Rcaflga_jLmrc R caflga_jL Single-chip Type with built-in FET Switching Regulator Series Flexible Step-down Switching Regulators with Built-in Power MOSFET BD9778F, BD9778HFP, BD9001F, BD9781HFP No.10027EBT41 Overview The flexible step-down switching regulator controller is a switching regulator controller designed with a high-withstand-voltage built-in POWER MOS FET, providing a free setting function of operating frequency with external resistor. This switching regulator controller features a wide input voltage range (7 V to 35 V or 7 V to 48 V) and operating temperature range (-40˚C to +125˚C or -40˚C to +95˚C). Furthermore, an external synchronization input pin (BD9781HFP) enables synchronous operation with external clock. Features 1) 2) 3) 4) 5) 6) 8) 9) 10) 11) 12) 13) 14) 15) Minimal external components Wide input voltage range: 7 V to 35 V (BD9778F/HFP and BD9781HFP), 7 V to 48 V (BD9001F) Built-in P-ch POWER MOS FET Output voltage setting enabled with external resistor: 1 to VIN Reference voltage accuracy: ±2% Wide operating temperature range: -40˚C to +125˚C (BD9778F/HFP and BD9781HFP), -40˚C to +95˚C (BD9001F) Low dropout: 100% ON Duty cycle Standby mode supply current: 0 µA (Typ.) (BD9778F/HFP and BD9781HFP), 4 µA (Typ.) (BD9001F) Oscillation frequency variable with external resistor: 50 to 300 kHz (BD9001F), 50 to 500 kHz (BD9778F/HFP and BD9781HFP) External synchronization enabled (only on the BD9781HFP) Soft start function : soft start time fixed to 5 ms (Typ.)) Built-in overcurrent protection circuit Built-in thermal shutdown protection circuit High power HRP7 package mounted (BD9778HFP and BD9781HFP) Compact SOP8 package mounted (BD9778F and BD9001F) Applications All fields of industrial equipment, such as Flat TV , printer, DVD, car audio, car navigation, and communication such as ETC, AV, and OA. Product lineup Item Output current Input range Oscillation frequency range External synchronization Standby function Operating temperature Package BD9778F/HFP 2A 7V ~ 35V 50 ~ 500kHz Not provided Provided -40˚C ~ +125˚C SOP8 / HRP7 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. BD9001F 2A 7V ~ 48V 50 ~ 300kHz Not provided Provided -40˚C ~ +95˚C SOP8 1/16 BD9781HFP 4A 7V ~ 35V 50 ~ 500kHz Provided Provided -40˚C ~ +125˚C HRP7 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Absolute Maximum Ratings(Ta = 25˚C) Parameter BD9778F/HFP,BD9781HFP Power supply BD9001F voltage Output switch pin voltage Output switch current Limits 36 50 VIN 2 4 VIN 7 5.5 0.69 -40 ~ +125 -40 ~ +95 -55 ~ +150 150 VIN VSW BD9778F/HFP, BD9001F BD9781HFP ISW VEN/SYNC,VEN VRT,VFB,VINV EN/SYNC, EN pin voltage RT, FB, INV pin voltage Power dissipation Symbol HRP7 Pd SOP8 Operating temperature BD9778F/HFP,BD9781HFP range BD9001F Storage temperature range Maximum junction temperature Topr Tstg Tjmax Unit V V *1 *1 A V *2 *3 W ˚C ˚C ˚C *1 Should not exceed Pd-value. *2 Reduce by 44mW/°C over 25°C, when mounted on 2-layer PCB of 70 X 70 X 1.6 mm3. (PCB incorporates thermal via. Copper foil area on the front side of PCB: 10.5 X 10.5 mm2. Copper foil area on the reverse side of PCB: 70 X 70 mm2) *3 Reduce by 5.52 mW/°C over 25°C, when mounted on 2-layer PCB of 70 X 70 X 1.6 mm3. Recommended operating range Parameter Operating power supply voltage Output switch current Output voltage (ON Duty) Oscillation frequency Oscillation frequency set resistance BD9778F/HFP 7 ~ 35 ~2 6 ~ 100 50 ~ 500 40 ~ 800 BD9001F 7 ~ 48 ~2 6 ~ 100 50 ~ 300 100 ~ 800 BD9781HFP 7 ~ 35 ~4 6 ~ 100 50 ~ 500 39 ~ 800 Unit V A % kHz kΩ BD9778F/HFP 5 ~ 35 BD9001F 7 ~ 48 BD9781HFP 5 ~ 35 Unit V Possible operating range Parameter Operating power supply voltage Electrical characteristics BD9778F/HFP (Unless otherwise specified, Ta = -40˚C to +125˚C, VIN =13.2 V, VEN = 5 V) Parameter Symbol ISTB Standby circuit current IQ Circuit current [SW block] RON POWER MOS FET ON resistance IOLIMIT Operating output current of overcurrent protection IOLEAK Output leak current [Error Amp block] VREF1 Reference voltage 1 VREF2 Reference voltage 2 ∆VREF Reference voltage input regulation IB Input bias current VFBH Maximum FB voltage VFBL Minimum FB voltage IFBSINK FB