type
108 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
C.4
EM78P372ND18
Figure C-4 EM78P372N 18-pin PDIP Package Type
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 109
EM78P372N
8-Bit Microcontroller with OTP ROM
C.5
EM78P372NSO18
Symbol
A
A1
b
c
E
H
D
L
e
θ
b
Min.
2.350
0.102
Normal
Max.
2.650
0.300
0.406 (TYP)
0.230
7.400
10.000
11.350
0.406
0
0.838
1.27 (TYP)
0.320
7.600
10.650
11.750
1.270
8
e
c
File:
SO18
Edtion : A
Unit : mm
Scale: Free
Material:
Sheet: 1 of 1
Figure C-5 EM78P372N 18-pin SOP Package Type
110 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
EM78P372ND20
A1
A2
C.6
Figure C-6 EM78P372N 20-pin PDIP Package Type
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 111
EM78P372N
8-Bit Microcontroller with OTP ROM
C.7
EM78P372NSO20
Symbol
A
A1
b
c
E
H
D
L
e
θ
b
Min.
2.350
0.102
0.230
7.400
10.000
12.600
0.630
0
Normal
Max.
2.650
0.300
0.406 (TYP.)
0.320
7.600
10.650
12.900
0.838
1.100
1.27 (TYP.)
8
e
c
TITLE:
SOP-20L(300MIL) PACKAGE
OUTLINE DIMENSION
File:
Edtion : A
SO20
Unit : mm
Scale: Free
Material:
Sheet: 1 of 1
Figure C-7 EM78P372N 20-pin SOP Package Type
112 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
EM78P372NSS20
b
Symbol
A
A1
A2
b
c
E
E1
D
L
L1
e
θ
E
E1
C.8
e
Min.
Normal
Max.
2.130
0.050
0.250
1.620
1.750
1.880
0.220
0.380
0.090
0.200
7.400
7.800
8.200
5.000
5.300
5.600
6.900
7.200
7.500
0.650
0.750
0.850
1.250 (REF )
0.650 (TYP)
0
4
8
A2
c
L1
File:
SSOP20
Edtion : A
Unit : mm
Scale: Free
Material:
Sheet: 1 of 1
Figure C-8 EM78P372N 20-pin SSOP Package Type
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 113
EM78P372N
8-Bit Microcontroller with OTP ROM
C.9
EM78P372NMS10
Figure B-9 EM78P372N 10-pin MSOP Package Type
Figure C-9 EM78P372N 10-pin MSOP Package Type
114 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
EM78P372N
8-Bit Microcontroller with OTP ROM
C.10
EM78P372NQN16
Figure C-10 EM78P372N 16-pin QFN Package Type
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)
• 115
EM78P372N
8-Bit Microcontroller with OTP ROM
C
Quality Assurance and Reliability
Test Category
Solderability
Test Conditions
Remarks
Solder temperature=245 ± 5°C, for 5 seconds up to the
stopper using a rosin-type flux
−
Step 1: TCT, 65°C (15mins)~150°C (15mins), 10 cycles
Step 2: Bake at 125°C, TD (durance)=24 hrs
Step 3: Soak at 30°C / 60% , TD (durance)=192 hrs
For SMD IC (such as
SOP, QFP, SOJ, etc)
Step 4: IR flow 3 cycles
Pre-condition
(Pkg thickness ≥ 2.5mm or
Pkg volume ≥ 350mm3 − 225 ± 5°C)
(Pkg thickness ≤ 2.5mm or
Pkg volume ≤ 350mm3 − 240 ± 5°C )
Temperature cycle test
-65° (15mins)~150°C (15mins), 200 cycles
−
Pressure cooker test
TA =121°C, RH=100%, pressure=2 atm,
TD (durance) = 96 hrs
−
High temperature /
High humidity test
TA=85°C , RH=85% , TD (durance)=168 , 500 hrs
−
High-temperature
storage life
TA=150°C, TD (durance)=500, 1000 hrs
−
High-temperature
operating life
TA=125°C, VCC=Max. operating voltage,
TD (durance) =168, 500, 1000 hrs
−
Latch-up
TA=25°C, VCC=Max. operating voltage, 800mA/40V
−
ESD (HBM)
TA=25°C, ≥ | ± 4KV |
IP_ND,OP_ND,IO_ND
IP_NS,OP_NS,IO_NS
IP_PD,OP_PD,IO_PD,
ESD (MM)
TA=25°C, ≥ | ± 400V |
IP_PS,OP_PS,IO_PS,
VDD-VSS(+),VDD_VSS
(-)mode
C.1 Address Trap Detect
An address trap detect is one of the MCU embedded fail-safe functions that detects
MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an
instruction from a certain section of ROM, an internal recovery circuit is auto started. If
a noise-caused address error is detected, the MCU will repeat execution of the
program until the noise is eliminated. The MCU will then continue to execute the next
program.
116 •
Product Specification (V1.3) 01.06.2015
(This specification is subject to change without prior notice)