RENESAS R8C2E

REJ09B0349-0100
16
R8C/2E Group, R8C/2F Group
Hardware Manual
RENESAS MCU
R8C FAMILY / R8C/2x SERIES
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Technology Corp. without notice. Please review the latest information published
by Renesas Technology Corp. through various means, including the Renesas Technology
Corp. website (http://www.renesas.com).
Rev.1.00
Revision Date: Dec 14, 2007
www.renesas.com
Notes regarding these materials
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of Renesas or any third party with respect to the information in
this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com )
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
light of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
products are not designed, manufactured or tested for applications or otherwise in systems the failure or
malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
especially high quality and reliability such as safety systems, or equipment or systems for transportation and
traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
transmission. If you are considering the use of our products for such purposes, please contact a Renesas
sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other applicable measures. Among others, since the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
high. You should implement safety measures so that Renesas products may not be easily detached from your
products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.
General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.
1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation
with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.
2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register
settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.
3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do
not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.
4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external
oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.
5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may
differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.
How to Use This Manual
1.
Purpose and Target Readers
This manual is designed to provide the user with an understanding of the hardware functions and electrical
characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic
knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.
The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral
functions, and electrical characteristics; and usage notes.
Particular attention should be paid to the precautionary notes when using the manual. These notes occur
within the body of the text, at the end of each section, and in the Usage Notes section.
The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer
to the text of the manual for details.
The following documents apply to the R8C/2E Group, R8C/2F Group. Make sure to refer to the latest versions of
these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web
site.
Document Type
Datasheet
Description
Document Title
Document No.
Hardware overview and electrical characteristics R8C/2E, R8C/2F
REJ03B0222
Group Datasheet
This hardware
R8C/2E Group,
Hardware manual Hardware specifications (pin assignments,
manual
R8C/2F Group
memory maps, peripheral function
Hardware Manual
specifications, electrical characteristics, timing
charts) and operation description
Note: Refer to the application notes for details on
using peripheral functions.
Software manual Description of CPU instruction set
R8C/Tiny Series
REJ09B0001
Software Manual
Available from Renesas
Application note Information on using peripheral functions and
Technology Web site.
application examples
Sample programs
Information on writing programs in assembly
language and C
Renesas
Product specifications, updates on documents,
technical update etc.
2.
Notation of Numbers and Symbols
The notation conventions for register names, bit names, numbers, and symbols used in this manual are described
below.
(1)
Register Names, Bit Names, and Pin Names
Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word
“register,” “bit,” or “pin” to distinguish the three categories.
Examples the PM03 bit in the PM0 register
P3_5 pin, VCC pin
(2)
Notation of Numbers
The indication “b” is appended to numeric values given in binary format. However, nothing is appended to the
values of single bits. The indication “h” is appended to numeric values given in hexadecimal format. Nothing
is appended to numeric values given in decimal format.
Examples Binary: 11b
Hexadecimal: EFA0h
Decimal: 1234
3.
Register Notation
The symbols and terms used in register diagrams are described below.
XXX Register
b7
b6
b5
b4
b3
*1
b2
b1
b0
Symbol
XXX
0
Bit Symbol
XXX0
Address
XXX
Bit Name
XXX bits
XXX1
After Reset
00h
Function
RW
1 0: XXX
0 1: XXX
1 0: Do not set.
1 1: XXX
RW
RW
(b2)
Nothing is assigned. If necessary, set to 0.
When read, the content is undefined.
(b3)
Reserved bits
Set to 0.
RW
XXX bits
Function varies according to the operating
mode.
RW
XXX4
*3
XXX5
WO
XXX6
RW
XXX7
XXX bit
*2
b1 b0
0: XXX
1: XXX
*4
RO
*1
Blank: Set to 0 or 1 according to the application.
0: Set to 0.
1: Set to 1.
X: Nothing is assigned.
*2
RW: Read and write.
RO: Read only.
WO: Write only.
−: Nothing is assigned.
*3
• Reserved bit
Reserved bit. Set to specified value.
*4
• Nothing is assigned
Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.
• Do not set to a value
Operation is not guaranteed when a value is set.
• Function varies according to the operating mode.
The function of the bit varies with the peripheral function mode. Refer to the register diagram for information
on the individual modes.
4.
List of Abbreviations and Acronyms
Abbreviation
ACIA
bps
CRC
DMA
DMAC
GSM
Hi-Z
IEBus
I/O
IrDA
LSB
MSB
NC
PLL
PWM
SFR
SIM
UART
VCO
Full Form
Asynchronous Communication Interface Adapter
bits per second
Cyclic Redundancy Check
Direct Memory Access
Direct Memory Access Controller
Global System for Mobile Communications
High Impedance
Inter Equipment Bus
Input / Output
Infrared Data Association
Least Significant Bit
Most Significant Bit
Non-Connect
Phase Locked Loop
Pulse Width Modulation
Special Function Registers
Subscriber Identity Module
Universal Asynchronous Receiver / Transmitter
Voltage Controlled Oscillator
All trademarks and registered trademarks are the property of their respective owners.
Table of Contents
SFR Page Reference ........................................................................................................................... B - 1
1.
Overview ......................................................................................................................................... 1
1.1
1.1.1
1.1.2
1.2
1.3
1.4
1.5
2.
Features ..................................................................................................................................................... 1
Applications .......................................................................................................................................... 1
Specifications ........................................................................................................................................ 2
Product List ............................................................................................................................................... 6
Block Diagram ......................................................................................................................................... 8
Pin Assignment .......................................................................................................................................... 9
Pin Functions ........................................................................................................................................... 11
Central Processing Unit (CPU) ..................................................................................................... 12
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.8.8
2.8.9
2.8.10
3.
Data Registers (R0, R1, R2, and R3) ......................................................................................................
Address Registers (A0 and A1) ...............................................................................................................
Frame Base Register (FB) .......................................................................................................................
Interrupt Table Register (INTB) ..............................................................................................................
Program Counter (PC) .............................................................................................................................
User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) ..................................................................
Static Base Register (SB) ........................................................................................................................
Flag Register (FLG) ................................................................................................................................
Carry Flag (C) .....................................................................................................................................
Debug Flag (D) ...................................................................................................................................
Zero Flag (Z) .......................................................................................................................................
Sign Flag (S) .......................................................................................................................................
Register Bank Select Flag (B) ............................................................................................................
Overflow Flag (O) ..............................................................................................................................
Interrupt Enable Flag (I) .....................................................................................................................
Stack Pointer Select Flag (U) ..............................................................................................................
Processor Interrupt Priority Level (IPL) .............................................................................................
Reserved Bit ........................................................................................................................................
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
Memory ......................................................................................................................................... 15
3.1
3.2
R8C/2E Group ......................................................................................................................................... 15
R8C/2F Group ......................................................................................................................................... 16
4.
Special Function Registers (SFRs) ............................................................................................... 17
5.
Resets ........................................................................................................................................... 24
5.1
5.1.1
5.1.2
5.2
5.3
5.4
5.5
5.6
6.
Hardware Reset .......................................................................................................................................
When Power Supply is Stable .............................................................................................................
Power On ............................................................................................................................................
Power-On Reset Function .......................................................................................................................
Voltage Monitor 1 Reset .........................................................................................................................
Voltage Monitor 2 Reset .........................................................................................................................
Watchdog Timer Reset ............................................................................................................................
Software Reset .........................................................................................................................................
27
27
27
29
30
30
30
30
Voltage Detection Circuit .............................................................................................................. 31
6.1
VCC Input Voltage .................................................................................................................................. 36
A-1
6.1.1
Monitoring Vdet1 ...............................................................................................................................
6.1.2
Monitoring Vdet2 ...............................................................................................................................
6.2
Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset .....................................................................
6.3
Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset .....................................................................
7.
36
36
37
39
Programmable I/O Ports ............................................................................................................... 41
7.1
7.2
7.3
7.4
7.5
8.
Functions of Programmable I/O Ports .....................................................................................................
Effect on Peripheral Functions ................................................................................................................
Pins Other than Programmable I/O Ports ................................................................................................
Port Setting ..............................................................................................................................................
Unassigned Pin Handling ........................................................................................................................
41
42
42
52
62
Processor Mode ............................................................................................................................ 63
8.1
Processor Modes ...................................................................................................................................... 63
9.
Bus ................................................................................................................................................ 64
10.
Clock Generation Circuit ............................................................................................................... 65
10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.4
10.4.1
10.4.2
10.4.3
10.5
10.5.1
10.6
10.6.1
10.6.2
10.6.3
10.6.4
XIN Clock ...............................................................................................................................................
On-Chip Oscillator Clocks ......................................................................................................................
Low-Speed On-Chip Oscillator Clock ................................................................................................
High-Speed On-Chip Oscillator Clock ...............................................................................................
CPU Clock and Peripheral Function Clock .............................................................................................
System Clock ......................................................................................................................................
CPU Clock ..........................................................................................................................................
Peripheral Function Clock (f1, f2, f4, f8, and f32) .............................................................................
fOCO ...................................................................................................................................................
fOCO40M ...........................................................................................................................................
fOCO-F ...............................................................................................................................................
fOCO-S ...............................................................................................................................................
fOCO128 .............................................................................................................................................
Power Control ..........................................................................................................................................
Standard Operating Mode ...................................................................................................................
Wait Mode ..........................................................................................................................................
Stop Mode ...........................................................................................................................................
Oscillation Stop Detection Function .......................................................................................................
How to Use Oscillation Stop Detection Function ...............................................................................
Notes on Clock Generation Circuit .........................................................................................................
Stop Mode ...........................................................................................................................................
Wait Mode ..........................................................................................................................................
Oscillation Stop Detection Function ...................................................................................................
Oscillation Circuit Constants ..............................................................................................................
73
74
74
74
75
75
75
75
75
75
75
75
75
76
76
78
82
85
85
88
88
88
88
88
11.
Protection ...................................................................................................................................... 89
12.
Interrupts ....................................................................................................................................... 90
12.1
Interrupt Overview .................................................................................................................................. 90
12.1.1 Types of Interrupts .............................................................................................................................. 90
12.1.2 Software Interrupts ............................................................................................................................. 91
A-2
12.1.3
12.1.4
12.1.5
12.1.6
12.2
12.2.1
12.2.2
12.3
12.4
12.5
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.6.5
13.
Watchdog Timer ........................................................................................................................... 115
13.1
13.2
14.
Special Interrupts ................................................................................................................................ 92
Peripheral Function Interrupt .............................................................................................................. 92
Interrupts and Interrupt Vectors .......................................................................................................... 93
Interrupt Control ................................................................................................................................. 95
INT Interrupt ......................................................................................................................................... 104
INTi Interrupt (i = 0, 1, 3) ................................................................................................................. 104
INTi Input Filter (i = 0, 1, 3) ............................................................................................................. 106
Key Input Interrupt ................................................................................................................................ 107
Address Match Interrupt ........................................................................................................................ 109
Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt ........................................... 111
Notes on Interrupts ................................................................................................................................ 112
Reading Address 00000h .................................................................................................................. 112
SP Setting .......................................................................................................................................... 112
External Interrupt and Key Input Interrupt ....................................................................................... 112
Changing Interrupt Sources .............................................................................................................. 113
Changing Interrupt Control Register Contents ................................................................................. 114
Count Source Protection Mode Disabled .............................................................................................. 118
Count Source Protection Mode Enabled ............................................................................................... 119
Timers ......................................................................................................................................... 120
14.1
14.1.1
14.1.2
14.1.3
14.1.4
14.1.5
14.1.6
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.4
14.4.1
14.4.2
Timer RA ...............................................................................................................................................
Timer Mode ......................................................................................................................................
Pulse Output Mode ...........................................................................................................................
Event Counter Mode .........................................................................................................................
Pulse Width Measurement Mode ......................................................................................................
Pulse Period Measurement Mode .....................................................................................................
Notes on Timer RA ...........................................................................................................................
Timer RB ...............................................................................................................................................
Timer Mode ......................................................................................................................................
Programmable Waveform Generation Mode ....................................................................................
Programmable One-shot Generation Mode ......................................................................................
Programmable Wait One-Shot Generation Mode .............................................................................
Notes on Timer RB ...........................................................................................................................
Timer RC ...............................................................................................................................................
Overview ...........................................................................................................................................
Registers Associated with Timer RC ................................................................................................
Common Items for Multiple Modes .................................................................................................
Timer Mode (Input Capture Function) .............................................................................................
Timer Mode (Output Compare Function) .........................................................................................
PWM Mode .......................................................................................................................................
PWM2 Mode .....................................................................................................................................
Timer RC Interrupt ...........................................................................................................................
Notes on Timer RC ...........................................................................................................................
Timer RE ...............................................................................................................................................
Output Compare Mode .....................................................................................................................
Notes on Timer RE ...........................................................................................................................
A-3
122
125
127
129
131
134
137
138
142
145
148
152
155
159
159
161
171
177
182
188
193
199
200
201
202
206
15.
Serial Interface ............................................................................................................................ 207
15.1
Clock Synchronous Serial I/O Mode .....................................................................................................
15.1.1 Polarity Select Function ....................................................................................................................
15.1.2 LSB First/MSB First Select Function ...............................................................................................
15.1.3 Continuous Receive Mode ................................................................................................................
15.2
Clock Asynchronous Serial I/O (UART) Mode ....................................................................................
15.2.1 Bit Rate .............................................................................................................................................
15.3
Notes on Serial Interface .......................................................................................................................
16.
Hardware LIN .............................................................................................................................. 224
16.1
16.2
16.3
16.4
16.4.1
16.4.2
16.4.3
16.4.4
16.5
16.6
17.
213
216
216
217
218
222
223
Features .................................................................................................................................................
Input/Output Pins ..................................................................................................................................
Register Configuration ..........................................................................................................................
Functional Description ..........................................................................................................................
Master Mode .....................................................................................................................................
Slave Mode .......................................................................................................................................
Bus Collision Detection Function .....................................................................................................
Hardware LIN End Processing .........................................................................................................
Interrupt Requests ..................................................................................................................................
Notes on Hardware LIN ........................................................................................................................
224
225
226
228
228
231
235
236
237
238
A/D Converter ............................................................................................................................. 239
17.1
17.2
17.3
17.4
17.5
17.6
17.7
One-Shot Mode .....................................................................................................................................
Repeat Mode ..........................................................................................................................................
Sample and Hold ...................................................................................................................................
A/D Conversion Cycles .........................................................................................................................
Internal Equivalent Circuit of Analog Input ..........................................................................................
Output Impedance of Sensor under A/D Conversion ............................................................................
Notes on A/D Converter ........................................................................................................................
243
246
249
249
250
251
252
18.
D/A Converter ............................................................................................................................. 253
19.
Comparator ................................................................................................................................. 256
19.1
19.2
19.3
19.3.1
19.3.2
19.4
20.
Overview ...............................................................................................................................................
Register Functions .................................................................................................................................
Functional Description ..........................................................................................................................
Comparison Result Output ................................................................................................................
Digital Filter ......................................................................................................................................
Comparator 0 Interrupt and Comparator 1 Interrupt .............................................................................
256
258
260
261
262
263
Flash Memory Version ................................................................................................................ 264
20.1
20.2
20.3
20.3.1
20.3.2
20.4
20.4.1
20.4.2
Overview ...............................................................................................................................................
Memory Map .........................................................................................................................................
Functions to Prevent Rewriting of Flash Memory ................................................................................
ID Code Check Function ..................................................................................................................
ROM Code Protect Function ............................................................................................................
CPU Rewrite Mode ...............................................................................................................................
EW0 Mode ........................................................................................................................................
EW1 Mode ........................................................................................................................................
A-4
264
265
267
267
268
269
270
270
20.4.3 Software Commands .........................................................................................................................
20.4.4 Status Registers .................................................................................................................................
20.4.5 Full Status Check ..............................................................................................................................
20.5
Standard Serial I/O Mode ......................................................................................................................
20.5.1 ID Code Check Function ..................................................................................................................
20.6
Parallel I/O Mode ..................................................................................................................................
20.6.1 ROM Code Protect Function ............................................................................................................
20.7
Notes on Flash Memory Version ...........................................................................................................
20.7.1 CPU Rewrite Mode ...........................................................................................................................
279
284
285
287
287
290
290
291
291
21.
Electrical Characteristics ............................................................................................................ 294
22.
Usage Notes ............................................................................................................................... 309
22.1
22.1.1
22.1.2
22.1.3
22.1.4
22.2
22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.3
22.3.1
22.3.2
22.3.3
22.3.4
22.4
22.5
22.6
22.7
22.7.1
22.8
22.8.1
Notes on Clock Generation Circuit ....................................................................................................... 309
Stop Mode ......................................................................................................................................... 309
Wait Mode ........................................................................................................................................ 309
Oscillation Stop Detection Function ................................................................................................. 309
Oscillation Circuit Constants ............................................................................................................ 309
Notes on Interrupts ................................................................................................................................ 310
Reading Address 00000h .................................................................................................................. 310
SP Setting .......................................................................................................................................... 310
External Interrupt and Key Input Interrupt ....................................................................................... 310
Changing Interrupt Sources .............................................................................................................. 311
Changing Interrupt Control Register Contents ................................................................................. 312
Notes on Timers .................................................................................................................................... 313
Notes on Timer RA ........................................................................................................................... 313
Notes on Timer RB ........................................................................................................................... 314
Notes on Timer RC ........................................................................................................................... 318
Notes on Timer RE ........................................................................................................................... 319
Notes on Serial Interface ....................................................................................................................... 320
Notes on Hardware LIN ........................................................................................................................ 321
Notes on A/D Converter ........................................................................................................................ 322
Notes on Flash Memory Version ........................................................................................................... 323
CPU Rewrite Mode ........................................................................................................................... 323
Notes on Noise ...................................................................................................................................... 326
Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and
Latch-up ............................................................................................................................................ 326
22.8.2 Countermeasures against Noise Error of Port Control Registers ..................................................... 326
23.
Notes for On-Chip Debugger ...................................................................................................... 327
Appendix 1. Package Dimensions ........................................................................................................ 328
Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging Emulator ............ 329
Appendix 3. Example of Oscillation Evaluation Circuit ......................................................................... 330
Index ..................................................................................................................................................... 331
A-5
SFR Page Reference
Address
0000h
0001h
0002h
0003h
0004h
0005h
0006h
0007h
0008h
0009h
000Ah
000Bh
000Ch
000Dh
000Eh
000Fh
0010h
0011h
0012h
0013h
0014h
0015h
0016h
0017h
0018h
0019h
001Ah
001Bh
001Ch
001Dh
001Eh
001Fh
0020h
0021h
0022h
0023h
0024h
0025h
0026h
0027h
0028h
0029h
002Ah
002Bh
002Ch
0030h
0031h
0032h
0033h
0034h
0035h
0036h
0037h
0038h
0039h
003Ah
003Bh
003Ch
Register
Symbol
Page
Processor Mode Register 0
Processor Mode Register 1
System Clock Control Register 0
System Clock Control Register 1
PM0
PM1
CM0
CM1
63
63
67
68
Protect Register
PRCR
89
Oscillation Stop Detection Register
Watchdog Timer Reset Register
Watchdog Timer Start Register
Watchdog Timer Control Register
Address Match Interrupt Register 0
OCD
WDTR
WDTS
WDC
RMAD0
69
116
116
116
110
Address Match Interrupt Enable Register
Address Match Interrupt Register 1
AIER
RMAD1
110
110
Count Source Protection Mode Register
CSPR
117
High-Speed On-Chip Oscillator Control
Register 0
High-Speed On-Chip Oscillator Control
Register 1
High-Speed On-Chip Oscillator Control
Register 2
FRA0
70
FRA1
70
FRA2
70
High-Speed On-Chip Oscillator Control
Register 7
FRA7
71
Voltage Detection Register 1
Voltage Detection Register 2
VCA1
VCA2
33
33, 71
Voltage Monitor 1 Circuit Control Register
Voltage Monitor 2 Circuit Control Register
VW1C
VW2C
34
35
003Dh
003Eh
003Fh
NOTE:
1.
Address
0040h
0041h
0042h
0043h
0044h
0045h
0046h
0047h
0048h
0049h
004Ah
004Bh
004Ch
004Dh
004Eh
004Fh
0050h
0051h
0052h
0053h
0054h
0055h
0056h
0057h
0058h
0059h
005Ah
005Bh
005Ch
005Dh
005Eh
005Fh
0060h
0061h
0062h
0063h
0064h
0065h
0066h
0067h
0068h
0069h
006Ah
006Bh
006Ch
006Dh
006Eh
006Fh
0070h
0071h
0072h
0073h
0074h
0075h
0076h
0077h
0078h
0079h
007Ah
007Bh
007Ch
007Dh
007Eh
007Fh
The blank regions are reserved. Do not access locations in these
regions.
B-1
Register
Symbol
Page
Timer RC Interrupt Control Register
TRCIC
96
Timer RE Interrupt Control Register
TREIC
95
Key Input Interrupt Control Register
A/D Conversion Interrupt Control Register
KUPIC
ADIC
95
95
UART0 Transmit Interrupt Control Register S0TIC
UART0 Receive Interrupt Control Register S0RIC
95
95
Timer RA Interrupt Control Register
TRAIC
95
Timer RB Interrupt Control Register
INT1 Interrupt Control Register
INT3 Interrupt Control Register
Comparator 0 Interrupt Control Register
Comparator 1 Interrupt Control Register
INT0 Interrupt Control Register
TRBIC
INT1IC
INT3IC
CM0IC
CM1IC
INT0IC
95
97
97
96
96
97
Address
0080h
0081h
0082h
0083h
0084h
0085h
0086h
0087h
0088h
0089h
008Ah
008Bh
008Ch
008Dh
008Eh
008Fh
0090h
0091h
0092h
0093h
0094h
0095h
0096h
0097h
0098h
0099h
009Ah
009Bh
009Ch
009Dh
009Eh
009Fh
00A0h
00A1h
00A2h
00A3h
00A4h
00A5h
00A6h
00A7h
00A8h
00A9h
00AAh
00ABh
00ACh
00ADh
00AEh
00AFh
00B0h
00B1h
00B2h
00B3h
00B4h
00B5h
00B6h
00B7h
00B8h
00B9h
00BAh
00BBh
00BCh
00BDh
00BEh
00BFh
NOTE:
1.
Register
UART0 Transmit/Receive Mode Register
UART0 Bit Rate Register
UART0 Transmit Buffer Register
Symbol
U0MR
U0BRG
U0TB
UART0 Transmit / Receive Control Register 0 U0C0
UART0 Transmit / Receive Control Register 1 U0C1
UART0 Receive Buffer Register
U0RB
Page
210
210
209
211
212
209
Address
00C0h
00C1h
00C2h
00C3h
00C4h
00C5h
00C6h
00C7h
00C8h
00C9h
00CAh
00CBh
00CCh
00CDh
00CEh
00CFh
00D0h
00D1h
00D2h
00D3h
00D4h
00D5h
00D6h
00D7h
00D8h
00D9h
00DAh
00DBh
00DCh
00DDh
00DEh
00DFh
00E0h
00E1h
00E2h
00E3h
00E4h
00E5h
00E6h
00E7h
00E8h
00E9h
00EAh
00EBh
00ECh
00EDh
00EEh
00EFh
00F0h
00F1h
00F2h
00F3h
00F4h
00F5h
00F6h
00F7h
00F8h
00F9h
00FAh
00FBh
00FCh
00FDh
00FEh
00FFh
The blank regions are reserved. Do not access locations in these
regions.
B-2
A/D Register
Register
Symbol
AD
Page
242
A/D Control Register 2
ADCON2
242
A/D Control Register 0
A/D Control Register 1
D/A Register 0
ADCON0
ADCON1
DA0
241
242
254
D/A Register 1
DA1
254
D/A Control Register
DACON
254
Port P0 Register
Port P1 Register
Port P0 Direction Register
Port P1 Direction Register
P0
P1
PD0
PD1
49
49
48
48
Port P3 Register
P3
49
Port P3 Direction Register
Port P4 Register
Port P5 Register
Port P4 Direction Register
Port P5 Direction Register
PD3
P4
P5
PD4
PD5
48
49
49
48
48
Pin Select Register 2
Pin Select Register 3
Port Mode Register
External Input Enable Register
INT Input Filter Select Register
Key Input Enable Register
Pull-Up Control Register 0
Pull-Up Control Register 1
Port P1 Drive Capacity Control Register
PINSR2
PINSR3
PMR
INTEN
INTF
KIEN
PUR0
PUR1
P1DRR
50
50
50, 212
104
105
108
51
51
51
Address
Register
0100h Timer RA Control Register
0101h Timer RA I/O Control Register
0102h
0103h
0104h
0105h
0106h
0107h
0108h
0109h
010Ah
Symbol
TRACR
TRAIOC
Page
123
123, 125, 128,
130, 132, 135
124
124
124
Timer RA Mode Register
Timer RA Prescaler Register
Timer RA Register
TRAMR
TRAPRE
TRA
LIN Control Register
LIN Status Register
Timer RB Control Register
Timer RB One-Shot Control Register
Timer RB I/O Control Register
LINCR
LINST
TRBCR
TRBOCR
TRBIOC
010Bh
010Ch
010Dh
010Eh
010Fh
0110h
0111h
0112h
0113h
0114h
0115h
0116h
0117h
Timer RB Mode Register
Timer RB Prescaler Register
Timer RB Secondary Register
Timer RB Primary Register
TRBMR
TRBPRE
TRBSC
TRBPR
226
227
139
139
140, 142, 146,
149, 153
140
141
141
141
0118h
0119h
011Ah
011Bh
011Ch
011Dh
011Eh
011Fh
0120h
0121h
Timer RE Counter Data Register
Timer RE Compare Data Register
TRESEC
TREMIN
203
203
Timer RE Control Register 1
Timer RE Control Register 2
Timer RE Clock Source Select Register
TRECR1
TRECR2
TRECSR
203
204
204
Timer RC Mode Register
Timer RC Control Register 1
TRCMR
TRCCR1
0122h
0123h
0124h
0125h
0126h
0127h
0128h
0129h
012Ah
012Bh
012Ch
012Dh
012Eh
012Fh
Timer RC Interrupt Enable Register
Timer RC Status Register
Timer RC I/O Control Register 0
Timer RC I/O Control Register 1
Timer RC Counter
TRCIER
TRCSR
TRCIOR0
TRCIOR1
TRC
162
163, 186, 190,
195
164
165
170, 179, 184
170, 180, 185
166
Timer RC General Register A
TRCGRA
166
Timer RC General Register B
TRCGRB
166
Timer RC General Register C
TRCGRC
166
Timer RC General Register D
TRCGRD
166
NOTE:
1.
The blank regions are reserved. Do not access locations in these
regions.
Address
Register
0130h Timer RC Control Register 2
0131h Timer RC Digital Filter Function Select
Register
0132h Timer RC Output Master Enable Register
0133h
0134h
0135h
0136h
0137h
0138h
0139h
013Ah
013Bh
013Ch
013Dh
013Eh
013Fh
0140h
0141h
0142h
0143h
0144h
0145h
0146h
0147h
0148h
0149h
014Ah
014Bh
014Ch
014Dh
014Eh
014Fh
0150h
0151h
0152h
0153h
0154h
0155h
0156h
0157h
0158h
0159h
015Ah
015Bh
015Ch
015Dh
015Eh
015Fh
0160h
0161h
0162h
0163h
0164h
0165h
0166h
0167h
0168h
0169h
016Ah
016Bh
016Ch
016Dh
016Eh
016Fh
B-3
Symbol
TRCCR2
TRCDF
TRCOER
Page
167
168
169
Address
Register
0170h
0171h
0172h
0173h
0174h Comparator 0 Control Register
0175h Comparator 1 Control Register
0176h
0177h Comparator Mode Register
0178h
0179h
017Ah
017Bh
017Ch
017Dh
017Eh
017Fh
0180h
0181h
0182h
0183h
0184h
0185h
0186h
0187h
0188h
0189h
018Ah
018Bh
018Ch
018Dh
018Eh
018Fh
0190h
0191h
0192h
0193h
0194h
0195h
0196h
0197h
0198h
0199h
019Ah
019Bh
019Ch
019Dh
019Eh
019Fh
01A0h
01A1h
01A2h
01A3h
01A4h
01A5h
01A6h
01A7h
01A8h
01A9h
01AAh
01ABh
01ACh
01ADh
01AEh
01AFh
NOTE:
1.
Symbol
Page
ACCR0
ACCR1
255, 258
255, 258
ACMR
259
Address
Register
01B0h
01B1h
01B2h
01B3h Flash Memory Control Register 4
01B4h
01B5h Flash Memory Control Register 1
01B6h
01B7h Flash Memory Control Register 0
01B8h
01B9h
01BAh
01BBh
01BCh
01BDh
01BEh
FFFFh
The blank regions are reserved. Do not access locations in these
regions.
B-4
Option Function Select Register
Symbol
Page
FMR4
275
FMR1
274
FMR0
273
OFS
26, 117, 268
R8C/2E Group, R8C/2F Group
RENESAS MCU
1.
REJ09B0349-0100
Rev.1.00
Dec 14, 2007
Overview
1.1
Features
The R8C/2E Group and R8C/2F Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core,
employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable
of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation
processing.
Power consumption is low, and the supported operating modes allow additional power control. These MCUs also
use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI.
Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of
system components.
Furthermore, the R8C/2F Group has on-chip data flash (1 KB × 2 blocks).
The difference between the R8C/2E Group and R8C/2F Group is only the presence or absence of data flash. Their
peripheral functions are the same.
1.1.1
Applications
Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 1 of 332
R8C/2E Group, R8C/2F Group
1.1.2
1. Overview
Specifications
Tables 1.1 and 1.2 outlines the Specifications for R8C/2E Group and Tables 1.3 and 1.4 outlines the
Specifications for R8C/2F Group.
Table 1.1
Item
CPU
Specifications for R8C/2E Group (1)
Function
Specification
Central
R8C/Tiny series core
processing unit
• Number of fundamental instructions: 89
• Minimum instruction execution time:
50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
• Multiplier: 16 bits × 16 bits → 32 bits
• Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits
• Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory
ROM, RAM
Refer to Table 1.5 Product List for R8C/2E Group.
Power Supply Voltage
• Power-on reset
detection circuit • Voltage detection 2
Voltage
Detection
I/O Ports
Programmable
• Input-only: 3 pins
I/O ports
• CMOS I/O ports: 25, selectable pull-up resistor
• High current drive ports: 8
Clock
Clock generation 2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
circuits
On-chip oscillator (high-speed, low-speed)
(high-speed on-chip oscillator has a frequency adjustment
function)
• Oscillation stop detection: XIN clock oscillation stop detection
function
• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
• Low power consumption modes:
Standard operating mode (high-speed clock, high-speed on-chip
oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts
• External: 4 sources, Internal: 13 sources, Software: 4 sources
• Priority levels: 7 levels
Watchdog Timer
15 bits × 1 (with prescaler), reset start selectable
Timer
Timer RA
8 bits × 1 (with 8-bit prescaler)
Timer mode (period timer), pulse output mode (output level inverted
every period), event counter mode, pulse width measurement mode,
pulse period measurement mode
Timer RB
8 bits × 1 (with 8-bit prescaler)
Timer mode (period timer), programmable waveform generation
mode (PWM output), programmable one-shot generation mode,
programmable wait one-shot generation mode
Timer RC
16 bits × 1 (with 4 capture/compare registers)
Timer mode (input capture function, output compare function), PWM
mode (output 3 pins), PWM2 mode (PWM output pin)
Timer RE
8 bits × 1
Output compare mode
Serial
UART0
Clock synchronous serial I/O/UART × 1
Interface
LIN Module
Hardware LIN: 1 (timer RA, UART0)
A/D Converter
10-bit resolution × 12 channels, includes sample and hold function
D/A Converter
8-bit resolution × 2 circuits
Comparator
2 circuits
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 2 of 332
R8C/2E Group, R8C/2F Group
Table 1.2
1. Overview
Specifications for R8C/2E Group (2)
Item
Specification
Flash Memory
• Programming and erasure voltage: VCC = 2.7 to 5.5 V
• Programming and erasure endurance: 100 times
• Program security: ROM code protect, ID code check
• Debug functions: On-chip debug, on-board flash rewrite function
Operating Frequency/Supply
f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V),
f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)
Voltage
Current consumption
Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)
Typ. 23 µA (VCC = 3.0 V, wait mode (peripheral clock off))
Typ. 0.7 µA (VCC = 3.0 V, stop mode)
Operating Ambient Temperature -20 to 85°C (N version)
-40 to 85°C (D version)(1)
Package
32-pin LQFP
Package code: PLQP0032GB-A (previous code: 32P6U-A)
NOTE:
1. Specify the D version if D version functions are to be used.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 3 of 332
R8C/2E Group, R8C/2F Group
Table 1.3
Item
CPU
1. Overview
Specifications for R8C/2F Group (1)
Function
Specification
Central
R8C/Tiny series core
processing unit
• Number of fundamental instructions: 89
• Minimum instruction execution time:
50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
• Multiplier: 16 bits × 16 bits → 32 bits
• Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits
• Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory
ROM, RAM
Refer to Table 1.6 Product List for R8C/2F Group.
Power Supply Voltage detection • Power-on reset
Voltage
circuit
• Voltage detection 2
Detection
I/O Ports
Programmable
• Input-only: 3 pins
I/O ports
• CMOS I/O ports: 25, selectable pull-up resistor
• High current drive ports: 8
Clock
Clock generation 2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
circuits
On-chip oscillator (high-speed, low-speed)
(high-speed on-chip oscillator has a frequency adjustment
function)
• Oscillation stop detection: XIN clock oscillation stop detection
function
• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
• Low power consumption modes:
Standard operating mode (high-speed clock, high-speed on-chip
oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts
• External: 4 sources, Internal: 13 sources, Software: 4 sources
• Priority levels: 7 levels
Watchdog Timer
15 bits × 1 (with prescaler), reset start selectable
Timer
Timer RA
8 bits × 1 (with 8-bit prescaler)
Timer mode (period timer), pulse output mode (output level inverted
every period), event counter mode, pulse width measurement mode,
pulse period measurement mode
Timer RB
8 bits × 1 (with 8-bit prescaler)
Timer mode (period timer), programmable waveform generation
mode (PWM output), programmable one-shot generation mode,
programmable wait one-shot generation mode
Timer RC
16 bits × 1 (with 4 capture/compare registers)
Timer mode (input capture function, output compare function), PWM
mode (output 3 pins), PWM2 mode (PWM output pin)
Timer RE
8 bits × 1
Output compare mode
Serial
UART0
Clock synchronous serial I/O/UART × 1
Interface
LIN Module
Hardware LIN: 1 (timer RA, UART0)
A/D Converter
10-bit resolution × 12 channels, includes sample and hold function
D/A Converter
8-bit resolution × 2 circuits
Comparator
2 circuits
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 4 of 332
R8C/2E Group, R8C/2F Group
Table 1.4
1. Overview
Specifications for R8C/2F Group (2)
Item
Specification
Flash Memory
• Programming and erasure voltage: VCC = 2.7 to 5.5 V
• Programming and erasure endurance: 10,000 times (data flash)
1,000 times (program ROM)
• Program security: ROM code protect, ID code check
• Debug functions: On-chip debug, on-board flash rewrite function
Operating Frequency/Supply
f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V),
f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)
Voltage
Current consumption
Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)
Typ. 23 µA (VCC = 3.0 V, wait mode (peripheral clock off))
Typ. 0.7 µA (VCC = 3.0 V, stop mode)
Operating Ambient Temperature -20 to 85°C (N version)
-40 to 85°C (D version)(1)
Package
32-pin LQFP
Package code: PLQP0032GB-A (previous code: 32P6U-A)
NOTE:
1. Specify the D version if D version functions are to be used.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 5 of 332
R8C/2E Group, R8C/2F Group
1.2
1. Overview
Product List
Table 1.5 lists Product List for R8C/2E Group, Figure 1.1 shows a Part Number, Memory Size, and Package of
R8C/2E Group, Table 1.6 lists Product List for R8C/2F Group, and Figure 1.2 shows a Part Number, Memory Size,
and Package of R8C/2F Group.
Table 1.5
Product List for R8C/2E Group
Current of Dec. 2007
Part No.
R5F212E2NFP
R5F212E4NFP
R5F212E2DFP
R5F212E4DFP
R5F212E2NXXXFP
R5F212E4NXXXFP
ROM Capacity
8 Kbytes
16 Kbytes
8 Kbytes
16 Kbytes
8 Kbytes
16 Kbytes
RAM Capacity
512 bytes
1 Kbyte
512 bytes
1 Kbyte
512 bytes
1 Kbyte
Package Type
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
R5F212E2DXXXFP
R5F212E4DXXXFP
8 Kbytes
16 Kbytes
512 bytes
1 Kbyte
PLQP0032GB-A
PLQP0032GB-A
Remarks
N version
D version
N version
Factory programming
product(1)
D version
Factory programming
product(1)
NOTE:
1. The user ROM is programmed before shipment.
Part No.
R 5 F 21 2E 2 N XXX FP
Package type:
FP: PLQP0032GB-A
ROM number (only factory programming product)
Classification
N: Operating ambient temperature -20°C to 85°C
D: Operating ambient temperature -40°C to 85°C
ROM capacity
2: 8 KB
4: 16 KB
R8C/2E Group
R8C/Tiny Series
Memory type
F: Flash memory version
Renesas MCU
Renesas semiconductor
Figure 1.1
Part Number, Memory Size, and Package of R8C/2E Group
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 6 of 332
R8C/2E Group, R8C/2F Group
Table 1.6
1. Overview
Product List for R8C/2F Group
R5F212F2NFP
R5F212F4NFP
R5F212F2DFP
R5F212F4DFP
R5F212F2NXXXFP
R5F212F4NXXXFP
ROM Capacity
Program ROM Data flash
8 Kbytes
1 Kbyte × 2
16 Kbytes
1 Kbyte × 2
8 Kbytes
1 Kbyte × 2
16 Kbytes
1 Kbyte × 2
8 Kbytes
1 Kbyte × 2
16 Kbytes
1 Kbyte × 2
R5F212F2DXXXFP
R5F212F4DXXXFP
8 Kbytes
16 Kbytes
Part No.
Current of Dec. 2007
RAM
Capacity
512 bytes
1 Kbyte
512 bytes
1 Kbyte
512 bytes
1 Kbyte
Package Type
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
PLQP0032GB-A
Remarks
N version
D version
N version
Factory programming
product(1)
1 Kbyte × 2 512 bytes PLQP0032GB-A D version
1 Kbyte × 2 1 Kbyte
PLQP0032GB-A Factory programming
product(1)
NOTE:
1. The user ROM is programmed before shipment.
Part No. R 5 F 21 2F 2 N XXX FP
Package type:
FP: PLQP0032GB-A
ROM number (only factory programming product)
Classification
N: Operating ambient temperature -20°C to 85°C
D: Operating ambient temperature -40°C to 85°C
ROM capacity
2: 8 KB
4: 16 KB
R8C/2F Group
R8C/Tiny Series
Memory type
F: Flash memory version
Renesas MCU
Renesas semiconductor
Figure 1.2
Part Number, Memory Size, and Package of R8C/2F Group
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 7 of 332
R8C/2E Group, R8C/2F Group
1.3
1. Overview
Block Diagram
Figure 1.3 shows a Block Diagram.
I/O ports
8
8
6
Port P0
Port P1
Port P3
1
3
2
Port P4
Port P5
Peripheral functions
System clock
generation circuit
A/D converter
(10 bits × 12 channels)
Timers
Timer RA (8 bits × 1)
Timer RB (8 bits × 1)
Timer RC (16 bits × 1)
Timer RE (8 bits × 1)
XIN-XOUT
High-speed on-chip oscillator
Low-Speed on-chip oscillator
D/A converter
(8 bits × 2)
Comparator
(× 2)
UART or
clock synchronous serial I/O
(8 bits × 1)
LIN module
Watchdog timer
(15 bits)
R8C/Tiny Series CPU core
R0H
R1H
R0L
R1L
R2
R3
SB
ROM(1)
USP
ISP
INTB
A0
A1
FB
Memory
RAM(2)
PC
FLG
Multiplier
NOTES:
1. ROM size varies with MCU type.
2. RAM size varies with MCU type.
Figure 1.3
Block Diagram
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 8 of 332
R8C/2E Group, R8C/2F Group
1.4
1. Overview
Pin Assignment
P1_4/TXD0
P1_3/KI3/AN11/(TRBO)(2)
P1_1/KI1/AN9/TRCIOA/TRCTRG
VREF/P4_2
P1_2/KI2/AN10/TRCIOB
P1_0/KI0/AN8
P3_4/(TRCIOC)(2)
P3_3/INT3/TRCCLK
Figure 1.4 shows Pin Assignments (Top View). Table 1.7 outlines the Pin Name Information by Pin Number.
24 23 22 21 20 19 18 17
P0_7/AN0/DA1
25
P0_6/AN1/DA0
P0_5/AN2/AVREF0
P0_4/AN3/TREO/ACMP0
P0_3/AN4/AVREF1
P0_2/AN5/ACMP1
P0_1/AN6
P0_0/AN7
26
16
15
R8C/2E Group,
R8C/2F Group
27
14
13
28
29
12
PLQP0032GB-A
(32P6U-A)
(top view)
30
31
11
10
9
5
6
7
8
MODE
4
VSS/AVSS
XIN/P4_6
3
RESET
XOUT/P4_7 (1)
2
P3_5/(TRCIOD)(2)
P3_7/TRAO
1
VCC/AVCC
32
P1_5/RXD0/(TRAIO)/(INT1)(2)
P1_6/CLK0
P5_3/TRCIOC/ACOUT0
P5_4/TRCIOD/ACOUT1
P3_1/TRBO
P3_6/(INT1)(2)
P1_7/TRAIO/INT1
P4_5/INT0
NOTES:
1. P4_7 is an input-only port.
2. Can be assigned to the pin in parentheses by a program.
3. Confirm the pin 1 position on the package by referring to the package dimensions.
Figure 1.4
Pin Assignments (Top View)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 9 of 332
R8C/2E Group, R8C/2F Group
Table 1.7
Pin
Number
Pin Name Information by Pin Number
Control Pin
1
4
5
6
7
8
Port
Interrupt
P3_7
RESET
XOUT
VSS/AVSS
XIN
VCC/AVCC
MODE
P4_6
P4_5
INT0
10
P1_7
INT1
(INT1)(1)
11
P3_6
12
13
14
15
P3_1
P5_4
P5_3
P1_6
16
P1_5
17
P1_4
19
20
21
VREF
TRAIO
TRBO
TRCIOD
TRCIOC
ACOUT1
ACOUT0
CLK0
(INT1)(1)
(TRAIO)(1)
P1_3
KI3
(TRBO)(1)
AN11
RXD0
TXD0
P1_2
KI2
TRCIOB
AN10
P4_2
P1_1
KI1
TRCIOA/
TRCTRG
AN9
KI0
22
P1_0
23
P3_3
24
P3_4
25
26
27
28
29
30
31
32
P0_7
P0_6
P0_5
P0_4
P0_3
P0_2
P0_1
P0_0
INT3
AN8
TRCCLK
(TRCIOC)(1)
TREO
NOTE:
1. Can be assigned to the pin in parentheses by a program.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Comparator
P4_7
9
18
I/O Pin Functions for of Peripheral Modules
Serial
A/D
D/A
Timer
Interface
Converter
Converter
(TRCIOD)(1)
TRAO
P3_5
2
3
1. Overview
Page 10 of 332
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
DA1
DA0
AVREF0
ACMP0
AVREF1
ACMP1
R8C/2E Group, R8C/2F Group
1.5
1. Overview
Pin Functions
Table 1.8 list Pin Functions.
Table 1.8
Pin Functions
Type
Symbol
I/O Type
Description
Power supply input VCC, VSS
I
Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power
supply input
AVCC, AVSS
I
Power supply for the A/D converter.
Connect a capacitor between AVCC and AVSS.
Reset input
RESET
I
Input “L” on this pin resets the MCU.
MODE
MODE
I
Connect this pin to VCC via a resistor.
XIN clock input
XIN
I
XIN clock output
XOUT
O
These pins are provided for XIN clock generation circuit I/O.
Connect a ceramic resonator or a crystal oscillator between
the XIN and XOUT pins.(1) To use an external clock, input it to
the XIN pin and leave the XOUT pin open.
INT interrupt input
INT0, INT1, INT3
I
INT interrupt input pins
Key input interrupt
KI0 to KI3
I
Key input interrupt input pins
Timer RA
TRAO
O
Timer RA output pin
TRAIO
I/O
Timer RA I/O pin
Timer RB
TRBO
O
Timer RB output pin
Timer RC
TRCCLK
I
External clock input pin
TRCTRG
TRCIOA, TRCIOB,
TRCIOC, TRCIOD
I
External trigger input pin
I/O
Sharing output-compare output / input-capture input / PWM /
PWM2 output pins
Timer RE
TREO
O
Timer RE output pin
Serial interface
CLK0
I/O
Clock I/O pin
RXD0
I
Receive data input pin
TXD0
O
Transmit data output pin
Reference voltage
input
VREF
I
Reference voltage input pin to A/D converter
A/D converter
AN0 to AN11
I
Analog input pins to A/D converter
D/A converter
DA0 to DA1
O
Output pins from D/A converter
Comparator
AVREF0 to AVREF1
I
Reference voltage input pins to comparator
ACMP0 to ACMP1
I
Analog voltage input pins to comparator
ACOUT0 to ACOUT1
O
Comparison result output pins of comparator
I/O port
P0_0 to P0_7,
P1_0 to P1_7,
P3_1, P3_3 to P3_7,
P4_5,
P5_3, P5_4
I/O
CMOS I/O ports. Each port has an I/O select direction
register, allowing each pin in the port to be directed for input
or output individually.
Any port set to input can be set to use a pull-up resistor or not
by a program.
P1_0 to P1_7 also function as LED drive ports.
Input port
P4_2, P4_6, P4_7
I
Input-only ports
I: Input
O: Output
I/O: Input and output
NOTE:
1. Refer to the oscillator manufacturer for oscillation characteristics.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 11 of 332
R8C/2E Group, R8C/2F Group
2.
2. Central Processing Unit (CPU)
Central Processing Unit (CPU)
Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a
register bank. There are two sets of register bank.
b31
b15
R2
R3
b8b7
b0
R0H (high-order of R0) R0L (low-order of R0)
R1H (high-order of R1) R1L (low-order of R1)
Data registers(1)
R2
R3
A0
A1
FB
b19
b15
Address registers(1)
Frame base register(1)
b0
Interrupt table register
INTBL
INTBH
The 4 high order bits of INTB are INTBH and
the 16 low order bits of INTB are INTBL.
b19
b0
Program counter
PC
b15
b0
USP
User stack pointer
ISP
Interrupt stack pointer
SB
Static base register
b15
b0
FLG
b15
b8
IPL
b7
Flag register
b0
U I O B S Z D C
Carry flag
Debug flag
Zero flag
Sign flag
Register bank select flag
Overflow flag
Interrupt enable flag
Stack pointer select flag
Reserved bit
Processor interrupt priority level
Reserved bit
NOTE:
1. These registers comprise a register bank. There are two register banks.
Figure 2.1
CPU Registers
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 12 of 332
R8C/2E Group, R8C/2F Group
2.1
2. Central Processing Unit (CPU)
Data Registers (R0, R1, R2, and R3)
R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split
into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are
analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is
analogous to R2R0.
2.2
Address Registers (A0 and A1)
A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also
used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 to be used
as a 32-bit address register (A1A0).
2.3
Frame Base Register (FB)
FB is a 16-bit register for FB relative addressing.
2.4
Interrupt Table Register (INTB)
INTB is a 20-bit register that indicates the start address of an interrupt vector table.
2.5
Program Counter (PC)
PC is 20 bits wide and indicates the address of the next instruction to be executed.
2.6
User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between
USP and ISP.
2.7
Static Base Register (SB)
SB is a 16-bit register for SB relative addressing.
2.8
Flag Register (FLG)
FLG is an 11-bit register indicating the CPU state.
2.8.1
Carry Flag (C)
The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.
2.8.2
Debug Flag (D)
The D flag is for debugging only. Set it to 0.
2.8.3
Zero Flag (Z)
The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.
2.8.4
Sign Flag (S)
The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.
2.8.5
Register Bank Select Flag (B)
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.