sink current IFBSOURCE FB source current TSS Soft start time [Oscillator block] FOSC Oscillation frequency ∆FOSC Frequency input regulation [Enable block] VEN Threshold voltage IEN Sink current Min. - Limits Typ. Max. 0 10 3 4.2 Unit Condition µA mA VEN=0V,Ta=25˚C IO=0A 2 - 0.53 4 0 0.9 30 Ω A µA ISW=50mA * Design assurance VIN=35V,VEN=0V 0.98 0.96 -1 2.4 -5.0 70 - 1.00 1.00 0.5 2.5 0.05 -3.0 120 5 1.02 1.04 0.10 -0.5 170 - V V % µA V V mA µA mS VFB=VINV,Ta=25˚C VFB=VINV VIN=5 ~ 35V VINV=1.1V VINV=0.5V VINV=1.5V VFB=1.5V,VINV=1.5V VFB=1.5V,VINV=0.5V * Design assurance 82 - 102 1 122 - kHz % RT=390kΩ VIN=5 ~ 35V 0.8 - 1.7 13 2.6 50 V µA VEN=5V * Not designed to be radiation-resistant. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 2/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP BD9001F (Unless otherwise specified, Ta=-40˚C ~ +95˚C,VIN=13.2V, VEN=5V) Parameter Symbol Standby circuit current ISTB IQ Circuit current [SW block] RON POWER MOS FET ON resistance IOLIMIT Operating output current of overcurrent protection [Error Amp block] VREF1 Reference voltage 1 VREF2 Reference voltage 2 ∆VREF Reference voltage input regulation IB Input bias current VFBH Maximum FB voltage VFBL Minimum FB voltage IFBSINK FB sink current IFBSOURCE FB source current Soft start time Tss [Oscillator block] FOSC Oscillation frequency ∆FOSC Frequency input regulation [Enable block] VEN Threshold voltage IEN Sink current Min. - Limits Typ. Max. 4 10 3 4.2 Unit µA mA Condition VEN=0V,Ta=25˚C IO=0A 2.5 0.6 4 1.2 - Ω A ISW=50mA * Design assurance 0.98 0.96 -1 2.4 -5.0 70 - 1.00 1.00 0.5 2.5 0.05 -3.0 120 5 1.02 1.04 0.10 -0.5 170 - V V % µA V V mA µA ms VFB=VINV,Ta=25˚C VFB=VINV VIN=7 ~ 48V VINV=1.1V VINV=0.5V VINV=1.5V VFB=1.5V,VINV=1.5V VFB=1.5V,VINV=0.5V * Design assurance 82 - 102 2 122 - kHz % RT=390kΩ VIN=7 ~ 48V 0.8 - 1.7 13 2.6 50 V µA VEN =5V * Not designed to be radiation-resistant. BD9781HFP (Unless otherwise specified, Ta=-40˚C ~ +125˚C,VIN=13.2V,VEN/SYNC=5V) Parameter Symbol ISTB Standby circuit current IQ Circuit current [SW block] RON POWER MOS FET ON resistance IOLIMIT Operating output current of overcurrent protection IOLEAK Output leak current [Error Amp block] Reference voltage1 VREF1 VREF2 Reference voltage2 ∆VREF Reference voltage input regulation IB Input bias current VFBH Maximum FB voltage VFBL Minimum FB voltage IFBSINK FB sink current IFBSOURCE FB source current TSS Soft start time [Oscillator block] FOSC Oscillation frequency ∆FOSC Frequency input regulation [Enable/Synchronizing input block] VEN/SYNC Threshold voltage IEN/SYNC Sink current FSYNC External synchronizing frequency Min. - Limits Typ. Max. 0 10 8 3 Unit Condition µA mA VEN/SYNC=0V,Ta=25ºC IO=0A 4 - 0.5 8 0 0.9 30 Ω A µA ISW=50mA * Design assurance VIN=35V,VEN/SYNC=0V 0.98 0.97 -1 2.4 -5.0 70 - 1.00 1.00 0.5 2.5 0.05 -3.0 120 5 1.02 1.03 0.10 -0.5 170 - V V % µA V V mA µA mS VFB=VINV,Ta=25ºC VFB=VINV VIN=5 ~ 35V VINV=1.1V VINV=0.5V VINV=1.5V VFB=1.5V,VINV=1.5V VFB=1.5V,VINV=0.5V * Design assurance 82 - 102 1 122 - kHz % RT=390kΩ VIN=5 ~ 35V 0.8 - 1.7 35 150 2.6 90 - V µA kHz VEN/SYNC=5V FEN/SYNC=150kHz * Not designed to be radiation-resistant. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Reference data 1.010 1.005 1.000 0.995 0.990 0.985 -25 0 25 50 75 100 10 39kΩ 500 400 91kΩ 300 200 390kΩ 100 910kΩ 0 -50 125 AMBIENT TEMPERATURE : Ta[Ŋ] 25 50 7 6 125Ŋ 5 VCC=12V Istb=0.14µA 4 3 2 1 0 100 125 75 25Ŋ 0 5 10 15 20 25 -40Ŋ 30 35 40 INPUT VOLTAGE : VIN[V] Fig.2 Frequency vs. Ambient temperature(All series) Fig.3 Standby current(BD9781HFP) 40 10 4 STAND-BY CURRENT : ISTB[µA] 8 7 6 125Ŋ 5 VCC=12V Istb=0.14µA 4 3 2 1 25Ŋ 30 25Ŋ –40Ŋ 20 10 CIRCUIT CURRENT : ICC[mA] 125Ŋ 9 STAND-BY CURRENT : ISTB[µA] 0 8 AMBIENT TEMPERATURE : Ta[Ŋ] Fig.1 Output reference voltage vs. Ambient temprature(All series) 0 -25 9 STAND-BY CURRENT : ISTB[µA] 1.015 0.980 -50 600 OSCILLATING FREQUENCY : fosc[kHz] REFERENCE VOLTAGE : VREF[V] 1.020 2 1 -40Ŋ 0 0 5 Dpmkrfcrmn* -40Ŋ 25Ŋ 125Ŋ 3 10 15 20 25 30 INPUT VOLTAGE : VIN[V] 35 0 40 Fig.4 Standby current(BD9778F/HFP) 10 20 30 40 50 60 5 10 15 20 25 30 35 40 INPUT VOLTAGE : VIN[V] Fig.5 Standby current(BD9001F) Fig.6 Circuit current(BD9781HFP) 1.8 4 4 0 INPUT VOLTAGE : VIN[V] 2 1 0 0 5 10 15 20 25 30 INPUT VOLTAGE : VIN[V] 35 3 Dpmkrfcrmn* 125Ŋ -40Ŋ 25Ŋ 2 1 0 40 20 30 40 50 INPUT VOLTAGE : VIN[V] 1.4 1.2 1.0 0.4 0.2 Fig.9 ON resistance VIN=5V(BD9781HFP) 1.6 1.2 1.0 0.8 Ta=125Ŋ Ta=25Ŋ 0.6 0.4 Ta=-40Ŋ 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 OUTPUT CURRENT : IO[A] Fig.10 ON resistance VIN=7V (BD9781HFP) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1.2 1.0 0.8 Ta=25Ŋ 0.6 Ta=125Ŋ 0.4 Ta=-40Ŋ 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 FET ON RESISTANCE : RON[Ω] 1.8 1.6 FET ON RESISTANCE : RON[Ω] 1.8 1.6 1.4 Ta=25Ŋ Ta=-40Ŋ 0.6 1.8 1.4 Ta=125Ŋ 0.8 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 OUTPUT CURRENT : IO[A] 60 Fig.8 Circuit current(BD9001F) Fig.7 Circuit current(BD9778F/HFP) FET ON RESISTANCE : RON[Ω] 10 FET ON RESISTANCE : RON[Ω] CIRCUIT CURRENT : ICC[mA] CIRCUIT CURRENT : ICC[mA] 1.6 Dpmkrfcrmn* -40Ŋ 25Ŋ 125Ŋ 3 1.4 1.2 Ta=125Ŋ 1.0 Ta=25Ŋ 0.8 Ta=-40Ŋ 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 OUTPUT CURRENT : IO[A] OUTPUT CURRENT : IO[A] Fig.11 ON resistanceVIN=13.2V (BD9781HFP) Fig.12 ON resistance VIN=5V (BD9778F/HFP) 4/16 2010.02 - Rev. B Technical Note 1.8 1.6 1.6 1.6 1.2 1.0 0.8 Ta=125Ŋ 0.6 Ta=25Ŋ Ta=-40Ŋ 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 OUTPUT CURRENT : IO[A] 1.0 0.8 Ta=125Ŋ 0.6 Ta=25Ŋ 0.4 100 1.6 90 1.2 Ta=125Ŋ 1.0 Ta=25Ŋ 0.8 0.6 Ta=–40Ŋ 0.4 0.2 0.0 0.5 1 1.5 2 OUTPUT CURRENT : IO[A] 0.8 Ta=125Ŋ 0.6 Ta=25Ŋ 0.4 Ta=–40Ŋ 0.2 0 80 3.3V output 70 2.5V output 60 50 40 30 20 0.5 1 1.5 2 OUTPUT CURRENT : IO[A] 2.5 Fig.15 ON resistance VIN=7V (BD9001F) 5V output 3.3V output 90 80 70 60 2.5V output 1.5V output 50 40 30 20 10 0.5 1.0 1.5 2.0 2.5 OUTPUT CURRENT : IO[A] 0 3.0 0 1.5 0.5 1.0 OUTPUT CURRENT : IO[A] 2.0 Fig.16 ON resistance VIN=13.2V Fig.17 IO vs Efficiency(VIN=12V,f=200kHz) Fig.18 IO vs Efficiency(VIN=12V,f=100kHz) (BD9001F) ý(BD9781HFP) ý(BD9778F/HFP) 100 6 6 5V output 90 Ta=25Ŋ 80 OUTPUT VOLTAGE : VO[V] CONVERSION EFFICIENCY [%] 1.0 100 5V output 0 0.0 2.5 1.2 2.5 10 0 1.4 0.0 0.5 1.0 1.5 2.0 OUTPUT CURRENT : IO[A] Fig.14 ON resistance VIN=13.2V (BD9778F/HFP) 1.8 1.4 Ta=-40Ŋ 0.2 3.3V output 70 2.5V output 60 50 40 30 20 10 0 0 0.4 0.8 1.2 1.6 OUTPUT CURRENT : IO[A] 2 Ta=25Ŋ Ta=-40Ŋ 5 5 OUTPUT VOLTAGE : VO[V] FET ON RESISTANCE : RON[Ω] 1.2 0.0 0.0 2.5 Fig.13 ON resistance VIN=7V (BD9778F/HFP) 1.4 CONVERSION EFFICIENCY [%] 1.4 FET ON RESISTANCE : RON[Ω] 1.8 FET ON RESISTANCE : RON[Ω] 1.8 CONVERSION EFFICIENCY [%] FET ON RESISTANCE : RON[Ω] BD9778F, BD9778HFP, BD9001F, BD9781HFP 4 Ta=125Ŋ 3 2 1 0 0 1 2 3 4 5 6 OUTPUT CURRENT : IO[A] 7 4 Ta=-40Ŋ Ta=125Ŋ 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT : IO[A] 5 Fig.19 IO vs Efficiency(VIN=12V,f=100kHz) Fig.20 Current capacitance(VIN=12V,Vo=5V,f=100kHz) Fig.21 Current capacitance(VIN=12V,Vo=5V,f=100kHz) ý(BD9001F) (BD9781HFP) (BD9778F/HFP) OUTPUT VOLTAGE : VO[V] 6 Ta=25Ŋ 5 Ta=-40Ŋ 4 Ta=125Ŋ 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT : IO[A] 5 Fig.22 Current capacitance(VIN=12V,Vo=5V,f=100kHz) (BD9001F) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Block diagram / Application circuit / Pin assignment (BD9778F) (BD9778HFP) PVIN 8 EN VIN 220µF 1µF 220µF 23kΩ INV 10kΩ GND EN PVIN RT SW DRIVER 33µH VO 10kΩ 2 RESET TSD OSC - PWM COMPARATOR LATCH + 150kΩ Vref 4700pF + + 5 LATCH + 150kΩ ERROR AMP INV PWM COMPARATOR - Vref SOFT START 23kΩ + + L:OFF H:ON 1µF Vref ERROR AMP 4 7 ON/OFF 1 L:OFF H:ON SOFT START EN VIN 5 ON/OFF 1 4700pF TSD OSC 330µF 330µF VIN + - SW INV VIN FB + - CURRENT LIMIT CURRENT LIMIT 7 GND 3 FB RT VIN SW FB FB INV EN GND RT RT 6 390kΩ 390kΩ 0.1µF Fig.23 Fig.24 Function Power supply input Output Error Amp output Output voltage feedback Enable Frequency setting resistor connection Ground Power system power supply input Pin name VIN SW FB INV EN RT GND PVIN 4 GND 3 6 0.1µF No. 1 2 3 4 5 6 7 FIN Pin name VIN SW FB GND INV RT EN - Function Power supply input Output Error Amp output Ground Output voltage feedback Frequency setting resistor connection Enable Ground (BD9781HFP) (BD9001F) EN/ SYNC VIN 8 220µF VIN 7 ON/OFF 1 L:OFF H:ON 1µF 220µF SOFT START 