2.8.6
Overflow Flag (O)
The O flag is set to 1 when an operation results in an overflow; otherwise to 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 13 of 332
R8C/2E Group, R8C/2F Group
2.8.7
2. Central Processing Unit (CPU)
Interrupt Enable Flag (I)
The I flag enables maskable interrupts.
Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0
when an interrupt request is acknowledged.
2.8.8
Stack Pointer Select Flag (U)
ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1.
The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software
interrupt numbers 0 to 31 is executed.
2.8.9
Processor Interrupt Priority Level (IPL)
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7.
If a requested interrupt has higher priority than IPL, the interrupt is enabled.
2.8.10
Reserved Bit
If necessary, set to 0. When read, the content is undefined.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 14 of 332
R8C/2E Group, R8C/2F Group
3.
3. Memory
Memory
3.1
R8C/2E Group
Figure 3.1 is a Memory Map of R8C/2E Group. The R8C/2E group has 1 Mbyte of address space from addresses
00000h to FFFFFh.
The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal
ROM area is allocated addresses 0C000h to 0FFFFh.
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each
interrupt routine.
The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal
RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for
calling subroutines and as stacks when interrupt requests are acknowledged.
Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control
registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use
and cannot be accessed by users.
00000h
002FFh
SFR
(Refer to 4. Special
Function Registers
(SFRs))
00400h
Internal RAM
0XXXh
0FFDCh
Undefined instruction
Overflow
BRK instruction
Address match
Single step
Watchdog timer/oscillation stop detection/voltage monitor 2
0YYYYh
(Reserved)
(Reserved)
Reset
Internal ROM
(program ROM)
0FFFFh
0FFFFh
FFFFFh
NOTE:
1. The blank regions are reserved. Do not access locations in these regions.
Internal ROM
Part Number
R5F212E2NFP, R5F212E2DFP,
Internal RAM
Size
Address 0YYYYh
Size
Address 0XXXXh
8 Kbytes
0E000h
512 bytes
005FFh
16 Kbytes
0C000h
1 Kbyte
007FFh
R5F212E2NXXXFP, R5F212E2DXXXFP
R5F212E4NFP, R5F212E4DFP,
R5F212E4NXXXFP, R5F212E4DXXXFP
Figure 3.1
Memory Map of R8C/2E Group
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 15 of 332
R8C/2E Group, R8C/2F Group
3.2
3. Memory
R8C/2F Group
Figure 3.2 is a Memory Map of R8C/2F Group. The R8C/2F group has 1 Mbyte of address space from addresses
00000h to FFFFFh.
The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a
16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each
interrupt routine.
The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.
The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte
internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also
for calling subroutines and as stacks when interrupt requests are acknowledged.
Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control
registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use
and cannot be accessed by users.
00000h
002FFh
SFR
(Refer to 4. Special
Function Registers
(SFRs))
00400h
Internal RAM
0XXXXh
02400h
0FFDCh
Internal ROM
(data flash)(1)
Undefined instruction
Overflow
BRK instruction
Address match
Single step
02BFFh
Watchdog timer/oscillation stop detection/voltage monitor 2
0YYYYh
(Reserved)
(Reserved)
Reset
Internal ROM
(program ROM)
0FFFFh
0FFFFh
FFFFFh
NOTES:
1. Data flash block A (1 Kbyte) and B (1 Kbyte) are shown.
2. The blank regions are reserved. Do not access locations in these regions.
Internal ROM
Part Number
R5F212F2NFP, R5F212F2DFP,
Internal RAM
Size
Address 0YYYYh
Size
Address 0XXXXh
8 Kbytes
0E000h
512 bytes
005FFh
16 Kbytes
0C000h
1 Kbyte
007FFh
R5F212F2NXXXFP, R5F212F2DXXXFP
R5F212F4NFP, R5F212F4DFP,
R5F212F4NXXXFP, R5F212F4DXXXFP
Figure 3.2
Memory Map of R8C/2F Group
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 16 of 332
R8C/2E Group, R8C/2F Group
4.
4. Special Function Registers (SFRs)
Special Function Registers (SFRs)
An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special
function registers.
Table 4.1
Address
0000h
0001h
0002h
0003h
0004h
0005h
0006h
0007h
0008h
0009h
000Ah
000Bh
000Ch
000Dh
000Eh
000Fh
0010h
0011h
0012h
0013h
0014h
0015h
0016h
0017h
0018h
0019h
001Ah
001Bh
001Ch
001Dh
001Eh
001Fh
0020h
0021h
0022h
0023h
0024h
0025h
0026h
0027h
0028h
0029h
002Ah
002Bh
002Ch
SFR Information (1)(1)
Register
Symbol
After reset
Processor Mode Register 0
Processor Mode Register 1
System Clock Control Register 0
System Clock Control Register 1
PM0
PM1
CM0
CM1
00h
00h
01101000b
00100000b
Protect Register
PRCR
00h
Oscillation Stop Detection Register
Watchdog Timer Reset Register
Watchdog Timer Start Register
Watchdog Timer Control Register
Address Match Interrupt Register 0
OCD
WDTR
WDTS
WDC
RMAD0
Address Match Interrupt Enable Register
Address Match Interrupt Register 1
AIER
RMAD1
00000100b
XXh
XXh
00X11111b
00h
00h
00h
00h
00h
00h
00h
Count Source Protection Mode Register
CSPR
00h
10000000b(4)
High-Speed On-Chip Oscillator Control Register 0
High-Speed On-Chip Oscillator Control Register 1
High-Speed On-Chip Oscillator Control Register 2
FRA0
FRA1
FRA2
00h
When shipping
00h
High-Speed On-Chip Oscillator Control Register 7
FRA7
When Shipping
0030h
VCA1
00001000b
0031h
Voltage Detection Register 1 (2)
VCA2
00100000b
0032h
Voltage Detection Register 2 (2)
0033h
0034h
0035h
VW1C
00001000b
0036h
Voltage Monitor 1 Circuit Control Register(3)
VW2C
00h
0037h
Voltage Monitor 2 Circuit Control Register(3)
0038h
0039h
003Ah
003Bh
003Ch
003Dh
003Eh
003Fh
X: Undefined
NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect this register.
3. Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect b2 and b3.
4. The CSPROINI bit in the OFS register is set to 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 17 of 332
R8C/2E Group, R8C/2F Group
Table 4.2
4. Special Function Registers (SFRs)
SFR Information (2)(1)
Address
Register
0040h
0041h
0042h
0043h
0044h
0045h
0046h
0047h
Timer RC Interrupt Control Register
0048h
0049h
004Ah
Timer RE Interrupt Control Register
004Bh
004Ch
004Dh
Key Input Interrupt Control Register
004Eh
A/D Conversion Interrupt Control Register
004Fh
0050h
0051h
UART0 Transmit Interrupt Control Register
0052h
UART0 Receive Interrupt Control Register
0053h
0054h
0055h
0056h
Timer RA Interrupt Control Register
0057h
0058h
Timer RB Interrupt Control Register
0059h
INT1 Interrupt Control Register
005Ah
INT3 Interrupt Control Register
005Bh
Comparator 0 Interrupt Control Register
005Ch
Comparator 1 Interrupt Control Register
005Dh
INT0 Interrupt Control Register
005Eh
005Fh
0060h
0061h
0062h
0063h
0064h
0065h
0066h
0067h
0068h
0069h
006Ah
006Bh
006Ch
006Dh
006Eh
006Fh
0070h
0071h
0072h
0073h
0074h
0075h
0076h
0077h
0078h
0079h
007Ah
007Bh
007Ch
007Dh
007Eh
007Fh
X: Undefined
NOTE:
1. The blank regions are reserved. Do not access locations in these regions.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 18 of 332
Symbol
After reset
TRCIC
XXXXX000b
TREIC
XXXXX000b
KUPIC
ADIC
XXXXX000b
XXXXX000b
S0TIC
S0RIC
XXXXX000b
XXXXX000b
TRAIC
XXXXX000b
TRBIC
INT1IC
INT3IC
CM0IC
CM1IC
INT0IC
XXXXX000b
XX00X000b
XX00X000b
XXXXX000b
XXXXX000b
XX00X000b
R8C/2E Group, R8C/2F Group
Table 4.3
4. Special Function Registers (SFRs)
SFR Information (3)(1)
Address
Register
0080h
0081h
0082h
0083h
0084h
0085h
0086h
0087h
0088h
0089h
008Ah
008Bh
008Ch
008Dh
008Eh
008Fh
0090h
0091h
0092h
0093h
0094h
0095h
0096h
0097h
0098h
0099h
009Ah
009Bh
009Ch
009Dh
009Eh
009Fh
00A0h
UART0 Transmit/Receive Mode Register
00A1h
UART0 Bit Rate Register
00A2h
UART0 Transmit Buffer Register
00A3h
00A4h
UART0 Transmit/Receive Control Register 0
00A5h
UART0 Transmit/Receive Control Register 1
00A6h
UART0 Receive Buffer Register
00A7h
00A8h
00A9h
00AAh
00ABh
00ACh
00ADh
00AEh
00AFh
00B0h
00B1h
00B2h
00B3h
00B4h
00B5h
00B6h
00B7h
00B8h
00B9h
00BAh
00BBh
00BCh
00BDh
00BEh
00BFh
X: Undefined
NOTE:
1. The blank regions are reserved. Do not access locations in these regions.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 19 of 332
Symbol
U0MR
U0BRG
U0TB
U0C0
U0C1
U0RB
After reset
00h
XXh
XXh
XXh
00001000b
00000010b
XXh
XXh
R8C/2E Group, R8C/2F Group
Table 4.4
4. Special Function Registers (SFRs)
SFR Information (4)(1)
Address
Register
00C0h
A/D Register
00C1h
00C2h
00C3h
00C4h
00C5h
00C6h
00C7h
00C8h
00C9h
00CAh
00CBh
00CCh
00CDh
00CEh
00CFh
00D0h
00D1h
00D2h
00D3h
00D4h
A/D Control Register 2
00D5h
00D6h
A/D Control Register 0
00D7h
A/D Control Register 1
00D8h
D/A Register 0
00D9h
00DAh
D/A Register 1
00DBh
00DCh
D/A Control Register
00DDh
00DEh
00DFh
00E0h
Port P0 Register
00E1h
Port P1 Register
00E2h
Port P0 Direction Register
00E3h
Port P1 Direction Register
00E4h
00E5h
Port P3 Register
00E6h
00E7h
Port P3 Direction Register
00E8h
Port P4 Register
00E9h
Port P5 Register
00EAh
Port P4 Direction Register
00EBh
Port P5 Direction Register
00ECh
00EDh
00EEh
00EFh
00F0h
00F1h
00F2h
00F3h
00F4h
00F5h
00F6h
Pin Select Register 2
00F7h
Pin Select Register 3
00F8h
Port Mode Register
00F9h
External Input Enable Register
00FAh
INT Input Filter Select Register
00FBh
Key Input Enable Register
00FCh
Pull-Up Control Register 0
00FDh
Pull-Up Control Register 1
00FEh
Port P1 Drive Capacity Control Register
00FFh
X: Undefined
NOTE:
1. The blank regions are reserved. Do not access locations in these regions.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 20 of 332
Symbol
After reset
AD
XXh
XXh
ADCON2
00h
ADCON0
ADCON1
DA0
00h
00h
00h
DA1
00h
DACON
00h
P0
P1
PD0
PD1
00h
00h
00h
00h
P3
00h
PD3
P4
P5
PD4
PD5
00h
00h
00h
00h
00h
PINSR2
PINSR3
PMR
INTEN
INTF
KIEN
PUR0
PUR1
P1DRR
00h
00h
00h
00h
00h
00h
00h
00h
00h
R8C/2E Group, R8C/2F Group
Table 4.5
4. Special Function Registers (SFRs)
SFR Information (5)(1)
Address
Register
0100h
Timer RA Control Register
0101h
Timer RA I/O Control Register
0102h
Timer RA Mode Register
0103h
Timer RA Prescaler Register
0104h
Timer RA Register
0105h
0106h
LIN Control Register
0107h
LIN Status Register
0108h
Timer RB Control Register
0109h
Timer RB One-Shot Control Register
010Ah
Timer RB I/O Control Register
010Bh
Timer RB Mode Register
010Ch
Timer RB Prescaler Register
010Dh
Timer RB Secondary Register
010Eh
Timer RB Primary Register
010Fh
0110h
0111h
0112h
0113h
0114h
0115h
0116h
0117h
0118h
Timer RE Counter Data Register
0119h
Timer RE Compare Data Register
011Ah
011Bh
011Ch
Timer RE Control Register 1
011Dh
Timer RE Control Register 2
011Eh
Timer RE Clock Source Select Register
011Fh
0120h
Timer RC Mode Register
0121h
Timer RC Control Register 1
0122h
Timer RC Interrupt Enable Register
0123h
Timer RC Status Register
0124h
Timer RC I/O Control Register 0
0125h
Timer RC I/O Control Register 1
0126h
Timer RC Counter
0127h
0128h
Timer RC General Register A
0129h
012Ah
Timer RC General Register B
012Bh
012Ch
Timer RC General Register C
012Dh
012Eh
Timer RC General Register D
012Fh
0130h
Timer RC Control Register 2
0131h
Timer RC Digital Filter Function Select Register
0132h
Timer RC Output Master Enable Register
0133h
0134h
0135h
0136h
0137h
0138h
0139h
013Ah
013Bh
013Ch
013Dh
013Eh
013Fh
X: Undefined
NOTE:
1. The blank regions are reserved. Do not access locations in these regions.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 21 of 332
Symbol
TRACR
TRAIOC
TRAMR
TRAPRE
TRA
00h
00h
00h
FFh
FFh
LINCR
LINST
TRBCR
TRBOCR
TRBIOC
TRBMR
TRBPRE
TRBSC
TRBPR
00h
00h
00h
00h
00h
00h
FFh
FFh
FFh
TRESEC
TREMIN
00h
00h
TRECR1
TRECR2
TRECSR
00h
00h
00001000b
TRCMR
TRCCR1
TRCIER
TRCSR
TRCIOR0
TRCIOR1
TRC
01001000b
00h
01110000b
01110000b
10001000b
10001000b
00h
00h
FFh
FFh
FFh
FFh
FFh
FFh
FFh
FFh
00011111b
00h
01111111b
TRCGRA
TRCGRB
TRCGRC
TRCGRD
TRCCR2
TRCDF
TRCOER
After reset
R8C/2E Group, R8C/2F Group
Table 4.6
4. Special Function Registers (SFRs)
SFR Information (6)(1)
Address
Register
0140h
0141h
0142h
0143h
0144h
0145h
0146h
0147h
0148h
0149h
014Ah
014Bh
014Ch
014Dh
014Eh
014Fh
0150h
0151h
0152h
0153h
0154h
0155h
0156h
0157h
0158h
0159h
015Ah
015Bh
015Ch
015Dh
015Eh
015Fh
0160h
0161h
0162h
0163h
0164h
0165h
0166h
0167h
0168h
0169h
016Ah
016Bh
016Ch
016Dh
016Eh
016Fh
0170h
0171h
0172h
0173h
0174h
Comparator 0 Control Register
0175h
Comparator 1 Control Register
0176h
0177h
Comparator Mode Register
0178h
0179h
017Ah
017Bh
017Ch
017Dh
017Eh
017Fh
X: Undefined
NOTE:
1. The blank regions are reserved. Do not access locations in these regions.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 22 of 332
Symbol
After reset
ACCR0
ACCR1
00001000b
00001000b
ACMR
00h
R8C/2E Group, R8C/2F Group
Table 4.7
Address
0180h
0181h
0182h
0183h
0184h
0185h
0186h
0187h
0188h
0189h
018Ah
018Bh
018Ch
018Dh
018Eh
018Fh
0190h
0191h
0192h
0193h
0194h
0195h
0196h
0197h
0198h
0199h
019Ah
019Bh
019Ch
019Dh
019Eh
019Fh
01A0h
01A1h
01A2h
01A3h
01A4h
01A5h
01A6h
01A7h
01A8h
01A9h
01AAh
01ABh
01ACh
01ADh
01AEh
01AFh
01B0h
01B1h
01B2h
01B3h
01B4h
01B5h
01B6h
01B7h
01B8h
01B9h
01BAh
01BBh
01BCh
01BDh
01BEh
01BFh
4. Special Function Registers (SFRs)
SFR Information (7)(1)
Register
Symbol
After reset
Flash Memory Control Register 4
FMR4
01000000b
Flash Memory Control Register1
FMR1
1000000Xb
Flash Memory Control Register 0
FMR0
00000001b
OFS
(Note 2)
FFFFh
Option Function Select Register
X: Undefined
NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. The OFS register cannot be changed by a program. Use a flash programmer to write to it.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 23 of 332
R8C/2E Group, R8C/2F Group
5.
5. Resets
Resets
The following resets are implemented: hardware reset, power-on reset, voltage monitor 1 reset, voltage monitor 2 reset,
watchdog timer reset, and software reset.
Table 5.1 lists the Reset Names and Sources. Figure 5.1 shows the Block Diagram of Reset Circuit.
Table 5.1
Reset Names and Sources
Reset Name
Source
Hardware reset
Power-on reset
Voltage monitor 1 reset
Voltage monitor 2 reset
Watchdog timer reset
Software reset
Input voltage of RESET pin is held “L”
VCC rises
VCC falls (monitor voltage: Vdet1)
VCC falls (monitor voltage: Vdet2)
Underflow of watchdog timer
Write 1 to PM03 bit in PM0 register
Hardware reset
RESET
SFRs
Power-on reset
circuit
VCC
b5 bit in VCA2
register
Power-on reset
Voltage monitor 1 reset
Voltage
detection
circuit
Watchdog
timer
CPU
Bits VCA13, VCA26, VCA27,
VW1C2, VW1C3,
VW2C2, VW2C3
Voltage monitor 2
reset
Watchdog timer
reset
Pin, CPU, and
SFR bits other than
those listed above
Software reset
VCA13: Bit in VCA1 register
VCA26, VCA27: Bits in VCA2 register
VW1C2, VW1C3: Bits in VW1C register
VW2C2, VW2C3: Bits in VW2C register
Figure 5.1
Block Diagram of Reset Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
SFRs
Page 24 of 332
R8C/2E Group, R8C/2F Group
5. Resets
Table 5.2 shows the Pin Functions while RESET Pin Level is “L”, Figure 5.2 shows the CPU Register Status after
Reset, Figure 5.3 shows the Reset Sequence, and Figure 5.4 shows the OFS Register.
Table 5.2
Pin Functions while RESET Pin Level is “L”
Pin Name
P0, P1
P3_1, P3_3 to P3_7
P4_2, P4_5 to P4_7
P5_3, P5_4
Pin Functions
Input port
Input port
Input port
Input port
b15
b0
0000h
Data register(R0)
0000h
Data register(R1)
0000h
Data register(R2)
0000h
0000h
0000h
0000h
Data register(R3)
b19
Address register(A0)
Address register(A1)
Frame base register(FB)
b0
00000h
Content of addresses 0FFFEh to 0FFFCh
b15
Interrupt table register(INTB)
Program counter(PC)
b0
0000h
User stack pointer(USP)
0000h
Interrupt stack pointer(ISP)
0000h
Static base register(SB)
b15
b0
Flag register(FLG)
0000h
b15
b8
IPL
Figure 5.2
b0
b7
U I O B S Z D C
CPU Register Status after Reset
fOCO-S
RESET pin
10 cycles or more are needed(1)
fOCO-S clock × 32 cycles(2)
Internal reset
signal
Start time of flash memory
(CPU clock × 14 cycles)
CPU clock × 28 cycles
CPU clock
0FFFCh
0FFFEh
Address
(internal address
signal)
0FFFDh
Content of reset vector
NOTES:
1. Hardware reset.
2. When the “L” input width to the RESET pin is set to fOCO-S clock × 32 cycles or more, setting the RESET pin to “H” also sets the internal
reset signal to “H” at the same.
Figure 5.3
Reset Sequence
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 25 of 332
R8C/2E Group, R8C/2F Group
5. Resets
Option Function Select Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
1 0 1
1
Symbol
OFS
Bit Symbol
Address
0FFFFh
Bit Name
Watchdog timer start
select bit
When Shipping
FFh(2)
Function
0 : Starts w atchdog timer automatically after reset
1 : Watchdog timer is inactive after reset
Reserved bit
Set to 1.
ROM code protect
disabled bit
0 : ROM code protect disabled
1 : ROMCP1 enabled
RW
ROM code protect bit
0 : ROM code protect enabled
1 : ROM code protect disabled
RW
—
(b4)
Reserved bit
Set to 1.
—
(b5)
Reserved bit
Set to 0.
—
(b6)
Reserved bit
Set to 1.
WDTON
—
(b1)
ROMCR
ROMCP1
Count source protect
CSPROINI mode after reset select
bit
0 : Count source protect mode enabled after reset
1 : Count source protect mode disabled after reset
RW
RW
RW
RW
RW
RW
RW
NOTES:
1. The OFS register is on the flash memory. Write to the OFS register w ith a program. After w riting is completed, do not
w rite additions to the OFS register.
2. If the block including the OFS register is erased, FFh is set to the OFS register.
Figure 5.4
OFS Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 26 of 332
R8C/2E Group, R8C/2F Group
5.1
5. Resets
Hardware Reset
A reset is applied using the RESET pin. When an “L” signal is applied to the RESET pin while the supply voltage
meets the recommended operating conditions, pins, CPU, and SFRs are all reset (refer to Table 5.2 Pin Functions
while RESET Pin Level is “L”). When the input level applied to the RESET pin changes from “L” to “H”, a
program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip
oscillator clock divided by 8 is automatically selected as the CPU clock.
Refer to 4. Special Function Registers (SFRs) for the state of the SFRs after reset.
The internal RAM is not reset. If the RESET pin is pulled “L” while writing to the internal RAM is in progress, the
contents of internal RAM will be undefined.
Figure 5.5 shows an Example of Hardware Reset Circuit and Operation and Figure 5.6 shows an Example of
Hardware Reset Circuit (Usage Example of External Supply Voltage Detection Circuit) and Operation.
5.1.1
When Power Supply is Stable
(1) Apply “L” to the RESET pin.
(2) Wait for 10 µs or more.
(3) Apply “H” to the RESET pin.
5.1.2
Power On
(1) Apply “L” to the RESET pin.
(2) Let the supply voltage increase until it meets the recommended operating conditions.
(3) Wait for td(P-R) or more to allow the internal power supply to stabilize (refer to 21. Electrical
Characteristics).
(4) Wait for 10 µs or more.
(5) Apply “H” to the RESET pin.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 27 of 332
R8C/2E Group, R8C/2F Group
5. Resets
VCC
2.2 V
VCC
0V
RESET
RESET
0.2 VCC or below
0V
td(P-R) + 10 µs or more
NOTE:
1. Refer to 21. Electrical Characteristics.
Figure 5.5
Example of Hardware Reset Circuit and Operation
Supply voltage
detection circuit
RESET
5V
VCC
2.2 V
VCC
0V
5V
RESET
0V
td(P-R) + 10 µs or more
Example when
VCC = 5 V
NOTE:
1. Refer to 21. Electrical Characteristics.
Figure 5.6
Example of Hardware Reset Circuit (Usage Example of External Supply Voltage
Detection Circuit) and Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 28 of 332
R8C/2E Group, R8C/2F Group
5.2
5. Resets
Power-On Reset Function
When the RESET pin is connected to the VCC pin via a pull-up resistor, and the VCC pin voltage level rises while
the rise gradient is trth or more, the power-on reset function is enabled and the MCU resets its pins, CPU, and SFR.
When a capacitor is connected to the RESET pin, too, always keep the voltage to the RESET pin 0.8VCC or more.
When the input voltage to the VCC pin reaches the maximum 2.6 V or above, the low-speed on-chip oscillator
clock starts counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held
“H” and the MCU enters the reset sequence (refer to Figure 5.3). The low-speed on-chip oscillator clock divided by
8 is automatically selected as the CPU clock after reset.
Refer to 4. Special Function Registers (SFRs) for the states of the SFR after power-on reset.
Figure 5.7 shows an Example of Power-On Reset Circuit and Operation.
VCC
4.7 kΩ
(reference)
RESET
max. 2.6 V
max. 2.6 V
2.2 V
trth
trth
External
Power VCC
Vpor2
Vpor1
Sampling time(1, 2)
tw(por1)
Internal
reset signal
(“L” valid)
1
× 32
fOCO-S
NOTES:
1. Ensure that the voltage is 2.2 V or above during the sampling time.
2. The sampling time is fOCO-S divided by 1 × 4 cycles.
3. Refer to 21. Electrical Characteristics.
Figure 5.7
Example of Power-On Reset Circuit and Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 29 of 332
1
× 32
fOCO-S
R8C/2E Group, R8C/2F Group
5.3
5. Resets
Voltage Monitor 1 Reset
A reset is applied using the on-chip voltage detection 1 circuit. The voltage detection 1 circuit monitors the input
voltage to the VCC pin. The voltage to monitor is Vdet1.
When the input voltage to the VCC pin drops the Vdet1 level or below, the pins, CPU, and SFR are reset and a program
is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator
clock divided by 8 is automatically selected as the CPU clock.
The voltage monitor 1 does not reset some portions of the SFR. Refer to 4. Special Function Registers (SFRs) for
details.
The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet1 level or below while
writing to the internal RAM is in progress, the contents of internal RAM are undefined.
Refer to 6. Voltage Detection Circuit for details of voltage monitor 1 reset.
5.4
Voltage Monitor 2 Reset
A reset is applied using the on-chip voltage detection 2 circuit. The voltage detection 2 circuit monitors the input
voltage to the VCC pin. The voltage monitored is Vdet2.
When the input voltage to the VCC pin drops the Vdet2 level or below, the pins, CPU, and SFR are reset and the
program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip
oscillator clock divided by 8 is automatically selected as the CPU clock.
The voltage monitor 2 does not reset some SFRs. Refer to 4. Special Function Registers (SFRs) for details.
The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet2 level or below while
writing to the internal RAM is in progress, the contents of internal RAM are undefined.
Refer to 6. Voltage Detection Circuit for details of voltage monitor 2 reset.
5.5
Watchdog Timer Reset
When the PM12 bit in the PM1 register is set to 1 (reset when watchdog timer underflows), the MCU resets its pins,
CPU, and SFR if the watchdog timer underflows. Then the program beginning with the address indicated by the
reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as
the CPU clock.
The watchdog timer reset does not reset some SFRs. Refer to 4. Special Function Registers (SFRs) for details.
The internal RAM is not reset. When the watchdog timer underflows, the contents of internal RAM are undefined.
Refer to 13. Watchdog Timer for details of the watchdog timer.
5.6
Software Reset
When the PM03 bit in the PM0 register is set to 1 (MCU reset), the MCU resets its pins, CPU, and SFR. The
program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip
oscillator clock divided by 8 is automatically selected for the CPU clock.
The software reset does not reset some SFRs. Refer to 4. Special Function Registers (SFRs) for details.
The internal RAM is not reset.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 30 of 332
R8C/2E Group, R8C/2F Group
6.
6. Voltage Detection Circuit
Voltage Detection Circuit
The voltage detection circuit monitors the input voltage to the VCC pin. This circuit can be used to monitor the VCC
input voltage by a program. Alternately, voltage monitor 1 interrupt, voltage monitor 1 reset, voltage monitor 2
interrupt, and voltage monitor 2 reset can also be used.
Table 6.1 lists the Specifications of Voltage Detection Circuit and Figures 6.1 to 6.3 show the Block Diagrams. Figures
6.4 to 6.6 show the Associated Registers.
Table 6.1
VCC Monitor
Specifications of Voltage Detection Circuit
Item
Voltage to monitor
Detection target
Monitor
Process
Reset
When Voltage
is Detected
Interrupt
Digital Filter
Switch
enabled/disabled
Sampling time
Voltage Detection 1
Vdet1
Passing through Vdet1 by rising or
falling
VW1C3 bit in VW1C register
Whether VCC is higher or lower than
Vdet1
Voltage monitor 1 reset
Reset at Vdet1 > VCC; restart CPU
operation after a specified time
Voltage monitor 1 interrupt
Interrupt request at Vdet1 > VCC and
VCC > Vdet1 when digital filter is
enabled;
interrupt request at Vdet1 > VCC or
VCC > Vdet1 when digital filter is
disabled
Available
Voltage Detection 2
Vdet2
Passing through Vdet2 by rising or
falling
VCA13 bit in VCA1 register
Whether VCC is higher or lower than
Vdet2
Voltage monitor 2 reset
Reset at Vdet2 > VCC; restart CPU
operation after a specified time
Voltage monitor 2 interrupt
Interrupt request at Vdet2 > VCC and
VCC > Vdet2 when digital filter is
enabled;
interrupt request at Vdet2 > VCC or
VCC > Vdet2 when digital filter is
disabled
Available
(Divide-by-n of fOCO-S) × 4
n: 1, 2, 4, and 8
(Divide-by-n of fOCO-S) × 4
n: 1, 2, 4, and 8
VCA27
VCC
Noise
filter
+
Internal
reference
voltage
-
Voltage detection 2
signal
≥ Vdet2
VCA1 register
b3
VCA26
Noise
filter
+
-
VCA13 bit
≥ Vdet1
Voltage detection 1
signal
VW1C register
b3
VW1C3 bit
Figure 6.1
Block Diagram of Voltage Detection Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 31 of 332
R8C/2E Group, R8C/2F Group
6. Voltage Detection Circuit
Voltage monitor 1 interrupt/reset generation circuit
VW1F1 to VW1F0
= 00b
= 01b
Voltage detection 1 circuit
VW1C2 bit is set to 0 (not detected) by
writing 0 by a program.
When VCA26 bit is set to 0 (voltage
detection 1 circuit disabled), VW1C2
bit is set to 0
= 10b
fOCO-S
1/2
1/2
1/2
= 11b
VCA26
VW1C1
VW1C3
VCC
+
Noise filter
Internal
reference
voltage
(Filter width: 200 ns)
Digital
filter
Voltage
detection
1 signal
Watchdog
timer interrupt
signal
VW1C2
Voltage detection 1 signal
is held “H” when VCA26 bit
is set to 0 (disabled)
Voltage monitor 1
interrupt signal
Non-maskable
interrupt signal
VW1C1
Oscillation stop
detection
interrupt signal
VW1C7
VW1C0
VW1C6
Voltage monitor 1
reset signal
VW1C0 to VW1C3, VW1F0, VW1F1, VW1C6, VW1C7: Bits in VW1C register
VCA26: Bit in VCA2 register
Figure 6.2
Block Diagram of Voltage Monitor 1 Interrupt/Reset Generation Circuit
Voltage monitor 2 interrupt/reset generation circuit
VW2F1 to VW2F0
= 00b
= 01b
Voltage detection 2 circuit
= 10b
fOCO-S
1/2
1/2
1/2
VW2C2 bit is set to 0 (not detected) by
writing 0 by a program.
When VCA27 bit is set to 0 (voltage
detection 2 circuit disabled), VW2C2
bit is set to 0
= 11b
VCA27
VW2C1
VCA13
VCC
+
Noise filter
Internal
reference
voltage
(Filter width: 200 ns)
Digital
filter
Voltage
detection
2 signal
Watchdog
timer interrupt
signal
VW2C2
Voltage detection 2 signal
is held “H” when VCA27 bit
is set to 0 (disabled)
Voltage monitor 2
interrupt signal
Non-maskable
interrupt signal
VW2C1
Oscillation stop
detection
interrupt signal
Watchdog timer block
VW2C3
VW2C7
Watchdog timer
underflow signal
This bit is set to 0 (not detected) by writing 0
by a program.
VW2C0
VW2C6
VW2C0 to VW2C3, VW2F0, VW2F1, VW2C6, VW2C7: Bits in VW2C register
VCA13: Bit in VCA1 register
VCA27: Bit in VCA2 register
Figure 6.3
Block Diagram of Voltage Monitor 2 Interrupt/Reset Generation Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 32 of 332
Voltage monitor 2
reset signal
R8C/2E Group, R8C/2F Group
6. Voltage Detection Circuit
Voltage Detection Register 1
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0
0 0 0
After Reset(2)
00001000b
Function
Symbol
Address
0031h
VCA1
Bit Symbol
Bit Name
Reserved bits
—
(b2-b0)
VCA13
—
(b7-b4)
Set to 0.
Voltage detection 2 signal monitor
flag(1)
0 : VCC < Vdet2
1 : VCC ≥ Vdet2 or voltage detection 2
circuit disabled
Reserved bits
Set to 0.
RW
RW
RO
RW
NOTES:
1. The VCA13 bit is enabled w hen the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled).
The VCA13 bit is set to 1 (VCC ≥ Vdet 2) w hen the VCA27 bit in the VCA2 register is set to 0 (voltage detection 2
circuit disabled).
2. The softw are reset, w atchdog timer reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect this
register.
Voltage Detection Register 2(1)
b7 b6 b5 b4 b3 b2 b1 b0
1 0 0 0 0
Address
0032h
Bit Name
Internal pow er low
consumption enable bit(5)
After Reset(4)
Pow er-on reset or hardw are reset : 00100000b
Function
0 : Disables low consumption
1 : Enables low consumption
—
(b4-b1)
Reserved bits
Set to 0.
—
(b5)
Reserved bit
Set to 1.
VCA26
Voltage detection 1 enable
bit(2)
0 : Voltage detection 1 circuit disabled
1 : Voltage detection 1 circuit enabled
RW
VCA27
Voltage detection 2 enable
bit(3)
0 : Voltage detection 2 circuit disabled
1 : Voltage detection 2 circuit enabled
RW
Symbol
VCA2
Bit Symbol
VCA20
RW
RW
RW
RW
NOTES:
1. Set the PRC3 bit in the PRCR register to 1 (w rite enable) before w riting to the VCA2 register.
2. To use the voltage monitor 1 interrupt/reset or the VW1C3 bit in the VW1C register, set the VCA26 bit to 1.
After the VCA26 bit is set to 1 from 0, the voltage detection circuit w aits for td(E-A) to elapse before starting
operation.
3. To use the voltage monitor 2 interrupt/reset or the VCA13 bit in the VCA1 register, set the VCA27 bit to 1.
After the VCA27 bit is set to 1 from 0, the voltage detection circuit w aits for td(E-A) to elapse before starting
operation.
4. Softw are reset, w atchdog timer reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect this
register.
5. Use the VCA20 bit only w hen entering to w ait mode. To set the VCA20 bit, follow the procedure show n in Figure
10.8 Procedure for Enabling Reduced Internal Pow er Consum ption Using VCA20 bit.
Figure 6.4
Registers VCA1 and VCA2
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 33 of 332
R8C/2E Group, R8C/2F Group
6. Voltage Detection Circuit
Voltage Monitor 1 Circuit Control Register (1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
VW1C
Bit Symbol
VW1C0
VW1C1
VW1C2
VW1C3
Address
0036h
Bit Name
Voltage monitor 1 interrupt/reset 0 : Disable
enable bit(6)
1 : Enable
RW
0 : Digital filter enabled mode
(digital filter circuit enabled)
1 : Digital filter disabled mode
(digital filter circuit disabled)
RW
Voltage change detection
flag(3, 4, 8)
0 : Not detected
1 : Vdet1 pass detected
RW
Voltage detection 1 signal
monitor flag(3, 8)
0 : VCC < Vdet1
1 : VCC ≥ Vdet1 or voltage detection 1
circuit disabled
RO
Sampling clock select bits
b5 b4
0 0 : fOCO-S divided by
0 1 : fOCO-S divided by
1 0 : fOCO-S divided by
1 1 : fOCO-S divided by
VW1F1
VW1C7
RW
Voltage monitor 1 digital filter
disable mode select bit(2)
VW1F0
VW1C6
After Reset(8)
00001000b
Function
Voltage monitor 1 circuit mode
select bit(5)
1
2
4
8
0 : Voltage monitor 1 interrupt mode
1 : Voltage monitor 1 reset mode
Voltage monitor 1 interrupt/reset 0 : When VCC reaches Vdet1 or above
generation condition select
1 : When VCC reaches Vdet1 or below
bit(7,9)
RW
RW
RW
RW
NOTES:
1. Set the PRC3 bit in the PRCR register to 1 (rew rite enable) before w riting to the VW1C register.
2. To use the voltage monitor 1 interrupt to exit stop mode and to return again, w rite 0 to the VW1C1 bit before w riting
1.
3. Bits VW1C2 and VW1C3 are enabled w hen the VCA26 bit in the VCA2 register is set to 1 (voltage detection 1 circuit
enabled).
4. Set this bit to 0 by a program. When 0 is w ritten by a program, it is set to 0 (and remains unchanged even if 1 is
w ritten to it).
5. The VW1C6 bit is enabled w hen the VW1C0 bit is set to 1 (voltage monitor 1 interrupt/enabled reset).
6. The VW1C0 bit is enabled w hen the VCA26 bit in the VCA2 register is set to 1 (voltage detection 1 circuit enabled).
Set the VW1C0 bit to 0 (disable) w hen the VCA26 bit is set to 0 (voltage detection 1 circuit disabled).
7. The VW1C7 bit is enabled w hen the VW1C1 bit is set to 1 (digital filter disabled mode).
8. Bits VW1C2 and VW1C3 remain unchanged after a softw are reset, w atchdog timer reset, voltage monitor 1 reset, or
voltage monitor 2 reset.
9. When the VW1C6 bit is set to 1 (voltage monitor 1 reset mode), set the VW1C7 bit to 1 (w hen VCC reaches Vdet1 or
below ). (Do not set to 0.)
Figure 6.5
VW1C Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 34 of 332
R8C/2E Group, R8C/2F Group
6. Voltage Detection Circuit
Voltage Monitor 2 Circuit Control Register (1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
VW2C
Bit Symbol
VW2C0
VW2C1
VW2C2
VW2C3
Address
0037h
Bit Name
Voltage monitor 2 interrupt/reset 0 : Disable
enable bit(6)
1 : Enable
RW
0 : Digital filter enabled mode
(digital filter circuit enabled)
1 : Digital filter disabled mode
(digital filter circuit disabled)
RW
Voltage change detection
flag(3,4,8)
0 : Not detected
1 : VCC has crossed Vdet2
RW
WDT detection flag(4,8)
0 : Not detected
1 : Detected
RW
Sampling clock select bits
b5 b4
0 0 : fOCO-S divided by
0 1 : fOCO-S divided by
1 0 : fOCO-S divided by
1 1 : fOCO-S divided by
VW2F1
VW2C7
RW
Voltage monitor 2 digital filter
disable mode select bit(2)
VW2F0
VW2C6
After Reset(8)
00h
Function
Voltage monitor 2 circuit mode
select bit(5)
1
2
4
8
0 : Voltage monitor 2 interrupt mode
1 : Voltage monitor 2 reset mode
Voltage monitor 2 interrupt/reset 0 : When VCC reaches Vdet2 or above
1 : When VCC reaches Vdet2 or below
generation condition select
bit(7,9)
RW
RW
RW
RW
NOTES:
1. Set the PRC3 bit in the PRCR register to 1 (w rite enable) before w riting to the VW2C register.
2. To use the voltage monitor 2 interrupt to exit stop mode and to return again, w rite 0 to the VW2C1
bit before w riting 1.
3. The VW2C2 bit is enabled w hen the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit
enabled).
4. Set this bit to 0 by a program. When 0 is w ritten by a program, it is set to 0 (and remains unchanged even if 1 is
w ritten to it).
5. The VW2C6 bit is enabled w hen the VW2C0 bit is set to 1 (voltage monitor 2 interrupt/enables reset).
6. The VW2C0 bit is enabled w hen the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit
enabled). Set the VW2C0 bit to 0 (disable) w hen the VCA27 bit is set to 0 (voltage detection 2 circuit disabled).
7. The VW2C7 bit is enabled w hen the VW2C1 bit is set to 1 (digital filter disabled mode).
8. Bits VW2C2 and VW2C3 remain unchanged after a softw are reset, w atchdog timer reset, voltage monitor 1 reset, or
voltage monitor 2 reset.
9. When the VW2C6 bit is set to 1 (voltage monitor 2 reset mode), set the VW2C7 bit to 1 (w hen VCC reaches Vdet2 or
below ). (Do not set to 0.)
Figure 6.6
VW2C Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 35 of 332
R8C/2E Group, R8C/2F Group
6.1
6. Voltage Detection Circuit
VCC Input Voltage
6.1.1
Monitoring Vdet1
Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled). After td(E-A) has elapsed
(refer to 21. Electrical Characteristics), Vdet1 can be monitored by the VW1C3 bit in the VW1C register.
6.1.2
Monitoring Vdet2
Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled). After td(E-A) has elapsed
(refer to 21. Electrical Characteristics), Vdet2 can be monitored by the VCA13 bit in the VCA1 register.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 36 of 332
R8C/2E Group, R8C/2F Group
6.2
6. Voltage Detection Circuit
Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset
Table 6.2 lists the Procedure for Setting Bits Associated with Voltage Monitor 1 Interrupt and Reset. Figure 6.7
shows an Example of Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset Operation. To use the voltage
monitor 1 interrupt or voltage monitor 1 reset to exit stop mode, set the VW1C1 bit in the VW1C register to 1
(digital filter disabled).
Table 6.2
Step
1
2
3
4(2)
5(2)
6
7
8
9
Procedure for Setting Bits Associated with Voltage Monitor 1 Interrupt and Reset
When Using Digital Filter
When Not Using Digital Filter
Voltage Monitor 1
Voltage Monitor 1
Voltage Monitor 1
Voltage Monitor 1
Interrupt
Reset
Interrupt
Reset
Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled)
Wait for td(E-A)
Select the sampling clock of the digital filter Select the timing of the interrupt and reset
request by the VW1C7 bit in the VW1C
by the VW1F0 to VW1F1 bits in the VW1C
register
register(1)
Set the VW1C1 bit in the VW1C register to 0 Set the VW1C1 bit in the VW1C register to 1
(digital filter enabled)
(digital filter disabled)
Set the VW1C6 bit in Set the VW1C6 bit in Set the VW1C6 bit in Set the VW1C6 bit in
the VW1C register to the VW1C register to the VW1C register to the VW1C register to
0 (voltage monitor 1 1 (voltage monitor 1 0 (voltage monitor 1 1 (voltage monitor 1
reset mode)
interrupt mode)
reset mode)
interrupt mode)
Set the VW1C2 bit in the VW1C register to 0 (passing of Vdet1 is not detected)
Set the CM14 bit in the CM1 register to 0
−
(low-speed on-chip oscillator on)
Wait for 4 cycles of the sampling clock of the − (No wait time required)
digital filter
Set the VW1C0 bit in the VW1C register to 1 (voltage monitor 1 interrupt/reset enabled)
NOTES:
1. Set the VW1C7 bit to 1 (when VCC reaches Vdet1 or below) for the voltage monitor 1 reset.
2. When the VW1C0 bit is set to 0, steps 3, 4, and 5 can be executed simultaneously (with 1
instruction).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 37 of 332
R8C/2E Group, R8C/2F Group
6. Voltage Detection Circuit
VCC
Vdet1
1
VW1C3 bit
0
4 cycles of sampling clock of
digital filter
4 cycles of sampling clock of
digital filter
1
VW1C2 bit
0
Set to 0 by a program
When VW1C1 bit is set to 0
(digital filter enabled)
Set to 0 by interrupt request
acknowledgement
Voltage monitor 1
interrupt request
(VW1C6 = 0)
Internal reset signal
(VW1C6 = 1)
Set to 0 by a program
1
When VW1C1 bit is set to 1
(digital filter disabled) and
VW1C7 bit is set to 0
(Vdet1 or above)
VW1C2 bit
0
Set to 0 by interrupt
request
acknowledgement
Voltage monitor 1
interrupt request
(VW1C6 = 0)
Set to 0 by a program
1
VW1C2 bit
0
When VW1C1 bit is set to 1
(digital filter disabled) and
VW1C7 bit is set to 1
(Vdet1 or below)
Voltage monitor 1
interrupt request
(VW1C6 = 0)
Set to 0 by interrupt
request acknowledgement
Internal reset signal
(VW1C6 = 1)
VW1C1, VW1C2, VW1C3, VW1C6, VW1C7: Bit in VW1C Register
The above applies under the following conditions.
• VCA26 bit in VCA2 register = 1 (voltage detection 1 circuit enabled)
• VW1C0 bit in VW1C register = 1 (voltage monitor 1 interrupt and voltage monitor 1 reset enabled)
Figure 6.7
Example of Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 38 of 332
R8C/2E Group, R8C/2F Group
6.3
6. Voltage Detection Circuit
Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset
Table 6.3 lists the Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt and Reset. Figure 6.8
shows an Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Operation. To use the voltage
monitor 2 interrupt or voltage monitor 2 reset to exit stop mode, set the VW2C1 bit in the VW2C register to 1
(digital filter disabled).
Table 6.3
Step
1
2
3
4
5(2)
6
7
8
9
Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt and Reset
When Using Digital Filter
When Not Using Digital Filter
Voltage Monitor 2
Voltage Monitor 2
Voltage Monitor 2
Voltage Monitor 2
Interrupt
Reset
Interrupt
Reset
Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled)
Wait for td(E-A)
Select the sampling clock of the digital filter Select the timing of the interrupt and reset
request by the VW2C7 bit in the VW2C
by the VW2F0 to VW2F1 bits in the VW2C
register
register(1)
Set the VW2C1 bit in the VW2C register to 0 Set the VW2C1 bit in the VW2C register to 1
(digital filter enabled)
(digital filter disabled)
Set the VW2C6 bit in Set the VW2C6 bit in Set the VW2C6 bit in Set the VW2C6 bit in
the VW2C register to the VW2C register to the VW2C register to the VW2C register to
0 (voltage monitor 2 1 (voltage monitor 2 0 (voltage monitor 2 1 (voltage monitor 2
reset mode)
interrupt mode)
reset mode)
interrupt mode)
Set the VW2C2 bit in the VW2C register to 0 (passing of Vdet2 is not detected)
Set the CM14 bit in the CM1 register to 0
−
(low-speed on-chip oscillator on)
Wait for 4 cycles of the sampling clock of the − (No wait time required)
digital filter
Set the VW2C0 bit in the VW2C register to 1 (voltage monitor 2 interrupt/reset enabled)
NOTES:
1. Set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset.
2. When the VW2C0 bit is set to 0, steps 3, 4, and 5 can be executed simultaneously (with 1
instruction).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 39 of 332
R8C/2E Group, R8C/2F Group
6. Voltage Detection Circuit
VCC
Vdet2
1
VCA13 bit
0
4 cycles of sampling clock of
digital filter
4 cycles of sampling clock of
digital filter
1
VW2C2 bit
0
Set to 0 by a program
When VW2C1 bit is set to 0
(digital filter enabled)
Set to 0 by interrupt request
acknowledgement
Voltage monitor 2
interrupt request
(VW2C6 = 0)
Internal reset signal
(VW2C6 = 1)
Set to 0 by a program
1
When VW2C1 bit is set to 1
(digital filter disabled) and
VW2C7 bit is set to 0
(Vdet2 or above)
VW2C2 bit
0
Set to 0 by interrupt
request
acknowledgement
Voltage monitor 2
interrupt request
(VW2C6 = 0)
Set to 0 by a program
1
VW2C2 bit
0
When VW2C1 bit is set to 1
(digital filter disabled) and
VW2C7 bit is set to 1
(Vdet2 or below)
Voltage monitor 2
interrupt request
(VW2C6 = 0)
Set to 0 by interrupt
request acknowledgement
Internal reset signal
(VW2C6 = 1)
VCA13: Bit in VCA1 register
VW2C1, VW2C2, VW2C6, VW2C7: Bits in VW2C register
The above applies under the following conditions.
• VCA27 bit in VCA2 register = 1 (voltage detection 2 circuit enabled)
• VW2C0 bit in VW2C register = 1 (voltage monitor 2 interrupt and voltage monitor 2 reset enabled)
Figure 6.8
Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 40 of 332
R8C/2E Group, R8C/2F Group
7.
7. Programmable I/O Ports
Programmable I/O Ports
There are 25 programmable Input/Output ports (I/O ports) P0, P1, P3_1, P3_3 to P3_7, P4_5, P5_3, and P5_4. Also,
P4_6 and P4_7 can be used as input-only ports if the XIN clock oscillation circuit is not used, and the P4_2 can be used
as an input-only port if the A/D converter is not used.