1µF 23kΩ INV INV + + 10kʎ - PWM COMPARATOR LATCH + 150kʎ SW 33 µH PWM COMPARATOR LATCH 33µH 2 TSD OSC 4700pF TSD GND EN VIN RT + - + CURRENT LIMIT 330µF VIN 330µF VIN N.C. INV SW FB SW DRIVER RESET Vref 1 RESET OSC + 150kΩ VO Vref 4700pF + + 10kΩ DRIVER SYNC ERROR AMP 6 ERROR AMP 4 Vref SOFT START Vref 23kʎ CURRENT LIMIT 7 4 GND 5 GND FB 3 RT 3 FB 6 RT VIN RT FB EN/SINC SW GND INV 0.1µF 0.1µF Pin name SW N.C. FB INV EN RT GND VIN 390kΩ 390kʎ Fig.25 No. 1 2 3 4 5 6 7 8 VO 2 VIN No. 1 2 3 4 5 6 7 8 33µH SW DRIVER RESET Vref Fig.26 No. 1 2 3 4 5 6 7 FIN ýýýýýýFunction Output Non Connection Error Amp Output Output voltage feedback Enable Frequency setting resistor connection Ground Power supply input www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 6/16 Pin name VIN SW RT GND FB INV EN/SYNC - Function Power supply input Output Frequency setting resistor connection Ground Error Amp output Output voltage feedback Enable/Synchronizing pulse input Ground 2010.02 - Rev. B VO BD9778F, BD9778HFP, BD9001F, BD9781HFP Technical Note Description of operations ERROR AMP The ERROR AMP block is an error amplifier used to input the reference voltage (1 V typ.) and the INV pin voltage. The output FB pin controls the switching duty and output voltage Vo. These INV and FB pins are externally mounted to facilitate phase compensation. Inserting a capacitor and resistor between these pins enables adjustment of phase margin. (Refer to recommended examples on page 11.) SOF T START The SOFT START block provides a function to prevent the overshoot of the output voltage Vo through gradually increasing the normal rotation input of the error amplifier when power supply turns ON to gradually increase the switching Duty. The soft start time is set to 5 msec (Typ.). ON/OFF(BD9778F/HF P,BD9781HFP) Setting the EN pin to 0.8 V or less makes it possible to shut down the circuit. Standby current is set to 0 µA (Typ.). Furthermore, on the BD9781HFP, applying a pulse having a frequency higher than set oscillation frequency to the EN/SYNC pin allows for external synchronization (up to +50% of the set frequency). PWM COM PARATOR The PWM COMPARATOR block is a comparator to make comparison between the FB pin and internal triangular wave and output a switching pulse. The switching pulse duty varies with the FB value and can be set in the range of 0 to 100%. OSC(Oscillator) The OSC block is a circuit to generate a triangular wave that is to be input in the PWM comparator. Connecting a resistor to the RT pin enables setting of oscillation frequency. TSD(Thermal Shut Down) In order to prevent thermal destruction/thermal runaway of this IC, the TSD block will turn OFF the output when the chip temperature reaches approximately 150˚C or more. When the chip temperature falls to a specified level, the output will be reset. However, since the TSD is designed to protect the IC, the chip junction temperature should be provided with the thermal shutdown detection temperature of less than approximately 150˚C. CURREN T LIMIT While the output POWER P-ch MOS FET is ON, if the voltage between drain and source (ON resistance ¥ load current) exceeds the reference voltage internally set with the IC, this block will turn OFF the output to latch. The overcurrent protection detection values have been set as shown below: BD9781HFP . . . 8A(Typ.) BD9001F,BD9778F/HFP . . . 4A(Typ.) Furthermore, since this overcurrent protection is an automatically reset, after the output is turned OFF and latched, the latch will be reset with the RESET signal output by each oscillation frequency. However, this protection circuit is only effective in preventing destruction from sudden accident. It does not support for the continuous operation of the protection circuit (e.g. if a load, which significantly exceeds the output current capacitance, is normally connected). Furthermore, since the overcurrent protection detection value has negative temperature characteristics, consider thermal design. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 7/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Timing chart (BD9781HFP) - While in basic operation mode VIN Internal OSC FB SW EN/SYNC Fig.27 - While in overcurrent protection mode IO Internal OSC FB SW Output short circuit Auto reset Auto reset Auto reset Auto reset Fig.28 External synchronizing function (BD9781HFP) In order to activate the external synchronizing function, connect the frequency setting resistor to the RT pin and then input a synchronizing signal to the EN/SYNC pin. As the synchronizing signal, input a pulse wave higher than a frequency determined with the setting resistor (RT). On the BD9781HFP, design the frequency difference to be within 50%. Furthermore, set the pulse wave duty between 10% and 90%. FSYNC : For RT only Internal OSC : For external synchronization Fig.29 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 8/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Description of external components L VIN VO SW VIN + C Cin Di CO R1 INV RT RT CT R2 FB SS CC GND RC CSS Fig.30 Design procedure Calculation example Vo = Output voltage, Vin (Max.) = Maximum input voltage Io (Max.) = Maximum load current, f = Oscillation frequency 1. Setting or output voltage Output voltage can be obtained by the formula shown below. When Vo = 5 V and R2 = 10 kΩ , VO=1 x (1+R1/R2) 5=1 x (1+R1/10kΩ) Use the formula to select the R1 and R2. Furthermore, set the R2 to 30 kΩ or less. Select the current passing through the R1 and R2 to be small enough for the output current. R1=40kΩ 2. Selection of coil (L) The value of the coil can be obtained by the formula shown below: When VIN = 13.2 V, Vo = 5 V, Io = 2 A, and f = 100 kHz, L=(13.2-5) x 5/13.2 x 1/100k x 1/(2 x 0.3) =51.8µH 47µ L=(VIN-VO) x VO / (VIN x f x ∆IO) ∆IO: Output ripple current f = Operating frequency ∆Io should typically be approximately 20 to 30% of Io. If this coil is not set to the optimum value, normal (continuous) oscillation may not be achieved. Furthermore, set the value of the coil with an adequate margin so that the peak current passing through the coil will not exceed the rated current of the coil. 3. Selection of output capacitor (Co) The output capacitor can be determined according to the output ripple voltage ∆Vo (p-p) required. Obtain the required ESR value by the formula shown below and then select the capacitance. L=47µH VIN=13.2V, Vo=5V, L=100µH, f=100kHz ∆IL=(13.2-5) x 5/(100 x 10-6 x 100 x 103 x 13.2) 0.31 ∆IL=0.31A ∆IL=(VIN-VO) x VO/(L x f x VIN) ∆Vpp=∆IL x ESR+(∆IL x Vo)/(2 x Co x f x VIN) Set the rating of the capacitor with an adequate margin to the output voltage. Also, set the maximum allowable ripple current with an adequate margin to ∆IL. Furthermore, the output rise time should be shorter than the soft start time. Select the output capacitor having a value smaller than that obtained by the formula shown below. 3.5m x (ILimit-Io(Max)) CMax= When ILimit: 2 A, Io (Max) = 1 A, and Vo = 5V, CMax=3.5m x (2-1)/5 =700µ Vo ILimit:2A(BD9778F/HFP,BD9001F), 4A(BD9781HFP) If this capacitance is not optimum, faulty startup may result. CMax=700µF (Ţ3.5m is soft start time(min.)) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 9/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Design procedure Calculation example 4. Selection of diode Set diode rating with an adequate margin to the maximum load current. Also, make setting of the rated inverse voltage with an adequate margin to the maximum input voltage. A diode with a low forward voltage and short reverse recovery time will provide high efficiency. 5. Selection of input capacitor Two capacitors, ceramic capacitor CIN and bypass capacitor C, should be inserted between the VIN and GND.Be sure to insert a ceramic capacitor of 1 to 10 µF for the C. The capacitor C should have a low ESR and a significantly large ripple current. The ripple current IRMS can be obtained by the following formula: When VIN = 36 V and Io = (max.) 2 A, Select a diode of rated current of 2 A or more and rated withstand voltage of 36 V or more. When VIN = 13.2 V, Vo = 5 V, and Io = 1 A, IRMS=1 X 5 X (13.2-5)/(13.2)2 =0.485 IRMS=IO X VO X (Vin-VO)/ Vin2 Select capacitors that can accept this ripple current. If the capacitance of CIN and C is not optimum, the IC may malfunction. IRMS=0.485A 6. Setting of oscillation frequency Referring Fig. 34 and Fig. 35 on the following page, select R for the oscillation frequency to be used. Furthermore, in order to eliminate noises, be sure to connect ceramic capacitors of 0.1 to 1.0 µF in parallel. 