Table 7.1 lists an Overview of Programmable I/O Ports.
Table 7.1
Overview of Programmable I/O Ports
Ports
P0, P1
I/O
I/O
Type of Output
CMOS3 State
I/O Setting
Set per bit
Set every 4 bits(1)
P3_1, P3_3 to P3_7
I/O
CMOS3 State
Set per bit
Set every 2 bits, 4 bits(1)
P4_5
I/O
CMOS3 State
Set per bit
Set every bit(1)
P5_3, P5_4
I/O
CMOS3 State
Set per bit
Set every bit(1)
(No output function)
None
None
P4_2(2)
P4_6, P4_7(3)
I
Internal Pull-Up Resister
NOTES:
1. In input mode, whether an internal pull-up resistor is connected or not can be selected by registers
PUR0 and PUR1.
2. When the A/D converter is not used, this port can be used as the input-only port.
3. When the XIN clock oscillation circuit is not used, these ports can be used as the input-only ports.
7.1
Functions of Programmable I/O Ports
The PDi_j (j = 0 to 7) bit in the PDi (i = 0, 1, 3 to 5) register controls I/O of the ports P0, P1, P3_1, P3_3 to P3_7,
P4_5, P5_3, and P5_4. The Pi register consists of a port latch to hold output data and a circuit to read pin states.
Figures 7.1 to 7.5 show the Configurations of Programmable I/O Ports. Table 7.2 lists the Functions of
Programmable I/O Ports. Also, Figure 7.7 shows the PDi (i = 0, 1, and 3 to 5) Register. Figure 7.8 shows the Pi (i =
0, 1, and 3 to 5) Register, Figure 7.9 shows Registers PINSR2 and PINSR3, Figure 7.10 shows the PMR Register,
Figure 7.11 shows Registers PUR0 and PUR1, and Figure 7.12 shows the P1DRR Register.
Table 7.2
Functions of Programmable I/O Ports
Operation When
Value of PDi_j Bit in PDi Register(1)
Accessing
When PDi_j Bit is Set to 0 (Input Mode) When PDi_j Bit is Set to 1 (Output Mode)
Pi Register
Reading
Read pin input level
Read the port latch
Write to the port latch. The value written to
Writing
Write to the port latch
the port latch is output from the pin.
i = 0, 1, 3 to 5 j = 0 to 7
NOTE:
1. Nothing is assigned to bits PD3_0, PD3_2, PD4_0 to PD4_4, PD4_6, and PD4_7.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 41 of 332
R8C/2E Group, R8C/2F Group
7.2
7. Programmable I/O Ports
Effect on Peripheral Functions
Programmable I/O ports function as I/O ports for peripheral functions (Refer to Table 1.7 Pin Name Information
by Pin Number).
Table 7.3 lists the Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 0, 1, 3 to 5 j = 0
to 7). Refer to the description of each function for information on how to set peripheral functions.
Table 7.3
Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 0, 1, 3 to 5 j = 0 to 7)
I/O of Peripheral Functions
PDi_j Bit Settings for Shared Pin Functions
Input
Set this bit to 0 (input mode).
Output
This bit can be set to either 0 or 1 (output regardless of the port setting)
7.3
Pins Other than Programmable I/O Ports
Figure 7.6 shows the Configuration of I/O Pins.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 42 of 332
R8C/2E Group, R8C/2F Group
P0
7. Programmable I/O Ports
Pull-up selection
Direction
register
(Note 1)
Data bus
Port latch
(Note 1)
Analog input
Drive capacity select
P1_0 to P1_3
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Data bus
Port latch
(Note 1)
Input to individual peripheral function
Analog input
Drive capacity select
Drive capacity select
P1_4
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Data bus
Port latch
(Note 1)
Drive capacity select
NOTE:
1.
symbolizes a parasitic diode.
Ensure the input voltage to each port does not exceed VCC.
Figure 7.1
Configuration of Programmable I/O Ports (1)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 43 of 332
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
Drive capacity select
P1_5 and P1_7
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Port latch
Data bus
(Note 1)
Digital
filter
Input to external interrupt
Input to individual peripheral function
Drive capacity select
Drive capacity select
P1_6
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Port latch
Data bus
(Note 1)
Input to individual peripheral function
Drive capacity select
NOTE:
1.
symbolizes a parasitic diode.
Ensure the input voltage to each port does not exceed VCC.
Figure 7.2
Configuration of Programmable I/O Ports (2)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 44 of 332
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
P3_1
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Port latch
Data bus
(Note 1)
P3_3 and P3_6
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Port latch
Data bus
(Note 1)
Input to individual peripheral function
Input to external interrupt
P3_4, P3_5, and P3_7
Digital
filter
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Data bus
Port latch
(Note 1)
Input to individual peripheral function
NOTE:
1.
symbolizes a parasitic diode.
Ensure the input voltage to each port does not exceed VCC.
Figure 7.3
Configuration of Programmable I/O Ports (3)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 45 of 332
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
(Note 1)
P4_2/VREF
Data bus
(Note 1)
P4_5
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Data bus
Port latch
(Note 1)
Input to individual peripheral function
Digital
filter
Input to external interrupt
P4_6/XIN
(Note 1)
Data bus
(Note 1)
CM13
XIN
oscillation
circuit
CM05
CM11
RfXIN
P4_7/XOUT
(Note 2)
(Note 1)
Data bus
(Note 1)
NOTES:
1.
symbolizes a parasitic diode.
Ensure the input voltage to each port does not exceed VCC.
2. This pin is pulled up in one of the following conditions:
• CM05 = CM13 = 1
• CM10 = CM13 = 1
• CM10 = 1
CM05: Bit in CM0 register
CM10, CM13: Bits in CM1 register
Figure 7.4
Configuration of Programmable I/O Ports (4)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 46 of 332
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
P5_3 and P5_4
Pull-up selection
Direction
register
1
(Note 1)
Output from individual peripheral function
Port latch
Data bus
(Note 1)
Input to individual peripheral function
NOTE:
1.
symbolizes a parasitic diode.
Ensure the input voltage to each port does not exceed VCC.
Figure 7.5
Configuration of Programmable I/O Ports (5)
MODE
MODE signal input
(Note 1)
RESET
RESET signal input
(Note 1)
NOTE:
1.
symbolizes a parasitic diode.
Ensure the input voltage to each port does not exceed VCC.
Figure 7.6
Configuration of I/O Pins
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 47 of 332
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
Port Pi Direction Register (i = 0, 1, 3 to 5)(1, 2, 3, 4)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
PD0
PD1
PD3
PD4
PD5
Bit Symbol
PDi_0
PDi_1
PDi_2
PDi_3
PDi_4
PDi_5
PDi_6
PDi_7
Address
00E2h
00E3h
00E7h
00EAh
00EBh
Bit Name
Port Pi_0 direction bit
Port Pi_1 direction bit
Port Pi_2 direction bit
Port Pi_3 direction bit
Port Pi_4 direction bit
Port Pi_5 direction bit
Port Pi_6 direction bit
Port Pi_7 direction bit
After Reset
00h
00h
00h
00h
00h
Function
0 : Input mode
(functions as an input port)
1 : Output mode
(functions as an output port)
RW
RW
RW
RW
RW
RW
RW
RW
RW
NOTES:
1. Set the PD0 register by using the next instruction after setting the PRC2 bit in the PRCR register to 1 (w rite enable).
2. Bits PD3_0 and PD3_2 in the PD3 register are unavailable on this MCU.
If it is necessary to set bits PD3_0 and PD3_2, set to 0 (input mode). When read, the content is 0.
3. Bits PD4_0, PD4_1, PD4_3, PD4_4, PD4_6, and PD4_7 in the PD4 register are unavailable on this MCU.
If it is necessary to set bits D4_0, PD4_1, PD4_3, PD4_4, PD4_6, and PD4_7, set to 0 (input mode). When read, the
content is 0.
4. Bits PD5_0 to PD5_2 and PD5_5 to PD5_7 in the PD5 register are unavailable on this MCU.
If it is necessary to set bits PD5_0 to PD5_2 and PD5_5 to PD5_7, set to 0 (input mode). When read, the content is 0.
Figure 7.7
PDi (i = 0, 1, and 3 to 5) Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 48 of 332
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
Port Pi Register (i = 0, 1, 3 to 5)(1, 2, 3)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
P0
P1
P3
P4
P5
Bit Symbol
Pi_0
Pi_1
Pi_2
Pi_3
Pi_4
Pi_5
Pi_6
Pi_7
Address
00E0h
00E1h
00E5h
00E8h
00E9h
Bit Name
Port Pi_0 bit
Port Pi_1 bit
Port Pi_2 bit
Port Pi_3 bit
Port Pi_4 bit
Port Pi_5 bit
Port Pi_6 bit
Port Pi_7 bit
After Reset
00h
00h
00h
00h
00h
Function
The pin level of any I/O port w hich is set
to input mode can be read by reading the
corresponding bit in this register. The pin
level of any I/O port w hich is set to output
mode can be controlled by w riting to the
corresponding bit in this register.
0 : “L” level
1 : “H” level
NOTES:
1. Bits P3_0 and P3_2 in the P3 register are unavailable on this MCU.
If it is necessary to set bits P3_0 and P3_2, set to 0 (“L” level). When read, the content is 0.
2. Bits P4_0 to P4_4, P4_6, and P4_7 in the P4 register are unavailable on this MCU.
If it is necessary to set bits P4_0 to P4_4, P4_6, and P4_7, set to 0 (“L” level). When read, the content is 0.
3. Bits P5_0 to P5_2, P5_5 to P5_7 in the P5 register are unavailable on this MCU.
If it is necessary to set bits P5_0 to P5_2, P5_5 to P5_7, set to 0 (“L” level). When read, the content is 0.
Figure 7.8
Pi (i = 0, 1, and 3 to 5) Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 49 of 332
RW
RW
RW
RW
RW
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
Pin Select Register 2
b7 b6 b5 b4 b3 b2 b1 b0
0
0 0 0 0 0 0
Symbol
PINSR2
Bit Symbol
—
(b5-b0)
TRBOSEL
—
(b7)
Address
00F6h
Bit Name
Reserved bits
After Reset
00h
Function
Set to 0. When read, the content is 0.
TRBO pin select bit
0 : P3_1
1 : P1_3
Reserved bit
Set to 0. When read, the content is 0.
RW
RW
RW
RW
Pin Select Register 3
b7 b6 b5 b4 b3 b2 b1 b0
1
1 1 1
Symbol
PINSR3
Bit Symbol
—
(b2-b0)
TRCIOCSEL
TRCIODSEL
—
(b5)
—
(b7-b6)
Figure 7.9
Address
00F7h
Bit Name
Reserved bits
After Reset
00h
Function
Set to 1. When read, the content is 0.
TRCIOC pin select bit
0 : P5_3
1 : P3_4
RW
TRCIOD pin select bit
0 : P5_4
1 : P3_5
RW
Reserved bit
Set to 1. When read, the content is 0.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
RW
RW
RW
—
Registers PINSR2 and PINSR3
Port Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0
Symbol
PMR
Bit Symbol
INT1SEL
0 : P1_5, P1_7
1 : P3_6
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
(b6-b4)
Reserved bits
Set to 0.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
PMR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
After Reset
00h
Function
—
(b3-b1)
—
(b7)
Figure 7.10
Address
00F8h
Bit Name
____
INT1 pin select bit
Page 50 of 332
RW
RW
—
RW
—
R8C/2E Group, R8C/2F Group
7. Programmable I/O Ports
Pull-Up Control Register 0
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
PUR0
Bit Symbol
PU00
PU01
PU02
PU03
—
(b5-b4)
Address
00FCh
Bit Name
P0_0 to P0_3 pull-up(1)
P0_4 to P0_7 pull-up(1)
P1_0 to P1_3 pull-up(1)
P1_4 to P1_7 pull-up(1)
Reserved bits
After Reset
00h
Function
0 : Not pulled up
1 : Pulled up
PU06
PU07
P3_1 and P3_3 pull-up(1)
P3_4 to P3_7 pull-up(1)
0 : Not pulled up
1 : Pulled up
Set to 0. When read, the content is 0.
RW
RW
RW
RW
RW
RW
RW
RW
NOTE:
1. When this bit is set to 1 (pulled up), the pin w hose direction bit is set to 0 (input mode) is pulled up.
Pull-Up Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
0 0
0
Symbol
Address
00FDh
PUR1
Bit Symbol
Bit Name
—
Reserved bit
(b0)
After Reset
00h
Function
Set to 0. When read, the content is 0.
PU11
PU12
PU13
—
(b5-b4)
P4_5 pull-up(1)
P5_3 pull-up(1)
P5_4 pull-up(1)
Reserved bits
—
(b7-b6)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
0 : Not pulled up
1 : Pulled up
Set to 0. When read, the content is 0.
RW
RW
RW
RW
RW
RW
—
NOTE:
1. When this bit is set to 1 (pulled up), the pin w hose direction bit is set to 0 (input mode) is pulled up.
Figure 7.11
Registers PUR0 and PUR1
Port P1 Drive Capacity Control Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
P1DRR
Bit Symbol
P1DRR0
P1DRR1
P1DRR2
P1DRR3
P1DRR4
P1DRR5
P1DRR6
P1DRR7
Address
00FEh
Bit Name
P1_0 drive capacity
P1_1 drive capacity
P1_2 drive capacity
P1_3 drive capacity
P1_4 drive capacity
P1_5 drive capacity
P1_6 drive capacity
P1_7 drive capacity
NOTE:
1. Both “H” and “L” output are set to high drive capacity.
Figure 7.12
P1DRR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 51 of 332
After Reset
00h
Function
Set P1 output transistor drive capacity
0 : Low
1 : High(1)
RW
RW
RW
RW
RW
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
7.4
7. Programmable I/O Ports
Port Setting
Table 7.4 to Table 7.39 list the port setting.
Table 7.4
Port P0_0/AN7
Register
PD0
Bit
PD0_0
Setting
value
0
Other than 1110b
Input port(1)
1
Other than 1110b
Output port
0
ADCON0
CH2
CH1
1
CH0
1
Function
ADGSEL0
1
0
A/D converter input (AN7)
NOTE:
1. Pulled up by setting the PU00 bit in the PUR0 register to 1.
Table 7.5
Port P0_1/AN6
Register
PD0
Bit
PD0_1
CH2
CH1
CH0
ADGSEL0
0
X
X
X
X
1
X
X
X
X
Output port
0
1
1
0
0
A/D converter input (AN6)
Setting
value
ADCON0
Function
Input port(1)
X: 0 or 1
NOTE:
1. Pulled up by setting the PU00 bit in the PUR0 register to 1.
Table 7.6
Port P0_2/AN5/ACMP1
Register
PD0
Bit
PD0_2
ADCON0
0
X
X
X
X
0
Input port(1)
Setting
value
1
X
X
X
X
0
Output port
CH2
CH1
ACCR1
CH0
ADGSEL0
Function
CM1E
0
1
0
1
0
0
A/D converter input (AN5)
0
X
X
X
X
1
ACMP1 input
X: 0 or 1
NOTE:
1. Pulled up by setting the PU00 bit in the PUR0 register to 1.
Table 7.7
Port P0_3/AN4/AVREF1
Register
PD0
Bit
PD0_3
Setting
value
ADCON0
CH2
CH1
ACCR1
CH0
ADGSEL0
CM1E
VR1SEL
Function
0
X
X
X
X
0
X
Input port(1)
1
X
X
X
X
0
X
Output port
0
1
0
0
0
0
X
1
1
0
X
X
X
X
1
0
X: 0 or 1
NOTE:
1. Pulled up by setting the PU00 bit in the PUR0 register to 1.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 52 of 332
A/D converter input (AN4)
AVREF1 input
R8C/2E Group, R8C/2F Group
Table 7.8
7. Programmable I/O Ports
Port P0_4/AN3/TREO/ACMP0
Register
PD0
TRECR1
Bit
PD0_4
TOENA
CH2
CH1
CH0
ADGSEL0
CM0E
0
0
X
X
X
X
0
1
0
X
X
X
X
0
Output port
0
0
0
1
1
0
0
A/D converter input (AN3)
Setting
value
ADCON0
ACCR0
Function
Input port(1)
X
1
X
X
X
X
0
TREO output
0
0
X
X
X
X
1
ACMP0 input
ADGSEL0
CM0E
X: 0 or 1
NOTE:
1. Pulled up by setting the PU01 bit in the PUR0 register to 1.
Table 7.9
Port P0_5/AN2/AVREF0
Register
PD0
Bit
PD0_5
0
Setting
value
1
ADCON0
CH2
CH1
ACCR0
CH0
VR0SEL
X
X
X
X
0
X
X
X
X
X
0
X
X
X
X
X
0
X
0
X
1
1
1
0
0
0
1
0
0
0
X
X
X
X
Function
Input port(1)
Output port
A/D converter input (AN2)
AVREF0 input
X: 0 or 1
NOTE:
1. Pulled up by setting the PU01 bit in the PUR0 register to 1.
Table 7.10
Port P0_6/AN1/DA0
Register
PD0
Bit
PD0_6
CH2
CH1
CH0
ADGSEL0
0
X
X
X
X
1
X
X
X
X
0
0
0
1
0
0
X
X
X
X
Setting
value
ADCON0
DACON
ACCR0
DA0E
VR0SEL
0
X
1
1
0
X
1
1
0
X
1
1
1
0
Function
Input port(1)
Output port
A/D converter input (AN1)
DA0 output
X: 0 or 1
NOTE:
1. Pulled up by setting the PU01 bit in the PUR0 register to 1.
Table 7.11
Port P0_7/AN0/DA1
Register
PD0
Bit
PD0_7
CH2
CH1
CH0
ADGSEL0
0
X
X
X
X
1
X
X
X
X
0
0
0
0
0
0
X
X
X
X
Setting
value
ADCON0
X: 0 or 1
NOTE:
1. Pulled up by setting the PU01 bit in the PUR0 register to 1.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 53 of 332
DACON
ACCR1
DA1E
VR1SEL
0
X
1
1
0
X
1
1
0
X
1
1
1
0
Function
Input port(1)
Output port
A/D converter input (AN0)
DA1 output
R8C/2E Group, R8C/2F Group
Table 7.12
7. Programmable I/O Ports
Port P1_0/KI0/AN8
Register
PD1
KIEN
Bit
PD1_0
KI0EN
CH2
CH1
CH0
ADGSEL0
0
0
X
X
X
X
Input port(1)
1
0
X
X
X
X
Output port
0
1
X
X
X
X
KI0 input(1)
0
0
1
0
0
1
A/D converter input (AN8)
Setting
value
ADCON0
Function
X: 0 or 1
NOTE:
1. Pulled up by setting the PU02 bit in the PUR0 register to 1.
Table 7.13
Register
Bit
Setting
value
Port P1_1/KI1/AN9/TRCIOA/TRCTRG
PD1
KIEN
Timer RC Setting
PD1_1 KI1EN
ADCON0
−
CH2
CH1
CH0 ADGSEL0
Function
0
0
Other than TRCIOA usage conditions
X
X
X
X
Input port(1)
1
0
Other than TRCIOA usage conditions
X
X
X
X
Output port
0
0
Other than TRCIOA usage conditions
1
0
1
1
A/D converter input (AN9)
0
1
Other than TRCIOA usage conditions
X
X
X
X
KI1 input(1)
X
0
Refer to Table 7.14 TRCIOA Pin
Setting
X
X
X
X
TRCIOA output
0
0
Refer to Table 7.14 TRCIOA Pin
Setting
X
X
X
X
TRCIOA input(1)
X: 0 or 1
NOTE:
1. Pulled up by setting the PU02 bit in the PUR0 register to 1.
Table 7.14
TRCIOA Pin Setting
Register
TRCOER
TRCMR
Bit
EA
PWM2
0
1
Setting
value
0
1
0
1
TRCIOR0
IOA2
IOA1
0
0
1
0
TCEG1
TCEG2
0
1
X
X
1
X
X
X
1
X
X
X
X
X
Other than above
X: 0 or 1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
TRCCR2
IOA0
Page 54 of 332
X
X
X
X
0
1
1
X
Function
Timer waveform output
(output compare function)
Timer mode (input capture function)
PWM2 mode TRCTRG input
Other than TRCIOA usage conditions
R8C/2E Group, R8C/2F Group
Table 7.15
Register
Bit
Setting
value
7. Programmable I/O Ports
Port P1_2/KI2/AN10/TRCIOB
PD1
KIEN
Timer RC Setting
PD1_2 KI2EN
ADCON0
−
CH2
CH1
Function
CH0 ADGSEL0
0
0
Other than TRCIOB usage conditions
X
X
X
X
Input port(1)
1
0
Other than TRCIOB usage conditions
X
X
X
X
Output port
0
0
Other than TRCIOB usage conditions
1
1
0
1
A/D converter input (AN10)
0
1
Other than TRCIOB usage conditions
X
X
X
X
KI2 input(1)
X
0
Refer to Table 7.16 TRCIOB Pin
Setting
X
X
X
X
TRCIOB output
0
0
Refer to Table 7.16 TRCIOB Pin
Setting
X
X
X
X
TRCIOB input(1)
X: 0 or 1
NOTE:
1. Pulled up by setting the PU02 bit in the PUR0 register to 1.
Table 7.16
TRCIOB Pin Setting
Register
TRCOER
Bit
EB
PWM2
PWMB
0
0
X
X
X
X
PWM2 mode waveform output
0
1
1
X
X
X
PWM mode waveform output
0
1
0
0
0
1
0
1
X
Timer waveform output (output compare
function)
1
0
1
X
X
Timer mode (input capture function)
Setting
value
TRCMR
0
1
TRCIOR0
IOB2
IOB1
Function
IOB0
Other than above
Other than TRCIOB usage conditions
X: 0 or 1
Table 7.17
Port P1_3/KI3/AN11/(TRBO)
Register
PD1
KIEN
Timer RB Setting
Bit
PD1_3
KI3EN
−
0
0
Other than TRBO usage conditions
X
X
X
X
Input port(1)
1
0
Other than TRBO usage conditions
X
X
X
X
Output port
0
0
Other than TRBO usage conditions
1
1
1
1
A/D converter input (AN11)
0
1
Other than TRBO usage conditions
X
X
X
X
KI3 input
0
Refer to Table 7.18 TRBO Pin
Setting
X
X
X
X
TRBO output
Setting
value
X
ADCON0
CH2
CH1
CH0
Function
ADGSEL0
X: 0 or 1
NOTE:
1. Pulled up by setting the PU02 bit in the PUR0 register to 1.
Table 7.18
TRBO Pin Setting
Register
PINSR2
TRBIOC
Bit
TRBOSEL
TOCNT(1)
TMOD1
TMOD0
1
0
0
1
1
0
1
0
Programmable one-shot generation mode
1
0
1
1
Programmable wait one-shot generation mode
1
1
0
1
P1_3 output port
Setting
value
TRBMR
Other than above
Function
Programmable waveform generation mode
Other than TRBO usage conditions
NOTE:
1. Set the TOCNT bit in the TRBIOC register to 0 in modes except for programmable waveform generation mode.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 55 of 332
R8C/2E Group, R8C/2F Group
Table 7.19
7. Programmable I/O Ports
Port P1_4/TXD0
Register
PD1
Bit
PD1_4
SMD2
U0MR
SMD1
SMD0
0
0
0
0
Input port(1)
1
0
0
0
Output port
0
0
1
1
0
0
1
0
1
1
1
0
Setting
value
X
Function
TXD0 output(2)
X: 0 or 1
NOTES:
1. Pulled up by setting the PU03 bit in the PUR0 register to 1.
2. N-channel open drain output by setting the NCH bit in the U0C0 register to 1.
Table 7.20
Port P1_5/RXD0/(TRAIO)/(INT1)
Register
PD1
Bit
PD1_5
TIOSEL
TOPCR(3)
TMOD2
TMOD1
TMOD0
INT1EN
0
X
X
X
X
X
0
1
1
0
0
1
0
1
Setting
value
0
X
TRAIOC
TRAMR
INTEN
1
0
0
0
0
0
0
X
X
X
X
X
1
0
0
0
0
X
0
X
X
X
X
X
1
0
Other than 001b
0
1
0
Other than 000b, 001b
0
1
0
0
0
0
1
1
1
0
0
1
1
1
0
1
0
Other than 000b, 001b
0
0
1
Function
Input port(1)
Output port
RXD0 input(1)
TRAIO input(1)
INT1(2)
1
TRAIO input/INT1(1, 2)
X
TRAIO pulse output
X: 0 or 1
NOTES:
1. Pulled up by setting the PU03 bit in the PUR0 register to 1.
2. Set the INT1SEL bit in the PMR register to 0 (P1_5, P1_7).
3. Set the TOPCR bit in the TRAIOC register to 0 in modes except for pulse output mode.
Table 7.21
Port P1_6/CLK0
Register
PD1
Bit
PD1_6
CKDIR
SMD2
SMD1
SMD0
0
X
X
X
X
Input port(1)
Setting
value
U0MR
Other than 001b
Function
1
X
X
0
0
0
1
CLK0 output
0
1
X
X
X
CLK0 input(1)
X: 0 or 1
NOTE:
1. Pulled up by setting the PU03 bit in the PUR0 register to 1.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 56 of 332
Output port
R8C/2E Group, R8C/2F Group
Table 7.22
7. Programmable I/O Ports
Port P1_7/TRAIO/INT1
Register
PD1
Bit
PD1_7
TRAIOC
TRAMR
INTEN
TIOSEL
TOPCR(3)
TMOD2
TMOD1
TMOD0
INT1EN
1
X
X
X
X
X
0
1
0
0
1
0
0
0
0
0
0
0
1
X
X
X
X
X
0
0
0
0
0
X
0
0
0
0
0
0
0
1
0
1
0
0
1
1
0
0
0
0
0
1
Setting
value
0
X
Other than 000b, 001b
0
Other than 000b, 001b
0
0
1
Function
Input port(1)
Output port
TRAIO input(1)
INT1(2)
1
TRAIO input/INT1(1, 2)
X
TRAIO pulse output
X: 0 or 1
NOTES:
1. Pulled up by setting the PU03 bit in the PUR0 register to 1.
2. Set the INT1SEL bit in the PMR register to 0 (P1_5, P1_7).
3. Set the TOPCR bit in the TRAIOC register to 0 in modes except for pulse output mode.
Table 7.23
Port P3_1/TRBO
Register
PD3
Timer RB Setting
Bit
PD3_1
−
0
Other than TRBO usage conditions
Input port(1)
1
Other than TRBO usage conditions
Output port
X
Refer to Table 7.24 TRBO Pin Setting
Setting
value
Function
TRBO output
X: 0 or 1
NOTE:
1. Pulled up by setting the PU06 bit in the PUR0 register to 1.
Table 7.24
TRBO Pin Setting
Register
PINSR2
TRBIOC
Bit
TRBOSEL
TOCNT(1)
TMOD1
TMOD0
0
0
0
1
Programmable waveform generation mode
0
0
1
0
Programmable one-shot generation mode
0
0
1
1
Programmable wait one-shot generation mode
0
1
1
0
Setting
value
TRBMR
Other than above
Function
P3_1 output port
Other than TRBO usage conditions
NOTE:
1. Set the TOCNT bit in the TRBIOC register to 0 in modes except for programmable waveform generation mode.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 57 of 332
R8C/2E Group, R8C/2F Group
Table 7.25
7. Programmable I/O Ports
Port P3_3/INT3/TRCCLK
Register
PD3
Bit
PD3_3
Setting
value
TRCCR1
TCK2
INTEN
TCK1
TCK0
0
Input port(1)
Other than 101b
0
Output port
Other than 101b
1
INT3 input(1)
0
TRCCLK input(1)
0
Other than 101b
1
0
0
Function
INT3EN
1
0
1
NOTE:
1. Pulled up by setting the PU06 bit in the PUR0 register to 1.
Table 7.26
Port P3_4/(TRCIOC)
Register
PD3
Timer RC setting
Bit
PD3_4
−
Other than TRCIOC usage conditions
0
Setting
value
Function
Other than TRCIOC usage conditions
Other than TRCIOC usage conditions
1
Other than TRCIOC usage conditions
Input port(1)
Output port
X
Refer to Table 7.27 TRCIOC Pin Setting
TRCIOC output
0
Refer to Table 7.27 TRCIOC Pin Setting
TRCIOC input(1)
X: 0 or 1
NOTE:
1. Pulled up by setting the PU07 bit in the PUR0 register to 1.
Table 7.27
TRCIOC Pin Setting
Register
PINSR3
TRCOER
Bit
TRCIOCSEL
EC
PWM2
PWMC
IOC2
IOC1
IOC0
1
0
1
1
X
X
X
PWM mode waveform output
0
0
1
0
1
X
Timer waveform output (output compare
function)
1
X
X
Timer mode (input capture function)
1
Setting
value
1
0
1
0
1
1
TRCMR
TRCIOR1
1
0
1
0
Other than above
X: 0 or 1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 58 of 332
Function
Other than TRCIOC usage conditions
R8C/2E Group, R8C/2F Group
Table 7.28
7. Programmable I/O Ports
Port P3_5/(TRCIOD)
Register
PD3
Timer RC setting
Bit
PD3_5
−
0
Other than TRCIOD usage conditions
Setting
value
Function
Input port(1)
1
Other than TRCIOD usage conditions
X
Refer to Table 7.29 TRCIOD Pin Setting
TRCIOD output
Output port
0
Refer to Table 7.29 TRCIOD Pin Setting
TRCIOD input(1)
X: 0 or 1
NOTE:
1. Pulled up by setting the PU07 bit in the PUR0 register to 1.
Table 7.29
TRCIOD Pin Setting
Register
PINSR3
TRCOER
Bit
TRCIODSEL
EC
PWM2
PWMD
IOD2
IOD1
IOD0
1
0
1
1
X
X
X
PWM mode waveform output
0
0
1
0
1
X
Timer waveform output (output
compare function)
1
X
X
Timer mode (input capture function)
1
Setting
value
TRCMR
0
1
1
0
1
1
TRCIOR1
1
0
1
0
Other than above
Other than TRCIOD usage conditions
X: 0 or 1
Table 7.30
Port P3_6/(INT1)
Register
PD3
INTEN
Bit
PD3_6
INT1EN
0
0
Input port(1)
1
0
Output port
0
1
INT1 input(1, 2)
Setting
value
Function
NOTES:
1. Pulled up by setting the PU07 bit in the PUR0 register to 1.
2. Set the INT1SEL bit in the PMR register to 1 (P3_6).
Table 7.31
Port P3_7/TRAO
Register
PD3
TRAMR
Bit
PD3_7
TOENA
0
0
Input port(1)
1
0
Output port
X
1
TRAO output
Setting
value
Function
X: 0 or 1
NOTE:
1. Pulled up by setting the PU07 bit in the PUR0 register to 1.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 59 of 332
Function
R8C/2E Group, R8C/2F Group
Table 7.32
7. Programmable I/O Ports
Port P4_2/VREF
Register
ADCON1
Bit
VCUT
Setting
value
0
Input port
1
Input port/VREF input
Table 7.33
Function
Port P4_5/INT0
Register
PD4
INTEN
Bit
PD4_5
INT0EN
0
0
Input port(1)
1
0
Output port
0
1
INT0 input(1)
Setting
value
Function
NOTE:
1. Pulled up by setting the PU11 bit in the PUR1 register to 1.
Table 7.34
Register
Bit
Port P4_6/XIN
CM0
CM1
Circuit specifications
CM05
CM13
CM11
CM10
Oscillation
buffer
1
0
X
0
OFF
Feedback
resistor
−
0
ON
ON
1
ON
OFF
XIN clock oscillation (on-chip
feedback resistor disabled)
OFF
ON
External clock input
0
OFF
ON
XIN clock oscillation stop (on-chip
feedback resistor enabled)
1
OFF
OFF
XIN clock oscillation stop (on-chip
feedback resistor disabled)
1
OFF
OFF
XIN clock oscillation stop (stop
mode)
Feedback
resistor
−
0
1
1
Input port
XIN clock oscillation (on-chip
feedback resistor enabled)
0
Setting
value
Function
1
0
X: 0 or 1
Table 7.35
Register
Bit
Port P4_7/XOUT
CM0
CM1
Circuit specifications
CM05
CM13
CM11
CM10
Oscillation
buffer
1
0
X
0
OFF
1
0
ON
ON
1
ON
OFF
XIN clock oscillation (on-chip
feedback resistor disabled)
OFF
ON
External clock input
0
OFF
ON
XIN clock oscillation stop (on-chip
feedback resistor enabled)
1
OFF
OFF
XIN clock oscillation stop (on-chip
feedback resistor disabled)
OFF
OFF
XOUT pulled up
0
0
1
1
X: 0 or 1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Input port
XIN clock oscillation (on-chip
feedback resistor enabled)
0
Setting
value
Function
Page 60 of 332
1
R8C/2E Group, R8C/2F Group
Table 7.36
7. Programmable I/O Ports
Port P5_3/TRCIOC/ACOUT0
Register
PD5
Timer RC setting
ACCR0
Bit
PD5_3
−
CM0OE
Setting
value
Function
0
Other than TRCIOC usage conditions
0
Input port(1)
1
Other than TRCIOC usage conditions
0
Output port
X
Refer to Table 7.37 TRCIOC Pin Setting
0
TRCIOC output
0
Refer to Table 7.37 TRCIOC Pin Setting
0
TRCIOC input(1)
X
Other than TRCIOC usage conditions
1
ACOUT0 output
X: 0 or 1
NOTE:
1. Pulled up by setting the PU12 bit in the PUR1 register to 1.
Table 7.37
TRCIOC Pin Setting
Register
PINSR3
TRCOER
Bit
TRCIOCSEL
EC
PWM2
PWMC
IOC2
IOC1
IOC0
0
0
1
1
X
X
X
PWM mode waveform output
0
0
1
0
1
X
Timer waveform output (output
compare function)
1
X
X
Timer mode (input capture function)
0
0
Setting
value
0
0
0
0
1
TRCMR
TRCIOR1
1
0
1
0
Other than above
Function
Other than TRCIOC usage conditions
X: 0 or 1
Table 7.38
Port P5_4/TRCIOD/ACOUT1
Register
PD5
Timer RC setting
ACCR1
Bit
PD5_4
−
CM1OE
0
Other than TRCIOD usage conditions
0
Input port(1)
1
Other than TRCIOD usage conditions
0
Output port
X
Refer to Table 7.39 TRCIOD Pin Setting
0
TRCIOD output
0
Refer to Table 7.39 TRCIOD Pin Setting
0
TRCIOD input(1)
X
Other than TRCIOD usage conditions
1
ACOUT1 output
Setting
value
Function
X: 0 or 1
NOTE:
1. Pulled up by setting the PU13 bit in the PUR1 register to 1.
Table 7.39
TRCIOD Pin Setting
Register
PINSR3
TRCOER
Bit
TRCIODSEL
ED
PWM2
PWMD
IOD2
IOD1
IOD0
0
0
1
1
X
X
X
PWM mode waveform output
0
0
1
0
1
X
Timer waveform output (output
compare function)
1
X
X
Timer mode (input capture function)
0
Setting
value
0
0
0
0
0
1
TRCMR
TRCIOR1
1
0
1
0
Other than above
X: 0 or 1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 61 of 332
Function
Other than TRCIOD usage conditions
R8C/2E Group, R8C/2F Group
7.5
7. Programmable I/O Ports
Unassigned Pin Handling
Table 7.40 lists Unassigned Pin Handling.
Table 7.40
Unassigned Pin Handling
Pin Name
Connection
Ports P0, P1, P3_1, P3_3 to P3_7, • After setting to input mode, connect each pin to VSS via a resistor
P4_3 to P4_5, P5_3, P5_4
(pull-down) or connect each pin to VCC via a resistor (pull-up).(2)
• After setting to output mode, leave these pins open.(1, 2)
Ports P4_6, P4_7
Connect to VCC via a pull-up resistor(2)
Port P4_2, VREF
Connect to VCC
Connect to VCC via a pull-up resistor(2)
RESET (3)
NOTES:
1. If these ports are set to output mode and left open, they remain in input mode until they are switched
to output mode by a program. The voltage level of these pins may be undefined and the power
current may increase while the ports remain in input mode.
The content of the direction registers may change due to noise or program runaway caused by
noise. In order to enhance program reliability, the program should periodically repeat the setting of
the direction registers.
2. Connect these unassigned pins to the MCU using the shortest wire length (2 cm or less) possible.
3. When the power-on reset function is in use.
MCU
Port P0, P1, (Input mode )
:
P3_1, P3_3 to P3_7,
:
P4_3 to P4_5,
(Input
mode)
P5_3, P5_4
(Output mode)
Port P4_6, P4_7
RESET(1)
Port P4_2/VREF
NOTE:
1. When the power-on reset function is in use.
Figure 7.13
Unassigned Pin Handling
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 62 of 332
:
:
Open
R8C/2E Group, R8C/2F Group
8.
8. Processor Mode
Processor Mode
8.1
Processor Modes
Single-chip mode can be selected as the processor mode.
Table 8.1 lists Features of Processor Mode. Figure 8.1 shows the PM0 Register and Figure 8.2 shows the PM1
Register.
Table 8.1
Features of Processor Mode
Processor Mode
Single-chip mode
Accessible Areas
Pins Assignable as I/O Port Pins
SFR, internal RAM, internal ROM All pins are I/O ports or peripheral
function I/O pins
Processor Mode Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0
Symbol
Address
PM0
0004h
Bit Symbol
Bit Name
Reserved bits
—
(b2-b0)
PM03
—
(b7-b4)
Softw are reset bit
After Reset
00h
Function
Set to 0.
RW
RW
The MCU is reset w hen this bit is set to 1.
When read, the content is 0.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
RW
—
NOTE:
1. Set the PRC1 bit in the PRCR register to 1 (w rite enable) before rew riting the PM0 register.
Figure 8.1
PM0 Register
Processor Mode Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
0
0 0
Symbol
Address
PM1
0005h
Bit Symbol
Bit Name
—
Reserved bits
(b1-b0)
PM12
—
(b6-b3)
—
(b7)
WDT interrupt/reset sw itch bit
After Reset
00h
Function
Set to 0.
0 : Watchdog timer interrupt
1 : Watchdog timer reset(2)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
Reserved bit
Set to 0.
NOTES:
1. Set the PRC1 bit in the PRCR register to 1 (w rite enable) before rew riting the PM1 register.
2. The PM12 bit is set to 1 by a program (It remains unchanged even if 0 is w ritten to it).
When the CSPRO bit in the CSPR register is set to 1 (count source protect mode enabled), the PM12 bit is
automatically set to 1.
Figure 8.2
PM1 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 63 of 332
RW
RW
RW
—
RW
R8C/2E Group, R8C/2F Group
9.
9. Bus
Bus
The bus cycles differ when accessing ROM/RAM, and when accessing SFR.
Table 9.1 lists Bus Cycles by Access Space of the R8C/2E Group and Table 9.2 lists Bus Cycles by Access Space of
the R8C/2F Group.
ROM/RAM and SFR are connected to the CPU by an 8-bit bus. When accessing in word (16-bit) units, these areas are
accessed twice in 8-bit units.
Table 9.3 lists Access Units and Bus Operations.
Table 9.1
Bus Cycles by Access Space of the R8C/2E Group
Access Area
SFR
ROM/RAM
Table 9.2
Bus Cycle
2 cycles of CPU clock
1 cycle of CPU clock
Bus Cycles by Access Space of the R8C/2F Group
Access Area
SFR/Data flash
Program ROM/RAM
Table 9.3
Bus Cycle
2 cycles of CPU clock
1 cycle of CPU clock
Access Units and Bus Operations
SFR, data flash
Area
Even address
Byte access
CPU clock
CPU clock
Even
Address
Data
Odd address
Byte access
CPU clock
Odd
Even
Data
Even+1
Data
CPU clock
Data
Data
Odd
Data
Data
CPU clock
Data
Address
Data
Address
Data
CPU clock
Address
Even
CPU clock
Data
Odd address
Word access
Address
Data
Address
Even address
Word access
ROM (program ROM), RAM
Address
Data
Even
Data
Even+1
Data
CPU clock
Odd
Odd+1
Data
Data
Address
Data
Odd+1
Odd
Data
Data
However, only following SFRs are connected with the 16-bit bus:
Timer RC: registers TRC, TRCGRA, TRCGRB, TRCGRC, and TRCGRD
Therefore, when accessing in word (16-bit) unit, 16-bit data is accessed at a time. The bus operation is the same as
“Area: SFR, data flash, even address byte access” in Table 9.3 Access Units and Bus Operations, and 16-bit data is
accessed at a time.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 64 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
10. Clock Generation Circuit
The clock generation circuit has:
• XIN clock oscillation circuit
• Low-speed on-chip oscillator
• High-speed on-chip oscillator
Table 10.1 lists Specifications of Clock Generation Circuit. Figure 10.1 shows a Clock Generation Circuit. Figures
10.2 to 10.7 show clock associated registers.
Table 10.1
Specifications of Clock Generation Circuit
Item
Applications
XIN Clock Oscillation Circuit
• CPU clock source
• Peripheral function clock
source
On-Chip Oscillator
High-Speed On-Chip Oscillator Low-Speed On-Chip Oscillator
• CPU clock source
• CPU clock source
• Peripheral function clock
• Peripheral function clock
source
source
• CPU and peripheral function
• CPU and peripheral function
clock sources when XIN clock
clock sources when XIN clock
stops oscillating
stops oscillating
(3)
Approx. 125 kHz
Approx. 40 MHz
Clock frequency
0 to 20 MHz
Connectable
oscillator
Oscillator
connect pins
Oscillation stop,
restart function
Oscillator status
after reset
Others
• Ceramic resonator
• Crystal oscillator
−
−
XIN, XOUT(1)
−(1)
−(1)
Usable
Usable
Usable
Stop
Stop
Oscillate
• Externally generated clock
can be input(2)
• On-chip feedback resistor
RfXIN (connected/ not
connected, selectable)
−
−
NOTES:
1. These pins can be used as P4_6 or P4_7 when using the on-chip oscillator clock as the CPU clock while the
XIN clock oscillation circuit is not used.
2. Set the CM05 bit in the CM0 register to 1 (XIN clock stopped) and the CM13 bit in the CM1 register to 1 (XINXOUT pin) when an external clock is input.
3. The clock frequency is automatically set to up to 20 MHz by a divider when using the high-speed on-chip
oscillator as the CPU clock source.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 65 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
FRA1 register
Frequency adjustable
High-speed
on-chip
oscillator
FRA00
fOCO40M
FRA2 register
Divider
(1/128)
Divider
fOCO-F
On-chip oscillator
clock
FRA01 = 1
FRA01 = 0
Stop signal
Low-speed
on-chip
oscillator
CM14
Timer RA
A/D
Timer RB Timer RC Timer RE converter UART0
fOCO
Power-on
reset circuit
fOCO-S
Voltage
detection
circuit
XOUT
XIN
INT0
fOCO128
Watchdog
timer
f1
b
CM13
f2
c
Oscillation
stop
detection
CM05
f4
d
f8
e
g
OCD2 = 1
f32
XIN
clock
a
CPU clock
Divider
D/A
converter
OCD2 = 0
System clock
CM02
CM10 = 1 (stop mode)
S Q
R
RESET
Power-on reset
Software reset
Interrupt request
WAIT instruction
1/2
a
g
e
d
c
b
S Q
1/2
1/2
1/2
1/2
R
CM06 = 0
CM17 to CM16 = 11b
CM06 = 1
CM06 = 0
CM17 to CM16 = 10b
CM02, CM05, CM06: Bits in CM0 register
CM10, CM13, CM14, CM16, CM17: Bits in CM1 register
OCD0, OCD1, OCD2: Bits in OCD register
FRA00, FRA01: Bits in FRA0 register
h
CM06 = 0
CM17 to CM16 = 01b
CM06 = 0
CM17 to CM16 = 00b
Detail of divider
Oscillation Stop Detection Circuit
Forcible discharge when OCD0 = 0
XIN clock
Pulse generation
circuit for clock
edge detection and
charge, discharge
control circuit
Charge,
discharge
circuit
Oscillation stop detection
interrupt generation
circuit detection
OCD1
Watchdog timer
interrupt
Voltage monitor 1
interrupt
Voltage monitor 2
interrupt
OCD2 bit switch signal
CM14 bit switch signal
Figure 10.1
Clock Generation Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 66 of 332
Oscillation stop detection,
Watchdog timer,
Voltage monitor 1 interrupt,
Voltage monitor 2 interrupt
Comparator
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
System Clock Control Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
0
0 1
0 0
Symbol
Address
0006h
CM0
Bit Symbol
Bit Name
—
Reserved bits
(b1-b0)
After Reset
01101000b
Function
Set to 0.
RW
RW
WAIT peripheral function clock
stop bit
0 : Peripheral function clock does not stop
in w ait mode
1 : Peripheral function clock stops in w ait
mode
—
(b3)
Reserved bit
Set to 1.
—
(b4)
Reserved bit
Set to 0.
CM05
XIN clock (XIN-XOUT)
stop bit(2, 3)
0 : XIN clock oscillates
1 : XIN clock stops (4)
RW
CM06
System clock division select bit
0(5)
0 : CM16, CM17 enabled
1 : Divide-by-8 mode
RW
Reserved bit
Set to 0.
CM02
—
(b7)
RW
RW
RW
RW
NOTES:
1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the CM0 register.
2. P4_6 and P4_7 can be used as input ports w hen the CM05 bit is set to 1 (XIN clock stops) and the CM13 bit in the
CM1 register is set to 0 (P4_6, P4_7).
3. The CM05 bit stops the XIN clock w hen the high-speed on-chip oscillator mode or low -speed on-chip oscillator mode
is selected. Do not use this bit to detect w hether the XIN clock is stopped. To stop the XIN clock, set the bits in the
follow ing order:
(a) Set bits OCD1 to OCD0 in the OCD register to 00b.
(b) Set the OCD2 bit to 1 (selects on-chip oscillator clock).
4. During external clock input, only the clock oscillation buffer is turned off and clock input is acknow ledged.
5. When entering stop mode, the CM06 bit is set to 1 (divide-by-8 mode).
Figure 10.2
CM0 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 67 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
System Clock Control Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
CM1
Bit Symbol
CM10
CM11
—
(b2)
CM13
CM14
CM15
Address
0007h
Bit Name
All clock stop control bit(2,
3, 4)
After Reset
00100000b
Function
0 : Clock operates
1 : Stops all clocks (stop mode)
XIN-XOUT on-chip feedback resistor 0 : On-chip feedback resistor enabled
select bit
1 : On-chip feedback resistor disabled
RW
RW
RW
Reserved bit
Set to 0.
Port XIN-XOUT sw itch bit(3, 5)
0 : Input ports P4_6, P4_7
1 : XIN-XOUT pin
RW
Low -speed on-chip oscillation stop
bit(4, 6, 7)
0 : Low -speed on-chip oscillator on
1 : Low -speed on-chip oscillator off
RW
XIN-XOUT drive capacity select bit(8)
0 : Low
1 : High
RW
System clock division select bits 1(9)
b7 b6
CM16
CM17
0 0 : No division mode
0 1 : Divide-by-2 mode
1 0 : Divide-by-4 mode
1 1 : Divide-by-16 mode
RW
RW
RW
NOTES:
1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the CM1 register.
2. If the CM10 bit is set to 1 (stop mode), the on-chip feedback resistor is disabled.
3. When the CM10 bit is set to 1 (stop mode) and the CM13 bit is set to 1 (XIN-XOUT pin), the XOUT (P4_7) pin goes “H”.
When the CM13 bit is set to 0 (input ports, P4_6, P4_7), P4_7 (XOUT) enters input mode.
4. In count source protect mode (Refer to 13.2 Count Source Protect Mode Enabled), the value remains
unchanged even if bits CM10 and CM14 are set.
5. Once the CM13 bit is set to 1 by a program, it cannot be set to 0.
6. When the OCD2 bit is set to 0 (XIN clock selected), the CM14 bit is set to 1 (low -speed on-chip oscillator stopped).
When the OCD2 bit is set to 1 (on-chip oscillator clock selected), the CM14 bit is set to 0 (low -speed on-chip
oscillator on). It remains unchanged even if 1 is w ritten to it.
7. When using the voltage monitor 1 interrupt or voltage monitor 2 interrupt (w hen using the digital filter), set the CM14
bit to 0 (low -speed on-chip oscillator on).