7. Setting of phase compensation (Rc and Cc) The phase margin can be set through inserting a capacitor or a capacitor and resistor between the INV pin and the FB pin. Each set value varies with the output coil, capacitance, I/O voltage, and load. Therefore, set the phase compensation to the optimum value according to these conditions. (For details, refer to Application circuit on page 11.) If this setting is not optimum, output oscillation may result. * The set values listed above are all reference values. On the actual mounting of the IC, the characteristics may vary with the routing of wirings and the types of parts in use. In this connection, it is recommended to thoroughly verify these values on the actual system prior to use. Directions for pattern layout of PCB 1 GND RT 2 C R3 Cx1 C3 8 EN RT INV GND FB SW VIN BD9778HFP CT 3 SIGNAL GND Cin 8 L Co NMUCP GND L O A D R2 R1 4 Cx2 5 6 Fig.31 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 10/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Cin C Cin Di C Cx2 R2 C3 R3 C3 Co Cx2 R2 RT CT Cx1 Di R1 RT CT Cx1 R3 L L R1 Co Fig.32 BD9001F reference layout pattern Fig.33 BD9781HFP reference layout pattern Ţ As shown above, design the GND pattern as large area as possible within inner layer. Ţ Gray zones indicate GND. 300 OSCILATING FREQUENCY : fosc[kHz] OSCILATING FREQUENCY : fosc[kHz] 500 450 400 350 300 250 200 150 100 250 200 150 100 50 50 100 50 0 100 200 300 400 500 600 700 800 200 300 400 500 600 700 800 OSCILATING FREQUENCY SETTING RESISTANCE : RT[kΩ] OSCILATING FREQUENCY SETTING RESISTANCE : RT [kΩ] Fig.34 RT vs fOSC (BD9781HFP/BD9778F/HFP) Fig.35 RT vs fOSC &BD9001F' ŢMqagjj_rgmldpcosclaw%qep_nft_jscgq Rwnga_jt_jsc* mqagjj_rgmldpcosclawgqlcacqq_pwrmamlqgbcpĺ0.#_qbgqncpqgml, Phase compensation setting procedure 1. Application stability conditions The following section describes the stability conditions of the negative feedback system. Since the DC/DC converter application is sampled according to the switching frequency, GBW (frequency at 0-dB gain) of the overall system should be set to 1/10 or less of the switching frequency. The following section summarizes the targeted characteristics of this application. Ă At a 1 (0-dB) gain, the phase delay is 150˚ or less (i.e., the phase margin is 30˚ or more). Ă The GBW for this occasion is 1/10 or less of the switching frequency. Responsiveness is determined with restrictions on the GBW. To improve responsiveness, higher switching frequency should be provided. Replace a secondary phase delay (-180˚) with a secondary phase lead by inserting two phase leads, to ensure the stability through the phase compensation. Furthermore, the GBW (i.e., frequency at 0-dB gain) is determined according to phase compensation capacitance provided for the error amplifier. Consequently, in order to reduce the GBW, increase the capacitance value. (1) Typical integrator (Low pass filter) (2) Open loop characteristics of integrator (a) A FB + Feedback A R -20dB/decade Gain [dB] GBW(b) 0 - f 0 Phase -90 [˚] C -180 -90˚ Phase margin -180˚ f Since the error amplifier is provided with (1) or (2) phase compensation, the low pass filter is applied. In the case of the DC/DC converter application, the R becomes a parallel resistance of the feedback resistance. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 11/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP 2. For output capacitors having high ESR, such as electrolyte capacitor For output capacitors that have high ESR (i.e., several Ω), the phase compensation setting procedure becomes comparatively simple. Since the DC/DC converter application has a LC resonant circuit attached to the output, a -180˚ phase-delay occurs in that area. If ESR component is present, howeve r, a +90˚ phase-lead occurs to shift the phase delay to -90˚. Since the phase delay should be set within 150˚, it is a very effective method but tends to increase the ripple component