8. When entering stop mode, the CM15 bit is set to 1 (drive capacity high).
9. When the CM06 bit is set to 0 (bits CM16, CM17 enabled), bits CM16 to CM17 are enabled.
Figure 10.3
CM1 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 68 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
Oscillation Stop Detection Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0
Symbol
OCD
Bit Symbol
OCD0
OCD1
OCD2
OCD3
—
(b7-b4)
Address
After Reset
000Ch
00000100b
Bit Name
Function
Oscillation stop detection enable 0 : Oscillation stop detection function
bit(7)
disabled(2)
1 : Oscillation stop detection function
enabled
RW
RW
Oscillation stop detection
interrupt enable bit
0 : Disabled(2)
1 : Enabled
RW
System clock select bit(4)
0 : Selects XIN clock(7)
1 : Selects on-chip oscillator clock(3)
RW
Clock monitor bit(5, 6)
0 : XIN clock oscillates
1 : XIN clock stops
RO
Reserved bits
Set to 0.
RW
NOTES:
1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting to the OCD register.
2. Set bits OCD1 to OCD0 to 00b before entering stop mode, high-speed on-chip oscillator mode, or low -speed on-chip
oscillator mode (XIN clock stops).
3. The CM14 bit is set to 0 (low -speed on-chip oscillator on) if the OCD2 bit is set to 1 (on-chip oscillator clock
selected).
4. The OCD2 bit is automatically set to 1 (on-chip oscillator clock selected) if a XIN clock oscillation stop is detected
w hile bits OCD1 to OCD0 are set to 11b. If the OCD3 bit is set to 1 (XIN clock stopped), the OCD2 bit remains
unchanged even w hen set to 0 (XIN clock selected).
5. The OCD3 bit is enabled w hen the OCD0 bit is set to 1 (oscillation stop detection function enabled).
6. The OCD3 bit remains 0 (XIN clock oscillates) if bits OCD1 to OCD0 are set to 00b.
7. Refer to Figure 10.14 Procedure for Sw itching Clock Source from Low -speed On-Chip Oscillator to XIN
Clock for the sw itching procedure w hen the XIN clock re-oscillates after detecting an oscillation stop.
Figure 10.4
OCD Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 69 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
High-Speed On-Chip Oscillator Control Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0
Symbol
FRA0
Bit Symbol
FRA00
FRA01
—
(b7-b2)
Address
0023h
Bit Name
High-speed on-chip oscillator
enable bit
After Reset
00h
Function
0 : High-speed on-chip oscillator off
1 : High-speed on-chip oscillator on
RW
High-speed on-chip oscillator
select bit(2)
0 : Selects low -speed on-chip oscillator (3)
1 : Selects high-speed on-chip oscillator
RW
Reserved bits
Set to 0.
RW
RW
NOTES:
1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the FRA0 register.
2. Change the FRA01 bit under the follow ing conditions.
• FRA00 = 1 (high-speed on-chip oscillation)
• The CM14 bit in the CM1 register = 0 (low -speed on-chip oscillator on)
3. When setting the FRA01 bit to 0 (low -speed on-chip oscillator selected), do not set the FRA00 bit to 0 (high-speed
on-chip oscillator off) at the same time. Set the FRA00 bit to 0 after setting the FRA01 bit to 0.
High-Speed On-Chip Oscillator Control Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
FRA1
Address
0024h
After Reset
When Shipping
Function
The frequency of the high-speed on-chip oscillator is adjusted w ith bits 0 to 7.
High-speed on-chip oscillator frequency = 40 MHz (FRA1 register = value w hen shipping)
Setting the FRA1 register to a low er value results in a higher frequency.
Setting the FRA1 register to a higher value results in a low er frequency.(2)
RW
RW
NOTES:
1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the FRA1 register.
2. When changing the values of the FRA1 register, adjust the FRA1 register so that the frequency of the high-speed
on-chip oscillator clock w ill be 40 MHz or less.
High-Speed On-Chip Oscillator Control Register 2(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0
Symbol
FRA2
Bit Symbol
FRA20
Address
0025h
Bit Name
High-speed on-chip oscillator
frequency sw itching bits
b2 b1 b0
0 0 0: Divide-by-2 mode
0 0 1: Divide-by-3 mode
0 1 0: Divide-by-4 mode
0 1 1: Divide-by-5 mode
1 0 0: Divide-by-6 mode
1 0 1: Divide-by-7 mode
1 1 0: Divide-by-8 mode
1 1 1: Divide-by-9 mode
FRA21
FRA22
—
(b7-b3)
After Reset
00h
Function
Selects the dividing ratio for the highspeed on-chip oscillator clock.
Reserved bits
Set to 0.
NOTE:
1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the FRA2 register.
Figure 10.5
Registers FRA0 and FRA1, FRA2
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 70 of 332
RW
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
High-Speed On-Chip Oscillator Control Register 7
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
FRA7
Address
002Ch
After Reset
When Shipping
Function
36.864 MHz frequency correction data is stored.
The oscillation frequency of the high-speed on-chip oscillator can be adjusted to 36.864 MHz
by transferring this value to the FRA1 register.
Figure 10.6
RW
RO
FRA7 Register
Voltage Detection Register 2(1)
b7 b6 b5 b4 b3 b2 b1 b0
1 0 0 0 0
Address
0032h
Bit Name
Internal pow er low
consumption enable bit(5)
After Reset(4)
Pow er-on reset or hardw are reset : 00100000b
Function
0 : Disables low consumption
1 : Enables low consumption
—
(b4-b1)
Reserved bits
Set to 0.
—
(b5)
Reserved bit
Set to 1.
VCA26
Voltage detection 1 enable
bit(2)
0 : Voltage detection 1 circuit disabled
1 : Voltage detection 1 circuit enabled
RW
VCA27
Voltage detection 2 enable
bit(3)
0 : Voltage detection 2 circuit disabled
1 : Voltage detection 2 circuit enabled
RW
Symbol
VCA2
Bit Symbol
VCA20
RW
RW
RW
RW
NOTES:
1. Set the PRC3 bit in the PRCR register to 1 (w rite enable) before w riting to the VCA2 register.
2. To use the voltage monitor 1 interrupt/reset or the VW1C3 bit in the VW1C register, set the VCA26 bit to 1.
After the VCA26 bit is set to 1 from 0, the voltage detection circuit w aits for td(E-A) to elapse before starting
operation.
3. To use the voltage monitor 2 interrupt/reset or the VCA13 bit in the VCA1 register, set the VCA27 bit to 1.
After the VCA27 bit is set to 1 from 0, the voltage detection circuit w aits for td(E-A) to elapse before starting
operation.
4. Softw are reset, w atchdog timer reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect this
register.
5. Use the VCA20 bit only w hen entering to w ait mode. To set the VCA20 bit, follow the procedure show n in Figure
10.8 Procedure for Enabling Reduced Internal Pow er Consum ption Using VCA20 bit.
Figure 10.7
VCA2 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 71 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
Exit wait mode by interrupt
Handling procedure of internal power
low consumption enabled by VCA20 bit
(Note 1)
In interrupt routine
Step (1)
Enter low-speed on-chip oscillator mode
Step (5)
VCA20 ← 0 (internal power low consumption
disabled)(2)
Step (2)
Stop XIN clock and high-speed on-chip
oscillator clock
Step (6)
Start XIN clock or high-speed on-chip
oscillator clock
Step (3)
VCA20 ← 1 (internal power low consumption
enabled)(2, 3)
Step (7)
(Wait until XIN clock oscillation stabilizes)
Step (4)
Enter wait mode(4)
Step (8)
Enter high-speed clock mode or
high-speed on-chip oscillator mode
Step (5)
VCA20 ← 0 (internal power low consumption
disabled)(2)
Step (6)
Start XIN clock or high-speed on-chip
oscillator clock
Step (7)
(Wait until XIN clock oscillation stabilizes)
Step (8)
Enter high-speed clock mode or
high-speed on-chip oscillator mode
If it is necessary to start
the high-speed clock or
the high-speed on-chip
oscillator in the interrupt
routine, execute steps (5)
to (7) in the interrupt
routine.
Interrupt handling
Step (1)
Enter low-speed on-chip oscillator mode
Step (2)
Stop XIN clock and high-speed on-chip
oscillator clock
Step (3)
VCA20 ← 1 (internal power low consumption
enabled)(2, 3)
If the high-speed clock or
high-speed on-chip
oscillator is started in the
interrupt routine, execute
steps (1) to (3) at the last of
the interrupt routine.
Interrupt handling completed
NOTES:
1. Execute this routine to handle all interrupts generated in wait mode.
However, this does not apply if it is not necessary to start the high-speed clock or high-speed on-chip oscillator during the interrupt routine.
2. Do not set the VCA20 bit to 0 with the instruction immediately after setting the VCA20 bit to 1. Also, do not do the opposite.
3. When the VCA20 bit is set to 1, do not set the CM10 bit to 1 (stop mode).
4. When entering wait mode, follow 10.6.2 Wait Mode.
VCA20: Bit in VCA2 register
Figure 10.8
Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 72 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
The clocks generated by the clock generation circuits are described below.
10.1
XIN Clock
This clock is supplied by the XIN clock oscillation circuit. This clock is used as the clock source for the CPU and
peripheral function clocks. The XIN clock oscillation circuit is configured by connecting a resonator between the
XIN and XOUT pins. The XIN clock oscillation circuit includes an on-chip feedback resistor, which is
disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed by the
chip. The XIN clock oscillation circuit may also be configured by feeding an externally generated clock to the XIN
pin.
Figure 10.9 shows Examples of XIN Clock Connection Circuit.
In reset and after reset, the XIN clock stops.
The XIN clock starts oscillating when the CM05 bit in the CM0 register is set to 0 (XIN clock oscillates) after
setting the CM13 bit in the CM1 register to 1 (XIN- XOUT pin). To use the XIN clock for the CPU clock source,
set the OCD2 bit in the OCD register to 0 (select XIN clock) after the XIN clock is oscillating stably.
The power consumption can be reduced by setting the CM05 bit in the CM0 register to 1 (XIN clock stops) if the
OCD2 bit is set to 1 (select on-chip oscillator clock).
When an external clock is input to the XIN pin are input, the XIN clock does not stop if the CM05 bit is set to 1. If
necessary, use an external circuit to stop the clock.
This MCU has an on-chip feedback resistor and on-chip resistor disable/enable switching is possible by the CM11
bit in the CM1 register.
In stop mode, all clocks including the XIN clock stop. Refer to 10.4 Power Control for details.
MCU
(on-chip feedback resistor)
MCU
(on-chip feedback resistor)
XIN
XIN
XOUT
XOUT
Open
Rf(1)
Rd(1)
Externally derived clock
CIN
COUT
VCC
VSS
Ceramic resonator external circuit
External clock input circuit
NOTE:
1. Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive
capacity setting. Use the value recommended by the manufacturer of the oscillator.
Use high drive when oscillation starts and, if it is necessary to switch the oscillation drive capacity, do so after
oscillation stabilizes.
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's
data sheet specifies that a feedback resistor be added to the chip externally, insert a feedback resistor between XIN
and XOUT following the instructions.
To use this MCU with supply voltage below VCC = 2.7 V, it is recommended to set the CM11 bit in the CM1 register
to 1 (on-chip feedback resistor disabled), the CM15 bit to 1 (high drive capacity), and connect the feedback resistor
to the chip externally.
Figure 10.9
Examples of XIN Clock Connection Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 73 of 332
R8C/2E Group, R8C/2F Group
10.2
10. Clock Generation Circuit
On-Chip Oscillator Clocks
These clocks are supplied by the on-chip oscillators (high-speed on-chip oscillator and a low-speed on-chip
oscillator). The on-chip oscillator clock is selected by the FRA01 bit in the FRA0 register.
10.2.1
Low-Speed On-Chip Oscillator Clock
The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU clock,
peripheral function clock, fOCO, and fOCO-S.
After reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator divided by 8 is selected as
the CPU clock.
If the XIN clock stops oscillating when bits OCD1 to OCD0 in the OCD register are set to 11b, the low-speed
on-chip oscillator automatically starts operating, supplying the necessary clock for the MCU.
The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the operating
ambient temperature. Application products must be designed with sufficient margin to allow for frequency
changes.
10.2.2
High-Speed On-Chip Oscillator Clock
The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU clock,
peripheral function clock, fOCO, fOCO-F, and fOCO40M.
After reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. Oscillation is
started by setting the FRA00 bit in the FRA0 register to 1 (high-speed on-chip oscillator on). The frequency can
be adjusted by registers FRA1 and FRA2.
The frequency correction data of 36.864 MHz is stored in the FRA7 register. To set the frequency of the highspeed on-chip oscillator to 36.864 MHz, transfer the correction value in the FRA7 register to the FRA1 register
before use.
Since there are differences in the amount of frequency adjustment among the bits in the FRA1 register, make
adjustments by changing the settings of individual bits. Adjust the FRA1 register so that the frequency of the
high-speed on-chip oscillator clock will be 40 MHz or less.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 74 of 332
R8C/2E Group, R8C/2F Group
10.3
10. Clock Generation Circuit
CPU Clock and Peripheral Function Clock
There are a CPU clock to operate the CPU and a peripheral function clock to operate the peripheral functions. Refer
to Figure 10.1 Clock Generation Circuit.
10.3.1
System Clock
The system clock is the clock source for the CPU and peripheral function clocks. Either the XIN clock or the
on-chip oscillator clock can be selected.
10.3.2
CPU Clock
The CPU clock is an operating clock for the CPU and watchdog timer.
The system clock can be divided by 1 (no division), 2, 4, 8, or 16 to produce the CPU clock. Use the CM06 bit
in the CM0 register and bits CM16 to CM17 in the CM1 register to select the value of the division.
After reset, the low-speed on-chip oscillator clock divided by 8 provides the CPU clock.
When entering stop mode from high-speed clock mode, the CM06 bit is set to 1 (divide-by-8 mode).
10.3.3
Peripheral Function Clock (f1, f2, f4, f8, and f32)
The peripheral function clock is the operating clock for the peripheral functions.
The clock fi (i = 1, 2, 4, 8, and 32) is generated by the system clock divided by i. The clock fi is used for timers
RA, RB, RC, and RE, the serial interface and the A/D converter.
When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to 1 (peripheral function
clock stops in wait mode), the clock fi stop.
10.3.4
fOCO
fOCO is an operating clock for the peripheral functions.
fOCO runs at the same frequency as the on-chip oscillator clock and can be used as the source for timer RA.
When the WAIT instruction is executed, the clocks fOCO does not stop.
10.3.5
fOCO40M
fOCO40M is used as the count source for timer RC. fOCO40M is generated by the high-speed on-chip
oscillator and supplied by setting the FRA00 bit to 1.
When the WAIT instruction is executed, the clock fOCO40M does not stop.
fOCO40M can be used with supply voltage VCC = 3.0 to 5.5 V.
10.3.6
fOCO-F
fOCO-F is used as the count source for the A/D converter. fOCO-F is generated by the high-speed on-chip
oscillator and supplied by setting the FRA00 bit to 1.
When the WAIT instruction is executed, the clock fOCO-F does not stop.
10.3.7
fOCO-S
fOCO-S is an operating clock for the watchdog timer and voltage detection circuit. fOCO-S is supplied by
setting the CM14 bit to 0 (low-speed on-chip oscillator on) and uses the clock generated by the low-speed onchip oscillator. When the WAIT instruction is executed or in count source protect mode of the watchdog timer,
fOCO-S does not stop.
10.3.8
fOCO128
fOCO128 is generated by fOCO divided by 128.
The clock fOCO128 is used for capture signal of the timer RC’s TRCGRA register.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 75 of 332
R8C/2E Group, R8C/2F Group
10.4
10. Clock Generation Circuit
Power Control
There are three power control modes. All modes other than wait mode and stop mode are referred to as standard
operating mode.
10.4.1
Standard Operating Mode
Standard operating mode is further separated into four modes.
In standard operating mode, the CPU clock and the peripheral function clock are supplied to operate the CPU
and the peripheral function clocks. Power consumption control is enabled by controlling the CPU clock
frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU
clock frequency, the more power consumption decreases. When unnecessary oscillator circuits stop, power
consumption is further reduced.
Before the clock sources for the CPU clock can be switched over, the new clock source needs to be oscillating
and stable. If the new clock source is the XIN clock, allow sufficient wait time in a program until oscillation is
stabilized before exiting.
Table 10.2
Settings and Modes of Clock Associated Bits
Modes
High-speed
clock mode
High-speed
on-chip
oscillator
mode
Low-speed
on-chip
oscillator
mode
No division
Divide-by-2
Divide-by-4
Divide-by-8
Divide-by-16
No division
Divide-by-2
Divide-by-4
Divide-by-8
Divide-by-16
No division
Divide-by-2
Divide-by-4
Divide-by-8
Divide-by-16
OCD Register
OCD2
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
−: can be 0 or 1, no change in outcome
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 76 of 332
CM1 Register
CM17, CM16 CM14
00b
−
01b
−
10b
−
−
−
11b
−
00b
−
01b
−
10b
−
−
−
11b
−
00b
0
01b
0
10b
0
−
0
11b
0
CM13
1
1
1
1
1
−
−
−
−
−
−
−
−
−
−
CM0 Register
CM06 CM05
0
0
0
0
0
0
1
0
0
0
0
−
0
−
0
−
1
−
0
−
0
−
0
−
0
−
1
−
0
−
FRA0 Register
FRA01 FRA00
−
−
−
−
−
−
−
−
−
−
1
1
1
1
1
1
1
1
1
1
0
−
0
−
0
−
0
−
0
−
R8C/2E Group, R8C/2F Group
10.4.1.1
10. Clock Generation Circuit
High-Speed Clock Mode
The XIN clock divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. Set the CM06 bit to 1 (divideby-8 mode) when transiting to high-speed on-chip oscillator mode, low-speed on-chip oscillator mode. If the
CM14 bit is set to 0 (low-speed on-chip oscillator on) or the FRA00 bit in the FRA0 register is set to 1 (highspeed on-chip oscillator on), fOCO can be used as timer RA. When the FRA00 bit is set to 1, fOCO40M can be
used as timer RC.
When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer
and voltage detection circuit.
10.4.1.2
High-Speed On-Chip Oscillator Mode
The high-speed on-chip oscillator is used as the on-chip oscillator clock when the FRA00 bit in the FRA0
register is set to 1 (high-speed on-chip oscillator on) and the FRA01 bit in the FRA0 register is set to 1. The onchip oscillator divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. Set the CM06 bit to 1 (divideby-8 mode) when transiting to high-speed clock mode. If the FRA00 bit is set to 1, fOCO40M can be used as
timer RC.
When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer
and voltage detection circuit.
10.4.1.3
Low-Speed On-Chip Oscillator Mode
If the CM14 bit in the CM1 register is set to 0 (low-speed on-chip oscillator on) or the FRA01bit in the FRA0
register is set to 0, the low-speed on-chip oscillator provides the on-chip oscillator clock.
The on-chip oscillator clock divided by 1 (no division), 2, 4, 8 or 16 provides the CPU clock. The on-chip
oscillator clock is also the clock source for the peripheral function clocks. Set the CM06 bit to 1 (divide-by-8
mode) when transiting to high-speed clock mode. When the FRA00 bit is set to 1, fOCO40M can be used as
timer RC.
When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer
and voltage detection circuit.
In this mode, stopping the XIN clock and high-speed on-chip oscillator, and setting the FMR47 bit in the FMR4
register to 1 (flash memory low consumption current read mode enabled) enables low consumption operation.
To enter wait mode from low-speed on-chip oscillator mode, setting the VCA20 bit in the VCA2 register to 1
(internal power low consumption enabled) enables lower consumption current in wait mode.
When enabling reduced internal power consumption using the VCA20 bit, follow Figure 10.11 Procedure for
Enabling Reduced Internal Power Consumption Using VCA20 bit.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 77 of 332
R8C/2E Group, R8C/2F Group
10.4.2
10. Clock Generation Circuit
Wait Mode
Since the CPU clock stops in wait mode, the CPU, which operates using the CPU clock, and the watchdog
timer, when count source protection mode is disabled, stop. The XIN clock and on-chip oscillator clock do not
stop and the peripheral functions using these clocks continue operating.
10.4.2.1
Peripheral Function Clock Stop Function
If the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the f1, f2, f4, f8, and f32 clocks stop
in wait mode. This reduces power consumption.
10.4.2.2
Entering Wait Mode
The MCU enters wait mode when the WAIT instruction is executed.
When the OCD2 bit in the OCD register is set to 1 (on-chip oscillator selected as system clock), set the OCD1
bit in the OCD register to 0 (oscillation stop detection interrupt disabled) before executing the WAIT
instruction.
If the MCU enters wait mode while the OCD1 bit is set to 1 (oscillation stop detection interrupt enabled),
current consumption is not reduced because the CPU clock does not stop.
10.4.2.3
Pin Status in Wait Mode
The I/O port is the status before wait mode was entered is maintained.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 78 of 332
R8C/2E Group, R8C/2F Group
10.4.2.4
10. Clock Generation Circuit
Exiting Wait Mode
The MCU exits wait mode by a reset or a peripheral function interrupt.
The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to 0 (peripheral
function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode.
When the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the peripheral functions using the
peripheral function clock stop operating and the peripheral functions operated by external signals or on-chip
oscillator clock can be used to exit wait mode.
Table 10.3 lists Interrupts to Exit Wait Mode and Usage Conditions.
Table 10.3
Interrupts to Exit Wait Mode and Usage Conditions
Interrupt
Serial interface interrupt
Key input interrupt
A/D conversion interrupt
Comparator 0 interrupt
Comparator 1 interrupt
Timer RA interrupt
Timer RB interrupt
Timer RC interrupt
Timer RE interrupt
Usable in all modes
Usable in all modes
Usable in all modes
Usable
INT interrupt
Voltage monitor 1 interrupt
Voltage monitor 2 interrupt
Oscillation stop detection
interrupt
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
CM02 = 0
Usable when operating with
internal or external clock
Usable
Usable in one-shot mode
Usable
Usable
Usable in all modes
Usable
Usable
Usable
Page 79 of 332
CM02 = 1
Usable when operating with external
clock
Usable
(Do not use)
Can be used if there is no filter
Can be used if there is no filter
Can be used if there is no filter in
event counter mode.
Usable by selecting fOCO as count
source.
(Do not use)
(Do not use)
(Do not use)
Usable (INT0, INT1, INT3 can be used
if there is no filter.)
Usable
Usable
(Do not use)
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
Figure 10.10 shows Time from Wait Mode to Interrupt Routine Execution.
When using a peripheral function interrupt to exit wait mode, set up the following before executing the WAIT
instruction.
(1) Set the interrupt priority level in bits ILVL2 to ILVL0 in the interrupt control registers of the peripheral
function interrupts to be used for exiting wait mode. Set bits ILVL2 to ILVL0 of the peripheral function
interrupts that are not to be used for exiting wait mode to 000b (interrupt disabled).
(2) Set the I flag to 1.
(3) Operate the peripheral function to be used for exiting wait mode.
When exiting by a peripheral function interrupt, the time (number of cycles) between interrupt request
generation and interrupt routine execution is determined by the settings of the FMSTP bit in the FMR0 register,
as described in Figure 10.10.
The CPU clock, when exiting wait mode by a peripheral function interrupt, is the same clock as the CPU clock
when the WAIT instruction is executed.
FMR0 Register
FMSTP Bit
Time until Flash Memory
is Activated (T1)
Time until CPU Clock
is Supplied (T2)
0
(flash memory operates)
Period of XIN clock
× 12 cycles + 30 µs (max.)
Period of CPU clock
× 6 cycles
1
(flash memory stops)
Period of XIN clock
× 12 cycles
Same as above
Wait mode
Time for Interrupt
Sequence (T3)
Period of CPU clock Following total time is
× 20 cycles
the time from wait
mode until an interrupt
Same as above
routine is executed.
T1
T2
T3
Flash memory
activation sequence
CPU clock restart sequence
Interrupt sequence
Interrupt request generated
Figure 10.10
Time from Wait Mode to Interrupt Routine Execution
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Remarks
Page 80 of 332
R8C/2E Group, R8C/2F Group
10.4.2.5
10. Clock Generation Circuit
Reducing Internal Power Consumption
Internal power consumption can be reduced by using low-speed on-chip oscillator mode. Figure 10.11 shows
the Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit.
When enabling reduced internal power consumption using the VCA20 bit, follow Figure 10.11 Procedure for
Enabling Reduced Internal Power Consumption Using VCA20 bit.
Exit wait mode by interrupt
Handling procedure of internal power
low consumption enabled by VCA20 bit
(Note 1)
In interrupt routine
Step (1)
Enter low-speed on-chip oscillator mode
Step (5)
VCA20 ← 0 (internal power low consumption
disabled)(2)
Step (2)
Stop XIN clock and high-speed on-chip
oscillator clock
Step (6)
Start XIN clock or high-speed on-chip
oscillator clock
Step (3)
VCA20 ← 1 (internal power low consumption
enabled)(2, 3)
Step (7)
(Wait until XIN clock oscillation stabilizes)
Step (4)
Enter wait mode(4)
Step (8)
Enter high-speed clock mode or
high-speed on-chip oscillator mode
Step (5)
VCA20 ← 0 (internal power low consumption
disabled)(2)
Step (6)
Start XIN clock or high-speed on-chip
oscillator clock
Step (7)
(Wait until XIN clock oscillation stabilizes)
Step (8)
Enter high-speed clock mode or
high-speed on-chip oscillator mode
If it is necessary to start
the high-speed clock or
the high-speed on-chip
oscillator in the interrupt
routine, execute steps (5)
to (7) in the interrupt
routine.
Interrupt handling
Step (1)
Enter low-speed on-chip oscillator mode
Step (2)
Stop XIN clock and high-speed on-chip
oscillator clock
Step (3)
VCA20 ← 1 (internal power low consumption
enabled)(2, 3)
If the high-speed clock or
high-speed on-chip
oscillator is started in the
interrupt routine, execute
steps (1) to (3) at the last of
the interrupt routine.
Interrupt handling completed
NOTES:
1. Execute this routine to handle all interrupts generated in wait mode.
However, this does not apply if it is not necessary to start the high-speed clock or high-speed on-chip oscillator during the interrupt routine.
2. Do not set the VCA20 bit to 0 with the instruction immediately after setting the VCA20 bit to 1. Also, do not do the opposite.
3. When the VCA20 bit is set to 1, do not set the CM10 bit to 1 (stop mode).
4. When entering wait mode, follow 10.6.2 Wait Mode.
VCA20: Bit in VCA2 register
Figure 10.11
Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 81 of 332
R8C/2E Group, R8C/2F Group
10.4.3
10. Clock Generation Circuit
Stop Mode
Since the oscillator circuits stop in stop mode, the CPU clock and peripheral function clock stop and the CPU
and peripheral functions that use these clocks stop operating. The least power required to operate the MCU is in
stop mode. If the voltage applied to the VCC pin is VRAM or more, the contents of internal RAM is
maintained.
The peripheral functions clocked by external signals continue operating.
Table 10.4 lists Interrupts to Exit Stop Mode and Usage Conditions.
Table 10.4
Interrupts to Exit Stop Mode and Usage Conditions
Interrupt
Key input interrupt
Usage Conditions
−
INT0, INT1, INT3 interrupt
Timer RA interrupt
Serial interface interrupt
Voltage monitor 1 interrupt
Voltage monitor 2 interrupt
Comparator 0 interrupt,
Comparator 1 interrupt
10.4.3.1
Can be used if there is no filter
When there is no filter and external pulse is counted in event counter
mode
When external clock is selected
Usable in digital filter disabled mode (VW1C1 bit in VW1C register is set
to 1)
Usable in digital filter disabled mode (VW2C1 bit in VW2C register is set
to 1)
Can be used if there is no filter
Entering Stop Mode
The MCU enters stop mode when the CM10 bit in the CM1 register is set to 1 (all clocks stop). At the same
time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode) and the CM15 bit in the CM1 register is
set to 1 (XIN clock oscillator circuit drive capacity high).
When using stop mode, set bits OCD1 to OCD0 to 00b before entering stop mode.
10.4.3.2
Pin Status in Stop Mode
The status before wait mode was entered is maintained.
However, when the CM13 bit in the CM1 register is set to 1 (XIN-XOUT pins), the XOUT(P4_7) pin is held
“H”. When the CM13 bit is set to 0 (input ports P4_6 and P4_7), the P4_7(XOUT pin) is held in input status.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 82 of 332
R8C/2E Group, R8C/2F Group
10.4.3.3
10. Clock Generation Circuit
Exiting Stop Mode
The MCU exits stop mode by a reset or peripheral function interrupt.
Figure 10.12 shows the Time from Stop Mode to Interrupt Routine Execution.
When using a peripheral function interrupt to exit stop mode, set up the following before setting the CM10 bit
to 1.
(1) Set the interrupt priority level in bits ILVL2 to ILVL0 of the peripheral function interrupts to be used for
exiting stop mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used
for exiting stop mode to 000b (interrupt disabled).
(2) Set the I flag to 1.
(3) Operates the peripheral function to be used for exiting stop mode.
When exiting by a peripheral function interrupt, the interrupt sequence is executed when an interrupt request is
generated and the CPU clock supply is started.
If the clock used immediately before stop mode is a system clock and stop mode is exited by a peripheral
function interrupt, the CPU clock becomes the previous system clock divided by 8.
FMR0 Register
Time until Flash Memory
is Activated (T2)
Time until CPU Clock
is Supplied (T3)
0
(flash memory
operates)
Period of XIN clock
× 12 cycles + 30 µs (max.)
Period of CPU clock
× 6 cycles
1
(flash memory stops)
Period of XIN clock
× 12 cycles
Same as above
FMSTP Bit
Stop
mode
Time for Interrupt
Sequence (T4)
Period of CPU clock Following total
time of T0 to T4
× 20 cycles
is the time from
stop mode until
an interrupt
Same as above
handling is
executed.
T0
T1
T2
T3
T4
Internal
power
stability time
Oscillation time of
CPU clock source
used immediately
before stop mode
Flash memory
activation sequence
CPU clock restart
sequence
Interrupt sequence
150 µs
Interrupt (max.)
request
generated
Figure 10.12
Time from Stop Mode to Interrupt Routine Execution
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 83 of 332
Remarks
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
Figure 10.13 shows the State Transitions in Power Control Mode.
State Transitions in Power Control Mode
Reset
Standard operating mode
Low-speed on-chip oscillator mode
CM14 = 0
OCD2 = 1
FRA01 = 0
CM14 = 0
OCD2 = 1
FRA01 = 0
CM05 = 0
CM13 = 1
OCD2 = 0
High-speed clock mode
CM14 = 0
FRA01 = 0
CM05 = 0
CM13 = 1
OCD2 = 0
FRA00 = 1
FRA01 = 1
OCD2 = 1
FRA00 = 1
FRA01 = 1
CM05 = 0
CM13 = 1
OCD2 = 0
High-speed on-chip oscillator mode
OCD2 = 1
FRA00 = 1
FRA01 = 1
Interrupt
WAIT instruction
Wait mode
Stop mode
CPU operation stops
All oscillators stop
CM05: Bit in CM0 register
CM13, CM14: Bits in CM1 register
OCD2: Bit in OCD register
FRA00, FRA01: Bits in FRA0 register
Figure 10.13
CM10 = 1
Interrupt
State Transitions in Power Control Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 84 of 332
R8C/2E Group, R8C/2F Group
10.5
10. Clock Generation Circuit
Oscillation Stop Detection Function
The oscillation stop detection function detects the stop of the XIN clock oscillating circuit. The oscillation stop
detection function can be enabled and disabled by the OCD0 bit in the OCD register.
Table 10.5 lists the Specifications of Oscillation Stop Detection Function.
When the XIN clock is the CPU clock source and bits OCD1 to OCD0 are set to 11b, the system is placed in the
following state if the XIN clock stops.
• OCD2 bit in OCD register = 1 (on-chip oscillator clock selected)
• OCD3 bit in OCD register = 1 (XIN clock stops)
• CM14 bit in CM1 register = 0 (low-speed on-chip oscillator oscillates)
• Oscillation stop detection interrupt request is generated.
Table 10.5
Specifications of Oscillation Stop Detection Function
Item
Oscillation stop detection clock and
frequency bandwidth
Enabled condition for oscillation stop
detection function
Operation at oscillation stop detection
10.5.1
Specification
f(XIN) ≥ 2 MHz
Set bits OCD1 to OCD0 to 11b
Oscillation stop detection interrupt is generated
How to Use Oscillation Stop Detection Function
• The oscillation stop detection interrupt shares a vector with the voltage monitor 1 interrupt, the voltage
•
•
•
•
•
monitor 2 interrupt, and the watchdog timer interrupt. When using the oscillation stop detection interrupt
and watchdog timer interrupt, the interrupt source needs to be determined.
Table 10.6 lists Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer, Voltage
Monitor 1, and Voltage Monitor 2 Interrupts. Figure 10.15 shows the Example of Determining Interrupt
Source for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt.
When the XIN clock restarts after oscillation stop, switch the XIN clock to the clock source of the CPU
clock and peripheral functions by a program.
Figure 10.14 shows the Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to
XIN Clock.
To enter wait mode while using the oscillation stop detection function, set the CM02 bit to 0 (peripheral
function clock does not stop in wait mode).
Since the oscillation stop detection function is a function for cases where the XIN clock is stopped by an
external cause, set bits OCD1 to OCD0 to 00b when the XIN clock stops or is started by a program, (stop
mode is selected or the CM05 bit is changed).
This function cannot be used when the XIN clock frequency is 2 MHz or below. In this case, set bits OCD1
to OCD0 to 00b.
To use the low-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions
after detecting the oscillation stop, set the FRA01 bit in the FRA0 register to 0 (low-speed on-chip
oscillator selected) and bits OCD1 to OCD0 to 11b.
To use the high-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions
after detecting the oscillation stop, set the FRA00 bit to 1 (high-speed on-chip oscillator on) and the FRA01
bit to 1 (high-speed on-chip oscillator selected) and then set bits OCD1 to OCD0 to 11b.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 85 of 332
R8C/2E Group, R8C/2F Group
Table 10.6
10. Clock Generation Circuit
Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer,
Voltage Monitor 1, and Voltage Monitor 2 Interrupts
Generated Interrupt Source
Bit Showing Interrupt Cause
Oscillation stop detection
(a) OCD3 bit in OCD register = 1
((a) or (b))
(b) OCD1 to OCD0 bits in OCD register = 11b and OCD2 bit = 1
Watchdog timer
VW2C3 bit in VW2C register = 1
Voltage monitor 1
VW1C2 bit in VW1C register = 1
Voltage monitor 2
VW2C2 bit in VW2C register = 1
Switch to XIN clock
NO
Multiple confirmations
that OCD3 bit is set to 0 (XIN
clock oscillates) ?
YES
Set OCD1 to OCD0 bits to 00b
Set OCD2 bit to 0
(select XIN clock)
End
OCD3 to OCD0: Bits in OCD register
Figure 10.14
Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to XIN
Clock
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 86 of 332
R8C/2E Group, R8C/2F Group
10. Clock Generation Circuit
Interrupt sources judgment
OCD3 = 1 ?
(XIN clock stopped)
NO
YES
OCD1 = 1
(oscillation stop detection
interrupt enabled) and OCD2 = 1
(on-chip oscillator clock selected
as system clock) ?
NO
YES
VW2C3 = 1 ?
(Watchdog timer
underflow)
NO
YES
VW2C2 = 1 ?
(passing Vdet2)
NO
YES
Set OCD1 bit to 0 (oscillation stop
detection interrupt disabled). (1)
To oscillation stop detection
interrupt routine
To watchdog timer
interrupt routine
To voltage monitor 2
interrupt routine
To voltage monitor 1
interrupt routine
NOTE:
1. This disables multiple oscillation stop detection interrupts.
OCD1 to OCD3: Bits in OCD register
VW2C2, VW2C3: Bits in VW2C register
Figure 10.15
Example of Determining Interrupt Source for Oscillation Stop Detection, Watchdog
Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 87 of 332
R8C/2E Group, R8C/2F Group
10.6
10. Clock Generation Circuit
Notes on Clock Generation Circuit
10.6.1
Stop Mode
When entering stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and the
CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction
which sets the CM10 bit to 1 (stop mode) and the program stops.
Insert at least 4 NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit
to 1.
• Program example to enter stop mode
BCLR
BSET
FSET
BSET
JMP.B
LABEL_001 :
NOP
NOP
NOP
NOP
10.6.2
1,FMR0
0,PRCR
I
0,CM1
LABEL_001
; CPU rewrite mode disabled
; Protect disabled
; Enable interrupt
; Stop mode
Wait Mode
When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and
execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the
program stops. Insert at least 4 NOP instructions after the WAIT instruction.
• Program example to execute the WAIT instruction
BCLR
1,FMR0
FSET
I
WAIT
NOP
NOP
NOP
NOP
10.6.3
; CPU rewrite mode disabled
; Enable interrupt
; Wait mode
Oscillation Stop Detection Function
Since the oscillation stop detection function cannot be used if the XIN clock frequency is 2 MHz or below, set
bits OCD1 to OCD0 to 00b.
10.6.4
Oscillation Circuit Constants
Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system.
To use this MCU with supply voltage below VCC = 2.7 V, it is recommended to set the CM11 bit in the CM1
register to 1 (on-chip feedback resistor disabled), the CM15 bit to 1 (high drive capacity), and connect the
feedback resistor to the chip externally.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 88 of 332
R8C/2E Group, R8C/2F Group
11. Protection
11. Protection
The protection function protects important registers from being easily overwritten when a program runs out of control.
Figure 11.1 shows the PRCR Register. The registers protected by the PRCR register are listed below.
• Registers protected by PRC0 bit: Registers CM0, CM1, OCD, FRA0, FRA1, and FRA2
• Registers protected by PRC1 bit: Registers PM0 and PM1
• Registers protected by PRC2 bit: PD0 register
• Registers protected by PRC3 bit: Registers VCA2, VW1C, and VW2C
Protect Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
PRCR
Bit Symbol
Address
000Ah
Bit Name
Protect bit 0
PRC0
Protect bit 1
PRC1
Protect bit 2
PRC2
Protect bit 3
PRC3
After Reset
00h
Function
Writing to registers CM0, CM1, OCD, FRA0, FRA1,
and FRA2 is enabled.
0 : Disables w riting
1 : Enables w riting
RW
RW
Writing to registers PM0 and PM1 is enabled.
0 : Disables w riting
1 : Enables w riting
RW
Writing to the PD0 register is enabled.
0 : Disables w riting
1 : Enables w riting(1)
RW
Writing to registers VCA2, VW1C, and VW2C is
enabled.
0 : Disables w riting
1 : Enables w riting
RW
—
(b5-b4)
Reserved bits
Set to 0.
—
(b7-b6)
Reserved bits
When read, the content is 0.
RW
RO
NOTE:
1. This bit is set to 0 after w riting 1 to the PRC2 bit and executing a w rite to any address. Since the other bits are not
set to 0, set them to 0 by a program.
Figure 11.1
PRCR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 89 of 332
R8C/2E Group, R8C/2F Group
12. Interrupts
12. Interrupts
12.1
Interrupt Overview
12.1.1
Types of Interrupts
Figure 12.1 shows the types of Interrupts.
Software
(non-maskable interrupts)
Interrupts
Special
(non-maskable interrupts)
Hardware
Undefined instruction (UND instruction)
Overflow (INTO instruction)
BRK instruction
INT instruction
Watchdog timer
Oscillation stop detection
Voltage monitor 1
Voltage monitor 2
Single step(2)
Address break(2)
Address match
Peripheral functions(1)
(maskable interrupts)
NOTES:
1. Peripheral function interrupts in the MCU are used to generate peripheral interrupts.
2. Do not use this interrupt. This is for use with development tools only.
Figure 12.1
Interrupts
• Maskable Interrupts:
• Non-Maskable Interrupts:
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
The interrupt enable flag (I flag) enables or disables these interrupts. The
interrupt priority order can be changed based on the interrupt priority level.
The interrupt enable flag (I flag) does not enable or disable these interrupts.
The interrupt priority order cannot be changed based on interrupt priority
level.
Page 90 of 332
R8C/2E Group, R8C/2F Group
12.1.2
12. Interrupts
Software Interrupts
A software interrupt is generated when an instruction is executed. Software interrupts are non-maskable.
12.1.2.1
Undefined Instruction Interrupt
The undefined instruction interrupt is generated when the UND instruction is executed.
12.1.2.2
Overflow Interrupt
The overflow interrupt is generated when the O flag is set to 1 (arithmetic operation overflow) and the INTO
instruction is executed. Instructions that set the O flag are: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX,
NEG, RMPA, SBB, SHA, and SUB.
12.1.2.3
BRK Interrupt
A BRK interrupt is generated when the BRK instruction is executed.
12.1.2.4
INT Instruction Interrupt
An INT instruction interrupt is generated when the INT instruction is executed. The INT instruction can select
software interrupt numbers 0 to 63. Software interrupt numbers 3 to 31 are assigned to the peripheral function
interrupt. Therefore, the MCU executes the same interrupt routine when the INT instruction is executed as
when a peripheral function interrupt is generated. For software interrupt numbers 0 to 31, the U flag is saved to
the stack during instruction execution and the U flag is set to 0 (ISP selected) before the interrupt sequence is
executed. The U flag is restored from the stack when returning from the interrupt routine. For software interrupt
numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 91 of 332
R8C/2E Group, R8C/2F Group
12.1.3
12. Interrupts
Special Interrupts
Special interrupts are non-maskable.
12.1.3.1
Watchdog Timer Interrupt
The watchdog timer interrupt is generated by the watchdog timer. For details, refer to 13. Watchdog Timer.
12.1.3.2
Oscillation Stop Detection Interrupt
The oscillation stop detection interrupt is generated by the oscillation stop detection function. For details of the
oscillation stop detection function, refer to 10. Clock Generation Circuit.
12.1.3.3
Voltage Monitor 1 Interrupt
The voltage monitor 1 interrupt is generated by the voltage detection circuit. For details of the voltage detection
circuit, refer to 6. Voltage Detection Circuit.
12.1.3.4
Voltage Monitor 2 Interrupt
The voltage monitor 2 interrupt is generated by the voltage detection circuit. For details of the voltage detection
circuit, refer to 6. Voltage Detection Circuit.
12.1.3.5
Single-Step Interrupt, and Address Break Interrupt
Do not use these interrupts. They are for use by development tools only.
12.1.3.6
Address Match Interrupt
The address match interrupt is generated immediately before executing an instruction that is stored at an
address indicated by registers RMAD0 to RMAD1 when the AIER0 or AIER1 bit in the AIER register is set to
1 (address match interrupt enable). For details of the address match interrupt, refer to 12.4 Address Match
Interrupt.
12.1.4
Peripheral Function Interrupt
The peripheral function interrupt is generated by the internal peripheral function of the MCU and is a maskable
interrupt. Refer to Table 12.2 Relocatable Vector Tables for sources of the peripheral function interrupt. For
details of peripheral functions, refer to the descriptions of individual peripheral functions.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 92 of 332
R8C/2E Group, R8C/2F Group
12.1.5
12. Interrupts
Interrupts and Interrupt Vectors
There are 4 bytes in each vector. Set the starting address of an interrupt routine in each interrupt vector. When
an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector.
Figure 12.2 shows an Interrupt Vector.
MSB
LSB
Vector address (L)
Low address
Mid address
Vector address (H)
Figure 12.2
12.1.5.1
0000
High address
0000
0000
Interrupt Vector
Fixed Vector Tables
The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh.
Table 12.1 lists the Fixed Vector Tables. The vector addresses (H) of fixed vectors are used by the ID code
check function. For details, refer to 20.3 Functions to Prevent Rewriting of Flash Memory.
•
Table 12.1
Fixed Vector Tables
Interrupt Source
Undefined instruction
Overflow
BRK instruction
Address match
Single step(1)
Watchdog timer,
Oscillation stop detection,
Voltage monitor 1,
Voltage monitor 2
Address break(1)
(Reserved)
Reset
Vector Addresses
Remarks
Reference
Address (L) to (H)
0FFDCh to 0FFDFh Interrupt on UND
R8C/Tiny Series Software
instruction
Manual
0FFE0h to 0FFE3h Interrupt on INTO
instruction
0FFE4h to 0FFE7h If the content of address
0FFE7h is FFh,
program execution
starts from the address
shown by the vector in
the relocatable vector
table.
0FFE8h to 0FFEBh
12.4 Address Match
Interrupt
0FFECh to 0FFEFh
0FFF0h to 0FFF3h
13. Watchdog Timer
10. Clock Generation Circuit
6. Voltage Detection Circuit
0FFF4h to 0FFF7h
0FFF8h to 0FFFBh
0FFFCh to 0FFFFh
5. Resets
NOTE:
1. Do not use these interrupts. They are for use by development tools only.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 93 of 332
R8C/2E Group, R8C/2F Group
12.1.5.2
12. Interrupts
Relocatable Vector Tables
The relocatable vector tables occupy 256 bytes beginning from the starting address set in the INTB register.
Table 12.2 lists the Relocatable Vector Tables.
Table 12.2
Relocatable Vector Tables
Vector Addresses(1)
Address (L) to Address (H)
Interrupt Source
BRK instruction(2)
(Reserved)
(Reserved)
Timer RC
(Reserved)
Timer RE
(Reserved)
Key input
A/D
(Reserved)
UART0 transmit
UART0 receive
(Reserved)
Timer RA
(Reserved)
Timer RB
INT1
INT3
Comparator 0
Comparator 1
INT0
(Reserved)
(Reserved)
Software interrupt(2)
+0 to +3 (0000h to 0003h)
+28 to +31 (001Ch to 001Fh)
+40 to +43 (0028h to 002Bh)
+52 to +55 (0034h to 0037h)
+56 to +59 (0038h to 003Bh)
+68 to +71 (0044h to 0047h)
+72 to +75 (0048h to 004Bh)
Software
Interrupt Control
Interrupt
Reference
Register
Number
0
−
R8C/Tiny Series Software
Manual
1 to 2
−
−
3 to 6
−
−
7
TRCIC
14.3 Timer RC
−
−
8 to 9
10
TREIC
14.4 Timer RE
11 to 12
−
−
13
KUPIC
12.3 Key Input Interrupt
14
ADIC
17. A/D Converter
−
15 to 16 −
+96 to +99 (0060h to 0063h)
+100 to +103 (0064h to 0067h)
17
18
19 to 21
22
23
24
25
S0TIC
S0RIC
−
TRAIC
−
TRBIC
INT1IC
+104 to +107 (0068h to 006Bh)
26
INT3IC
+108 to +111 (006Ch to 006Fh)
+112 to +115 (0070h to 0073h)
+116 to +119 (0074h to 0077h)
27
28
29
CM0IC
CM1IC
INT0IC
+88 to +91 (0058h to 005Bh)
30
31
+128 to +131 (0080h to 0083h) to 32 to 63
+252 to +255 (00FCh to 00FFh)
NOTES:
1. These addresses are relative to those in the INTB register.
2. The I flag does not disable these interrupts.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 94 of 332
−
−
−
15. Serial Interface
−
14.1 Timer RA
−
14.2 Timer RB
12.2 INT Interrupt
19. Comparator
12.2 INT Interrupt
−
−
R8C/Tiny Series Software
Manual
R8C/2E Group, R8C/2F Group
12.1.6
12. Interrupts
Interrupt Control
The following describes enabling and disabling the maskable interrupts and setting the priority for
acknowledgement. The explanation does not apply to nonmaskable interrupts.
Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in each interrupt control register to enable or
disable maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control
register.
Figure 12.3 shows the Interrupt Control Register, Figure 12.4 shows Registers TRCIC, CM0IC, and CM1IC
and Figure 12.5 shows the INTiIC Register (i=0, 1, 3).
Interrupt Control Register(2)
b7 b6 b5 b4 b3 b2 b1 b0
Address
004Ah
004Dh
004Eh
0051h
0052h
0056h
0058h
Symbol
TREIC
KUPIC
ADIC
S0TIC
S0RIC
TRAIC
TRBIC
Bit Symbol
Bit Name
Interrupt priority level select bits
ILVL1
ILVL2
—
(b7-b4)
Function
Interrupt request bit
RW
b2 b1 b0
0 0 0 : Level 0 (interrupt disable)
0 0 1 : Level 1
0 1 0 : Level 2
0 1 1 : Level 3
1 0 0 : Level 4
1 0 1 : Level 5
1 1 0 : Level 6
1 1 1 : Level 7
ILVL0
IR
After Reset
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
0 : Requests no interrupt
1 : Requests interrupt
Nothing is assigned. If necessary, set to 0.
When read, the content is undefined.
RW
RW
RW
RW(1)
—
NOTES:
1. Only 0 can be w ritten to the IR bit. Do not w rite 1.
2. Rew rite the interrupt control register w hen the interrupt request w hich is applicable for its register is not generated.
Refer to 12.6.5 Changing Interrupt Control Register Contents .
Figure 12.3
Interrupt Control Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 95 of 332
R8C/2E Group, R8C/2F Group
12. Interrupts
Interrupt Control Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCIC
Address
0047h
After Reset
XXXXX000b
CM0IC
005Bh
XXXXX000b
CM1IC
005Ch
XXXXX000b
Bit Symbol
Bit Name
Interrupt priority level select bits
0 0 0 : Level 0 (interrupt disable)
0 0 1 : Level 1
0 1 0 : Level 2
0 1 1 : Level 3
1 0 0 : Level 4
1 0 1 : Level 5
1 1 0 : Level 6
1 1 1 : Level 7
ILVL0
ILVL1
ILVL2
IR
—
(b7-b4)
Function
Interrupt request bit
RW
b2 b1 b0
0 : Requests no interrupt
1 : Requests interrupt
Nothing is assigned. If necessary, set to 0.
When read, the content is undefined.
RW
RW
RW
RO
—
NOTE:
1. Rew rite the interrupt control register w hen the interrupt request w hich is applicable for the register is not generated.
Refer to 12.6.5 Changing Interrupt Control Register Contents.
Figure 12.4
Registers TRCIC, CM0IC, and CM1IC
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 96 of 332
R8C/2E Group, R8C/2F Group
12. Interrupts
INTi Interrupt Control Register (i=0, 1, 3)(2)
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
INT1IC
Address
0059h
INT3IC
005Ah
INT0IC
Bit Symbol
005Dh
Bit Name
Interrupt priority level select bits
ILVL1
ILVL2
POL
—
(b5)
—
(b7-b6)
XX00X000b
XX00X000b
Function
RW
b2 b1 b0
0 0 0 : Level 0 (interrupt disable)
0 0 1 : Level 1
0 1 0 : Level 2
0 1 1 : Level 3
1 0 0 : Level 4
1 0 1 : Level 5
1 1 0 : Level 6
1 1 1 : Level 7
ILVL0
IR
After Reset
XX00X000b
RW
RW
RW
Interrupt request bit
0 : Requests no interrupt
1 : Requests interrupt
RW(1)
Polarity sw itch bit(4)
0 : Selects falling edge
1 : Selects rising edge(3)
RW
Reserved bit
Set to 0.
Nothing is assigned. If necessary, set to 0.
When read, the content is undefined.
RW
—
NOTES:
1. Only 0 can be w ritten to the IR bit. (Do not w rite 1.)
2. Rew rite the interrupt control register w hen the interrupt request w hich is applicable for the register is not generated.
Refer to 12.6.5 Changing Interrupt Control Register Contents.
3. If the INTiPL bit in the INTEN register is set to 1 (both edges), set the POL bit to 0 (selects falling edge).
4. The IR bit may be set to 1 (requests interrupt) w hen the POL bit is rew ritten. Refer to 12.6.4 Changing Interrupt
Sources.
Figure 12.5
INTiIC Register (i=0, 1, 3)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 97 of 332
R8C/2E Group, R8C/2F Group
12.1.6.1
12. Interrupts
I Flag
The I flag enables or disables maskable interrupts. Setting the I flag to 1 (enabled) enables maskable interrupts.
Setting the I flag to 0 (disabled) disables all maskable interrupts.
12.1.6.2
IR Bit
The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. Then, when the interrupt
request is acknowledged and the CPU branches to the corresponding interrupt vector, the IR bit is set to 0 (=
interrupt not requested).
The IR bit can be set to 0 by a program. Do not write 1 to this bit.
However, the IR bit operations of the timer RC interrupt, comparator 0 interrupt, and comparator 1 interrupt are
different. Refer to 12.5 Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt.
12.1.6.3
ILVL2 to ILVL0 Bits and IPL
Interrupt priority levels can be set using bits ILVL2 to ILVL0.
Table 12.3 lists the Settings of Interrupt Priority Levels and Table 12.4 lists the Interrupt Priority Levels
Enabled by IPL.
The following are conditions under which an interrupt is acknowledged:
• I flag = 1
• IR bit = 1
• Interrupt priority level > IPL
The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. They do not affect one another.
Table 12.3
ILVL2 to ILVL0 Bits
000b
001b
010b
011b
100b
101b
110b
111b
Settings of Interrupt Priority
Levels
Interrupt Priority Level
Priority Order
−
Level 0 (interrupt disabled)
Level 1
Low
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
High
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 98 of 332
Table 12.4
IPL
000b
001b
010b
011b
100b
101b
110b
111b
Interrupt Priority Levels Enabled by
IPL
Enabled Interrupt Priority Levels
Interrupt level 1 and above
Interrupt level 2 and above
Interrupt level 3 and above
Interrupt level 4 and above
Interrupt level 5 and above
Interrupt level 6 and above
Interrupt level 7 and above
All maskable interrupts are disabled
R8C/2E Group, R8C/2F Group
12.1.6.4
12. Interrupts
Interrupt Sequence
An interrupt sequence is performed between an interrupt request acknowledgement and interrupt routine
execution.
When an interrupt request is generated while an instruction is being executed, the CPU determines its interrupt
priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle.
However, for the SMOVB, SMOVF, SSTR, or RMPA instructions, if an interrupt request is generated while the
instruction is being executed, the MCU suspends the instruction to start the interrupt sequence. The interrupt
sequence is performed as indicated below.
Figure 12.6 shows the Time Required for Executing Interrupt Sequence.
(1) The CPU gets interrupt information (interrupt number and interrupt request level) by reading address
00000h. The IR bit for the corresponding interrupt is set to 0 (interrupt not requested).(2)
(2) The FLG register is saved to a temporary register(1) in the CPU immediately before entering the
interrupt sequence.
(3) The I, D and U flags in the FLG register are set as follows:
The I flag is set to 0 (interrupts disabled).
The D flag is set to 0 (single-step interrupt disabled).
The U flag is set to 0 (ISP selected).
However, the U flag does not change state if an INT instruction for software interrupt number 32 to 63
is executed.
(4) The CPU’s internal temporary register(1) is saved to the stack.
(5) The PC is saved to the stack.
(6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
(7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.
After the interrupt sequence is completed, instructions are executed from the starting address of the interrupt
routine.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
CPU Clock
Address Bus
Data Bus
Address
0000h
Undefined
Interrupt
information
RD
Undefined
SP-2 SP-1
SP-4
SP-2
SP-1
SP-4
contents contents contents
SP-3
SP-3
contents
VEC
VEC
contents
VEC+1
VEC+1
contents
VEC+2
PC
VEC+2
contents
Undefined
WR
The indeterminate state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is
ready to acknowledge instructions.
Figure 12.6
Time Required for Executing Interrupt Sequence
NOTES:
1. This register cannot be used by user.
2. Refer to 12.5 Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt for the
IR bit operations of the timer RC interrupt, comparator 0 interrupt, and comparator 1 interrupt.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 99 of 332
R8C/2E Group, R8C/2F Group
12.1.6.5
12. Interrupts
Interrupt Response Time
Figure 12.7 shows the Interrupt Response Time. The interrupt response time is the period between an interrupt
request generation and the execution of the first instruction in the interrupt routine. The interrupt response time
includes the period between interrupt request generation and the completion of execution of the instruction
(refer to (a) in Figure 12.7) and the period required to perform the interrupt sequence (20 cycles, refer to (b) in
Figure 12.7).
Interrupt request is generated. Interrupt request is acknowledged.
Time
Instruction
(a)
Instruction in
interrupt routine
Interrupt sequence
20 cycles (b)
Interrupt response time
(a) Period between interrupt request generation and the completion of execution of an
instruction. The length of time varies depending on the instruction being executed. The
DIVX instruction requires the longest time, 30 cycles (no wait and when the register is set
as the divisor)
(b) 21 cycles for address match and single-step interrupts.
Figure 12.7
12.1.6.6
Interrupt Response Time
IPL Change when Interrupt Request is Acknowledged
When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the
acknowledged interrupt is set in the IPL.
When a software interrupt or special interrupt request is acknowledged, the level listed in Table 12.5 is set in the
IPL.
Table 12.5 lists the IPL Value When Software or Special Interrupt Is Acknowledged.
Table 12.5
IPL Value When Software or Special Interrupt Is Acknowledged
Interrupt Source
Watchdog timer, oscillation stop detection, voltage monitor 1,
voltage monitor 2, address break
Software, address match, single-step
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 100 of 332
Value Set in IPL
7
Not changed
R8C/2E Group, R8C/2F Group
12.1.6.7
12. Interrupts
Saving a Register
In the interrupt sequence, the FLG register and PC are saved to the stack.
After an extended 16 bits, 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG
register, are saved to the stack, the 16 low-order bits in the PC are saved.
Figure 12.8 shows the Stack State Before and After Acknowledgement of Interrupt Request.
The other necessary registers are saved by a program at the beginning of the interrupt routine. The PUSHM
instruction can save several registers in the register bank being currently used(1) with a single instruction.
NOTE:
1. Selectable from registers R0, R1, R2, R3, A0, A1, SB, and FB.
Stack
Address
Stack
Address
MSB
LSB
MSB
LSB
m−4
m−4
PCL
m−3
m−3
PCM
m−2
m−2
FLGL
m−1
m−1
m
Previous stack contents
m+1
Previous stack contents
[SP]
SP value before
interrupt is generated
m
m+1
Stack state before interrupt request
is acknowledged
FLGH
[SP]
New SP value
PCH
Previous stack contents
Previous stack contents
PCH
PCM
PCL
FLGH
FLGL
: 4 High-order bits of PC
: 8 Middle-order bits of PC
: 8 Low-order bits of PC
: 4 High-order bits of FLG
: 8 Low-order bits of FLG
Stack state after interrupt request
is acknowledged
NOTE:
1.When executing software number 32 to 63 INT instructions,
this SP is specified by the U flag. Otherwise it is ISP.
Figure 12.8
Stack State Before and After Acknowledgement of Interrupt Request
The register saving operation, which is performed as part of the interrupt sequence, saved in 8 bits at a time in
four steps.
Figure 12.9 shows the Register Saving Operation.
Stack
Address
Sequence in which
order registers are
saved
[SP]−5
[SP]−4
PCL
(3)
[SP]−3
PCM
(4)
[SP]−2
FLGL
(1)
Saved, 8 bits at a time
[SP]−1
FLGH
PCH
(2)
[SP]
Completed saving
registers in four
operations.
PCH
PCM
PCL
FLGH
FLGL
NOTE:
1. [SP] indicates the initial value of the SP when an interrupt request is acknowledged.
After registers are saved, the SP content is [SP] minus 4. When executing
software number 32 to 63 INT instructions, this SP is specified by the U
flag. Otherwise it is ISP.
Figure 12.9
Register Saving Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 101 of 332
: 4 High-order bits of PC
: 8 Middle-order bits of PC
: 8 Low-order bits of PC
: 4 High-order bits of FLG
: 8 Low-order bits of FLG
R8C/2E Group, R8C/2F Group
12.1.6.8
12. Interrupts
Returning from an Interrupt Routine
When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC, which have
been saved to the stack, are automatically restored. The program, that was running before the interrupt request
was acknowledged, starts running again.
Restore registers saved by a program in an interrupt routine using the POPM instruction or others before
executing the REIT instruction.
12.1.6.9
Interrupt Priority
If two or more interrupt requests are generated while a single instruction is being executed, the interrupt with
the higher priority is acknowledged.
Set bits ILVL2 to ILVL0 to select the desired priority level for maskable interrupts (peripheral functions).
However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by
hardware, and the higher priority interrupts acknowledged.
The priority levels of special interrupts, such as reset (reset has the highest priority) and watchdog timer, are set
by hardware.
Figure 12.10 shows the Priority Levels of Hardware Interrupts.
The interrupt priority does not affect software interrupts. The MCU jumps to the interrupt routine when the
instruction is executed.
Reset
High
Address break
Watchdog timer
Oscillation stop detection
Voltage monitor 1
Voltage monitor 2
Peripheral function
Single step
Address match
Figure 12.10
Priority Levels of Hardware Interrupts
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 102 of 332
Low
R8C/2E Group, R8C/2F Group
12. Interrupts
12.1.6.10 Interrupt Priority Judgement Circuit
The interrupt priority judgement circuit selects the highest priority interrupt, as shown in Figure 12.11.
Priority level of interrupt
Level 0 (default value)
Highest
Comparator 0
INT3
Timer RB
Timer RA
INT0
Comparator 1
Priority of peripheral function interrupts
(if priority levels are same)
INT1
Timer RC
UART0 receive
A/D conversion
Timer RE
UART0 transmit
Key input
IPL
Lowest
Interrupt request level
judgment output signal
I flag
Address match
Watchdog timer
Oscillation stop detection
Voltage monitor 1
Voltage monitor 2
Figure 12.11
Interrupt Priority Level Judgement Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 103 of 332
Interrupt request
acknowledged
R8C/2E Group, R8C/2F Group
12.2
12. Interrupts
INT Interrupt
12.2.1
INTi Interrupt (i = 0, 1, 3)
The INTi interrupt is generated by an INTi input. When using the INTi interrupt, the INTiEN bit in the INTEN
register is set to 1 (enable). The edge polarity is selected using the INTiPL bit in the INTEN register and the
POL bit in the INTiIC register.
Inputs can be passed through a digital filter with three different sampling clocks.
The INT0 pin is shared with the pulse output forced cutoff of timer RC and is shared with the external trigger
input of timer RB.
Figure 12.12 shows the INTEN Register. Figure 12.13 shows the INTF Register.
External Input Enable Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
INTEN
Bit Symbol
INT0EN
Address
00F9h
Bit Name
_____
INT0 input enable bit
RW
0 : One edge
1 : Both edges
RW
0 : Disable
1 : Enable
RW
INT1 input polarity select bit(1,2)
0 : One edge
1 : Both edges
RW
Reserved bits
Set to 0.
INT0 input polarity select bit(1,2)
_____
INT1EN
INT1 input enable bit
_____
INT1PL
—
(b5-b4)
_____
INT3EN
INT3 input enable bit
_____
INT3PL
RW
0 : Disable
1 : Enable
_____
INT0PL
After Reset
00h
Function
INT3 input polarity select bit(1,2)
RW
0 : Disable
1 : Enable
RW
0 : One edge
1 : Both edges
RW
NOTES:
1. When setting the INTiPL bit (i = 0 to 3) to 1 (both edges), set the POL bit in the INTiIC register to 0 (selects falling
edge).
2. The IR bit in the INTiIC register may be set to 1 (requests interrupt) w hen the INTiPL bit is rew ritten. Refer to 12.6.4
Changing Interrupt Sources.
Figure 12.12
INTEN Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 104 of 332
R8C/2E Group, R8C/2F Group
12. Interrupts
_______
INT0 Input Filter Select Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
INTF
Bit Symbol
Address
00FAh
Bit Name
_____
INT0F0
INT0 input filter select bits
INT0F1
_____
INT1F0
INT1 input filter select bits
INT1F1
—
(b5-b4)
INT3F0
0 0 : No filter
0 1 : Filter w ith f1 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
b7 b6
Page 105 of 332
RW
RW
b3 b2
_____
INTF Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
0 0 : No filter
0 1 : Filter w ith f1 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
Set to 0.
INT3 input filter select bits
RW
b1 b0
Reserved bits
INT3F1
Figure 12.13
After Reset
00h
Function
0 0 : No filter
0 1 : Filter w ith f1 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
RW
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
12.2.2
12. Interrupts
INTi Input Filter (i = 0, 1, 3)
The INTi input contains a digital filter. The sampling clock is selected by bits INTiF1 to INTiF0 in the INTF
register. The IR bit in the INTiIC register is set to 1 (interrupt requested) when the INTi level is sampled for
every sampling clock and the sampled input level matches three times.
Figure 12.14 shows the Configuration of INTi Input Filter. Figure 12.15 shows an Operating Example of INTi
Input Filter.
INTiF1 to INTiF0
f1
f8
f32
INTi
Port direction
register(1)
= 01b
= 10b
Sampling clock
= 11b
INTiEN
Digital filter
(input level
matches 3x)
Other than
INTiF1 to INTiF0
= 00b
= 00b
INTiF0, INTiF1: Bits in INTF register
INTiEN, INTiPL: Bits in INTEN register
i = 0, 1, 3
INTi interrupt
INTiPL = 0
Both edges
detection
INTiPL = 1
circuit
NOTE:
1. INT0: Port P4_5 direction register
INT1: Port P1_5 direction register when using the P1_5 pin
Port P1_7 direction register when using the P1_7 pin
INT3: Port P3_3 direction register
Figure 12.14
Configuration of INTi Input Filter
INTi input
Sampling
timing
IR bit in
INTiIC register
Set to 0 in program
This is an operation example when bits INTiF1 to INTiF0 in the
INTiF register are set to 01b, 10b, or 11b (passing digital filter).
i = 0, 1, 3
Figure 12.15
Operating Example of INTi Input Filter
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 106 of 332
R8C/2E Group, R8C/2F Group
12.3
12. Interrupts
Key Input Interrupt
A key input interrupt request is generated by one of the input edges of the K10 to K13 pins. The key input interrupt
can be used as a key-on wake-up function to exit wait or stop mode.
The KIiEN (i = 0 to 3) bit in the KIEN register can select whether the pins are used as KIi input. The KIiPL bit in
the KIEN register can select the input polarity.
When inputting “L” to the KIi pin which sets the KIiPL bit to 0 (falling edge), the input of the other pins K10 to
K13 is not detected as interrupts. Also, when inputting “H” to the KIi pin, which sets the KIiPL bit to 1 (rising
edge), the input of the other pins K10 to K13 is not detected as interrupts.
Figure 12.16 shows a Block Diagram of Key Input Interrupt.
PU02 bit in PUR0 register
KUPIC register
Pull-up
transistor
PD1_3 bit in PD1 register
KI3EN bit
PD1_3 bit
KI3PL = 0
KI3
KI3PL = 1
Pull-up
transistor
KI2EN bit
PD1_2 bit
KI2PL = 0
Interrupt control
circuit
KI2
KI2PL = 1
Pull-up
transistor
Key input interrupt
request
KI1EN bit
PD1_1 bit
KI1PL = 0
KI1
KI1PL = 1
Pull-up
transistor
KI0EN bit
PD1_0 bit
KI0PL = 0
KI0
KI0PL = 1
Figure 12.16
Block Diagram of Key Input Interrupt
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 107 of 332
KI0EN, KI1EN, KI2EN, KI3EN,
KI0PL, KI1PL, KI2PL, KI3PL: Bits in KIEN register
PD1_0, PD1_1, PD1_2, PD1_3: Bits in PD1 register
R8C/2E Group, R8C/2F Group
12. Interrupts
Key Input Enable Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
KIEN
Bit Symbol
KI0EN
KI0PL
KI1EN
KI1PL
KI2EN
KI2PL
KI3EN
KI3PL
Address
00FBh
Bit Name
KI0 input enable bit
After Reset
00h
Function
RW
KI0 input polarity select bit
0 : Falling edge
1 : Rising edge
RW
KI1 input enable bit
0 : Disable
1 : Enable
RW
KI1 input polarity select bit
0 : Falling edge
1 : Rising edge
RW
KI2 input enable bit
0 : Disable
1 : Enable
RW
KI2 input polarity select bit
0 : Falling edge
1 : Rising edge
RW
KI3 input enable bit
0 : Disable
1 : Enable
RW
KI3 input polarity select bit
0 : Falling edge
1 : Rising edge
RW
NOTE:
1. The IR bit in the KUPIC register may be set to 1 (requests interrupt) w hen the KIEN register is rew ritten.
Refer to 12.6.4 Changing Interrupt Sources.
Figure 12.17
KIEN Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
0 : Disable
1 : Enable
Page 108 of 332
R8C/2E Group, R8C/2F Group
12.4
12. Interrupts
Address Match Interrupt
An address match interrupt request is generated immediately before execution of the instruction at the address
indicated by the RMADi register (i = 0 or 1). This interrupt is used as a break function by the debugger. When
using the on-chip debugger, do not set an address match interrupt (registers of AIER, RMAD0, and RMAD1 and
fixed vector tables) in a user system.
Set the starting address of any instruction in the RMADi register. Bits AIER0 and AIER1 in the AIER0 register can
be used to select enable or disable of the interrupt. The I flag and IPL do not affect the address match interrupt.
The value of the PC (Refer to 12.1.6.7 Saving a Register for the value of the PC) which is saved to the stack when
an address match interrupt is acknowledged varies depending on the instruction at the address indicated by the
RMADi register. (The appropriate return address is not saved on the stack.) When returning from the address match
interrupt, return by one of the following means:
• Change the content of the stack and use the REIT instruction.
• Use an instruction such as POP to restore the stack as it was before the interrupt request was acknowledged.
Then use a jump instruction.
Table 12.6 lists the Values of PC Saved to Stack when Address Match Interrupt is Acknowledged, Table 12.7 lists
the Correspondence Between Address Match Interrupt Sources and Associated Registers.
Figure 12.18 shows Registers AIER and RMAD0 to RMAD1.
Table 12.6
Values of PC Saved to Stack when Address Match Interrupt is Acknowledged
Address Indicated by RMADi Register (i = 0 or 1)
PC Value Saved(1)
Address indicated by
RMADi register + 2
code(2)
• Instruction with 2-byte operation
• Instruction with 1-byte operation code(2)
ADD.B:S
#IMM8,dest SUB.B:S #IMM8,dest AND.B:S
OR.B:S
#IMM8,dest MOV.B:S #IMM8,dest STZ
STNZ
#IMM8,dest STZX
#IMM81,#IMM82,dest
CMP.B:S
#IMM8,dest PUSHM src
POPM
JMPS
#IMM8
JSRS
#IMM8
MOV.B:S
#IMM,dest (however, dest = A0 or A1)
• Instructions other than the above
#IMM8,dest
#IMM8,dest
dest
Address indicated by
RMADi register + 1
NOTES:
1. Refer to the 12.1.6.7 Saving a Register for the PC value saved.
2. Operation code: Refer to the R8C/Tiny Series Software Manual (REJ09B0001).
Chapter 4. Instruction Code/Number of Cycles contains diagrams showing
operation code below each syntax. Operation code is shown in the bold frame in
the diagrams.
Table 12.7
Correspondence Between Address Match Interrupt Sources and Associated Registers
Address Match Interrupt Source Address Match Interrupt Enable Bit Address Match Interrupt Register
Address match interrupt 0
AIER0
RMAD0
Address match interrupt 1
AIER1
RMAD1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 109 of 332
R8C/2E Group, R8C/2F Group
12. Interrupts
Address Match Interrupt Enable Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
AIER
Bit Symbol
AIER0
AIER1
—
(b7-b2)
Address
0013h
Bit Name
Address match interrupt 0 enable bit 0 : Disable
1 : Enable
After Reset
00h
Function
RW
RW
Address match interrupt 1 enable bit 0 : Disable
1 : Enable
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
Address Match Interrupt Register i(i = 0 or 1)
(b23)
b7
(b19)
b3
(b16) (b15)
b0 b7
(b8)
b0 b7
b0
Symbol
RMAD0
RMAD1
Address
0012h-0010h
0016h-0014h
Function
Address setting register for address match interrupt
—
Nothing is assigned. If necessary, set to 0.
(b7-b4)
When read, the content is 0.
Figure 12.18
Registers AIER and RMAD0 to RMAD1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 110 of 332
After Reset
000000h
000000h
Setting Range
RW
00000h to FFFFFh
RW
—
R8C/2E Group, R8C/2F Group
12.5
12. Interrupts
Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt
As with other maskable interrupts, the timer RC interrupt, comparator 0 interrupt, and comparator 1 interrupt are
controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, some differences from
other maskable interrupts apply.
Refer to chapters of the individual peripheral functions (14.3 Timer RC and 19.4 Comparator 0 Interrupt and
Comparator 1 Interrupt) for the status register and enable register.
Refer to 12.1.6 Interrupt Control for the interrupt control register.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 111 of 332
R8C/2E Group, R8C/2F Group
12.6
12. Interrupts
Notes on Interrupts
12.6.1
Reading Address 00000h
Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads
interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At
this time, the acknowledged interrupt IR bit is set to 0.
If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the
enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be
generated.
12.6.2
SP Setting
Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an
interrupt is acknowledged before setting a value in the SP, the program may run out of control.
12.6.3
External Interrupt and Key Input Interrupt
Either “L” level or an “H” level of width shown in the Electrical Characteristics is necessary for the signal input
to pins INT0, INT1, INT3 and pins KI0 to KI3, regardless of the CPU clock.
For details, refer to Table 21.19 (VCC = 5V), Table 21.25 (VCC = 3V) External Interrupt INTi (i = 0, 1, 3)
Input.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 112 of 332
R8C/2E Group, R8C/2F Group
12.6.4
12. Interrupts
Changing Interrupt Sources
The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source
changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source.
In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to
individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral
function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after
the change. Refer to the individual peripheral function for its related interrupts.
Figure 12.19 shows an Example of Procedure for Changing Interrupt Sources.
Interrupt source change
Disable interrupts(2, 3)
Change interrupt source (including mode
of peripheral function)
Set the IR bit to 0 (interrupt not requested)
using the MOV instruction(3)
Enable interrupts (2, 3)
Change completed
IR bit:
The interrupt control register bit of an
interrupt whose source is changed.
NOTES:
1. Execute the above settings individually. Do not execute two
or more settings at once (by one instruction).
2. To prevent interrupt requests from being generated, disable
the peripheral function before changing the interrupt
source. In this case, use the I flag if all maskable interrupts
can be disabled. If all maskable interrupts cannot be
disabled, use bits ILVL0 to ILVL2 of the interrupt whose
source is changed.
3. Refer to 12.6.5 Changing Interrupt Control Register
Contents for the instructions to be used and usage notes.
Figure 12.19
Example of Procedure for Changing Interrupt Sources
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 113 of 332
R8C/2E Group, R8C/2F Group
12.6.5
12. Interrupts
Changing Interrupt Control Register Contents
(a) The contents of an interrupt control register can only be changed while no interrupt requests
corresponding to that register are generated. If interrupt requests may be generated, disable interrupts
before changing the interrupt control register contents.
(b) When changing the contents of an interrupt control register after disabling interrupts, be careful to
choose appropriate instructions.
Changing any bit other than IR bit
If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit
may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a
problem, use the following instructions to change the register: AND, OR, BCLR, BSET
Changing IR bit
If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used.
Therefore, use the MOV instruction to set the IR bit to 0.
(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer
to (b) regarding changing the contents of interrupt control registers by the sample programs.
Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt
control register is changed for reasons of the internal bus or the instruction queue buffer.
Example 1:
Use NOP instructions to prevent I flag from being set to 1 before interrupt control register
is changed
INT_SWITCH1:
FCLR
I
; Disable interrupts
AND.B #00H,0056H
; Set TRAIC register to 00h
NOP
;
NOP
FSET
I
; Enable interrupts
Example 2: Use dummy read to delay FSET instruction
INT_SWITCH2:
FCLR
I
; Disable interrupts
AND.B #00H,0056H
; Set TRAIC register to 00h
MOV.W MEM,R0
; Dummy read
FSET
I
; Enable interrupts
Example 3: Use POPC instruction to change I flag
INT_SWITCH3:
PUSHC FLG
FCLR
I
; Disable interrupts
AND.B #00H,0056H
; Set TRAIC register to 00h
POPC
FLG
; Enable interrupts
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 114 of 332
R8C/2E Group, R8C/2F Group
13. Watchdog Timer
13. Watchdog Timer
The watchdog timer is a function that detects when a program is out of control. Use of the watchdog timer is
recommended to improve the reliability of the system. The watchdog timer contains a 15-bit counter and allows
selection of count source protection mode enable or disable.
Table 13.1 lists the Specifications for Watchdog Timer.
Refer to 5.5 Watchdog Timer Reset for details on the watchdog timer.
Figure 13.1 shows the Block Diagram of Watchdog Timer, Figure 13.2 shows the Registers WDTR, WDTS, and WDC
and Figure 13.3 shows the Registers CSPR and OFS.
Table 13.1
Specifications for Watchdog Timer
Item
Count source
Count operation
Count start condition
Count Source Protection Mode Disabled Count Source Protection Mode Enabled
CPU clock
Low-speed on-chip oscillator clock
Decrement
Either of the following can be selected
• After reset, count starts automatically
• Count starts by writing to WDTS register
Count stop condition Stop mode, wait mode
None
Reset condition of
• Reset
• Write 00h to the WDTR register before writing FFh
watchdog timer
• Underflow
Operation at the time Watchdog timer interrupt or watchdog
Watchdog timer reset
of underflow
timer reset
Select functions
• Division ratio of prescaler
Selected by the WDC7 bit in the WDC register
• Count source protection mode
Whether count source protection mode is enabled or disabled after a reset can
be selected by the CSPROINI bit in the OFS register (flash memory). If count
source protection mode is disabled after a reset, it can be enabled or disabled
by the CSPRO bit in the CSPR register (program).
• Starts or stops of the watchdog timer after a reset
Selected by the WDTON bit in the OFS register (flash memory).
Prescaler
1/16
WDC7 = 0
CSPRO = 0
1/128
CPU clock
PM12 = 0
Watchdog timer
interrupt request
Watchdog timer
WDC7 = 1
fOCO-S
CSPRO = 1
Write to WDTR register
Set to
7FFFh(1)
PM12 = 1
Watchdog
timer reset
Internal reset signal
CSPRO: Bit in CSPR register
WDC7: Bit in WDC register
PM12: Bit in PM1 register
NOTE:
1. When the CSPRO bit is set to 1 (count source protection mode enabled), 0FFFh is set.
Figure 13.1
Block Diagram of Watchdog Timer
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 115 of 332
R8C/2E Group, R8C/2F Group
13. Watchdog Timer
Watchdog Timer Reset Register
b7
b0
Symbol
WDTR
Address
000Dh
After Reset
Undefined
Function
When 00h is w ritten before w riting FFh, the w atchdog timer is reset.(1)
The default value of the w atchdog timer is 7FFFh w hen count source protection
mode is disabled and 0FFFh w hen count source protection mode is enabled.(2)
RW
WO
NOTES:
1. Do not generate an interrupt betw een w hen 00h and FFh are w ritten.
2. When the CSPRO bit in the CSPR register is set to 1 (count source protection mode enabled),
0FFFh is set in the w atchdog timer.
Watchdog Timer Start Register
b7
b0
Symbol
WDTS
Address
000Eh
After Reset
Undefined
Function
The w atchdog timer starts counting after a w rite instruction to this register.
RW
WO
Watchdog Timer Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
Address
000Fh
WDC
Bit Symbol
Bit Name
—
High-order bits of w atchdog timer
(b4-b0)
—
(b5)
Reserved bit
Set to 0. When read, the content is undefined.
—
(b6)
Reserved bit
Set to 0.
Prescaler select bit
0 : Divide-by-16
1 : Divide-by-128
WDC7
Figure 13.2
Registers WDTR, WDTS, and WDC
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
After Reset
00X11111b
Function
Page 116 of 332
RW
RO
RW
RW
RW
R8C/2E Group, R8C/2F Group
13. Watchdog Timer
Count Source Protection Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0
Symbol
Address
001Ch
CSPR
Bit Symbol
Bit Name
—
Reserved Bits
(b6-b0)
CSPRO
After Reset(1)
00h
Function
Set to 0.
Count Source Protection Mode 0 : Count source protection mode disabled
1 : Count source protection mode enabled
Select Bit(2)
RW
RW
RW
NOTES:
1. When 0 is w ritten to the CSPROINI bit in the OFS register, the value after reset is 10000000b.
2. Write 0 before w riting 1 to set the CSPRO bit to 1.
0 cannot be set by a program.
Option Function Select Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
1 0 1
1
Symbol
OFS
Bit Symbol
Address
0FFFFh
Bit Name
Watchdog timer start
select bit
When Shipping
FFh(2)
Function
0 : Starts w atchdog timer automatically after reset
1 : Watchdog timer is inactive after reset
Reserved bit
Set to 1.
ROM code protect
disabled bit
0 : ROM code protect disabled
1 : ROMCP1 enabled
RW
ROM code protect bit
0 : ROM code protect enabled
1 : ROM code protect disabled
RW
—
(b4)
Reserved bit
Set to 1.
—
(b5)
Reserved bit
Set to 0.
—
(b6)
Reserved bit
Set to 1.
WDTON
—
(b1)
ROMCR
ROMCP1
Count source protect
CSPROINI mode after reset select
bit
0 : Count source protect mode enabled after reset
1 : Count source protect mode disabled after reset
RW
RW
RW
RW
RW
RW
RW
NOTES:
1. The OFS register is on the flash memory. Write to the OFS register w ith a program. After w riting is completed, do not
w rite additions to the OFS register.
2. If the block including the OFS register is erased, FFh is set to the OFS register.
Figure 13.3
Registers CSPR and OFS
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 117 of 332
R8C/2E Group, R8C/2F Group
13.1
13. Watchdog Timer
Count Source Protection Mode Disabled
The count source of the watchdog timer is the CPU clock when count source protection mode is disabled.
Table 13.2 lists the Watchdog Timer Specifications (with Count Source Protection Mode Disabled).
Table 13.2
Watchdog Timer Specifications (with Count Source Protection Mode Disabled)
Item
Specification
Count source
Count operation
Period
CPU clock
Decrement
Reset condition of watchdog
timer
Count start condition
Count stop condition
Operation at time of underflow
Division ratio of prescaler (n) × count value of watchdog timer (32768)(1)
CPU clock
n: 16 or 128 (selected by WDC7 bit in WDC register)
Example: When the CPU clock frequency is 16 MHz and prescaler
divides by 16, the period is approximately 32.8 ms
• Reset
• Write 00h to the WDTR register before writing FFh
• Underflow
The WDTON bit(2) in the OFS register (0FFFFh) selects the operation
of the watchdog timer after a reset
• When the WDTON bit is set to 1 (watchdog timer is in stop state after
reset)
The watchdog timer and prescaler stop after a reset and the count
starts when the WDTS register is written to
• When the WDTON bit is set to 0 (watchdog timer starts automatically
after exiting)
• The watchdog timer and prescaler start counting automatically after a
reset
Stop and wait modes (inherit the count from the held value after exiting
modes)
• When the PM12 bit in the PM1 register is set to 0
Watchdog timer interrupt
• When the PM12 bit in the PM1 register is set to 1
Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)
NOTES:
1. The watchdog timer is reset when 00h is written to the WDTR register before FFh. The prescaler is
reset after the MCU is reset. Some errors in the period of the watchdog timer may be caused by the
prescaler.
2. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address
0FFFFh with a flash programmer.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 118 of 332
R8C/2E Group, R8C/2F Group
13.2
13. Watchdog Timer
Count Source Protection Mode Enabled
The count source of the watchdog timer is the low-speed on-chip oscillator clock when count source protection
mode is enabled. If the CPU clock stops when a program is out of control, the clock can still be supplied to the
watchdog timer.
Table 13.3 lists the Watchdog Timer Specifications (with Count Source Protection Mode Enabled).
Table 13.3
Watchdog Timer Specifications (with Count Source Protection Mode Enabled)
Item
Count source
Count operation
Period
Reset condition of watchdog
timer
Count start condition
Count stop condition
Operation at time of underflow
Registers, bits
Specification
Low-speed on-chip oscillator clock
Decrement
Count value of watchdog timer (4096)
Low-speed on-chip oscillator clock
Example: Period is approximately 32.8 ms when the low-speed onchip oscillator clock frequency is 125 kHz
• Reset
• Write 00h to the WDTR register before writing FFh
• Underflow
The WDTON bit(1) in the OFS register (0FFFFh) selects the operation
of the watchdog timer after a reset.
• When the WDTON bit is set to 1 (watchdog timer is in stop state
after reset)
The watchdog timer and prescaler stop after a reset and the count
starts when the WDTS register is written to
• When the WDTON bit is set to 0 (watchdog timer starts
automatically after reset)
The watchdog timer and prescaler start counting automatically after
a reset
None (The count does not stop in wait mode after the count starts.
The MCU does not enter stop mode.)
Watchdog timer reset (Refer to 5.5 Watchdog Timer Reset.)
• When setting the CSPPRO bit in the CSPR register to 1 (count
source protection mode is enabled)(2), the following are set
automatically
- Set 0FFFh to the watchdog timer
- Set the CM14 bit in the CM1 register to 0 (low-speed on-chip
oscillator on)
- Set the PM12 bit in the PM1 register to 1 (The watchdog timer is
reset when watchdog timer underflows)
• The following conditions apply in count source protection mode
- Writing to the CM10 bit in the CM1 register is disabled (It remains
unchanged even if it is set to 1. The MCU does not enter stop
mode.)
- Writing to the CM14 bit in the CM1 register is disabled (It remains
unchanged even if it is set to 1. The low-speed on-chip oscillator
does not stop.)
NOTES:
1. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address
0FFFFh with a flash programmer.
2. Even if 0 is written to the CSPROINI bit in the OFS register, the CSPRO bit is set to 1. The
CSPROINI bit cannot be changed by a program. To set the CSPROINI bit, write 0 to bit 7 of address
0FFFFh with a flash programmer.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 119 of 332
R8C/2E Group, R8C/2F Group
14. Timers
14. Timers
The MCU has two 8-bit timers with 8-bit prescalers, a 16-bit timer, and a timer with a 4-bit counter and an 8-bit
counter. The two 8-bit timers with 8-bit prescalers are timer RA and timer RB. These timers contain a reload register to
store the default value of the counter. The 16-bit timer is timer RC, and has input capture and output compare
functions. The 4-bit and 8-bit counters are timer RE, and has an output compare function. All the timers operate
independently.
Table 14.1 lists Functional Comparison of Timers.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 120 of 332
R8C/2E Group, R8C/2F Group
Table 14.1
14. Timers
Functional Comparison of Timers
Item
Configuration
Count
Count source
Function Timer Mode
Pulse Output Mode
Event Counter
Mode
Pulse Width
Measurement Mode
Pulse Period
Measurement Mode
Programmable
Waveform
Generation Mode
Programmable
One-Shot
generation Mode
Programmable Wait
One-Shot
Generation Mode
Input Capture Mode
Output Compare
Mode
PWM Mode
PWM2 Mode
Input Pin
Output Pin
Related Interrupt
Timer Stop
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Timer RA
8-bit timer with 8bit prescaler (with
reload register)
Decrement
• f1
• f2
• f8
• fOCO
Timer RB
8-bit timer with 8bit prescaler (with
reload register)
Decrement
• f1
• f2
• f8
• Timer RA
underflow
not provided
not provided
Timer RC
16-bit free-run timer (with
input capture and output
compare)
Increment
• f1
• f2
• f4
• f8
• f32
• fOCO40M
• TRCCLK
provided
(input capture function,
output compare function)
not provided
not provided
provided
provided
provided
provided
Timer RE
4-bit counter
8-bit counter
not provided
not provided
provided
not provided
not provided
not provided
provided
not provided
not provided
not provided
not provided
provided
not provided
not provided
not provided
provided
not provided
not provided
not provided
provided
not provided
not provided
not provided
not provided
not provided
not provided
provided
provided
not provided
provided
not provided
not provided
TRAIO
not provided
not provided
provided
provided
Increment
• f4
• f8
• f32
not provided
not provided
not provided
INT0, TRCCLK, TRCTRG −
INT0
TRCIOA, TRCIOB,
TRCIOC, TRCIOD
TRAO
TRBO
TRCIOA, TRCIOB,
TREO
TRAIO
TRCIOC, TRCIOD
Timer RE
Timer RA interrupt Timer RB interrupt Compare Match / Input
interrupt
INT0 interrupt
Capture A to D interrupt
INT1 interrupt
Overflow interrupt
INT0 interrupt
provided
provided
provided
provided
Page 121 of 332
R8C/2E Group, R8C/2F Group
14.1
14. Timers
Timer RA
Timer RA is an 8-bit timer with an 8-bit prescaler.
The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated
at the same address, and can be accessed when accessing registers TRAPRE and TRA (refer to Tables 14.2 to 14.6
the Specification of Each Modes).
The count source for timer RA is the operating clock that regulates the timing of timer operations such as counting
and reloading.
Figure 14.1 shows a Block Diagram of Timer RA. Figures 14.2 and 14.3 show the registers associated with Timer
RA.
Timer RA contains the following five operating modes:
• Timer mode:
The timer counts the internal count source.
• Pulse output mode:
The timer counts the internal count source and outputs pulses which
invert the polarity by underflow of the timer.
• Event counter mode:
The timer counts external pulses.
• Pulse width measurement mode:
The timer measures the pulse width of an external pulse.
• Pulse period measurement mode:
The timer measures the pulse period of an external pulse.
Data bus
TCK2 to TCK0 bit
= 000b
f1
= 001b
f8
= 010b
fOCO
= 011b
f2
TCKCUT bit
TMOD2 to TMOD0
= other than 010b
TIPF1 to TIPF0 bits
TMOD2 to TMOD0
= 010b
Reload
register
Reload
register
TCSTF bit
Counter
TRAPRE register
(prescaler)
Counter
TRA register
(timer)
Underflow signal
Timer RA interrupt
= 01b
f1
= 10b
f8
= 11b
f32
TIPF1 to TIPF0 bits
TIOSEL = 0 = other than
Digital
000b
INT1/TRAIO (P1_7) pin
filter
INT1/TRAIO (P1_5) pin
TIOSEL = 1
TMOD2 to TMOD0
= 011b or 100b
Polarity
switching
Count control
circle
= 00b
TMOD2 to TMOD0 = 001b
TEDGSEL = 1
TOPCR bit
Q
TOENA bit
Q
TEDGSEL = 0
Measurement completion
signal
Toggle
flip-flop
CK
CLR
Write to TRAMR register
Write 1 to TSTOP bit
TRAO pin
TCSTF, TSTOP: TRACR register
TEDGSEL, TOPCR, TOENA, TIOSEL, TIPF1, TIPF0: TRAIOC register
TMOD2 to TMOD0, TCK2 to TCK0, TCKCUT: TRAMR register
Figure 14.1
Block Diagram of Timer RA
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 122 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RA Control Register(4)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRACR
Bit Symbol
Address
0100h
Bit Name
Timer RA count start bit(1)
After Reset
00h
Function
RW
0 : Count stops
1 : Count starts
RW
TCSTF
Timer RA count status flag(1) 0 : Count stops
1 : During count
RO
TSTOP
Timer RA count forcible stop When this bit is set to 1, the count is forcibly
bit(2)
stopped. When read, its content is 0.
RW
TSTART
—
(b3)
TEDGF
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
Active edge judgment
flag(3, 5)
0 : Active edge not received
1 : Active edge received
(end of measurement period)
—
RW
TUNDF
Timer RA underflow flag(3, 5) 0 : No underflow
1 : Underflow
RW
—
(b7-b6)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
NOTES:
1. Refer to 14.1.6 Notes on Tim er RA for precautions regarding bits TSTART and TCSTF.
2. When the TSTOP bit is set to 1, bits TSTART and TCSTF and registers TPRAPRE and TRA are set to the values after
a reset.
3. Bits TEDGF and TUNDF can be set to 0 by w riting 0 to these bits by a program. How ever, their value remains
unchanged w hen 1 is w ritten.
4. In pulse w idth measurement mode and pulse period measurement mode, use the MOV instruction to set the TRACR
register. If it is necessary to avoid changing the values of bits TEDGF and TUNDF, w rite 1 to them.
5. Set to 0 in timer mode, pulse output mode, and event counter mode.
Timer RA I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRAIOC
Bit Symbol
TEDGSEL
TOPCR
TOENA
Address
0101h
Bit Name
TRAIO polarity sw itch bit
After Reset
00h
Function
Function varies depending on operating mode.
TRAIO output control bit
TRAO output enable bit
RW
RW
RW
RW
_____
TIOSEL
TIPF0
TIPF1
—
(b7-b6)
Figure 14.2
INT1/TRAIO select bit
TRAIO input filter select bits
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
Registers TRACR and TRAIOC
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 123 of 332
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Timer RA Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRAMR
Bit Symbol
TMOD0
Address
0102h
Bit Name
Timer RA operating mode
select bits (1)
TMOD1
TMOD2
After Reset
00h
Function
0 0 0 : Timer mode
0 0 1 : Pulse output mode
0 1 0 : Event counter mode
0 1 1 : Pulse w idth measurement mode
1 0 0 : Pulse period measurement mode
101:
1 1 0 : Do not set.
111:
—
(b3)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
TCK0
Timer RA count source
select bits
TCK1
TCK2
TCKCUT
Timer RA count source
cutoff bit
RW
b2 b1 b0
RW
RW
RW
—
b6 b5 b4
0 0 0 : f1
0 0 1 : f8
0 1 0 : fOCO
0 1 1 : f2
100:
1 0 1 : Do not set.
110:
111:
RW
RW
RW
0 : Provides count source
1 : Cuts off count source
RW
NOTE:
1. When both the TSTART and TCSTF bits in the TRACR register are set to 0 (count stops), rew rite this register.
Timer RA Prescaler Register
b7
b0
Symbol
TRAPRE
Mode
Timer mode
Pulse output mode
Event counter mode
Pulse w idth
measurement mode
Address
0103h
Function
Counts an internal count source
Counts an external count source
Measure pulse w idth of input pulses from
external (counts internal count source)
Pulse period
measurement mode
Measure pulse period of input pulses from
external (counts internal count source)
After Reset
FFh(1)
Setting Range
00h to FFh
00h to FFh
00h to FFh
RW
RW
RW
RW
00h to FFh
RW
00h to FFh
RW
After Reset
FFh(1)
Setting Range
RW
00h to FFh
RW
NOTE:
1. When the TSTOP bit in the TRACR register is set to 1, the TRAPRE register is set to FFh.
Timer RA Register
b7
b0
Symbol
TRA
Mode
All modes
Address
0104h
Function
Counts on underflow of timer RA prescaler
register
NOTE:
1. When the TSTOP bit in the TRACR register is set to 1, the TRA register is set to FFh.
Figure 14.3
Registers TRAMR, TRAPRE, and TRA
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 124 of 332
R8C/2E Group, R8C/2F Group
14.1.1
14. Timers
Timer Mode
In this mode, the timer counts an internally generated count source (refer to Table 14.2 Timer Mode
Specifications).
Figure 14.4 shows TRAIOC Register in Timer Mode.
Table 14.2
Timer Mode Specifications
Item
Count sources
Count operations
Divide ratio
Count start condition
Count stop conditions
Interrupt request
generation timing
Specification
f1, f2, f8, fOCO
• Decrement
• When the timer underflows, the contents of the reload register are reloaded
and the count is continued.
1/(n+1)(m+1)
n: Value set in TRAPRE register, m: Value set in TRA register
1 (count starts) is written to the TSTART bit in the TRACR register.
• 0 (count stops) is written to the TSTART bit in the TRACR register.
• 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
When timer RA underflows [timer RA interrupt].
INT1/TRAIO pin
function
Programmable I/O port, or INT1 interrupt input
TRAO pin function
Read from timer
Write to timer
Programmable I/O port
The count value can be read by reading registers TRA and TRAPRE.
• When registers TRAPRE and TRA are written while the count is stopped,
values are written to both the reload register and counter.
• When registers TRAPRE and TRA are written during the count, values are
written to the reload register and counter (refer to 14.1.1.1 Timer Write
Control during Count Operation).
Timer RA I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
0 0 0
Symbol
TRAIOC
Bit Symbol
TEDGSEL
TOPCR
TOENA
Address
0101h
Bit Name
TRAIO polarity sw itch bit
TRAIO output control bit
TIPF0
TIPF1
—
(b7-b6)
Figure 14.4
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
0 : INT1/TRAIO pin (P1_7)
_____
1 : INT1/TRAIO pin (P1_5)
TRAIO input filter select bits Set to 0 in timer mode.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
Page 125 of 332
RW
_____
INT1/TRAIO select bit
TRAIOC Register in Timer Mode
RW
RW
TRAO output enable bit
_____
TIOSEL
After Reset
00h
Function
Set to 0 in timer mode.