of the output voltage. (1) LC resonant circuit (2) With ESR provided VCC VCC L L VO ) VO + RESR ( C 1 fr = C [Hz] At this resonance point, a -180˚ phase-delay occurs. A -90˚ phase-delay occurs. According to changes in phase characteristics, due to the ESR, only one phase lead should be inserted. For this phase lead, select either of the methods shows below: (3) Insert feedback resistance in the C. (4) Insert the R3 in integrator. VO VO C1 R3 C2 R1 C2 R1 - - FB A R2 FB A + INV + INV R2 To cancel the LC resonance, the frequency to insert the phase lead should be set close to the LC resonant frequency. The settings above have are estimated. Consequently, the settings may be adjusted on the actual system. Furthermore, since these characteristics vary with the layout of PCB loading conditions, precise calculations should be made on the actual system. 3. For output capacitors having low ESR, such as low impedance electrolyte capacitor or OS-CON In order to use capacitors with low ESR (i.e., several tens of mΩ), two phase-leads should be inserted so that a -180˚ phase-delay, due to LC resonance, will be compensated. The following section shows a typical phase compensation procedure. (1) Phase compensation with secondary phase lead VO R3 R1 C2 C1 FB A + INV R2 To set phase lead frequency, insert both of the phase leads close to the LC resonant frequency. According to empirical rule, setting the phase lead frequency f Z2 with R3 and C2 lower than the LC resonant frequency fr, and the phase lead frequency fZ1 with the R1 and C1 higher than the LC resonant frequency fr, will provide stable application conditions. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP <Reference> Measurement of open loop of DC/DC converter To measure the open loop of DC/DC converter, r use the gain phase analyzer or FRA A to measure the frequency characteristics. DC/DC converter controller <Procedure> 1. Check to ensure output causes no oscillation at the maximum load in closed loop. 2. Isolate (1) and (2) and insert Vm (with amplitude of approximately 100 mVpp). 3. Measure (probe) the oscillation of (1) to that of (2). VO + Vm ~ RL Maximum load Load 0 Inadequate phase margin Output voltage Adequate phase margin t Furthermore, the phase margin can also be measured with the load responsiveness. Measure variations in the output voltage when instantaneously changing the load from no load to the maximum load. Even though ringing phenomenon is caused, due to low phase margin, no ringing takes place. Phase margin is provided. However, no specific phase margin can be probed. Heat loss ºC ºC The heat loss W of the IC can be obtained by the formula shown below: Vo W=Ron X Io2 X + VIN X ICC + Tr X VIN X Io X f VIN Ron: ON resistance of IC (refer to pages 4 and 5.) Io: Load current Vo: Output voltage VIN: Input voltage Icc: Circuit current (Refer to pages 2 and 3) Tr: Switching rise/fall time (Approximately 40 nsec) f : Oscillation frequency Tr 1 VIN 1 Ron X Io2 1 1 X Tr X X VIN X Io T 2 =Tr X VIN X Io X f 2 2X SW waveform GND 2 T= 1 f www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 13/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP SW RT VIN FB&BD9778F/HFP, BD9781HFP ' VREF VIN INV VREF VREF VIN VIN 50kΩ VIN SW FB INV 10kΩ 1kΩ 1kΩ 300kΩ RT 2kΩ EN&BD9778F/HFP, BD9001F ' FB&BD9001F' EN/SYNC&BD9781HFP' VREF VREGA VIN VIN VIN EN FB 1kΩ 300kΩ 1kΩ 2kΩ EN/SYNC 250kΩ 222 kΩ 221 kΩ 145 kΩ 139 kΩ Fig.36 Equivalent circuit Notes for use 1) Absolute maximum ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses. Furthermore, don't turn on the IC with a fast rising edge of VIN. ( rise time << 10V / µsec ) 2) GND potential GND potential should maintain at the minimum ground voltage level. Furthermore, no terminals should be lower than the GND potential voltage including an electric transients. 3) Thermal design Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. 4) Inter-pin shorts and mounting errors Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuits power lines. 5) Operation in strong electromagnetic field Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction. 