RW
RW
—
R8C/2E Group, R8C/2F Group
14.1.1.1
14. Timers
Timer Write Control during Count Operation
Timer RA has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each
consist of a reload register and a counter. When writing to the prescaler or timer, values are written to both the
reload register and counter.
However, values are transferred from the reload register to the counter of the prescaler in synchronization with
the count source. In addition, values are transferred from the reload register to the counter of the timer in
synchronization with prescaler underflows. Therefore, if the prescaler or timer is written to when count
operation is in progress, the counter value is not updated immediately after the WRITE instruction is executed.
Figure 14.5 shows an Operating Example of Timer RA when Counter Value is Rewritten during Count
Operation.
Set 01h to the TRAPRE register and 25h to
the TRA register by a program.
Count source
After writing, the reload register is
written to at the first count source.
Reloads register of
timer RA prescaler
Previous value
New value (01h)
Reload at
second count
source
Counter of
timer RA prescaler
06h
05h
04h
01h
00h
Reload at
underflow
01h
00h
01h
00h
01h
00h
After writing, the reload register is
written to at the first underflow.
Reloads register of
timer RA
Previous value
New value (25h)
Reload at the second underflow
Counter of timer RA
IR bit in TRAIC
register
03h
02h
25h
24h
0
The IR bit remains unchanged until underflow is
generated by a new value.
The above applies under the following conditions.
Both bits TSTART and TCSTF in the TRACR register are set to 1 (During count).
Figure 14.5
Operating Example of Timer RA when Counter Value is Rewritten during Count
Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 126 of 332
R8C/2E Group, R8C/2F Group
14.1.2
14. Timers
Pulse Output Mode
In pulse output mode, the internally generated count source is counted, and a pulse with inverted polarity is
output from the TRAIO pin each time the timer underflows (refer to Table 14.3 Pulse Output Mode
Specifications).
Figure 14.6 shows TRAIOC Register in Pulse Output Mode.
Table 14.3
Pulse Output Mode Specifications
Item
Count sources
Count operations
Specification
f1, f2, f8, fOCO
• Decrement
• When the timer underflows, the contents in the reload register is reloaded and
the count is continued.
Divide ratio
1/(n+1)(m+1)
n: Value set in TRAPRE register, m: Value set in TRA register
Count start condition 1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions • 0 (count stops) is written to the TSTART bit in the TRACR register.
• 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request
When timer RA underflows [timer RA interrupt].
generation timing
INT1/TRAIO pin
function
Pulse output, programmable output port, or INT1 interrupt(1)
TRAO pin function
Programmable I/O port or inverted output of TRAIO(1)
The count value can be read by reading registers TRA and TRAPRE.
Read from timer
Write to timer
Select functions
• When registers TRAPRE and TRA are written while the count is stopped, values
are written to both the reload register and counter.
• When registers TRAPRE and TRA are written during the count, values are
written to the reload register and counter (refer to 14.1.1.1 Timer Write Control
during Count Operation).
• TRAIO signal polarity switch function
The TEDGSEL bit in the TRAIOC register selects the level at the start of pulse
output.(1)
• TRAO output function
Pulses inverted from the TRAIO output polarity can be output from the TRAO
pin (selectable by the TOENA bit in the TRAIOC register).
• Pulse output stop function
Output from the TRAIO pin is stopped by the TOPCR bit in the TRAIOC register.
• INT1/TRAIO pin select function
P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.
NOTE:
1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR
register is written to.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 127 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RA I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
TRAIOC
Bit Symbol
TEDGSEL
TOPCR
TOENA
Address
0101h
Bit Name
TRAIO polarity sw itch bit
After Reset
00h
Function
0 : TRAIO output starts at “H”
1 : TRAIO output starts at “L”
RW
TRAIO output control bit
0 : TRAIO output
1 : Port P1_7 or P1_5
RW
TRAO output enable bit
0 : Port P3_7
1 : TRAO output (inverted TRAIO output from P3_7)
RW
_____
TIOSEL
TIPF0
TIPF1
—
(b7-b6)
Figure 14.6
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
_____
INT1/TRAIO select bit
0 : INT1/TRAIO pin (P1_7)
_____
1 : INT1/TRAIO pin (P1_5)
TRAIO input filter select bits Set to 0 in pulse output mode.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
TRAIOC Register in Pulse Output Mode
Page 128 of 332
RW
RW
RW
RW
—
R8C/2E Group, R8C/2F Group
14.1.3
14. Timers
Event Counter Mode
In event counter mode, external signal inputs to the INT1/TRAIO pin are counted (refer to Table 14.4 Event
Counter Mode Specifications).
Figure 14.7 shows TRAIOC Register in Event Counter Mode.
Table 14.4
Event Counter Mode Specifications
Item
Count source
Count operations
Specification
External signal which is input to TRAIO pin (active edge selectable by a program)
• Decrement
• When the timer underflows, the contents of the reload register are reloaded and
the count is continued.
Divide ratio
1/(n+1)(m+1)
n: setting value of TRAPRE register, m: setting value of TRA register
Count start condition 1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions • 0 (count stops) is written to the TSTART bit in the TRACR register.
• 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
• When timer RA underflows [timer RA interrupt].
Interrupt request
generation timing
INT1/TRAIO pin
function
Count source input (INT1 interrupt input)
TRAO pin function
Read from timer
Write to timer
Programmable I/O port or pulse output(1)
The count value can be read by reading registers TRA and TRAPRE.
• When registers TRAPRE and TRA are written while the count is stopped, values
are written to both the reload register and counter.
• When registers TRAPRE and TRA are written during the count, values are
written to the reload register and counter (refer to 14.1.1.1 Timer Write Control
during Count Operation).
Select functions
• INT1 input polarity switch function
The TEDGSEL bit in the TRAIOC register selects the active edge of the count
source.
• Count source input pin select function
P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.
• Pulse output function
Pulses of inverted polarity can be output from the TRAO pin each time the timer
underflows (selectable by the TOENA bit in the TRAIOC register).(1)
• Digital filter function
Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital filter
and select the sampling frequency.
NOTE:
1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR
register is written to.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 129 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RA I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
TRAIOC
Bit Symbol
Address
0101h
Bit Name
TRAIO polarity sw itch bit
TEDGSEL
TOPCR
TOENA
TRAIO output control bit
Set to 0 in event counter mode.
TRAO output enable bit
0 : Port P3_0
1 : TRAO output
_____
TIOSEL
TIPF0
0 : INT1/TRAIO pin (P1_7)
_____
1 : INT1/TRAIO pin (P1_5)
TRAIO input filter select
bits (1)
b5 b4
0 0 : No filter
0 1 : Filter w ith f1 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
NOTE:
1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.
Figure 14.7
TRAIOC Register in Event Counter Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 130 of 332
RW
RW
RW
RW
_____
INT1/TRAIO select bit
TIPF1
—
(b7-b6)
After Reset
00h
Function
0 : Starts counting at rising edge of the TRAIO
input or TRAIO starts output at “L”
1 : Starts counting at falling edge of the TRAIO
input or TRAIO starts output at “H”
RW
RW
—
R8C/2E Group, R8C/2F Group
14.1.4
14. Timers
Pulse Width Measurement Mode
In pulse width measurement mode, the pulse width of an external signal input to the INT1/TRAIO pin is
measured (refer to Table 14.5 Pulse Width Measurement Mode Specifications).
Figure 14.8 shows TRAIOC Register in Pulse Width Measurement Mode and Figure 14.9 shows an Operating
Example of Pulse Width Measurement Mode.
Table 14.5
Pulse Width Measurement Mode Specifications
Item
Count sources
Count operations
Count start condition
Count stop conditions
Interrupt request
generation timing
Specification
f1, f2, f8, fOCO
• Decrement
• Continuously counts the selected signal only when measurement pulse is “H”
level, or conversely only “L” level.
• When the timer underflows, the contents of the reload register are reloaded
and the count is continued.
1 (count starts) is written to the TSTART bit in the TRACR register.
• 0 (count stops) is written to the TSTART bit in the TRACR register.
• 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
• When timer RA underflows [timer RA interrupt].
• Rising or falling of the TRAIO input (end of measurement period) [timer RA
interrupt]
INT1/TRAIO pin function Measured pulse input (INT1 interrupt input)
TRAO pin function
Read from timer
Write to timer
Select functions
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Programmable I/O port
The count value can be read by reading registers TRA and TRAPRE.
• When registers TRAPRE and TRA are written while the count is stopped,
values are written to both the reload register and counter.
• When registers TRAPRE and TRA are written during the count, values are
written to the reload register and counter (refer to 14.1.1.1 Timer Write
Control during Count Operation).
• Measurement level select
The TEDGSEL bit in the TRAIOC register selects the “H” or “L” level period.
• Measured pulse input pin select function
P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.
• Digital filter function
Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital
filter and select the sampling frequency.
Page 131 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RA I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
TRAIOC
Bit Symbol
TEDGSEL
TOPCR
TOENA
Address
0101h
Bit Name
TRAIO polarity sw itch bit
After Reset
00h
Function
0 : TRAIO input starts at “L”
1 : TRAIO input starts at “H”
TRAIO output control bit
Set to 0 in pulse w idth measurement mode.
TRAO output enable bit
_____
TIOSEL
TIPF0
—
(b7-b6)
0 : INT1/TRAIO pin (P1_7)
_____
1 : INT1/TRAIO pin (P1_5)
TRAIO input filter select
bits (1)
b5 b4
0 0 : No filter
0 1 : Filter w ith f1 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
TRAIOC Register in Pulse Width Measurement Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 132 of 332
RW
RW
NOTE:
1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.
Figure 14.8
RW
_____
INT1/TRAIO select bit
TIPF1
RW
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
n = high level: the contents of TRA register, low level: the contents of TRAPRE register
FFFFh
Count start
Underflow
Content of counter (hex)
n
Count stop
Count stop
Count start
Count start
0000h
Period
Set to 1 by a program
TSTART bit in
TRACR register
1
Measured pulse
(TRAIO pin input)
1
0
0
Set to 0 when interrupt request is acknowledged, or set by a program
IR bit in
TRAIC register
1
0
Set to 0 by a program
TEDGF bit in
TRACR register
1
0
Set to 0 by a program
TUNDF bit in
TRACR register
1
0
The above applies under the following conditions.
• “H” level width of measured pulse is measured. (TEDGSEL = 1)
• TRAPRE = FFh
Figure 14.9
Operating Example of Pulse Width Measurement Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 133 of 332
R8C/2E Group, R8C/2F Group
14.1.5
14. Timers
Pulse Period Measurement Mode
In pulse period measurement mode, the pulse period of an external signal input to the INT1/TRAIO pin is
measured (refer to Table 14.6 Pulse Period Measurement Mode Specifications).
Figure 14.10 shows TRAIOC Register in Pulse Period Measurement Mode and Figure 14.11 shows an
Operating Example of Pulse Period Measurement Mode.
Table 14.6
Pulse Period Measurement Mode Specifications
Item
Count sources
Count operations
Count start condition
Count stop conditions
Interrupt request
generation timing
Specification
f1, f2, f8, fOCO
• Decrement
• After the active edge of the measured pulse is input, the contents of the readout buffer are retained at the first underflow of timer RA prescaler. Then timer
RA reloads the contents in the reload register at the second underflow of
timer RA prescaler and continues counting.
1 (count start) is written to the TSTART bit in the TRACR register.
• 0 (count stop) is written to TSTART bit in the TRACR register.
• 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
• When timer RA underflows or reloads [timer RA interrupt].
• Rising or falling of the TRAIO input (end of measurement period) [timer RA
interrupt]
INT1/TRAIO pin function Measured pulse input(1) (INT1 interrupt input)
Programmable I/O port
TRAO pin function
Read from timer
Write to timer
The count value can be read by reading registers TRA and TRAPRE.
• When registers TRAPRE and TRA are written while the count is stopped,
values are written to both the reload register and counter.
• When registers TRAPRE and TRA are written during the count, values are
written to the reload register and counter (refer to 14.1.1.1 Timer Write
Control during Count Operation).
Select functions
• Measurement period select
The TEDGSEL bit in the TRAIOC register selects the measurement period of
the input pulse.
• Measured pulse input pin select function
P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.
• Digital filter function
Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital
filter and select the sampling frequency.
NOTE:
1. Input a pulse with a period longer than twice the timer RA prescaler period. Input a pulse with a
longer “H” and “L” width than the timer RA prescaler period. If a pulse with a shorter period is input to
the TRAIO pin, the input may be ignored.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 134 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RA I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
TRAIOC
Bit Symbol
Address
0101h
Bit Name
TRAIO polarity sw itch bit
TEDGSEL
TOPCR
TOENA
TRAIO output control bit
TIPF0
0 : INT1/TRAIO pin (P1_7)
_____
1 : INT1/TRAIO pin (P1_5)
TRAIO input filter select
bits (1)
b5 b4
0 0 : No filter
0 1 : Filter w ith f1 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
TRAIOC Register in Pulse Period Measurement Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 135 of 332
RW
RW
RW
NOTE:
1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.
Figure 14.10
RW
_____
INT1/TRAIO select bit
TIPF1
—
(b7-b6)
Set to 0 in pulse period measurement mode.
TRAO output enable bit
_____
TIOSEL
After Reset
00h
Function
0 : Measures measurement pulse from one
rising edge to next rising edge
1 : Measures measurement pulse from one
falling edge to next falling edge
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Underflow signal of
timer RA prescaler
Set to 1 by a program
TSTART bit in
TRACR register
1
0
Starts counting
Measurement pulse
(TRAIO pin input)
1
0
TRA reloads
TRA reloads
0Fh 0Eh 0Dh 0Fh 0Eh 0Dh 0Ch 0Bh 0Ah 09h 0Fh 0Eh 0Dh
Contents of TRA
01h 00h 0Fh 0Eh
Underflow
Retained
Contents of read-out
buffer(1)
0Fh
0Eh
Retained
0Bh 0Ah
0Dh
09h
0Dh
01h 00h 0Fh 0Eh
TRA read(3)
(Note 2)
TEDGF bit in
TRACR register
(Note 2)
1
0
Set to 0 by a program
(Note 4)
(Note 6)
TUNDF bit in
TRACR register
1
0
Set to 0 by a program
IR bit in TRAIC
register
(Note 5)
1
0
Set to 0 when interrupt request is acknowledged, or set by a program
Conditions: The period from one rising edge to the next rising edge of the measured pulse is measured (TEDGSEL = 0) with
the default value of the TRA register as 0Fh.
NOTES:
1. The contents of the read-out buffer can be read by reading the TRA register in pulse period measurement mode.
2. After an active edge of the measured pulse is input, the TEDGF bit in the TRACR register is set to 1 (active edge found) when the timer
RA prescaler underflows for the second time.
3. The TRA register should be read before the next active edge is input after the TEDGF bit is set to 1 (active edge found).
The contents in the read-out buffer are retained until the TRA register is read. If the TRA register is not read before the next active edge
is input, the measured result of the previous period is retained.
4. To set to 0 by a program, use a MOV instruction to write 0 to the TEDGF bit in the TRACR register. At the same time, write 1 to the
TUNDF bit in the TRACR register.
5. To set to 0 by a program, use a MOV instruction to write 0 to the TUNDF bit. At the same time, write 1 to the TEDGF bit.
6. Bits TUNDF and TEDGF are both set to 1 if timer RA underflows and reloads on an active edge simultaneously.
Figure 14.11
Operating Example of Pulse Period Measurement Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 136 of 332
R8C/2E Group, R8C/2F Group
14.1.6
14. Timers
Notes on Timer RA
• Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the
count starts.
• Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by
the MCU. Consequently, the timer value may be updated during the period when these two registers are
being read.
• In pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by
writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the
READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0
although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or
TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
• When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and
TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
• The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
• When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler
immediately after the count starts, then set the TEDGF bit to 0.
• The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1
(count starts) while the count is stopped.
During this time, do not access registers associated with timer RA(1) other than the TCSTF bit. Timer RA
starts counting at the first valid edge of the count source after The TCSTF bit is set to 1 (during count).
The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count
stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0.
During this time, do not access registers associated with timer RA(1) other than the TCSTF bit.
NOTE:
1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.
• When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow
three or more cycles of the count source clock for each write interval.
• When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three
or more cycles of the prescaler underflow for each write interval.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 137 of 332
R8C/2E Group, R8C/2F Group
14.2
14. Timers
Timer RB
Timer RB is an 8-bit timer with an 8-bit prescaler.
The prescaler and timer each consist of a reload register and counter (refer to Tables 14.7 to 14.10 the
Specifications of Each Mode).
Timer RB has timer RB primary and timer RB secondary as reload registers.
The count source for timer RB is the operating clock that regulates the timing of timer operations such as counting
and reloading.
Figure 14.12 shows a Block Diagram of Timer RB. Figures 14.13 and 14.15 show the registers associated with
timer RB.
Timer RB has four operation modes listed as follows:
• Timer mode:
• Programmable waveform generation mode:
• Programmable one-shot generation mode:
• Programmable wait one-shot generation mode:
Reload
register
TCK1 to TCK0 bits
f1
f8
= 00b
Timer RA underflow
= 10b
= 11b
f2
The timer counts an internal count source (peripheral
function clock or timer RA underflows).
The timer outputs pulses of a given width successively.
The timer outputs a one-shot pulse.
The timer outputs a delayed one-shot pulse.
Data bus
TRBSC
register
Reload
register
TRBPR
register
Reload
register
TCKCUT bit
= 01b
Counter
TRBPRE register
(prescaler)
Timer RB interrupt
Counter (timer RB)
(Timer)
TMOD1 to TMOD0 bits
= 10b or 11b
TSTRAT bit
TOSSTF bit
INT0 interrupt
Digital filter
INT0 pin
Input polarity
selected to be one
edge or both edges
INT0PL bit
INT0EN bit
TMOD1 to TMOD0 bits
= 01b, 10b, 11b
Polarity
select
INOSEG bit
TOPL = 1
TOCNT = 0
TRBO pin
P3_1 bit in P3 register
TOCNT = 1
TSTART, TCSTF: Bits in TRBCR register
TOSSTF: Bit in TRBOCR register
TOPL, TOCNT, INOSTG, INOSEG: Bits in TRBIOC register
TMOD1 to TMOD0, TCK1 to TCK0, TCKCUT: Bits in TRBMR register
Figure 14.12
Block Diagram of Timer RB
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 138 of 332
INOSTG bit
TOPL = 0
Q
Toggle
flip-flop
Q
CLR
CK
TCSTF bit
TMOD1 to TMOD0 bits
= 01b, 10b, 11b
R8C/2E Group, R8C/2F Group
14. Timers
Timer RB Control Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRBCR
Bit Symbol
TSTART
Address
0108h
Bit Name
Timer RB count start bit(1)
After Reset
00h
Function
0 : Count stops
1 : Count starts
RW
RW
TCSTF
Timer RB count status flag(1) 0 : Count stops
1 : During count(3)
RO
TSTOP
Timer RB count forcible stop When this bit is set to 1, the count is forcibly
bit(1, 2)
stopped. When read, its content is 0.
RW
—
(b7-b3)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
NOTES:
1. Refer to 14.2.5 Notes on Tim er RB for precautions regarding bits TSTART, TCSTF and TSTOP.
2. When the TSTOP bit is set to 1, registers TRBPRE, TRBSC, TRBPR, and bits TSTART and TCSTF, and the TOSSTF bit
in the TRBOCR register are set to values after a reset.
3. Indicates that count operation is in progress in timer mode or programmable w aveform mode. In programmable oneshot generation mode or programmable w ait one-shot generation mode, indicates that a one-shot pulse trigger has
been acknow ledged.
Timer RB One-Shot Control Register(2)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRBOCR
Bit Symbol
TOSST
Address
0109h
Bit Name
Timer RB one-shot start bit
After Reset
00h
Function
When this bit is set to 1, one-shot trigger
generated. When read, its content is 0.
Timer RB one-shot stop bit
When this bit is set to 1, counting of one-shot
pulses (including programmable w ait one-shot
pulses) stops. When read, its content is 0.
RW
0 : One-shot stopped
1 : One-shot operating (Including w ait period)
RO
TOSSP
TOSSTF
Timer RB one-shot status
flag(1)
—
(b7-b3)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
RW
RW
NOTES:
1. When 1 is set to the TSTOP bit in the TRBCR register, the TOSSTF bit is set to 0.
2. This register is enabled w hen bits TMOD1 to TMOD0 in the TRBMR register is set to 10b (programmable one-shot
generation mode) or 11b (programmable w ait one-shot generation mode).
Figure 14.13
Registers TRBCR and TRBOCR
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 139 of 332
—
R8C/2E Group, R8C/2F Group
14. Timers
Timer RB I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRBIOC
Bit Symbol
TOPL
TOCNT
INOSTG
Address
After Reset
010Ah
00h
Bit Name
Function
Timer RB output level select Function varies depending on operating mode.
bit
Timer RB output sw itch bit
RW
RW
RW
One-shot trigger control bit
RW
INOSEG
One-shot trigger polarity
select bit
RW
—
(b7-b4)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
Timer RB Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRBMR
Bit Symbol
TMOD0
Address
010Bh
Bit Name
Timer RB operating mode
select bits (1)
TMOD1
—
(b2)
TWRC
TCK0
TCKCUT
RW
b1 b0
0 0 : Timer mode
0 1 : Programmable w aveform generation mode
1 0 : Programmable one-shot generation mode
1 1 : Programmable w ait one-shot generation mode
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
Timer RB w rite control bit(2)
0 : Write to reload register and counter
1 : Write to reload register only
Timer RB count source
select bits (1)
b5 b4
TCK1
—
(b6)
After Reset
00h
Function
0 0 : f1
0 1 : f8
1 0 : Timer RA underflow
1 1 : f2
RW
RW
—
RW
RW
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
Timer RB count source
cutoff bit(1)
RW
0 : Provides count source
1 : Cuts off count source
NOTES:
1. Change bits TMOD1 and TMOD0; TCK1 and TCK0; and TCKCUT w hen both the TSTART and TCSTF bits in the TRBCR
register set to 0 (count stops).
2. The TWRC bit can be set to either 0 or 1 in timer mode. In programmable w aveform generation mode, programmable
one-shot generation mode, or programmable w ait one-shot generation mode, the TWRC bit must be set to 1 (w rite to
reload register only).
Figure 14.14
Registers TRBIOC and TRBMR
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 140 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RB Prescaler Register(1)
b7
b0
Symbol
TRBPRE
Mode
Timer mode
Address
010Ch
Function
Counts an internal count source or timer RA
underflow s
After Reset
FFh
Setting Range
00h to FFh
Programmable w aveform
generation mode
00h to FFh
Programmable one-shot
generation mode
00h to FFh
Programmable w ait one-shot
generation mode
00h to FFh
RW
RW
RW
RW
RW
NOTE:
1. When the TSTOP bit in the TRBCR register is set to 1, the TRBPRE register is set to FFh.
Timer RB Secondary Register(3, 4)
b7
b0
Symbol
TRBSC
Mode
Timer mode
Address
010Dh
Function
Disabled
After Reset
FFh
Setting Range
00h to FFh
Programmable w aveform
generation mode
Counts timer RB prescaler underflow s (1)
00h to FFh
Programmable one-shot
generation mode
Disabled
00h to FFh
Programmable w ait one-shot Counts timer RB prescaler underflow s
generation mode
(one-shot w idth is counted)
00h to FFh
RW
—
WO(2)
—
WO(2)
NOTES:
1. The values of registers TRBPR and TRBSC are reloaded to the counter alternately and counted.
2. The count value can be read out by reading the TRBPR register even w hen the secondary period is being counted.
3. When the TSTOP bit in the TRBCR register is set to 1, the TRBSC register is set to FFh.
4. To w rite to the TRBSC register, perform the follow ing steps.
(1) Write the value to the TRBSC register.
(2) Write the value to the TRBPR register. (If the value does not change, w rite the same value second time.)
Timer RB Primary Register(2)
b7
b0
Symbol
TRBPR
Mode
Timer mode
Address
010Eh
Function
Counts timer RB prescaler underflow s
After Reset
FFh
Setting Range
00h to FFh
Programmable w aveform
generation mode
Counts timer RB prescaler underflow s (1)
00h to FFh
Programmable one-shot
generation mode
Counts timer RB prescaler underflow s
(one-shot w idth is counted)
00h to FFh
Programmable w ait one-shot Counts timer RB prescaler underflow s
generation mode
(w ait period w idth is counted)
00h to FFh
NOTES:
1. The values of registers TRBPR and TRBSC are reloaded to the counter alternately and counted.
2. When the TSTOP bit in the TRBCR register is set to 1, the TRBPR register is set to FFh.
Figure 14.15
Registers TRBPRE, TRBSC, and TRBPR
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 141 of 332
RW
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
14.2.1
14. Timers
Timer Mode
In timer mode, a count source which is internally generated or timer RA underflows are counted (refer to Table
14.7 Timer Mode Specifications). Registers TRBOCR and TRBSC are not used in timer mode.
Figure 14.16 shows TRBIOC Register in Timer Mode.
Table 14.7
Timer Mode Specifications
Item
Count sources
Count operations
Specification
Divide ratio
Count start condition
Count stop conditions
Interrupt request
generation timing
TRBO pin function
f1, f2, f8, timer RA underflow
• Decrement
• When the timer underflows, it reloads the reload register contents before the
count continues (when timer RB underflows, the contents of timer RB primary
reload register is reloaded).
1/(n+1)(m+1)
n: setting value in TRBPRE register, m: setting value in TRBPR register
1 (count starts) is written to the TSTART bit in the TRBCR register.
• 0 (count stops) is written to the TSTART bit in the TRBCR register.
• 1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.
When timer RB underflows [timer RB interrupt].
Programmable I/O port
INT0 pin function
Read from timer
Write to timer
Programmable I/O port or INT0 interrupt input
The count value can be read out by reading registers TRBPR and TRBPRE.
• When registers TRBPRE and TRBPR are written while the count is stopped,
values are written to both the reload register and counter.
• When registers TRBPRE and TRBPR are written to while count operation is in
progress:
If the TWRC bit in the TRBMR register is set to 0, the value is written to both
the reload register and the counter.
If the TWRC bit is set to 1, the value is written to the reload register only.
(Refer to 14.2.1.1 Timer Write Control during Count Operation.)
Timer RB I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0
Symbol
TRBIOC
Bit Symbol
TOPL
TOCNT
INOSTG
Figure 14.16
Address
After Reset
010Ah
00h
Bit Name
Function
Timer RB output level select Set to 0 in timer mode.
bit
Timer RB output sw itch bit
One-shot trigger control bit
RW
RW
RW
INOSEG
One-shot trigger polarity
select bit
RW
—
(b7-b4)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
TRBIOC Register in Timer Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
Page 142 of 332
R8C/2E Group, R8C/2F Group
14.2.1.1
14. Timers
Timer Write Control during Count Operation
Timer RB has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each
consist of a reload register and a counter. In timer mode, the TWRC bit in the TRBMR register can be used to
select whether writing to the prescaler or timer during count operation is performed to both the reload register
and counter or only to the reload register.
However, values are transferred from the reload register to the counter of the prescaler in synchronization with
the count source. In addition, values are transferred from the reload register to the counter of the timer in
synchronization with prescaler underflows. Therefore, even if the TWRC bit is set for writing to both the reload
register and counter, the counter value is not updated immediately after the WRITE instruction is executed. In
addition, if the TWRC bit is set for writing to the reload register only, the synchronization of the writing will be
shifted if the prescaler value changes. Figure 14.17 shows an Operating Example of Timer RB when Counter
Value is Rewritten during Count Operation.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 143 of 332
R8C/2E Group, R8C/2F Group
14. Timers
When the TWRC bit is set to 0 (write to reload register and counter)
Set 01h to the TRBPRE register and 25h to
the TRBPR register by a program.
Count source
After writing, the reload register is
written with the first count source.
Reloads register of
timer RB prescaler
Previous value
Counter of
timer RB prescaler
06h
05h
New value (01h)
04h
Reload with
the second
count source
Reload on
underflow
01h
01h
00h
00h
01h
00h
01h
00h
After writing, the reload register is
written on the first underflow.
Reloads register of
timer RB
Previous value
New value (25h)
Reload on the second
underflow
Counter of timer RB
IR bit in TRBIC
register
03h
02h
25h
24h
0
The IR bit remains unchanged until underflow
is generated by a new value.
When the TWRC bit is set to 1 (write to reload register only)
Set 01h to the TRBPRE register and 25h to
the TRBPR register by a program.
Count source
After writing, the reload register is
written with the first count source.
Reloads register of
timer RB prescaler
Previous value
New value (01h)
Reload on
underflow
Counter of
timer RB prescaler
06h
05h
04h
03h
02h
01h
00h
01h
00h
01h
00h
01h
00h
01h
After writing, the reload register is
written on the first underflow.
Reloads register of
timer RB
Previous value
New value (25h)
Reload on
underflow
Counter of timer RB
IR bit in TRBIC
register
03h
02h
01h
00h
25h
0
Only the prescaler values are updated,
extending the duration until timer RB underflow.
The above applies under the following conditions.
Both bits TSTART and TCSTF in the TRBCR register are set to 1 (During count).
Figure 14.17
Operating Example of Timer RB when Counter Value is Rewritten during Count
Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 144 of 332
R8C/2E Group, R8C/2F Group
14.2.2
14. Timers
Programmable Waveform Generation Mode
In programmable waveform generation mode, the signal output from the TRBO pin is inverted each time the
counter underflows, while the values in registers TRBPR and TRBSC are counted alternately (refer to Table
14.8 Programmable Waveform Generation Mode Specifications). Counting starts by counting the setting value
in the TRBPR register. The TRBOCR register is unused in this mode.
Figure 14.18 shows TRBIOC Register in Programmable Waveform Generation Mode. Figure 14.19 shows an
Operating Example of Timer RB in Programmable Waveform Generation Mode.
Table 14.8
Programmable Waveform Generation Mode Specifications
Item
Count sources
Count operations
Specification
f1, f2, f8, timer RA underflow
• Decrement
• When the timer underflows, it reloads the contents of the primary reload and
secondary reload registers alternately before the count continues.
Width and period of
Primary period: (n+1)(m+1)/fi
output waveform
Secondary period: (n+1)(p+1)/fi
Period: (n+1){(m+1)+(p+1)}/fi
fi: Count source frequency
n: Value set in TRBPRE register
m: Value set in TRBPR register
p: Value set in TRBSC register
Count start condition 1 (count start) is written to the TSTART bit in the TRBCR register.
Count stop conditions • 0 (count stop) is written to the TSTART bit in the TRBCR register.
• 1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.
Interrupt request
In half a cycle of the count source, after timer RB underflows during the
generation timing
secondary period (at the same time as the TRBO output change) [timer RB
interrupt]
TRBO pin function
Programmable output port or pulse output
INT0 pin function
Read from timer
Write to timer
Select functions
Programmable I/O port or INT0 interrupt input
The count value can be read out by reading registers TRBPR and TRBPRE(1).
• When registers TRBPRE, TRBSC, and TRBPR are written while the count is
stopped, values are written to both the reload register and counter.
• When registers TRBPRE, TRBSC, and TRBPR are written to during count
operation, values are written to the reload registers only.(2)
• Output level select function
The TOPL bit in the TRBIOC register selects the output level during primary and
secondary periods.
• TRBO pin output switch function
Timer RB pulse output or P3_1 latch output is selected by the TOCNT bit in the
TRBIOC register.(3)
NOTES:
1. Even when counting the secondary period, the TRBPR register may be read.
2. The set values are reflected in the waveform output beginning with the following primary period after
writing to the TRBPR register.
3. The value written to the TOCNT bit is enabled by the following.
• When counting starts.
• When a timer RB interrupt request is generated.
The contents after the TOCNT bit is changed are reflected from the output of the following
primary period.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 145 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RB I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
TRBIOC
Bit Symbol
TOPL
TOCNT
INOSTG
Figure 14.18
Address
010Ah
Bit Name
Timer RB output level select 0 : Outputs
bit
Outputs
Outputs
1 : Outputs
Outputs
Outputs
After Reset
00h
Function
“H” for primary period
“L” for secondary period
“L” w hen the timer is stopped
“L” for primary period
“H” for secondary period
“H” w hen the timer is stopped
RW
Timer RB output sw itch bit
0 : Outputs timer RB w aveform
1 : Outputs value in P3_1 (P1_3) port register
RW
One-shot trigger control bit
Set to 0 in programmable w aveform generation
mode.
RW
INOSEG
One-shot trigger polarity
select bit
RW
—
(b7-b4)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
TRBIOC Register in Programmable Waveform Generation Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
Page 146 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Set to 1 by a program
TSTART bit in TRBCR
register
1
0
Count source
Timer RB prescaler
underflow signal
Timer RB secondary reloads
Counter of timer RB
01h
00h
02h
01h
Timer RB primary reloads
00h
01h
00h
02h
Set to 0 when interrupt
request is acknowledged,
or set by a program.
IR bit in TRBIC
register
1
0
Set to 0 by a program
TOPL bit in TRBIO
register
1
0
Waveform
output starts
Waveform output inverted
Waveform output starts
1
TRBO pin output
0
Initial output is the same level
as during secondary period.
Primary period
Secondary period
Primary period
The above applies under the following conditions.
TRBPRE = 01h, TRBPR = 01h, TRBSC = 02h
TRBIOC register TOCNT = 0 (timer RB waveform is output from the TRBO pin)
Figure 14.19
Operating Example of Timer RB in Programmable Waveform Generation Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 147 of 332
R8C/2E Group, R8C/2F Group
14.2.3
14. Timers
Programmable One-shot Generation Mode
In programmable one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an
external trigger input (input to the INT0 pin) (refer to Table 14.9 Programmable One-Shot Generation Mode
Specifications). When a trigger is generated, the timer starts operating from the point only once for a given
period equal to the set value in the TRBPR register. The TRBSC register is not used in this mode.
Figure 14.20 shows TRBIOC Register in Programmable One-Shot Generation Mode. Figure 14.21 shows an
Operating Example of Programmable One-Shot Generation Mode.
Table 14.9
Programmable One-Shot Generation Mode Specifications
Item
Count sources
Count operations
Specification
f1, f2, f8, timer RA underflow
• Decrement the setting value in the TRBPR register
• When the timer underflows, it reloads the contents of the reload register before
the count completes and the TOSSTF bit is set to 0 (one-shot stops).
• When the count stops, the timer reloads the contents of the reload register
before it stops.
One-shot pulse
(n+1)(m+1)/fi
output time
fi: Count source frequency,
n: Setting value in TRBPRE register, m: Setting value in TRBPR register(2)
Count start conditions • The TSTART bit in the TRBCR register is set to 1 (count starts) and the next
trigger is generated
• Set the TOSST bit in the TRBOCR register to 1 (one-shot starts)
• Input trigger to the INT0 pin
Count stop conditions • When reloading completes after timer RB underflows during primary period
• When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops)
• When the TSTART bit in the TRBCR register is set to 0 (stops counting)
• When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting)
Interrupt request
In half a cycle of the count source, after the timer underflows (at the same time as
generation timing
the TRBO output ends) [timer RB interrupt]
TRBP pin function
Pulse output
INT0 pin functions
Read from timer
Write to timer
Select functions
• When the INOSTG bit in the TRBIOC register is set to 0 (INT0 one-shot trigger
disabled): programmable I/O port or INT0 interrupt input
• When the INOSTG bit in the TRBIOC register is set to 1 (INT0 one-shot trigger
enabled): external trigger (INT0 interrupt input)
The count value can be read out by reading registers TRBPR and TRBPRE.
• When registers TRBPRE and TRBPR are written while the count is stopped,
values are written to both the reload register and counter.
• When registers TRBPRE and TRBPR are written during the count, values are
written to the reload register only (the data is transferred to the counter at the
following reload)(1).
• Output level select function
The TOPL bit in the TRBIOC register selects the output level of the one-shot
pulse waveform.
• One-shot trigger select function
Refer to 14.2.3.1 One-Shot Trigger Selection.
NOTES:
1. The set value is reflected at the following one-shot pulse after writing to the TRBPR register.
2. Do not set both the TRBPRE and TRBPR registers to 00h.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 148 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RB I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
TRBIOC
Bit Symbol
TOPL
TOCNT
Address
010Ah
Bit Name
Timer RB Output Level
Select Bit
Timer RB Output Sw itch Bit
0 : Outputs
Outputs
1 : Outputs
Outputs
After Reset
00h
Function
one-shot pulse “H”
“L” w hen the timer is stopped
one-shot pulse “L”
“H” w hen the timer is stopped
Set to 0 in programmable one-shot generation
mode.
INOSTG
One-Shot Trigger Control
Bit(1)
INOSEG
One-Shot Trigger Polarity
Select Bit(1)
—
(b7-b4)
Nothing is assigned. If necessary, set to 0.
When read, its content is 0.
0 : INT0 pin one-shot trigger disabled
_____
1 : INT0 pin one-shot trigger enabled
0 : Falling edge trigger
1 : Rising edge trigger
TRBIOC Register in Programmable One-Shot Generation Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 149 of 332
RW
RW
_____
NOTE:
1. Refer to 14.2.3.1 One-Shot Trigger Selection.
Figure 14.20
RW
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Set to 1 by a program
TSTART bit in TRBCR
register
1
0
Set to 0 when
counting ends
Set to 1 by a program
TOSSTF bit in TRBOCR
register
Set to 1 by INT0 pin
input trigger
1
0
INT0 pin input
Count source
Timer RB prescaler
underflow signal
Count starts
Counter of timer RB
01h
Timer RB primary reloads
00h
Count starts
01h
Timer RB primary reloads
00h
01h
Set to 0 when interrupt request is
acknowledged, or set by a program
IR bit in TRBIC
register
1
0
Set to 0 by a program
TOPL bit in
TRBIOC register
1
0
Waveform output starts
Waveform output ends
Waveform output starts
1
TRBIO pin output
0
The above applies under the following conditions.
TRBPRE = 01h, TRBPR = 01h
TRBIOC register TOPL = 0, TOCNT = 0
INOSTG = 1 (INT0 one-shot trigger enabled)
INOSEG = 1 (edge trigger at rising edge)
Figure 14.21
Operating Example of Programmable One-Shot Generation Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 150 of 332
Waveform output ends
R8C/2E Group, R8C/2F Group
14.2.3.1
14. Timers
One-Shot Trigger Selection
In programmable one-shot generation mode and programmable wait one-shot generation mode, operation starts
when a one-shot trigger is generated while the TCSTF bit in the TRBCR register is set to 1 (count starts).
A one-shot trigger can be generated by either of the following causes:
• 1 is written to the TOSST bit in the TRBOCR register by a program.
• Trigger input from the INT0 pin.
When a one-shot trigger occurs, the TOSSTF bit in the TRBOCR register is set to 1 (one-shot operation in
progress) after one or two cycles of the count source have elapsed. Then, in programmable one-shot generation
mode, count operation begins and one-shot waveform output starts. (In programmable wait one-shot generation
mode, count operation starts for the wait period.) If a one-shot trigger occurs while the TOSSTF bit is set to 1,
no retriggering occurs.
To use trigger input from the INT0 pin, input the trigger after making the following settings:
• Set the PD4_5 bit in the PD4 register to 0 (input port).
• Select the INT0 digital filter with bits INT0F1 and INT0F0 in the INTF register.
• Select both edges or one edge with the INT0PL bit in INTEN register. If one edge is selected, further select
falling or rising edge with the INOSEG bit in TRBIOC register.
• Set the INT0EN bit in the INTEN register to 0 (enabled).
• After completing the above, set the INOSTG bit in the TRBIOC register to 1 (INT pin one-shot trigger
enabled).
Note the following points with regard to generating interrupt requests by trigger input from the INT0 pin.
• Processing to handle the interrupts is required. Refer to 12. Interrupts, for details.
• If one edge is selected, use the POL bit in the INT0IC register to select falling or rising edge. (The
INOSEG bit in the TRBIOC register does not affect INT0 interrupts).
• If a one-shot trigger occurs while the TOSSTF bit is set to 1, timer RB operation is not affected, but the
value of the IR bit in the INT0IC register changes.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 151 of 332
R8C/2E Group, R8C/2F Group
14.2.4
14. Timers
Programmable Wait One-Shot Generation Mode
In programmable wait one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program
or an external trigger input (input to the INT0 pin) (refer to Table 14.10 Programmable Wait One-Shot
Generation Mode Specifications). When a trigger is generated from that point, the timer outputs a pulse only
once for a given length of time equal to the setting value in the TRBSC register after waiting for a given length
of time equal to the setting value in the TRBPR register.
Figure 14.22 shows TRBIOC Register in Programmable Wait One-Shot Generation Mode. Figure 14.23 shows
an Operating Example of Programmable Wait One-Shot Generation Mode.
Table 14.10
Programmable Wait One-Shot Generation Mode Specifications
Item
Count sources
Count operations
Wait time
One-shot pulse output time
Count start conditions
Count stop conditions
Interrupt request generation
timing
TRBO pin function
INT0 pin functions
Read from timer
Write to timer
Select functions
Specification
f1, f2, f8, timer RA underflow
• Decrement the timer RB primary setting value.
• When a count of the timer RB primary underflows, the timer reloads the contents of
timer RB secondary before the count continues.
• When a count of the timer RB secondary underflows, the timer reloads the contents
of timer RB primary before the count completes and the TOSSTF bit is set to 0
(one-shot stops).
• When the count stops, the timer reloads the contents of the reload register before it
stops.
(n+1)(m+1)/fi
fi: Count source frequency
n: Value set in the TRBPRE register, m Value set in the TRBPR register(2)
(n+1)(p+1)/fi
fi: Count source frequency
n: Value set in the TRBPRE register, p: Value set in the TRBSC register
• The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger
is generated.
• Set the TOSST bit in the TRBOCR register to 1 (one-shot starts).
• Input trigger to the INT0 pin
• When reloading completes after timer RB underflows during secondary period.
• When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops).
• When the TSTART bit in the TRBCR register is set to 0 (starts counting).
• When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting).
In half a cycle of the count source after timer RB underflows during secondary period
(complete at the same time as waveform output from the TRBO pin) [timer RB
interrupt].
Pulse output
• When the INOSTG bit in the TRBIOC register is set to 0 (INT0 one-shot trigger
disabled): programmable I/O port or INT0 interrupt input
• When the INOSTG bit in the TRBIOC register is set to 1 (INT0 one-shot trigger
enabled): external trigger (INT0 interrupt input)
The count value can be read out by reading registers TRBPR and TRBPRE.
• When registers TRBPRE, TRBSC, and TRBPR are written while the count stops,
values are written to both the reload register and counter.
• When registers TRBPRE, TRBSC, and TRBPR are written to during count
operation, values are written to the reload registers only.(1)
• Output level select function
The TOPL bit in the TRBIOC register selects the output level of the one-shot pulse
waveform.
• One-shot trigger select function
Refer to 14.2.3.1 One-Shot Trigger Selection.
NOTES:
1. The set value is reflected at the following one-shot pulse after writing to registers TRBSC and TRBPR.
2. Do not set both the TRBPRE and TRBPR registers to 00h.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 152 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RB I/O Control Register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
TRBIOC
Bit Symbol
TOPL
TOCNT
Address
010Ah
Bit Name
Timer RB output level select 0 : Outputs
bit
Outputs
w ait.
1 : Outputs
Outputs
w ait.
Timer RB output sw itch bit
After Reset
00h
Function
one-shot pulse “H”.
“L” w hen the timer stops or during
one-shot pulse “L”.
“H” w hen the timer stops or during
Set to 0 in programmable w ait one-shot generation
mode.
RW
RW
RW
_____
INOSTG
INOSEG
—
(b7-b4)
One-shot trigger control bit(1) 0 : INT0 pin one-shot trigger disabled
_____
1 : INT0 pin one-shot trigger enabled
0 : Falling edge trigger
One-shot trigger polarity
1 : Rising edge trigger
select bit(1)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
NOTE:
1. Refer to 14.2.3.1 One-Shot Trigger Selection.
Figure 14.22
TRBIOC Register in Programmable Wait One-Shot Generation Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 153 of 332
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Set to 1 by a program
TSTART bit in TRBCR
register
1
0
Set to 1 by setting 1 to TOSST bit in TRBOCR
register, or INT0 pin input trigger.
TOSSTF bit in TRBOCR
register
Set to 0 when
counting ends
1
0
INT0 pin input
Count source
Timer RB prescaler
underflow signal
Count starts
Counter of timer RB
01h
Timer RB secondary reloads
00h
04h
Timer RB primary reloads
03h
02h
01h
00h
01h
Set to 0 when interrupt request is
acknowledged, or set by a program.
IR bit in TRBIC
register
1
TOPL bit in
TRBIOC register
1
0
Set to 0 by a program
0
Wait starts
Waveform output starts
Waveform output ends
1
TRBIO pin output
0
Wait
(primary period)
One-shot pulse
(secondary period)
The above applies under the following conditions.
TRBPRE = 01h, TRBPR = 01h, TRBSC = 04h
INOSTG = 1 (INT0 one-shot trigger enabled)
INOSEG = 1 (edge trigger at rising edge)
Figure 14.23
Operating Example of Programmable Wait One-Shot Generation Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 154 of 332
R8C/2E Group, R8C/2F Group
14.2.5
14. Timers
Notes on Timer RB
• Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the
count starts.
• Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the
MCU. Consequently, the timer value may be updated during the period when these two registers are being
read.
• In programmable one-shot generation mode and programmable wait one-shot generation mode, when
setting the TSTART bit in the TRBCR register to 0, 0 (stops counting) or setting the TOSSP bit in the
TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore,
in programmable one-shot generation mode and programmable wait one-shot generation mode, read the
timer count value before the timer stops.
• The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to
1 (count starts) while the count is stopped.
During this time, do not access registers associated with timer RB(1)other than the TCSTF bit. Timer RB
starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).
The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count
stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0.
During this time, do not access registers associated with timer RB(1) other than the TCSTF bit.
NOTE:
1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and
TRBPR.
• If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
• If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes
after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period
between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be
set to either 0 or 1 depending on the content state. Likewise, if the TOSST bit is written to 1 during the
period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit
may be set to either 0 or 1.
14.2.5.1
Timer mode
The following workaround should be performed in timer mode.
To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following
points:
• When the TRBPRE register is written continuously, allow three or more cycles of the count source for each
write interval.
• When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow
for each write interval.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 155 of 332
R8C/2E Group, R8C/2F Group
14.2.5.2
14. Timers
Programmable waveform generation mode
The following three workarounds should be performed in programmable waveform generation mode.
(1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the
following points:
• When the TRBPRE register is written continuously, allow three or more cycles of the count source for each
write interval.
• When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow
for each write interval.
(2) To change registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), synchronize
the TRBO output cycle using a timer RB interrupt, etc. This operation should be preformed only once in
the same output cycle. Also, make sure that writing to the TRBPR register does not occur during period
A shown in Figures 14.24 and 14.25.
The following shows the detailed workaround examples.
• Workaround example (a):
As shown in Figure 14.24, write to registers TRBSC and TRBPR in the timer RB interrupt routine. These
write operations must be completed by the beginning of period A.
Period A
Count source/
prescaler
underflow signal
TRBO pin output
IR bit in
TRBIC register
Primary period
(a)
Interrupt request is
acknowledged
Secondary period
Ensure sufficient time
(b)
Interrupt request
is generated
Instruction in
Interrupt
sequence interrupt routine
Set the secondary and then
the primary register immediately
(a) Period between interrupt request generation and the completion of execution of an instruction. The length of time
varies depending on the instruction being executed.
The DIVX instruction requires the longest time, 30 cycles (assuming no wait states and that a register is set as
the divisor).
(b) 20 cycles. 21 cycles for address match and single-step interrupts.
Figure 14.24
Workaround Example (a) When Timer RB interrupt is Used
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 156 of 332
R8C/2E Group, R8C/2F Group
14. Timers
• Workaround example (b):
As shown in Figure 14.25 detect the start of the primary period by the TRBO pin output level and write to
registers TRBSC and TRBPR. These write operations must be completed by the beginning of period A.
If the port register’s bit value is read after the port direction register’s bit corresponding to the TRBO pin is
set to 0 (input mode), the read value indicates the TRBO pin output value.
Period A
Count source/
prescaler
underflow signal
TRBO pin output
Read value of the port register’s
bit corresponding to the TRBO pin
(when the bit in the port direction
register is set to 0)
Secondary period
Primary period
(i) (ii) (iii)
Ensure sufficient time
The TRBO output inversion
is detected at the end of the
secondary period.
Figure 14.25
Upon detecting (i), set the secondary and
then the primary register immediately.
Workaround Example (b) When TRBO Pin Output Value is Read
(3) To stop the timer counting in the primary period, use the TSTOP bit in the TRBCR register. In this case,
registers TRBPRE and TRBPR are initialized and their values are set to the values after reset.
14.2.5.3
Programmable one-shot generation mode
The following two workarounds should be performed in programmable one-shot generation mode.
(1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the
following points:
• When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow
three or more cycles of the count source for each write interval.
• When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow
three or more cycles of the prescaler underflow for each write interval.
(2) Do not set both the TRBPRE and TRBPR registers to 00h.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 157 of 332
R8C/2E Group, R8C/2F Group
14.2.5.4
14. Timers
Programmable wait one-shot generation mode
The following three workarounds should be performed in programmable wait one-shot generation mode.
(1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the
following points:
• When the TRBPRE register is written continuously, allow three or more cycles of the count source for each
write interval.
• When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow
for each write interval.
(2) Do not set both the TRBPRE and TRBPR registers to 00h.
(3) Set registers TRBSC and TRBPR using the following procedure.
(a) To use “INT0 pin one-shot trigger enabled” as the count start condition
Set the TRBSC register and then the TRBPR register. At this time, after writing to the TRBPR
register, allow an interval of 0.5 or more cycles of the count source before trigger input from the
INT0 pin.
(b) To use “writing 1 to TOSST bit” as the start condition
Set the TRBSC register, the TRBPR register, and then TOSST bit. At this time, after writing to the
TRBPR register, allow an interval of 0.5 or more cycles of the count source before writing to the
TOSST bit.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 158 of 332
R8C/2E Group, R8C/2F Group
14.3
14. Timers
Timer RC
14.3.1
Overview
Timer RC is a 16-bit timer with four I/O pins.
Timer RC uses either f1 or fOCO40M as its operation clock. Table 14.11 lists the Timer RC Operation Clock.
Table 14.11
Timer RC Operation Clock
Condition
Timer RC Operation Clock
Count source is f1, f2, f4, f8, f32, or TRCCLK input (bits TCK2 to TCK0 in f1
TRCCR1 register are set to a value from 000b to 101b)
Count source is fOCO40M (bits TCK2 to TCK0 in TRCCR1 register are set fOCO40M
to 110b)
Table 14.12 lists the Timer RC I/O Pins, and Figure 14.26 shows a Block Diagram of Timer RC.
Timer RC has three modes.
• Timer mode
- Input capture function
The counter value is captured to a register, using an external signal as the trigger.
- Output compare function Matches between the counter and register values are detected. (Pin output state
changes when a match is detected.)
The following two modes use the output compare function.
• PWM mode
Pulses of a given width are output continuously.
• PWM2 mode
A one-shot waveform or PWM waveform is output following the trigger after
the wait time has elapsed.
Input capture function, output compare function, and PWM mode settings may be specified independently for
each pin.
In PWM2 mode waveforms are output based on a combination of the counter or the register.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 159 of 332
R8C/2E Group, R8C/2F Group
14. Timers
f1, f2, f4, f8, f32,
fOCO40M
TRCMR register
TRCCR1 register
TRCIER register
INT0
Count source
select circuit
TRCSR register
TRCIOR0 register
TRCIOA/TRCTRG
TRCIOR1 register
Data bus
TRCCLK
TRCIOB
Timer RC control circuit
TRC register
TRCGRA register
TRCIOC
TRCIOD
TRCGRB register
TRCGRC register
TRCGRD register
TRCCR2 register
TRCDF register
Timer RC interrupt
request
TRCOER register
Figure 14.26
Table 14.12
Block Diagram of Timer RC
Timer RC I/O Pins
Pin Name
TRCIOA(P1_1)
TRCIOB(P1_2)
TRCIOC(P5_3 or P3_4)(1)
TRCIOD(P5_4 or P3_5)(1)
TRCCLK(P3_3)
TRCTRG(P1_1)
I/O
I/O
Function
Function differs according to the mode. Refer to descriptions
of individual modes for details
Input
Input
External clock input
PWM2 mode external trigger input
NOTE:
1. The pins used for TRCIOC and TRCIOD are selectable. Refer to the description of the bits
TRCIOCSEL and TRCIODSEL in the PINSR3 register in Figure 7.9 Registers PINSR2 and
PINSR3 for details.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 160 of 332
R8C/2E Group, R8C/2F Group
14.3.2
14. Timers
Registers Associated with Timer RC
Table 14.13 lists the Registers Associated with Timer RC. Figures 14.27 to 14.36 show details of the registers
associated with timer RC.
Table 14.13
Registers Associated with Timer RC
0120h
TRCMR
Mode
Timer
Input
Output
PWM
Capture Compare
Function Function
Valid
Valid
Valid
0121h
TRCCR1
Valid
Valid
Valid
Valid
0122h
TRCIER
Valid
Valid
Valid
Valid
0123h
TRCSR
Valid
Valid
Valid
Valid
0124h
TRCIOR0 Valid
Valid
−
−
0125h
TRCIOR1
0126h
0127h
0128h
0129h
012Ah
012Bh
012Ch
012Dh
012Eh
012Fh
0130h
TRC
Valid
Valid
Valid
Valid
TRCGRA
Valid
Valid
Valid
Valid
TRCCR2
−
−
−
Valid
0131h
TRCDF
Valid
−
−
Valid
0132h
TRCOER
−
Valid
Valid
Valid
Address
Symbol
PWM2
Valid
TRCGRB
Related Information
Timer RC mode register
Figure 14.27 TRCMR Register
Timer RC control register 1
Figure 14.28 TRCCR1 Register
Figure 14.49 TRCCR1 Register in Output
Compare Function
Figure 14.52 TRCCR1 Register in PWM Mode
Figure 14.56 TRCCR1 Register in PWM2 Mode
Timer RC interrupt enable register
Figure 14.29 TRCIER Register
Timer RC status register
Figure 14.30 TRCSR Register
Timer RC I/O control register 0, timer RC I/O
control register 1
Figure 14.36 Registers TRCIOR0 and TRCIOR1
Figure 14.43 TRCIOR0 Register in Input Capture
Function
Figure 14.44 TRCIOR1 Register in Input Capture
Function
Figure 14.47 TRCIOR0 Register in Output
Compare Function
Figure 14.48 TRCIOR1 Register in Output
Compare Function
Timer RC counter
Figure 14.31 TRC Register
Timer RC general registers A, B, C, and D
Figure 14.32 Registers TRCGRA, TRCGRB,
TRCGRC, and TRCGRD
TRCGRC
TRCGRD
− : Invalid
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 161 of 332
Timer RC control register 2
Figure 14.33 TRCCR2 Register
Timer RC digital filter function select register
Figure 14.34 TRCDF Register
Timer RC output mask enable register
Figure 14.35 TRCOER Register
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Mode Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCMR
Bit Symbol
Address
0120h
Bit Name
PWM mode of TRCIOB select bit(2)
After Reset
01001000b
Function
RW
PWM mode of TRCIOC select bit(2)
0 : Timer mode
1 : PWM mode
RW
PWM mode of TRCIOD select bit(2)
0 : Timer mode
1 : PWM mode
RW
PWM2 mode select bit
0 : PWM 2 mode
1 : Timer mode or PWM mode
RW
BFC
TRCGRC register function select
bit(3)
0 : General register
1 : Buffer register of TRCGRA register
RW
BFD
TRCGRD register function select
bit
0 : General register
1 : Buffer register of TRCGRB register
RW
—
(b6)
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
PWMB
PWMC
PWMD
PWM2
TSTART
TRC count start bit
0 : Count stops
1 : Count starts
NOTES:
1. For notes on PWM2 mode, refer to 14.3.9.5 TRCMR Register in PWM2 Mode.
2. These bits are enabled w hen the PWM2 bit is set to 1 (timer mode or PWM mode).
3. Set the BFC bit to 0 (general register) in PWM2 mode.
Figure 14.27
TRCMR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
0 : Timer mode
1 : PWM mode
Page 162 of 332
—
RW
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCCR1
Bit Symbol
TOA
Address
0121h
Bit Name
TRCIOA output level select bit(1)
After Reset
00h
Function
Function varies according to the
operating mode (function).(2)
RW
RW
(1)
TOB
TRCIOB output level select bit
RW
(1)
TOC
TRCIOC output level select bit
RW
(1)
TOD
TRCIOD output level select bit
Count source select bits
(1)
RW
b6 b5 b4
0
0
0
0
1
1
1
1
TCK0
TCK1
TCK2
TRC counter clear select bit(2, 3)
CCLR
0
0
1
1
0
0
1
1
0 : f1
1 : f2
0 : f4
1 : f8
0 : f32
1 : TRCCLK input rising edge
0 : fOCO40M
1 : Do not set.
RW
0 : Disable clear (free-running
operation)
1 : Clear by compare match in the
TRCGRA register
RW
RW
RW
NOTES:
1. Set to these bits w hen the TSTART bit in the TRCMR register is set to 0 (count stops).
2. Bits CCLR, TOA, TOB, TOC and TOD are disabled for the input capture function of the timer mode.
3. The TRC counter performs free-running operation for the input capture function of the timer mode independent of the
CCLR bit setting.
Figure 14.28
TRCCR1 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 163 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Interrupt Enable Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCIER
Bit Symbol
IMIEA
IMIEB
IMIEC
IMIED
—
(b6-b4)
Address
0122h
Bit Name
Input capture / compare match
interrupt enable bit A
After Reset
01110000b
Function
0 : Disable interrupt (IMIA) by the
IMFA bit
1 : Enable interrupt (IMIA) by the
IMFA bit
Input capture / compare match
interrupt enable bit B
0 : Disable interrupt (IMIB) by the
IMFB bit
1 : Enable interrupt (IMIB) by the
IMFB bit
RW
Input capture / compare match
interrupt enable bit C
0 : Disable interrupt (IMIC) by the
IMFC bit
1 : Enable interrupt (IMIC) by the
IMFC bit
RW
Input capture / compare match
interrupt enable bit D
0 : Disable interrupt (IMID) by the
IMFD bit
1 : Enable interrupt (IMID) by the
IMFD bit
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
Overflow interrupt enable bit
OVIE
Figure 14.29
TRCIER Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 164 of 332
0 : Disable interrupt (OVI) by the
OVF bit
1 : Enable interrupt (OVI) by the
OVF bit
RW
RW
—
RW
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Status Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCSR
Bit Symbol
IMFA
Address
0123h
Bit Name
Input capture / compare match flag
A
After Reset
01110000b
Function
[Source for setting this bit to 0]
Write 0 after read(1).
[Source for setting this bit to 1]
Refer to the table below .
Input capture / compare match flag
B
IMFC
Input capture / compare match flag
C
RW
IMFD
Input capture / compare match flag
D
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
—
Overflow flag
OVF
[Source for setting this bit to 0]
Write 0 after read(1).
[Source for setting this bit to 1]
Refer to the table below .
NOTE:
1. The w riting results are as follow s:
• This bit is set to 0 w hen the read result is 1 and 0 is w ritten to the same bit.
• This bit remains unchanged even if the read result is 0 and 0 is w ritten to the same bit. (This bit remains 1
even if it is set to 1 from 0 after reading, and w riting 0.)
• This bit remains unchanged if 1 is w ritten to it.
Timer Mode
PWM Mode
PWM2 Mode
Input capture Function
Output Compare Function
TRCIOA pin input edge(1)
When the values of the registers TRC and TRCGRA match.
TRCIOB pin input edge(1)
When the values of the registers TRC and TRCGRB match.
When the values of the registers TRC and TRCGRC match.(2)
TRCIOC pin input edge(1)
TRCIOD pin input edge(1)
When the values of the registers TRC and TRCGRD match.(2)
When the TRC register overflow s.
IMFA
IMFB
IMFC
IMFD
OVF
NOTES:
1. Edge selected by bits IOj1 to IOj0 (j = A, B, C, or D).
2. Includes the condition that bits BFC and BFD are set to 1 (buffer registers of registers TRCGRA and
TRCGRB).
Figure 14.30
TRCSR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
IMFB
—
(b6-b4)
Bit Symbol
RW
Page 165 of 332
RW
RW
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Counter(1)
(b15)
b7
(b8)
b0 b7
b0
Symbol
TRC
Address
0127h-0126h
Function
Count a count source. Count operation is incremented.
When an overflow occurs, the OVF bit in the TRCSR register is set to 1.
After Reset
0000h
Setting Range
0000h to FFFFh
RW
RW
NOTE:
1. Access the TRC register in 16-bit units. Do not access it in 8-bit units.
Figure 14.31
TRC Register
Timer RC General Register A, B, C and D(1)
(b15)
b7
(b8)
b0 b7
b0
Symbol
TRCGRA
TRCGRB
TRCGRC
TRCGRD
Address
0129h-0128h
012Bh-012Ah
012Dh-012Ch
012Fh-012Eh
Function
Function varies according to the operating mode.
NOTE:
1. Access registers TRCGRA to TRCGRD in 16-bit units. Do not access them in 8-bit units.
Figure 14.32
Registers TRCGRA, TRCGRB, TRCGRC, and TRCGRD
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 166 of 332
After Reset
FFFFh
FFFFh
FFFFh
FFFFh
RW
RW
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Control Register 2
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
Address
TRCCR2
0130h
Bit Symbol
Bit Name
—
Nothing is assigned. If necessary, set to 0.
(b4-b0)
When read, the content is 1.
CSEL
After Reset
00011111b
Function
TRC count operation select
bit(1, 2)
0 : Count continues at compare match w ith
the TRCGRA register
1 : Count stops at compare match w ith
the TRCGRA register
TRCTRG input edge select bits (3)
b7 b6
TCEG0
TCEG1
0 0 : Disable the trigger input from the
TRCTRG pin
0 1 : Rising edge selected
1 0 : Falling edge selected
1 1 : Both edges selected
RW
—
RW
RW
RW
NOTES:
1. For notes on PWM2 mode, refer to 14.3.9.5 TRCMR Register in PWM2 Mode.
2. In timer mode and PWM mode this bit is disabled (the count operation continues independent of the CSEL bit setting).
3. In timer mode and PWM mode these bits are disabled.
Figure 14.33
TRCCR2 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 167 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Digital Filter Function Select Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCDF
Bit Symbol
DFA
Address
0131h
Bit Name
TRCIOA pin digital filter function
select bit(1)
After Reset
00h
Function
0 : Function is not used
1 : Function is used
RW
RW
DFB
TRCIOB pin digital filter function
select bit(1)
RW
DFC
TRCIOC pin digital filter function
select bit(1)
RW
DFD
TRCIOD pin digital filter function
select bit(1)
RW
DFTRG
TRCTRG pin digital filter function
select bit(2)
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
—
(b5)
DFCK0
Clock select bits for digital filter
function(1, 2)
DFCK1
b7 b6
0
0
1
1
0 : f32
1 : f8
0 : f1
1 : Count source (clock selected by
bits TCK2 to TCK0 in the
TRCCR1 register)
RW
RW
NOTES:
1. These bits are enabled for the input capture function.
2. These bits are enabled w hen in PWM2 mode and bits TCEG1 to TCEG0 in the TRCCR2 register are set to 01b, 10b, or
11b (TRCTRG trigger input enabled).
Figure 14.34
TRCDF Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 168 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Output Master Enable Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCOER
Bit Symbol
Address
0132h
Bit Name
TRCIOA output disable bit(1)
EA
TRCIOB output disable bit(1)
EB
TRCIOC output disable bit(1)
EC
TRCIOD output disable bit(1)
ED
—
(b6-b4)
After Reset
01111111b
Function
RW
0 : Enable output
1 : Disable output (The TRCIOA pin is
used as a programmable I/O port.)
RW
0 : Enable output
1 : Disable output (The TRCIOB pin is
used as a programmable I/O port.)
RW
0 : Enable output
1 : Disable output (The TRCIOC pin is
used as a programmable I/O port.)
RW
0 : Enable output
1 : Disable output (The TRCIOD pin is
used as a programmable I/O port.)
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
—
_____
PTO
INT0 of pulse output forced
cutoff signal input enabled
bit
0 : Pulse output forced cutoff input disabled
1 : Pulse output forced cutoff input enabled
(Bits EA, EB, EC, and ED are set to 1
(disable output) w hen “L” is applied to the
INT0 pin)
_____
NOTE:
1. These bits are disabled for input pins set to the input capture function.
Figure 14.35
TRCOER Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 169 of 332
RW
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC I/O Control Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
Address
TRCIOR0
0124h
Bit Symbol
Bit Name
IOA0
TRCGRA control bits
IOA1
TRCGRA mode select bit(2)
IOA2
IOA3
IOB0
IOB1
IOB2
—
(b7)
After Reset
10001000b
Function
Function varies according to the operating mode
(function).
RW
RW
RW
0 : Output compare function
1 : Input capture function
RW
TRCGRA input capture input
sw itch bit(4)
0 : fOCO128 signal
1 : TRCIOA pin input
RW
TRCGRB control bits
Function varies according to the operating mode
(function).
RW
RW
TRCGRB mode select bit(3)
0 : Output compare function
1 : Input capture function
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
—
NOTES:
1. The TRCIOR0 register is enabled in timer mode. It is disabled in modes PWM and PWM2.
2. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the
TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
3. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the
TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
4. The IOA3 bit is enabled w hen the IOA2 bit is set to 1 (input capture function).
Timer RC I/O Control Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
Address
TRCIOR1
0125h
Bit Symbol
Bit Name
IOC0
TRCGRC control bits
IOC1
TRCGRC mode select bit(2)
IOC2
After Reset
10001000b
Function
Function varies according to the operating mode
(function).
0 : Output compare function
1 : Input capture function
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
IOD0
IOD1
TRCGRD control bits
Function varies according to the operating mode
(function).
RW
RW
TRCGRD mode select bit(3)
0 : Output compare function
1 : Input capture function
RW
—
(b7)
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
NOTES:
1. The TRCIOR1 register is enabled in timer mode. It is disabled in modes PWM and PWM2.
2. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the
TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
3. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the
TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
Registers TRCIOR0 and TRCIOR1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
—
(b3)
IOD2
Figure 14.36
RW
RW
RW
Page 170 of 332
—
—
R8C/2E Group, R8C/2F Group
14.3.3
14. Timers
Common Items for Multiple Modes
14.3.3.1
Count Source
The method of selecting the count source is common to all modes.
Table 14.14 lists the Count Source Selection, and Figure 14.37 shows a Count Source Block Diagram.
Table 14.14
Count Source Selection
Count Source
f1, f2, f4, f8, f32
fOCO40M
Selection Method
Count source selected using bits TCK2 to TCK0 in TRCCR1 register
FRA00 bit in FRA0 register set to 1 (high-speed on-chip oscillator on) and bits
TCK2 to TCK0 in TRCCR1 register are set to 110b (fOCO40M)
External signal input Bits TCK2 to TCK0 in TRCCR1 register are set to 101b (count source is rising edge
to TRCCLK pin
of external clock) and PD3_3 bit in PD3 register is set to 0 (input mode)
TCK2 to TCK0
f1
= 000b
= 001b
f2
= 010b
f4
Count source
= 011b
f8
TRC register
= 100b
f32
= 101b
TRCCLK
= 110b
fOCO40M
TCK2 to TCK0: Bits in TRCCR1 register
Figure 14.37
Count Source Block Diagram
The pulse width of the external clock input to the TRCCLK pin should be three cycles or more of the timer RC
operation clock (see Table 14.11 Timer RC Operation Clock).
To select fOCO40M as the count source, set the FRA00 bit in the FRA0 register set to 1 (high-speed on-chip
oscillator on), and then set bits TCK2 to TCK0 in the TRCCR1 register to 110b (fOCO40M).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 171 of 332
R8C/2E Group, R8C/2F Group
14.3.3.2
14. Timers
Buffer Operation
Bits BFC and BFD in the TRCMR register are used to select the TRCGRC or TRCGRD register as the buffer
register for the TRCGRA or TRCGRB register.
• Buffer register for TRCGRA register: TRCGRC register
• Buffer register for TRCGRB register: TRCGRD register
Buffer operation differs depending on the mode.
Table 14.15 lists the Buffer Operation in Each Mode, Figure 14.38 shows the Buffer Operation for Input
Capture Function, and Figure 14.39 shows the Buffer Operation for Output Compare Function.
Table 14.15
Buffer Operation in Each Mode
Function, Mode
Input capture function
Transfer Timing
Input capture signal input
Transfer Destination Register
Contents of TRCGRA (TRCGRB)
register are transferred to buffer register
Contents of buffer register are
transferred to TRCGRA (TRCGRB)
register
Contents of buffer register (TRCGRD)
are transferred to TRCGRB register
Output compare function Compare match between TRC
register and TRCGRA (TRCGRB)
PWM mode
register
PWM2 mode
• Compare match between TRC
register and TRCGRA register
• TRCTRG pin trigger input
TRCIOA input
(input capture signal)
TRCGRC
register
TRCGRA
register
TRC
TRCIOA input
TRC register
n
n-1
n+1
Transfer
TRCGRA register
m
n
Transfer
TRCGRC register
(buffer)
m
The above applies under the following conditions:
• The BFC bit in the TRCMR register is set to 1 (the TRCGRC register functions as the buffer register for the TRCGRA register).
• Bits IOA2 to IOA0 in the TRCIOR0 register are set to 100b (input capture at the rising edge).
Figure 14.38
Buffer Operation for Input Capture Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 172 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Compare match signal
TRCGRC
register
TRC register
TRCGRA register
TRCGRA
register
Comparator
m
m-1
TRC
m+1
m
n
Transfer
TRCGRC register
(buffer)
n
TRCIOA output
The above applies under the following conditions:
• The BFC bit in the TRCMR register is set to 1 (the TRCGRC register functions as the buffer register for the TRCGRA register).
• Bits IOA2 to IOA0 in the TRCIOR0 register are set to 001b (“L” output at compare match).
Figure 14.39
Buffer Operation for Output Compare Function
Make the following settings in timer mode.
• To use the TRCGRC register as the buffer register for the TRCGRA register:
Set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
• To use the TRCGRD register as the buffer register for the TRCGRB register:
Set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
The output compare function, PWM mode, or PWM2 mode, and the TRCGRC or TRCGRD register is
functioning as a buffer register, the IMFC bit or IMFD bit in the TRCSR register is set to 1 when a compare
match with the TRC register occurs.
The input capture function and the TRCGRC register or TRCGRD register is functioning as a buffer register,
the IMFC bit or IMFD bit in the TRCSR register is set to 1 at the input edge of a signal input to the TRCIOC pin
or TRCIOD pin.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 173 of 332
R8C/2E Group, R8C/2F Group
14.3.3.3
14. Timers
Digital Filter
The input to TRCTRG or TRCIOj (j = A, B, C, or D) is sampled, and the level is considered to be determined
when three matches occur. The digital filter function and sampling clock are selected using the TRCDF register.
Figure 14.40 shows a Block Diagram of Digital Filter.
TCK2 to TCK0
f1
f2
f4
f8
f32
TRCCLK
DFCK1 to DFCK0
= 000b
= 00b
f32
= 001b
= 01b
f8
= 010b
= 10b
f1
= 011b
= 11b
Count source
= 100b
IOA2 to IOA0
IOB2 to IOB0
IOC2 to IOC0
IOD2 to IOD0
(or TCEG1 to TCEG0)
= 101b
= 110b
fOCO40M
Sampling clock
DFj (or DFTRG)
C
TRCIOj input signal
(or TRCTRG input
signal)
D
C
Q
Latch
C
D
Q
Latch
D
1
C
Q
Latch
D
Q
Match detect
circuit
Edge detect
circuit
Latch
0
Timer RC operation clock
f1 or fOCO40M
C
D
Q
Latch
Clock cycle selected by
TCK2 to TCK0
(or DFCK1 to DFCK0)
Sampling clock
TRCIOj input signal
(or TRCTRG input signal)
Three matches occur and a
signal change is confirmed.
Input signal after passing
through digital filter
Maximum signal transmission
delay is five sampling clock
pulses.
If fewer than three matches occur,
the matches are treated as noise
and no transmission is performed.
j = A, B, C, or D
TCK0 to TCK2: Bits in TRCCR1 register
DFTRG, DFCK0 to DFCK1, DFj: Bits in TRCDF register
IOA0 to IOA2, IOB0 to IOB2: Bits in TRCIOR0 register
IOC0 to IOC2, IOD0 to IOD2: Bits in TRCIOR1 register
TCEG1 to TCEG0: Bits in TRCCR2 register
Figure 14.40
Block Diagram of Digital Filter
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 174 of 332
R8C/2E Group, R8C/2F Group
14.3.3.4
14. Timers
Forced Cutoff of Pulse Output
When using the timer mode’s output compare function, the PWM mode, or the PWM2 mode, pulse output from
the TRCIOj (j = A, B, C, or D) output pin can be forcibly cut off and the TRCIOj pin set to function as a
programmable I/O port by means of input to the INT0 pin.
A pin used for output by the timer mode’s output compare function, the PWM mode, or the PWM2 mode can be
set to function as the timer RC output pin by setting the Ej bit in the TRCOER register to 0 (timer RC output
enabled). If “L” is input to the INT0 pin while the PTO bit in the TRCOER register is set to 1 (pulse output
forced cutoff signal input INT0 enabled), bits EA, EB, EC, and ED in the TRCOER register are all set to 1
(timer RC output disabled, TRCIOj output pin functions as the programmable I/O port). When one or two
cycles of the timer RC operation clock after “L” input to the INT0 pin (refer to Table 14.11 Timer RC
Operation Clock) has elapsed, the TRCIOj output pin becomes a programmable I/O port.
Make the following settings to use this function.
• Set the pin state following forced cutoff of pulse output (high impedance (input), “L” output, or “H”
output). (Refer to 7. Programmable I/O Ports.)
• Set the INT0EN bit to 1 (INT0 input enabled) and the INT0PL bit to 0 (one edge) in the INTEN register.
• Set the PD4_5 bit in the PD4 register to 0 (input mode).
• Select the INT0 digital filter by means of bits INT0F1 to INT0F0 in the INTF register.
• Set the PTO bit in the TRCOER register to 1 (pulse output forced cutoff signal input INT0 enabled).
The IR bit in the INT0IC register is set to 1 (interrupt request) in accordance with the setting of the POL bit and
a change in the INT0 pin input (refer to 12.6 Notes on Interrupts).
For details on interrupts, refer to 12. Interrupts.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 175 of 332
R8C/2E Group, R8C/2F Group
14. Timers
EA bit
write value
INT0 input
EA bit
D Q
S
Timer RC
output data
TRCIOA
Port P1_1
output data
PTO bit
Port P1_1
input data
EB bit
write value
EB bit
D Q
S
Timer RC
output data
TRCIOB
Port P1_2
output data
Port P1_2
input data
EC bit
write value
EC bit
D Q
S
Timer RC
output data
TRCIOC
Port P5_3 (P3_4)(1)
output data
ED bit
write value
Port P5_3 (P3_4)(1)
input data
ED bit
D Q
S
Timer RC
output data
Port P5_4 (P3_5)(1)
output data
Port P5_4 (P3_5)(1)
input data
EA, EB, EC, ED, PTO: Bits in TRCOER register
NOTE:
1. The pin in parentheses ( ) can be assigned by a program.
Figure 14.41
Forced Cutoff of Pulse Output
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 176 of 332
TRCIOD
R8C/2E Group, R8C/2F Group
14.3.4
14. Timers
Timer Mode (Input Capture Function)
This function measures the width or period of an external signal. An external signal input to the TRCIOj (j = A,
B, C, or D) pin acts as a trigger for transferring the contents of the TRC register (counter) to the TRCGRj
register (input capture). The input capture function, or any other mode or function, can be selected for each
individual pin.
The TRCGRA register can also select fOCO128 signal as input-capture trigger input.
Table 14.16 lists the Specifications of Input Capture Function, Figure 14.42 shows a Block Diagram of Input
Capture Function, Figures 14.43 and 14.44 show registers associated with the input capture function, Table
14.17 lists the Functions of TRCGRj Register when Using Input Capture Function, and Figure 14.45 shows an
Operating Example of Input Capture Function.
Table 14.16
Specifications of Input Capture Function
Item
Count source
Count operation
Count period
Count start condition
Count stop condition
Interrupt request generation
timing
TRCIOA, TRCIOB, TRCIOC,
and TRCIOD pin functions
INT0 pin function
Read from timer
Write to timer
Select functions
Specification
f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to
TRCCLK pin
Increment
1/fk × 65,536 fk: Count source frequency
1 (count starts) is written to the TSTART bit in the TRCMR register.
0 (count stops) is written to the TSTART bit in the TRCMR register.
The TRC register retains a value before count stops.
• Input capture (valid edge of TRCIOj input or fOCO128 signal edge)
• The TRC register overflows.
Programmable I/O port or input capture input (selectable individually by
pin)
Programmable I/O port or INT0 interrupt input
The count value can be read by reading TRC register.
The TRC register can be written to.
• Input capture input pin select
One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD
• Input capture input valid edge selected
Rising edge, falling edge, or both rising and falling edges
• Buffer operation (Refer to 14.3.3.2 Buffer Operation.)
• Digital filter (Refer to 14.3.3.3 Digital Filter.)
• Input-capture trigger selected
fOCO128 can be selected for input-capture trigger input of the
TRCGRA register.
j = A, B, C, or D
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 177 of 332
R8C/2E Group, R8C/2F Group
fOCO
Divided
by 128
14. Timers
fOCO128
IOA3 = 0
Input capture signal(3)
TRCIOA
IOA3 = 1
(Note 1)
TRCGRA
register
TRC register
TRCGRC
register
TRCIOC
Input capture signal
Input capture signal
TRCIOB
(Note 2)
TRCGRB
register
TRCGRD
register
TRCIOD
Input capture signal
IOA3: Bit in TRCIOR0 register
NOTES:
1. The BFC bit in the TRCMR register is set to 1 (TRCGRC register functions as the buffer register for the TRCGRA register)
2. The BFD bit in the TRCMR register is set to 1 (TRCGRD register functions as the buffer register for the TRCGRB register)
3. The trigger input of the TRCGRA register can select the TRCIOA pin input or fOCO128 signal.
Figure 14.42
Block Diagram of Input Capture Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 178 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC I/O Control Register 0
b7 b6 b5 b4 b3 b2 b1 b0
1
1
Symbol
TRCIOR0
Bit Symbol
Address
0124h
Bit Name
TRCGRA control bits
IOA1
IOA3
RW
TRCGRA input capture input
sw itch bit(3)
0 : fOCO128 signal
1 : TRCIOA pin input
RW
TRCGRB control bits
b5 b4
0 0 : Input capture to the TRCGRB register
at the rising edge
0 1 : Input capture to the TRCGRB register
at the falling edge
1 0 : Input capture to the TRCGRB register
at both edges
1 1 : Do not set.
TRCGRB mode select bit(2)
Set to 1 (input capture) in the input capture
function.
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
NOTES:
1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the
TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the
TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
3. The IOA3 bit is enabled w hen the IOA2 bit is set to 1 (input capture function).
Figure 14.43
TRCIOR0 Register in Input Capture Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
Set to 1 (input capture) in the input capture
function.
IOB1
—
(b7)
RW
TRCGRA mode select bit(1)
IOB0
IOB2
RW
b1 b0
0 0 : Input capture to the TRCGRA register
at the rising edge
0 1 : Input capture to the TRCGRA register
at the falling edge
1 0 : Input capture to the TRCGRA register
at both edges
1 1 : Do not set.
IOA0
IOA2
After Reset
10001000b
Function
Page 179 of 332
RW
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC I/O Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
1
1
Symbol
TRCIOR1
Bit Symbol
Address
0125h
Bit Name
TRCGRC control bits
After Reset
10001000b
Function
0 0 : Input capture to the TRCGRC register
at the rising edge
0 1 : Input capture to the TRCGRC register
at the falling edge
1 0 : Input capture to the TRCGRC register
at both edges
1 1 : Do not set.
IOC0
IOC1
IOC2
—
(b3)
TRCGRC mode select bit(1)
RW
RW
RW
—
b5 b4
0 0 : Input capture to the TRCGRD register
at the rising edge
0 1 : Input capture to the TRCGRD register
at the falling edge
1 0 : Input capture to the TRCGRD register
at both edges
1 1 : Do not set.
IOD0
IOD1
—
(b7)
Set to 1 (input capture) in the input capture
function.
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
TRCGRD control bits
IOD2
RW
b1 b0
TRCGRD mode select bit(2)
Set to 1 (input capture) in the input capture
function.
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
RW
RW
RW
—
NOTES:
1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the
TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the
TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
Figure 14.44
Table 14.17
TRCIOR1 Register in Input Capture Function
Functions of TRCGRj Register when Using Input Capture Function
Register
TRCGRA
TRCGRB
TRCGRC
TRCGRD
TRCGRC
TRCGRD
Setting
−
BFC = 0
BFD = 0
BFC = 1
BFD = 1
Input Capture
Input Pin
General register. Can be used to read the TRC register value TRCIOA
at input capture.
TRCIOB
General register. Can be used to read the TRC register value TRCIOC
at input capture.
TRCIOD
Buffer registers. Can be used to hold transferred value from TRCIOA
the general register. (Refer to 14.3.3.2 Buffer Operation.)
TRCIOB
Register Function
j = A, B, C, or D
BFC, BFD: Bits in TRCMR register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 180 of 332
R8C/2E Group, R8C/2F Group
14. Timers
TRCCLK input
count source
TRC register
count value
FFFFh
0006h
0003h
0000h
TSTART bit in
TRCMR register
1
0
65536
TRCIOA input
TRCGRA register
0006h
Transfer
TRCGRC register
0003h
Transfer
0006h
IMFA bit in
TRCSR register
1
OVF bit in
TRCSR register
1
0
Set to 0 by a program
0
The above applies under the following conditions:
• Bits TCK2 to TCK0 in the TRCCR1 register are set to 101b (the count source is TRCCLK input).
• Bits IOA2 to IOA0 in the TRCIORA register are set to 101b (input capture at the falling edge of the TRCIOA input).
• The BFC bit in the TRCMR register is set to 1 (the TRCGRC register functions as the buffer register for the TRCGRA register).
Figure 14.45
Operating Example of Input Capture Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 181 of 332
R8C/2E Group, R8C/2F Group
14.3.5
14. Timers
Timer Mode (Output Compare Function)
This function detects when the contents of the TRC register (counter) and the TRCGRj register (j = A, B, C, or
D) match (compare match). When a match occurs a signal is output from the TRCIOj pin at a given level. The
output compare function, or other mode or function, can be selected for each individual pin.
Table 14.18 lists the Specifications of Output Compare Function, Figure 14.46 shows a Block Diagram of
Output Compare Function, Figures 14.47 to 14.49 show registers associated with the output compare function,
Table 14.19 lists the Functions of TRCGRj Register when Using Output Compare Function, and Figure 14.50
shows an Operating Example of Output Compare Function.
Table 14.18
Specifications of Output Compare Function
Item
Count source
Count operation
Count period
Waveform output timing
Count start condition
Count stop condition
Interrupt request generation
timing
TRCIOA, TRCIOB, TRCIOC,
and TRCIOD pin functions
Specification
f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to
TRCCLK pin
Increment
• The CCLR bit in the TRCCR1 register is set to 0 (free running
operation): 1/fk × 65,536
fk: Count source frequency
• The CCLR bit in the TRCCR1 register is set to 1 (TRC register set to
0000h at TRCGRA compare match):
1/fk × (n + 1)
n: TRCGRA register setting value
Compare match
1 (count starts) is written to the TSTART bit in the TRCMR register.
0 (count stops) is written to the TSTART bit in the TRCMR register.
The output compare output pin retains output level before count stops,
the TRC register retains a value before count stops.
• Compare match (contents of registers TRC and TRCGRj match)
• The TRC register overflows.
Programmable I/O port or output compare output (selectable individually
by pin)
INT0 pin function
Programmable I/O port, pulse output forced cutoff signal input, or INT0
interrupt input
Read from timer
Write to timer
Select functions
The count value can be read by reading the TRC register.
The TRC register can be written to.
• Output compare output pin selected
One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD
• Compare match output level select
“L” output, “H” output, or output level inverted
• Initial output level select
Sets output level for period from count start to compare match
• Timing for clearing the TRC register to 0000h
Overflow or compare match with the TRCGRA register
• Buffer operation (Refer to 14.3.3.2 Buffer Operation.)
• Pulse output forced cutoff signal input (Refer to 14.3.3.4 Forced Cutoff
of Pulse Output.)
• Can be used as an internal timer by disabling timer RC output
j = A, B, C, or D
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 182 of 332
R8C/2E Group, R8C/2F Group
14. Timers
TRC
TRCIOA
TRCIOC
TRCIOB
TRCIOD
Figure 14.46
Output
control
Output
control
Output
control
Output
control
Compare match signal
TRCGRA
Comparator
TRCGRC
Comparator
TRCGRB
Comparator
TRCGRD
Compare match signal
Compare match signal
Compare match signal
Block Diagram of Output Compare Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Comparator
Page 183 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC I/O Control Register 0
b7 b6 b5 b4 b3 b2 b1 b0
0
1 0
Symbol
TRCIOR0
Bit Symbol
Address
0124h
Bit Name
TRCGRA control bits
IOA1
IOA3
TRCGRA mode select bit(1)
Set to 0 (output compare) in the output compare
function.
TRCGRA input capture input
sw itch bit
Set to 1.
TRCGRB control bits
b5 b4
0 0 : Disable pin output by compare
match (TRCIOB pin functions as the
programmable I/O port)
0 1 : “L” output by compare match in
the TRCGRB register
1 0 : “H” output by compare match in
the TRCGRB register
1 1 : Toggle output by compare match
in the TRCGRB register
IOB0
IOB1
IOB2
—
(b7)
TRCGRB mode select bit(2)
Set to 0 (output compare) in the output compare
function.
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
NOTES:
1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the
TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the
TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
Figure 14.47
TRCIOR0 Register in Output Compare Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 184 of 332
RW
b1 b0
0 0 : Disable pin output by compare
match (TRCIOA pin functions as the
programmable I/O port)
0 1 : “L” output by compare match in
the TRCGRA register
1 0 : “H” output by compare match in
the TRCGRA register
1 1 : Toggle output by compare match
in the TRCGRA register
IOA0
IOA2
After Reset
10001000b
Function
RW
RW
RW
RW
RW
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC I/O Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
0
0
Symbol
TRCIOR1
Bit Symbol
Address
0125h
Bit Name
TRCGRC control bits
IOC1
—
(b3)
TRCGRC mode select bit(1)
IOD1
—
(b7)
TRCGRD mode select bit(2)
Set to 0 (output compare) in the output compare
function.
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
NOTES:
1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the
TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the
TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
Figure 14.48
TRCIOR1 Register in Output Compare Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 185 of 332
RW
RW
RW
—
b5 b4
0 0 : Disable pin output by compare
match
0 1 : “L” output by compare match in
the TRCGRD register
1 0 : “H” output by compare match in
the TRCGRD register
1 1 : Toggle output by compare match
in the TRCGRD register
IOD0
IOD2
Set to 0 (output compare) in the output compare
function.
Nothing is assigned. If necessary, set to 0.
When read, the content is 1.
TRCGRD control bits
RW
b1 b0
0 0 : Disable pin output by compare
match
0 1 : “L” output by compare match in
the TRCGRC register
1 0 : “H” output by compare match in
the TRCGRC register
1 1 : Toggle output by compare match
in the TRCGRC register
IOC0
IOC2
After Reset
10001000b
Function
RW
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCCR1
Bit Symbol
TOA
Address
0121h
Bit Name
TRCIOA output level select bit(1, 2)
After Reset
00h
Function
0 : Initial output “L”
1 : Initial output “H”
RW
RW
(1, 2)
TRCIOB output level select bit
TOB
RW
(1, 2)
TRCIOC output level select bit
TOC
RW
(1, 2)
TRCIOD output level select bit
TOD
Count source select bits
(1)
RW
b6 b5 b4
0
0
0
0
1
1
1
1
TCK0
TCK1
TCK2
TRC counter clear select bit
CCLR
0
0
1
1
0
0
1
1
0 : f1
1 : f2
0 : f4
1 : f8
0 : f32
1 : TRCCLK input rising edge
0 : fOCO40M
1 : Do not set.
RW
0 : Disable clear (free-running
operation)
1 : Clear by compare match in the
TRCGRA register
RW
RW
RW
NOTES:
1. Set to these bits w hen the TSTART bit in the TRCMR register is set to 0 (count stops).
2. If the pin function is set for w aveform output (refer to Tables 7.13 to 7.16, Tables 7.26 to 7.29, and Tables 7.36 to
7.39), the initial output level is output w hen the TRCCR1 register is set.
Figure 14.49
Table 14.19
TRCCR1 Register in Output Compare Function
Functions of TRCGRj Register when Using Output Compare Function
Register
TRCGRA
TRCGRB
TRCGRC
TRCGRD
TRCGRC
TRCGRD
Setting
Register Function
−
General register. Write a compare value to one of these
registers.
BFC = 0
BFD = 0
BFC = 1
BFD = 1
General register. Write a compare value to one of these
registers.
Buffer register. Write the next compare value to one of
these registers. (Refer to 14.3.3.2 Buffer Operation.)
j = A, B, C, or D
BFC, BFD: Bits in TRCMR register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 186 of 332
Output Compare
Output Pin
TRCIOA
TRCIOB
TRCIOC
TRCIOD
TRCIOA
TRCIOB
R8C/2E Group, R8C/2F Group
14. Timers
Count source
TRC register value
m
n
p
Count
restarts
Count
stops
TSTART bit in
TRCMR register
1
0
m+1
m+1
Output level held
TRCIOA output
Output inverted at
compare match
Initial output “L”
IMFA bit in
TRCSR register
1
0
Set to 0 by a program
Output level held
n+1
TRCIOB output
“H” output at
compare match
Initial output “L”
IMFB bit in
TRCSR register
1
0
Set to 0 by a program
P+1
Output level held
“L” output at compare match
TRCIOC output
Initial output “H”
IMFC bit in
TRCSR register
1
0
Set to 0 by a program
m: TRCGRA register setting value
n: TRCGRB register setting value
p: TRCGRC register setting value
The above applies under the following conditions:
• Bits BFC and BFD in the TRCMR register are set to 0 (TRCGRC and TRCGRD do not operate as buffers).
• Bits EA, EB, and EC in the TRCOER register are set to 0 (output from TRCIOA, TRCIOB, and TRCIOC enabled).
• The CCLR bit in the TRCCR1 register is set to 1 (set the TRC register to 0000h by TRCGRA compare match).
• In the TRCCR1 register, bits TOA and TOB are set to 0 (“L” initial output until compare match) and the TOC bit is set to 1 (“H” initial output until
compare match).
• Bits IOA2 to IOA0 in the TRCIOR0 register are set to 011b (TRCIOA output inverted at TRCGRA compare match).
• Bits IOB2 to IOB0 in the TRCIOR0 register are set to 010b (“H” TRCIOB output at TRCGRB compare match).
• Bits IOC2 to IOC2 in the TRCIOR1 register are set to 001b (“L” TRCIOC output at TRCGRC compare match).
Figure 14.50
Operating Example of Output Compare Function
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 187 of 332
R8C/2E Group, R8C/2F Group
14.3.6
14. Timers
PWM Mode
This mode outputs PWM waveforms. A maximum of three PWM waveforms with the same period are output.
The PWM mode, or the timer mode, can be selected for each individual pin. (However, since the TRCGRA
register is used when using any pin for the PWM mode, the TRCGRA register cannot be used for the timer
mode.)
Table 14.20 lists the Specifications of PWM Mode, Figure 14.51 shows a Block Diagram of PWM Mode,
Figure 14.52 shows the registers associated with the PWM mode, Table 14.21 lists the Functions of TRCGRj
Register in PWM Mode, and Figures 14.53 and 14.54 show Operating Examples of PWM Mode.
Table 14.20
Specifications of PWM Mode
Item
Specification
f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to
TRCCLK pin
Increment
PWM period: 1/fk × (m + 1)
Active level width: 1/fk × (m - n)
Inactive width: 1/fk × (n + 1)
fk: Count source frequency
m: TRCGRA register setting value
n: TRCGRj register setting value
Count source
Count operation
PWM waveform
m+1
n+1
Count start condition
Count stop condition
Interrupt request generation
timing
TRCIOA pin function
TRCIOB, TRCIOC, and
TRCIOD pin functions
INT0 pin function
Read from timer
Write to timer
Select functions
(“L” is active level)
1 (count starts) is written to the TSTART bit in the TRCMR register.
0 (count stops) is written to the TSTART bit in the TRCMR register.
PWM output pin retains output level before count stops, TRC register
retains value before count stops.
• Compare match (contents of registers TRC and TRCGRj match)
• The TRC register overflows.
Programmable I/O port
Programmable I/O port or PWM output (selectable individually by pin)
Programmable I/O port, pulse output forced cutoff signal input, or INT0
interrupt input
The count value can be read by reading the TRC register.
The TRC register can be written to.
• One to three pins selectable as PWM output pins per channel
One or more of pins TRCIOB, TRCIOC, and TRCIOD
• Active level selectable by individual pin
• Buffer operation (Refer to 14.3.3.2 Buffer Operation.)
• Pulse output forced cutoff signal input (Refer to 14.3.3.4 Forced
Cutoff of Pulse Output.)
j = B, C, or D
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
m-n
Page 188 of 332
R8C/2E Group, R8C/2F Group
14. Timers
TRC
Compare match signal
Comparator
TRCIOB
TRCGRA
Compare match signal
(Note 1)
Output
control
TRCIOC
Comparator
TRCGRB
Comparator
TRCGRC
Compare match signal
TRCIOD
(Note 2)
Compare match signal
Comparator
TRCGRD
NOTES:
1. The BFC bit in the TRCMR register is set to 1 (TRCGRC register functions as the buffer register for the TRCGRA register)
2. The BFD bit in the TRCMR register is set to 1 (TRCGRD register functions as the buffer register for the TRCGRB register)
Figure 14.51
Block Diagram of PWM Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 189 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCCR1
Bit Symbol
TOA
Address
0121h
Bit Name
TRCIOA output level select bit(1)
After Reset
00h
Function
Disabled in PWM mode
TRCIOB output level select bit(1, 2)
0 : Active level “H”
(Initial output “L”
“H” output by compare match in
the TRCGRj register
“L” output by compare match in
the TRCGRA register
1 : Active level “L”
(Initial output “H”
“L” output by compare match in
the TRCGRj register
“H” output by compare match in
the TRCGRA register
TOB
TRCIOC output level select bit(1, 2)
TOC
TRCIOD output level select bit(1, 2)
TOD
Count source select bits (1)
TCK1
TCK2
TRC counter clear select bit
CCLR
RW
RW
RW
RW
b6 b5 b4
0
0
0
0
1
1
1
1
TCK0
RW
0
0
1
1
0
0
1
1
0 : f1
1 : f2
0 : f4
1 : f8
0 : f32
1 : TRCCLK input rising edge
0 : fOCO40M
1 : Do not set.
0 : Disable clear (free-running operation)
1 : Clear by compare match in the
TRCGRA register
RW
RW
RW
RW
j = B, C or D
NOTES:
1. Set to these bits w hen the TSTART bit in the TRCMR register is set to 0 (count stops).
2. If the pin function is set for w aveform output (refer to Table 7.15, Table 7.16, Tables 7.26 to 7.29, and Tables 7.36 to
7.39), the initial output level is output w hen the TRCCR1 register is set.
Figure 14.52
Table 14.21
TRCCR1 Register in PWM Mode
Functions of TRCGRj Register in PWM Mode
Register
TRCGRA
TRCGRB
TRCGRC
TRCGRD
TRCGRC
Setting
−
−
BFC = 0
BFD = 0
BFC = 1
TRCGRD
BFD = 1
Register Function
General register. Set the PWM period.
General register. Set the PWM output change point.
General register. Set the PWM output change point.
Buffer register. Set the next PWM period. (Refer to 14.3.3.2
Buffer Operation.)