6) Inspection with set printed circuit board When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC. Resistor Transistor (NPN) (Pin A) B (Pin A) (Pin B) E C Parasitic element GND GND N P+ P+ P+ P N (PIN B) N N P layer P+ P N N N P layer Parasitic element C B E GND Parasitic element GND GND Fig.37 Typical simple construction of monolithic IC www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 14/16 Parasitic element 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP 7) IC pin input (Fig. 37) This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows: When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When Pin B > GND > Pin A, the P-N junction operates as a parasitic transistor. Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage toan input pin, should not be used. 8) Ground wiring pattern It is recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB, so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Prevent fluctuations in the GND wiring pattern of external parts. 9) Temperature protection (thermal shut down) circuit This IC has a built-in temperature protection circuit to prevent the thermal destruction of the IC. As described above, be sure to use this IC within the power dissipation range. Should a condition exceeding the power dissipation range continue, the chip temperature Tj will rise to activate the temperature protection circuit, thus turning OFF the output power element. Then, when the tip temperature Tj falls, the circuit will be automatically reset. Furthermore, if the temperature protection circuit is activated under the condition exceeding the absolute maximum ratings, do not attempt to use the temperature protection circuit for set design. 10) On the application shown below, if there is a mode in which VIN and each pin potential are inverted, for example, if the VIN is short-circuited to the Ground with external diode charged, internal circuits may be damaged. To avoid damage, it is recommended to insert a backflow prevention diode in the series with VIN or a bypass diode between each pin and VIN. Bypass diode Backflow prevention diode Vcc Pin Fig.35 Thermal derating characteristics SOP8 10 0.8 9 0.7 8 NMUCPBGQQGN?RGML ăPD[W] NMUCPBGQQGN?RGML ăPD[W] HRP7 ᰔ7.3W 7 6 ᰓ5.5W 5 4 3 ᰒ2.3W 2 1 0 ᰑ1.4W 25 50 75 100 125 0.5 0.4 0.3 0.2 BD9778F BD9001F 0.1 0 25 50 75 100 125 150 ᰑ Single piece of IC ᰒ When mounted on ROHM standard PCB 3 PCB size: 70 x 70 x 1.6 mm (PCB incorporates thermal via.) Copper foil area on the front side of PCB: 10.5 x 10.5 mm2 ᰒ 2-layer PCB (Copper foil area on the reverse side of PCB: 15 x 15 mm2) ᰓ 2-layer PCB (Copper foil area on the reverse side of PCB: 70 x 70 mm2) ᰔ 4-layer PCB (Copper foil area on the reverse side of PCB: 70 x 70 mm2) (Glass epoxy PCB of 70 mm x 70 mm x 1.6 mm) Fig.39 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. ᰑ ?K@GCLRRCKNCP ?RSP CăR_ĪŊī ?K@GCLRRCKNCP ?RSP CăR_ĪŊī ᰑ Single piece of IC 0.6 0 150 ᰒ Fig.40 15/16 2010.02 - Rev. B Technical Note BD9778F, BD9778HFP, BD9001F, BD9781HFP Selection of order type B D 9 Part No. 7 7 8 H F - P Package F = SOP8 HFP = HRP7 Part No. 9778 = 36V/2A 9781 = 36V/4A 9001 = 50V/2A T R Taping type E2 = Reel-type embossed carrier tape (SOP8) TR = Reel-type embossed carrier tape (HRP7) SOP8 <Tape and Reel information> 7 6 5 6.2±0.3 4.4±0.2 0.3MIN 8 +6° 4° −4° 0.9±0.15 5.0±0.2 (MAX 5.35 include BURR) 1 2 3 Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 4 0.595 1.5±0.1 +0.1 0.17 -0.05 S S 0.11 0.1 1.27 0.42±0.1 Direction of feed 1pin Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. HRP7 <Tape and Reel information> 1.017±0.2 9.395±0.125 (MAX 9.745 include BURR) 8.82±0.1 1.905±0.1 Tape Embossed carrier tape Quantity 2000pcs 0.08±0.05 0.8875 Direction of feed TR The direction is the 1pin of product is at the upper right when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1pin +5.5° 4.5° −4.5° +0.1 0.27 -0.05 0.73±0.1 1.27 10.54±0.13 0.835±0.2 1 2 3 4 5 6 7 1.523±0.15 (7.49) 8.0±0.13 (5.59) 0.08 S S Direction of feed (Unit : mm) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Reel 16/16 ∗ Order quantity needs to be multiple of the minimum quantity. 2010.02 - Rev. B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. R1010A