Buffer register. Set the next PWM output change point. (Refer to
14.3.3.2 Buffer Operation.)
PWM Output Pin
−
TRCIOB
TRCIOC
TRCIOD
−
TRCIOB
j = A, B, C, or D
BFC, BFD: Bits in TRCMR register
NOTE:
1. The output level does not change even when a compare match occurs if the TRCGRA register value (PWM
period) is the same as the TRCGRB, TRCGRC, or TRCGRD register value.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 190 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Count source
TRC register value
m
n
p
q
m+1
n+1
Active level is “H”
TRCIOB output
m-n
Inactive level is “L”
p+1
m-p
“L” initial output until
compare match
TRCIOC output
q+1
m-q
Active level is “L”
TRCIOD output
“H” initial output until
compare match
IMFA bit in
TRCSR register
1
IMFB bit in
TRCSR register
1
IMFC bit in
TRCSR register
1
IMFD bit in
TRCSR register
1
0
Set to 0 by a program
Set to 0 by a program
0
0
Set to 0 by a program
Set to 0 by a program
0
m: TRCGRA register setting value
n: TRCGRB register setting value
p: TRCGRC register setting value
q: TRCGRD register setting value
The above applies under the following conditions:
• Bits BFC and BFD in the TRCMR register are set to 0 (registers TRCGRC and TRCGRD do not operate as buffers).
• Bits EB, EC, and ED in the TRCOER register are set to 0 (output from TRCIOB, TRCIOC, and TRCIOD enabled).
• In the TRCCR1 register, bits TOB and TOC are set to 0 (active level is “H”) and the TOD bit is set to 1 (active level is “L”).
Figure 14.53
Operating Example of PWM Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 191 of 332
R8C/2E Group, R8C/2F Group
14. Timers
TRC register value
p
m
q
n
0000h
TSTART bit in
TRCMR register
1
TRCIOB output does not switch to “L” because
no compare match with the TRCGRB register
has occurred
0
Duty 0%
TRCIOB output
n
TRCGRB register
q
p (p>m)
Rewritten by a program
IMFA bit in
TRCSR register
1
IMFB bit in
TRCSR register
1
0
Set to 0 by a program
Set to 0 by a program
0
TRC register value
m
p
n
0000h
TSTART bit in
TRCMR register
1
If compare matches occur simultaneously with registers TRCGRA and
TRCGRB, the compare match with the TRCGRB register has priority.
TRCIOB output switches to “L”. (In other words, no change).
0
Duty 100%
TRCIOB output
TRCIOB output switches to “L” at compare match with the
TRCGRB register. (In other words, no change).
TRCGRB register
m
n
IMFA bit in
TRCSR register
1
IMFB bit in
TRCSR register
1
p
Rewritten by
a program
0
Set to 0 by a program
Set to 0 by a program
0
m: TRCGRA register setting value
The above applies under the following conditions:
• The EB bit in the TRCOER register is set to 0 (output from TRCIOB enabled).
• The TOB bit in the TRCCR1 register is set to 1 (active level is “L”).
Figure 14.54
Operating Example of PWM Mode (Duty 0% and Duty 100%)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 192 of 332
R8C/2E Group, R8C/2F Group
14.3.7
14. Timers
PWM2 Mode
This mode outputs a single PWM waveform. After a given wait duration has elapsed following the trigger, the
pin output switches to active level. Then, after a given duration, the output switches back to inactive level.
Furthermore, the counter stops at the same time the output returns to inactive level, making it possible to use
PWM2 mode to output a programmable wait one-shot waveform.
Since timer RC uses multiple general registers in PWM2 mode, other modes cannot be used in conjunction with
it.
Figure 14.55 shows a Block Diagram of PWM2 Mode, Table 14.22 lists the Specifications of PWM2 Mode,
Figure 14.56 shows the register associated with PWM2 mode, Table 14.23 lists the Functions of TRCGRj
Register in PWM2 Mode, and Figures 14.57 to 14.59 show Operating Examples of PWM2 Mode.
Trigger signal
Compare match signal
TRCTRG
TRCIOB
Input
control
Count clear signal
TRC
(Note 1)
Comparator
TRCGRA
Comparator
TRCGRB
Comparator
TRCGRC
TRCGRD
register
Output
control
NOTE:
1. The BFD bit in the TRCMR register is set to 1 (the TRCGRD register functions as the buffer register for the TRCGRB register).
Figure 14.55
Block Diagram of PWM2 Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 193 of 332
R8C/2E Group, R8C/2F Group
Table 14.22
14. Timers
Specifications of PWM2 Mode
Item
Count source
Count operation
PWM waveform
Specification
f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to TRCCLK pin
Increment TRC register
PWM period: 1/fk × (m + 1) (no TRCTRG input)
Active level width: 1/fk × (n - p)
Wait time from count start or trigger: 1/fk × (p + 1)
fk: Count source frequency
m: TRCGRA register setting value
n: TRCGRB register setting value
p: TRCGRC register setting value
TRCTRG input
m+1
n+1
n+1
p+1
p+1
TRCIOB output
n-p
n-p
(TRCTRG: Rising edge, active level is “H”)
Count start conditions
Count stop conditions
• Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 00b (TRCTRG trigger
disabled) or the CSEL bit in the TRCCR2 register is set to 0 (count continues).
1 (count starts) is written to the TSTART bit in the TRCMR register.
• Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 01b, 10b, or 11b (TRCTRG
trigger enabled) and the TSTART bit in the TRCMR register is set to 1 (count starts).
A trigger is input to the TRCTRG pin
• 0 (count stops) is written to the TSTART bit in the TRCMR register while the CSEL bit in
the TRCCR2 register is set to 0 or 1.
The TRCIOB pin outputs the initial level in accordance with the value of the TOB bit in
the TRCCR1 register. The TRC register retains the value before count stops.
• The count stops due to a compare match with TRCGRA while the CSEL bit in the
TRCCR2 register is set to 1
The TRCIOB pin outputs the initial level. The TRC register retains the value before
count stops if the CCLR bit in the TRCCR1 register is set to 0. The TRC register is set
to 0000h if the CCLR bit in the TRCCR1 register is set to 1.
• Compare match (contents of TRC and TRCGRj registers match)
• The TRC register overflows
Programmable I/O port or TRCTRG input
Interrupt request
generation timing
TRCIOA/TRCTRG pin
function
TRCIOB pin function
PWM output
TRCIOC and TRCIOD pin Programmable I/O port
functions
INT0 pin function
Read from timer
Write to timer
Select functions
Programmable I/O port, pulse output forced cutoff signal input, or INT0 interrupt input
The count value can be read by reading the TRC register.
The TRC register can be written to.
• External trigger and valid edge selected
The edge or edges of the signal input to the TRCTRG pin can be used as the PWM
output trigger: rising edge, falling edge, or both rising and falling edges
• Buffer operation (Refer to 14.3.3.2 Buffer Operation.)
• Pulse output forced cutoff signal input (Refer to 14.3.3.4 Forced Cutoff of Pulse
Output.)
• Digital filter (Refer to 14.3.3.3 Digital Filter.)
j = A, B, C, or D
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 194 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RC Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRCCR1
Bit Symbol
TOA
Address
0121h
Bit Name
TRCIOA output level select bit(1)
After Reset
00h
Function
Disabled in the PWM2 mode
TRCIOB output level select bit(1, 2)
0 : Active level “H”
(Initial output “L”
“H” output by compare match in the
TRCGRC register
“L” output by compare match in the
TRCGRB register)
1 : Active level “L”
(Initial output “H”
“L” output by compare match in the
TRCGRC register
“H” output by compare match in the
TRCGRB register)
TOB
TOC
TOD
TRCIOC output level select bit(1)
Disabled in the PWM2 mode
TRCIOD output level select bit(1)
Count source select bits (1)
TCK1
TCK2
TRC counter clear select bit
CCLR
RW
RW
RW
RW
b6 b5 b4
0
0
0
0
1
1
1
1
TCK0
RW
0
0
1
1
0
0
1
1
0 : f1
1 : f2
0 : f4
1 : f8
0 : f32
1 : TRCCLK input rising edge
0 : fOCO40M
1 : Do not set.
0 : Disable clear (free-running operation)
1 : Clear by compare match in the
TRCGRA register
RW
RW
RW
RW
NOTES:
1. Set to these bits w hen the TSTART bit in the TRCMR register is set to 0 (count stops).
2. If the pin function is set for w aveform output (refer to Table 7.15 and Table 7.16), the initial output level is output
w hen the TRCCR1 register is set.
Figure 14.56
Table 14.23
TRCCR1 Register in PWM2 Mode
Functions of TRCGRj Register in PWM2 Mode
Register
TRCGRA
TRCGRB
TRCGRC
Setting
−
−
BFC = 0
TRCGRD
TRCGRD
BFD = 0
BFD = 1
Register Function
PWM2 Output Pin
General register. Set the PWM period.
TRCIOB pin
General register. Set the PWM output change point.
General register. Set the PWM output change point (wait time
after trigger).
(Not used in PWM2 mode)
−
Buffer register. Set the next PWM output change point. (Refer to TRCIOB pin
14.3.3.2 Buffer Operation.)
j = A, B, C, or D
BFC, BFD: Bits in TRCMR register
NOTE:
1. Do not set the TRCGRB and TRCGRC registers to the same value.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 195 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Count source
TRC register value
FFFFh
TRC register cleared
at TRCGRA register
compare match
m
n
Previous value held if the
TSTRAT bit is set to 0
Set to 0000h
by a program
p
0000h
TSTART bit in
TRCMR register
Count stops
because the
CSEL bit is
set to 1
1
0
Set to 1 by
a program
CSEL bit in
TRCCR2 register
TSTART bit
is set to 0
1
0
m+1
n+1
p+1
“H” output at TRCGRC
register compare match
p+1
Return to initial output
if the TSTART bit is
set to 0
“L” initial output
TRCIOB output
“L” output at TRCGRB
register compare match
No change
No change
“H” output at TRCGRC register
compare match
IMFA bit in
TRCSR register
1
IMFB bit in
TRCSR register
1
IMFC bit in
TRCSR register
1
0
Set to 0 by a program
0
Set to 0 by a program
Set to 0 by a program
0
TRCGRB register
n
Transfer
TRCGRD register
n
Transfer
Next data
Transfer from buffer register to general register
m: TRCGRA register setting value
n: TRCGRB register setting value
p: TRCGRC register setting value
The above applies under the following conditions:
• The TOB bit in the TRCCR1 register is set to 0 (initial level is “L”, “H” output at compare match with the TRCGRC register, “L” output at compare
match with the TRCGRB register).
• Bits TCEG1 and TCEG0 in the TRCCR2 register are set to 00b (TRCTRG trigger input disabled).
Figure 14.57
Operating Example of PWM2 Mode (TRCTRG Trigger Input Disabled)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 196 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Count source
TRC register value
TRC register cleared
at TRCGRA register
compare match
FFFFh
m
TRC register (counter)
cleared at TRCTRG pin
trigger input
Previous value
held if the
TSTART bit is
set to 0
n
Set to 0000h
by a program
p
0000h
TRCTRG input
Count starts at
TRCTRG pin
trigger input
Count starts
TSTART bit
is set to 1
TSTART bit in
TRCMR register
1
CSEL bit in
TRCCR2 register
1
Count stops
because the
CSEL bit is
set to 1
Changed by a program
The TSTART
bit is set to 0
0
Set to 1 by
a program
0
m+1
n+1
n+1
p+1
p+1
“H” output at
TRCGRC register
compare match
“L” output at
TRCGRB register
compare match
“L” initial output
TRCIOB output
IMFA bit in
TRCSR register
1
IMFB bit in
TRCSR register
1
IMFC bit in
TRCSR register
1
TRCGRB register
p+1
Inactive level so
TRCTRG input is
enabled
Return to initial value if the
TSTART bit is set to 0
Active level so TRCTRG
input is disabled
0
Set to 0 by
a program
0
Set to 0 by
a program
Set to 0 by
a program
Set to 0 by
a program
0
n
n
n
Transfer
TRCGRD register
Transfer
n
Transfer from buffer register to general register
n
Transfer
Transfer
Next data
Transfer from buffer register to general register
m: TRCGRA register setting value
n: TRCGRB register setting value
p: TRCGRC register setting value
The above applies under the following conditions:
• The TOB bit in the TRCCR1 register is set to 0 (initial level is “L”, “H” output at compare match with the TRCGRC register, “L” output at compare match with the
TRCGRB register).
• Bits TCEG1 and TCEG0 in the TRCCR2 register are set to 11b (trigger at both rising and falling edges of TRCTRG input).
Figure 14.58
Operating Example of PWM2 Mode (TRCTRG Trigger Input Enabled)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 197 of 332
R8C/2E Group, R8C/2F Group
14. Timers
• TRCGRB register setting value greater than TRCGRA
register setting value
TRC register value
• TRCGRC register setting value greater than TRCGRA
register setting value
TRC register value
n
p
m
m
n
p
0000h
TSTART bit in
TRCMR register
0000h
1
TSTART bit in
TRCMR register
0
n+1
m+1
m+1
TRCIOB output
“H” output at TRCGRC register
compare match
1
IMFB bit in
TRCSR register
1
IMFC bit in
TRCSR register
“L” initial
output
0
0
1
0
p+1
No compare match with
TRCGRB register, so
“H” output continues
IMFA bit in
TRCSR register
1
No compare match
with TRCGRC register,
so “L” output continues
TRCIOB output
IMFA bit in
TRCSR register
1
IMFB bit in
TRCSR register
1
IMFC bit in
TRCSR register
1
Set to 0 by a
program
0
“L” output at
TRCGRB register
compare match
with no change.
“L” initial
output
0
0
0
m: TRCGRA register setting value
n: TRCGRB register setting value
p: TRCGRC register setting value
The above applies under the following conditions:
• The TOB bit in the TRCCR1 register is set to 0 (initial level is “L”, “H” output at compare match with the TRCGRC register, “L” output at compare
match with the TRCGRB register).
• Bits TCEG1 and TCEG0 in the TRCCR2 register are set to 00b (TRCTRG trigger input disabled).
Figure 14.59
Operating Example of PWM2 Mode (Duty 0% and Duty 100%)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 198 of 332
R8C/2E Group, R8C/2F Group
14.3.8
14. Timers
Timer RC Interrupt
Timer RC generates a timer RC interrupt request from five sources. The timer RC interrupt uses the single
TRCIC register (bits IR and ILVL0 to ILVL2) and a single vector.
Table 14.24 lists the Registers Associated with Timer RC Interrupt, and Figure 14.60 is a Timer RC Interrupt
Block Diagram.
Table 14.24
Registers Associated with Timer RC Interrupt
Timer RC Status Register
TRCSR
Timer RC Interrupt Enable Register
TRCIER
Timer RC Interrupt Control Register
TRCIC
IMFA bit
IMIEA bit
Timer RC interrupt request
(IR bit in TRCIC register)
IMFB bit
IMIEB bit
IMFC bit
IMIEC bit
IMFD bit
IMIED bit
OVF bit
OVIE bit
IMFA, IMFB, IMFC, IMFD, OVF: Bits in TRCSR register
IMIEA, IMIEB, IMIEC, IMIED, OVIE: Bits in TRCIER register
Figure 14.60
Timer RC Interrupt Block Diagram
Like other maskable interrupts, the timer RC interrupt is controlled by the combination of the I flag, IR bit, bits
ILVL0 to ILVL2, and IPL. However, it differs from other maskable interrupts in the following respects because
a single interrupt source (timer RC interrupt) is generated from multiple interrupt request sources.
• The IR bit in the TRCIC register is set to 1 (interrupt requested) when a bit in the TRCSR register is set to
1 and the corresponding bit in the TRCIER register is also set to 1 (interrupt enabled).
• The IR bit is set to 0 (no interrupt request) when the bit in the TRCSR register or the corresponding bit in
the TRCIER register is set to 0, or both are set to 0. In other words, the interrupt request is not maintained
if the IR bit is once set to 1 but the interrupt is not acknowledged.
• If after the IR bit is set to 1 another interrupt source is triggered, the IR bit remains set to 1 and does not
change.
• If multiple bits in the TRCIER register are set to 1, use the TRCSR register to determine the source of the
interrupt request.
• The bits in the TRCSR register are not automatically set to 0 when an interrupt is acknowledged. Set them
to 0 within the interrupt routine. Refer to Figure 14.30 TRCSR Register, for the procedure for setting
these bits to 0.
Refer to Figure 14.29 TRCIER Register, for details of the TRCIER register.
Refer to 12.1.6 Interrupt Control, for details of the TRCIC register and 12.1.5.2 Relocatable Vector Tables,
for information on interrupt vectors.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 199 of 332
R8C/2E Group, R8C/2F Group
14.3.9
14. Timers
Notes on Timer RC
14.3.9.1
TRC Register
• The following note applies when the CCLR bit in the TRCCR1 register is set to 1 (clear TRC register at
compare match with TRCGRA register).
When using a program to write a value to the TRC register while the TSTART bit in the TRCMR register is
set to 1 (count starts), ensure that the write does not overlap with the timing with which the TRC register is
set to 0000h.
If the timing of the write to the TRC register and the setting of the TRC register to 0000h coincide, the
write value will not be written to the TRC register and the TRC register will be set to 0000h.
• Reading from the TRC register immediately after writing to it can result in the value previous to the write
being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.
Program Example
MOV.W
#XXXXh, TRC
;Write
JMP.B
L1
;JMP.B instruction
L1:
MOV.W
TRC,DATA
;Read
14.3.9.2
TRCSR Register
Reading from the TRCSR register immediately after writing to it can result in the value previous to the write
being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.
Program Example
MOV.B
#XXh, TRCSR
;Write
JMP.B
L1
;JMP.B instruction
L1:
MOV.B
TRCSR,DATA
;Read
14.3.9.3
Count Source Switching
• Stop the count before switching the count source.
Switching procedure
(1) Set the TSTART bit in the TRCMR register to 0 (count stops).
(2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
• After switching the count source from fOCO40M to another clock, allow a minimum of two cycles of f1 to
elapse after changing the clock setting before stopping fOCO40M.
Switching procedure
(1) Set the TSTART bit in the TRCMR register to 0 (count stops).
(2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
(3) Wait for a minimum of two cycles of f1.
(4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).
14.3.9.4
Input Capture Function
• The pulse width of the input capture signal should be three cycles or more of the timer RC operation clock
(refer to Table 14.11 Timer RC Operation Clock).
• The value of the TRC register is transferred to the TRCGRj register one or two cycles of the timer RC
operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the
digital filter function is not used).
14.3.9.5
TRCMR Register in PWM2 Mode
When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with the TRCGRA
register), do not set the TRCMR register at compare match timing of registers TRC and TRCGRA.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 200 of 332
R8C/2E Group, R8C/2F Group
14.4
Timer RE
Timer RE has the 4-bit counter and 8-bit counter.
Timer RE has the following modes:
• Output compare mode
Count a count source and detect compare matches.
The count source for timer RE is the operating clock that regulates the timing of timer operations.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 201 of 332
14. Timers
R8C/2E Group, R8C/2F Group
14.4.1
14. Timers
Output Compare Mode
In output compare mode, the internal count source divided by 2 is counted using the 4-bit or 8-bit counter and
compare value match is detected with the 8-bit counter. Figure 14.61 shows a Block Diagram of Output
Compare Mode and Table 14.25 lists the Output Compare Mode Specifications. Figures 14.62 to 14.66 show
the Registers Associated with Output Compare Mode, and Figure 14.67 shows the Operating Example in
Output Compare Mode.
f4
f8
RCS6 to RCS5
= 00b
f2
= 01b
RCS1 to RCS0
= 00b
= 01b
f32
= 10b
1/2
= 10b
4-bit
counter
TREO pin
RCS2 = 1
8-bit
counter
T Q
= 11b
R
Reset
TRERST
RCS2 = 0
Comparison
circuit
Match
signal
COMIE
TRERST, TOENA: Bits in TRECR1 register
COMIE: Bit in TRECR2 register
RCS0 to RCS2, RCS5 to RCS6: Bits in TRECSR register
TOENA
TRESEC
Timer RE interrupt
TREMIN
Data bus
Figure 14.61
Table 14.25
Block Diagram of Output Compare Mode
Output Compare Mode Specifications
Item
Count sources
Count operations
Specification
f4, f8, f32
• Increment
• When the 8-bit counter content matches with the TREMIN register content, the
value returns to 00h and count continues.
The count value is held while count stops.
Count period
• When RCS2 = 0 (4-bit counter is not used)
1/fi x 2 x (n+1)
• When RCS2 = 1 (4-bit counter is used)
1/fi x 32 x (n+1)
fi: Frequency of count source
n: Setting value of TREMIN register
Count start condition
1 (count starts) is written to the TSTART bit in the TRECR1 register
Count stop condition
0 (count stops) is written to the TSTART bit in the TRECR1 register
Interrupt request generation timing When the 8-bit counter content matches with the TREMIN register content
TREO pin function
Select any one of the following:
• Programmable I/O ports
• Output f2, f4, or f8
• Compare output
Read from timer
When reading the TRESEC register, the 8-bit counter value can be read.
When reading the TREMIN register, the compare value can be read.
Write to timer
Writing to the TRESEC register is disabled.
When bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer
stops), writing to the TREMIN register is enabled.
Select functions
• Select use of 4-bit counter
• Compare output function
Every time the 8-bit counter value matches the TREMIN register value, TREO
output polarity is reversed. The TREO pin outputs “L” after reset is deasserted
and the timer RE is reset by the TRERST bit in the TRECR1 register. Output
level is held by setting the TSTART bit to 0 (count stops).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 202 of 332
R8C/2E Group, R8C/2F Group
14. Timers
Timer RE Counter Data Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TRESEC
Address
0118h
Function
After Reset
00h
RW
8-bit counter data can be read.
Although Timer RE stops counting, the count value is held.
The TRESEC register is set to 00h at the compare match.
Figure 14.62
RO
TRESEC Register in Output Compare Mode
Timer RE Compare Data Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
TREMIN
Address
0119h
Function
After Reset
00h
RW
8-bit compare data is stored.
Figure 14.63
RW
TREMIN Register in Output Compare Mode
Timer RE Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
0 0
0
Symbol
Address
011Ch
TRECR1
Bit Symbol
Bit Name
Nothing is assigned. If necessary, set to 0.
—
When read, the content is 0.
(b0)
TCSTF
TOENA
INT
TSTART
Figure 14.64
—
0 : Count stopped
1 : Counting
RO
TREO pin output enable bit
0 : Disable clock output
1 : Enable clock output
RW
Interrupt request timing bit
Set to 0 in output compare mode.
Timer RE reset bit
When setting this bit to 0, after setting it to 1, the
follow ing w ill occur.
• Registers TRESEC, TREMIN, and TRECR2
are set to 00h.
• Bits TCSTF, INT, and TSTART in the
TRECR1 register are set to 0.
• The 8-bit counter is set to 00h and the 4-bit
counter is set to 0h.
Reserved bits
Set to 0.
Timer RE count start bit
0 : Count stops
1 : Count starts
TRECR1 Register in Output Compare Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
Timer RE count status flag
TRERST
—
(b6-b5)
After Reset
00h
Function
Page 203 of 332
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
14. Timers
Timer RE Control Register 2
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0
Symbol
Address
011Dh
TRECR2
Bit Symbol
Bit Name
—
Reserved bits
(b4-b0)
COMIE
—
(b7-b6)
Figure 14.65
Compare match interrupt enable bit
After Reset
00h
Function
Set to 0.
RW
RW
0 : Disable compare match interrupt
1 : Enable compare match interrupt
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
RW
—
TRECR2 Register in Output Compare Mode
Timer RE Count Source Select Register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
TRECSR
Bit Symbol
Address
011Eh
Bit Name
Count source select bits
After Reset
00001000b
Function
0 0 : f4
0 1 : f8
1 0 : f32
1 1 : Do not set.
RCS0
RCS1
4-bit counter select bit
0 : Not used
1 : Used
—
(b3)
Reserved bit
Set to 0.
—
(b4)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
RCS2
Clock output select bits (1)
RCS6
—
(b7)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
NOTE:
1. Write to bits RCS5 to RCS6 w hen the TOENA bit in the TRECR1 register is set to 0 (disable clock output).
Figure 14.66
TRECSR Register in Output Compare Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 204 of 332
RW
RW
RW
RW
—
b6 b5
0 0 : f2
0 1 : f4
1 0 : f8
1 1 : Compare output
RCS5
RW
b1 b0
RW
RW
—
R8C/2E Group, R8C/2F Group
14. Timers
8-bit counter content
(hexadecimal number)
Count starts
Matched
TREMIN register
setting value
Matched
Matched
00h
Time
Set to 1 by a program
TSTART bit in
TRECR1 register
1
0
2 cycles of maximum count source
TCSTF bit in
TRECR1 register
1
0
Set to 0 by acknowledgement of interrupt request
or a program
IR bit in
TREIC register
TREO output
1
0
1
0
Output polarity is inverted
when the compare matches
The above applies under the following conditions.
TOENA bit in TRECR1 register = 1 (enable clock output)
COMIE bit in TRECR2 register = 1 (enable compare match interrupt)
RCS6 to RCS5 bits in TRECSR register = 11b (compare output)
Figure 14.67
Operating Example in Output Compare Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 205 of 332
R8C/2E Group, R8C/2F Group
14.4.2
14. Timers
Notes on Timer RE
14.4.2.1
Starting and Stopping Count
Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates
count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.
Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count
starts). It takes up to 2 cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to
1. During this time, do not access registers associated with timer RE(1) other than the TCSTF bit.
Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0
(count stops). It takes the time for up to 2 cycles of the count source until the TCSTF bit is set to 0 after setting
the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF
bit.
NOTE:
1. Registers associated with timer RE: TRESEC, TREMIN, TRECR1, TRECR2, and TRECSR.
14.4.2.2
Register Setting
Write to the following registers or bits when timer RE is stopped.
• Registers TRESEC, TREMIN, and TRECR2
• INT bit in TRECR1 register
• Bits RCS0 to RCS2 and b3 in TRECSR register
Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).
Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the
TRECR2 register.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 206 of 332
R8C/2E Group, R8C/2F Group
15. Serial Interface
15. Serial Interface
The serial interface consists of one channel (UART0). UART0 has an exclusive timer to generate the transfer clock and
operates.
Figure 15.1 shows a UART0 Block Diagram. Figure 15.2 shows a UART0 Transmit/Receive Unit.
UARTi has two modes: clock synchronous serial I/O mode and clock asynchronous serial I/O mode (UART mode).
Figures 15.3 to 15.7 show the Registers Associated with UART0.
(UART0)
TXD0
RXD0
CLK1 to CLK0 = 00b
f1
f8
f32
= 01b
= 10b
1/16
CKDIR = 0
Internal
Clock
synchronous type
U0BRG register
1/(n0+1)
UART reception
1/16
Reception control
circuit
UART transmission
Clock
synchronous type
External
CKDIR = 1
1/2
Clock synchronous type
(when internal clock is selected)
Clock synchronous type
(when external clock is selected)
Clock synchronous type
(when internal clock is selected)
CLK
polarity
switch
circuit
CLK0
CLK1 to CLK0: Bits in U0C0 register
CKDIR: Bit in U0MR register
Figure 15.1
UART0 Block Diagram
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 207 of 332
Transmission
control circuit
CKDIR = 0
CKDIR = 1
Receive
clock
Transmit
clock
Transmit/
receive
unit
R8C/2E Group, R8C/2F Group
15. Serial Interface
PRYE = 0
Clock
PAR
disabled synchronous
type
1SP
RXD0
SP
SP
Clock
synchronous
type
UART (7 bits)
UART (8 bits)
UART (7 bits)
UART0 receive register
PAR
PAR
UART
enabled
PRYE = 1
2SP
UART (9 bits)
Clock
synchronous
type
UART (8 bits)
UART (9 bits)
0
0
0
0
0
0
0
D8
D7
D6
D5
D4
D3
D2
D1
D0 U0RB register
MSB/LSB conversion circuit
Data bus high-order bits
Data bus low-order bits
MSB/LSB conversion circuit
D8
PRYE = 1
PAR
enabled
2SP
SP
SP
UART (9 bits)
UART
D6
D5
D4
D3
D2
D1
TXD0
Clock
PAR
disabled synchronous
PRYE = 0 type
0
UART0 Transmit/Receive Unit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
D0 U0TB register
UART (8 bits)
UART (9 bits)
Clock
synchronous
type
PAR
1SP
Figure 15.2
D7
Page 208 of 332
UART (7 bits)
UART (8 bits)
Clock
synchronous
type
UART (7 bits)
UART0 transmit register
SP: Stop bit
PAR: Parity bit
PRYE: Bit in U0MR register
R8C/2E Group, R8C/2F Group
15. Serial Interface
UART0 Transmit Buffer Register(1, 2)
(b15)
b7
(b8)
b0 b7
b0
Symbol
U0TB
Address
00A3h-00A2h
Function
—
(b8-b0)
Transmit data
—
(b15-b9)
Nothing is assigned. If necessary, set to 0.
When read, the content is undefined.
After Reset
Undefined
RW
WO
—
NOTES:
1. When the transfer data length is 9 bits, w rite data to high byte first, then low byte.
2. Use the MOV instruction to w rite to this register.
UART0 Receive Buffer Register(1)
(b15)
b7
(b8)
b0 b7
b0
Symbol
U0RB
Bit Symbol
—
(b7-b0)
Address
00A7h-00A6h
Bit Name
—
—
(b8)
—
(b11-b9)
OER
FER
PER
SUM
—
After Reset
Undefined
Function
Receive data (D7 to D0)
Receive data (D8)
Nothing is assigned. If necessary, set to 0.
When read, the content is undefined.
RW
RO
RO
—
Overrun error flag(2)
0 : No overrun error
1 : Overrun error
RO
Framing error flag(2)
0 : No framing error
1 : Framing error
RO
Parity error flag(2)
0 : No parity error
1 : Parity error
RO
Error sum flag(2)
0 : No error
1 : Error
RO
NOTES:
1. Read out the U0RB register in 16-bit units.
2. Bits SUM, PER, FER, and OER are set to 0 (no error) w hen bits SMD2 to SMD0 in the U0MR register are set to 000b
(serial interface disabled) or the RE bit in the U0C1 register is set to 0 (receive disabled). The SUM bit is set to 0 (no
error) w hen bits PER, FER, and OER are set to 0 (no error). Bits PER and FER are set to 0 even w hen the higher byte
of the U0RB register is read out.
Also, bits PER and FER are set to 0 w hen reading the high-order byte of the U0RB register.
Figure 15.3
Registers U0TB and U0RB
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 209 of 332
R8C/2E Group, R8C/2F Group
15. Serial Interface
UART0 Bit Rate Register(1, 2, 3)
b7
b0
Symbol
U0BRG
Address
00A1h
Function
Assuming the set value is n, U0BRG divides the count source by
n+1
After Reset
Undefined
Setting Range
00h to FFh
RW
WO
NOTES:
1. Write to this register w hile the serial I/O is neither transmitting nor receiving.
2. Use the MOV instruction to w rite to this register.
3. After setting the CLK0 to CLK1 bits of the U0C0 register, w rite to the U0BRG register.
UART0 Transmit/Receive Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
U0MR
Bit Symbol
Address
00A0h
Bit Name
Serial I/O mode select bits
SMD0
SMD2
STPS
Internal/external clock select bit 0 : Internal clock
1 : External clock(1)
—
(b7)
RW
RW
RW
Odd/even parity select bit
Enable w hen PRYE = 1
0 : Odd parity
1 : Even parity
RW
Parity enable bit
0 : Parity disabled
1 : Parity enabled
RW
Reserved bit
Set to 0.
Registers U0BRG and U0MR
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
0 : 1 stop bit
1 : 2 stop bits
NOTE:
1. When the CLK0 pin is used, set the PD1_6 bit in the PD1 register to 0 (input).
Figure 15.4
RW
Stop bit length select bit
PRY
PRYE
RW
b2 b1 b0
0 0 0 : Serial interface disabled
0 0 1 : Clock synchronous serial I/O mode
1 0 0 : UART mode transfer data 7 bits long
1 0 1 : UART mode transfer data 8 bits long
1 1 0 : UART mode transfer data 9 bits long
Other than above : Do not set
SMD1
CKDIR
After Reset
00h
Function
Page 210 of 332
RW
R8C/2E Group, R8C/2F Group
15. Serial Interface
UART0 Transmit/Receive Control Register 0
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
U0C0
Bit Symbol
CLK0
CLK1
—
(b2)
TXEPT
—
(b4)
NCH
Address
00A4h
Bit Name
BRG count source select b1 b0
bits (1)
0 0 : Selects f1
0 1 : Selects f8
1 0 : Selects f32
1 1 : Do not set.
Reserved bit
Set to 0.
Transmit register empty
flag
0 : Data in transmit register (during transmit)
1 : No data in transmit register (transmit completed)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
RW
RW
RO
—
RW
CLK polarity select bit
0 : Transmit data is output at falling edge of transfer
clock and receive data is input at rising edge
1 : Transmit data is output at rising edge of transfer
clock and receive data is input at falling edge
RW
Transfer format select bit 0 : LSB first
1 : MSB first
U0C0 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
0 : TXDi pin is for CMOS output
1 : TXDi pin is for N-channel open drain output
NOTE:
1. If the BRG count source is sw itched, set the U0BRG register again.
Figure 15.5
RW
Data output select bit
CKPOL
UFORM
After Reset
00001000b
Function
Page 211 of 332
RW
R8C/2E Group, R8C/2F Group
15. Serial Interface
UART0 Transmit/Receive Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U0C1
Bit Symbol
Address
00A5h
Bit Name
Transmit enable bit(1)
After Reset
00000010b
Function
0 : Disables transmission
1 : Enables transmission
RW
Transmit buffer empty flag
0 : Data in U0TB register
1 : No data in U0TB register
RO
Receive enable bit
0 : Disables reception
1 : Enables reception
RW
Receive complete flag(1)
0 : No data in U0RB register
1 : Data in U0RB register
RO
U0IRS
UART0 transmit interrupt cause
select bit
0 : Transmission buffer empty (TI=1)
1 : Transmission completed (TXEPT=1)
RW
U0RRM
UART0 continuous receive mode
enable bit(2)
0 : Disables continuous receive mode
1 : Enables continuous receive mode
RW
—
(b7-b6)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
TE
TI
RE
RI
RW
—
NOTES:
1. The RI bit is set to 0 w hen the higher byte of the U0RB register is read out.
2. Set the U0RRM bit to 0 (disables continuous receive mode) in UART mode.
Figure 15.6
U0C1 Register
Port Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0
Symbol
PMR
Bit Symbol
INT1SEL
0 : P1_5, P1_7
1 : P3_6
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
(b6-b4)
Reserved bits
Set to 0.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
PMR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
After Reset
00h
Function
—
(b3-b1)
—
(b7)
Figure 15.7
Address
00F8h
Bit Name
____
INT1 pin select bit
Page 212 of 332
RW
RW
—
RW
—
R8C/2E Group, R8C/2F Group
15.1
15. Serial Interface
Clock Synchronous Serial I/O Mode
In the clock synchronous serial I/O mode, data is transmitted and received using a transfer clock.
Table 15.1 lists the Specifications of Clock Synchronous Serial I/O Mode. Table 15.2 lists the Registers Used and
Settings in Clock Synchronous Serial I/O Mode.
Table 15.1
Specifications of Clock Synchronous Serial I/O Mode
Item
Transfer data format
Transfer clocks
Specification
• Transfer data length: 8 bits
• CKDIR bit in U0MR register is set to 0 (internal clock): fi/(2(n+1))
fi = f1, f8, f32 n = value set in U0BRG register: 00h to FFh
• The CKDIR bit is set to 1 (external clock): input from CLK0 pin
Transmit start conditions
• Before transmit starts, the following requirements must be met(1)
- The TE bit in the U0C1 register is set to 1 (transmission enabled)
- The TI bit in the U0C1 register is set to 0 (data in the U0TB register)
Receive start conditions
• Before receive starts, the following requirements must be met(1)
- The RE bit in the U0C1 register is set to 1 (reception enabled)
- The TE bit in the U0C1 register is set to 1 (transmission enabled)
- The TI bit in the U0C1 register is set to 0 (data in the U0TB register)
• When transmitting, one of the following conditions can be selected
- The U0IRS bit is set to 0 (transmit buffer empty):
When transferring data from the U0TB register to UART0 transmit
register (when transmission starts).
- The U0IRS bit is set to 1 (transmission completes):
When completing data transmission from UART0 transmit register.
• When receiving
When data transfer from the UART0 receive register to the U0RB register
(when reception completes).
Interrupt request
generation timing
Error detection
Select functions
• Overrun error(2)
This error occurs if the serial interface starts receiving the next data item
before reading the U0RB register and receives the 7th bit of the next data.
• CLK polarity selection
Transfer data input/output can be selected to occur synchronously with the
rising or the falling edge of the transfer clock.
• LSB first, MSB first selection
Whether transmitting or receiving data begins with bit 0 or begins with bit 7
can be selected.
• Continuous receive mode selection
Receive is enabled immediately by reading the U0RB register.
NOTES:
1. If an external clock is selected, ensure that the external clock is “H” when the CKPOL bit in the
U0C0 register is set to 0 (transmit data output at falling edge and receive data input at rising edge of
transfer clock), and that the external clock is “L” when the CKPOL bit is set to 1 (transmit data output
at rising edge and receive data input at falling edge of transfer clock).
2. If an overrun error occurs, the receive data (b0 to b8) of the U0RB register will be undefined. The IR
bit in the S0RIC register remains unchanged.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 213 of 332
R8C/2E Group, R8C/2F Group
Table 15.2
15. Serial Interface
Registers Used and Settings in Clock Synchronous Serial I/O Mode(1)
Register
U0TB
U0RB
Bit
0 to 7
0 to 7
OER
0 to 7
SMD2 to SMD0
CKDIR
CLK1 to CLK0
TXEPT
NCH
CKPOL
UFORM
TE
TI
RE
RI
U0IRS
U0RRM
U0BRG
U0MR
U0C0
U0C1
Function
Set data transmission
Data reception can be read
Overrun error flag
Set bit rate
Set to 001b
Select the internal clock or external clock
Select the count source in the U0BRG register
Transmit register empty flag
Select TXD0 pin output mode
Select the transfer clock polarity
Select the LSB first or MSB first
Set this bit to 1 to enable transmission/reception
Transmit buffer empty flag
Set this bit to 1 to enable reception
Reception complete flag
Select the UART0 transmit interrupt source
Set this bit to 1 to use continuous receive mode
NOTE:
1. Set bits which are not in this table to 0 when writing to the above registers in clock synchronous
serial I/O mode.
Table 15.3 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode. The TXD0 pin outputs “H” level
between the operating mode selection of UART0 and transfer start. (If the NCH bit is set to 1 (N-channel opendrain output), this pin is in a high-impedance state.)
Table 15.3
I/O Pin Functions in Clock Synchronous Serial I/O Mode
Pin Name
TXD0 (P1_4)
RXD0 (P1_5)
Function
Output serial data
Input serial data
CLK0 (P1_6)
Output transfer clock
Input transfer clock
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 214 of 332
Selection Method
(Outputs dummy data when performing reception only)
PD1_5 bit in PD1 register = 0
(P1_5 can be used as an input port when performing
transmission only)
CKDIR bit in U0MR register = 0
CKDIR bit in U0MR register = 1
PD1_6 bit in PD1 register = 0
R8C/2E Group, R8C/2F Group
15. Serial Interface
• Example of transmit timing (when internal clock is selected)
TC
Transfer clock
TE bit in U0C1
register
1
0
TI bit in U0C1
register
1
0
Set data in U0TB register
Transfer from U0TB register to UART0 transmit register
TCLK
Stop pulsing because the TE bit is set to 0
CLK0
D0
TXD0
TXEPT bit in
U0C0 register
1
0
IR bit in S0TIC
register
1
0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
Set to 0 when interrupt request is acknowledged, or set by a program
TC = TCLK = 2(n+1)/fi
fi: Frequency of U0BRG count source (f1, f8, f32)
n: Setting value to U0BRG register
The above applies under the following settings:
• CKDIR bit in U0MR register = 0 (internal clock)
• CKPOL bit in U0C0 register = 0 (output transmit data at the falling edge and input receive data at the rising edge of the transfer clock)
• U0IRS bit in U0C1 register = 0 (an interrupt request is generated when the transmit buffer is empty)
• Example of receive timing (when external clock is selected)
RE bit in U0C1
register
1
0
TE bit in U0C1
register
1
0
TI bit in U0C1
register
1
0
Write dummy data to U0TB register
Transfer from U0TB register to UART0 transmit register
1/fEXT
CLK0
Receive data is taken in
D0
RXD0
RI bit in U0C1
register
1
0
IR bit in S0RIC
register
1
0
D1
D2
D3
D4
D5
D6
D7
D0
D1
Transfer from UART0 receive register to
U0RB register
D2
D3
D4
D5
Read out from U0RB register
Set to 0 when interrupt request is acknowledged, or set by a program
The above applies under the following settings:
• CKDIR bit in U0MR register = 1 (external clock)
• CKPOL bit in U0C0 register = 0 (output transmit data at the falling edge and input receive data at the rising edge of the transfer clock)
The following conditions are met when “H” is applied to the CLK0 pin before receiving data:
• TE bit in U0C1 register = 1 (enables transmit)
• RE bit in U0C1 register = 1 (enables receive)
• Write dummy data to the U0TB register
fEXT: Frequency of external clock
Figure 15.8
Transmit and Receive Timing Example in Clock Synchronous Serial I/O Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 215 of 332
R8C/2E Group, R8C/2F Group
15.1.1
15. Serial Interface
Polarity Select Function
Figure 15.9 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the transfer
clock polarity.
• When the CKPOL bit in the U0C0 register = 0 (output transmit data at the falling
edge and input receive data at the rising edge of the transfer clock)
CLK0(1)
TXD0
D0
D1
D2
D3
D4
D5
D6
D7
RXD0
D0
D1
D2
D3
D4
D5
D6
D7
• When the CKPOL bit in the U0C0 register = 1 (output transmit data at the rising
edge and input receive data at the falling edge of the transfer clock)
CLK0(2)
TXD0
D0
D1
D2
D3
D4
D5
D6
D7
RXD0
D0
D1
D2
D3
D4
D5
D6
D7
NOTES:
1. When not transferring, the CLK0 pin level is “H”.
2. When not transferring, the CLK0 pin level is “L”.
Figure 15.9
15.1.2
Transfer Clock Polarity
LSB First/MSB First Select Function
Figure 15.10 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the transfer format.
• When UFORM bit in U0C0 register = 0 (LSB first)(1)
CLK0
TXD0
D0
D1
D2
D3
D4
D5
D6
D7
RXD0
D0
D1
D2
D3
D4
D5
D6
D7
• When UFORM bit in U0C0 register = 1 (MSB first)(1)
CLK0
TXD0
D7
D6
D5
D4
D3
D2
D1
D0
RXD0
D7
D6
D5
D4
D3
D2
D1
D0
NOTE:
1. The above applies when the CKPOL bit in the U0C0 register is
set to 0 (output transmit data at the falling edge and input receive
data at the rising edge of the transfer clock).
Figure 15.10
Transfer Format
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 216 of 332
R8C/2E Group, R8C/2F Group
15.1.3
15. Serial Interface
Continuous Receive Mode
Continuous receive mode is selected by setting the U0RRM bit in the U0C1 register to 1 (enables continuous
receive mode). In this mode, reading the U0RB register sets the TI bit in the U0C1 register to 0 (data in the
U0TB register). When the U0RRM bit is set to 1, do not write dummy data to the U0TB register by a program.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 217 of 332
R8C/2E Group, R8C/2F Group
15.2
15. Serial Interface
Clock Asynchronous Serial I/O (UART) Mode
The UART mode allows data transmission and reception after setting the desired bit rate and transfer data format.
Table 15.4 lists the Specifications of UART Mode. Table 15.5 lists the Registers Used and Settings for UART
Mode.
Table 15.4
Specifications of UART Mode
Item
Transfer data formats
Transfer clocks
Transmit start conditions
Receive start conditions
Interrupt request
generation timing
Error detection
Specification
• Character bit (transfer data): Selectable among 7, 8 or 9 bits
• Start bit: 1 bit
• Parity bit: Selectable among odd, even, or none
• Stop bit: Selectable among 1 or 2 bits
• CKDIR bit in U0MR register is set to 0 (internal clock): fj/(16(n+1))
fj = f1, f8, f32 n = value set in U0BRG register: 00h to FFh
• CKDIR bit is set to 1 (external clock): fEXT/(16(n+1))
fEXT: Input from CLK0 pin, n = value set in U0BRG register: 00h to FFh
• Before transmission starts, the following are required
- TE bit in U0C1 register is set to 1 (transmission enabled)
- TI bit in U0C1 register is set to 0 (data in U0TB register)
• Before reception starts, the following are required
- RE bit in U0C1 register is set to 1 (reception enabled)
- Start bit detected
• When transmitting, one of the following conditions can be selected
- U0IRS bit is set to 0 (transmit buffer empty):
When transferring data from the U0TB register to UART0 transmit
register (when transmit starts).
- U0IRS bit is set to 1 (transfer ends):
When serial interfac.e completes transmitting data from the UART0
transmit register
• When receiving
When transferring data from the UART0 receive register to U0RB register
(when receive ends).
• Overrun error(1)
This error occurs if the serial interface starts receiving the next data item
before reading the U0RB register and receive the bit preceding the final
stop bit of the next data item.
• Framing error
This error occurs when the set number of stop bits is not detected.
• Parity error
This error occurs when parity is enabled, and the number of 1’s in parity
and character bits do not match the number of 1’s set.
• Error sum flag
This flag is set is set to 1 when an overrun, framing, or parity error is
generated.
NOTE:
1. If an overrun error occurs, the receive data (b0 to b8) of the U0RB register will be undefined. The IR
bit in the S0RIC register remains unchanged.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 218 of 332
R8C/2E Group, R8C/2F Group
Table 15.5
15. Serial Interface
Registers Used and Settings for UART Mode
Register
U0TB
0 to 8
Set transmit
U0RB
0 to 8
U0BRG
U0MR
OER,FER,PER,SUM
0 to 7
SMD2 to SMD0
Receive data can be read(1, 2)
Error flag
Set a bit rate
Set to 100b when transfer data is 7 bits long.
Set to 101b when transfer data is 8 bits long.
Set to 110b when transfer data is 9 bits long.
Select the internal clock or external clock
Select the stop bit
Select whether parity is included and whether odd or even
Select the count source for the U0BRG register
Transmit register empty flag
Select TXD0 pin output mode
Set to 0
LSB first or MSB first can be selected when transfer data is 8 bits
long. Set to 0 when transfer data is 7 or 9 bits long.
Set to 1 to enable transmit
Transmit buffer empty flag
Set to 1 to enable receive
Receive complete flag
Select the factor of UART0 transmit interrupt
Set to 0
U0C0
U0C1
Bit
CKDIR
STPS
PRY, PRYE
CLK0, CLK1
TXEPT
NCH
CKPOL
UFORM
TE
TI
RE
RI
U0IRS
U0RRM
Function
data(1)
NOTES:
1. The bits used for transmit/receive data are as follows: Bits 0 to 6 when transfer data is 7 bits long;
bits 0 to 7 when transfer data is 8 bits long; bits 0 to 8 when transfer data is 9 bits long.
2. The following bits are undefined: Bits 7 and 8 when transfer data is 7 bits long; bit 8 when transfer
data is 8 bits long.
Table 15.6 lists the I/O Pin Functions in UART Mode. After the UART0 operating mode is selected, the TXD0 pin
outputs “H” level (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in a high-impedance state)
until transfer starts.
Table 15.6
I/O Pin Functions in UART Mode
Pin name
Function
TXD0 (P1_4) Output serial data
RXD0 (P1_5) Input serial data
Selection Method
(Cannot be used as a port when performing reception only)
PD1_5 bit in PD1 register = 0
(P1_5 can be used as an input port when performing
transmission only)
CLK0 (P1_6) Programmable I/O Port CKDIR bit in U0MR register = 0
Input transfer clock
CKDIR bit in U0MR register = 1
PD1_6 bit in PD1 register = 0
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 219 of 332
R8C/2E Group, R8C/2F Group
15. Serial Interface
• Transmit timing when transfer data is 8 bits long (parity enabled, 1 stop bit)
TC
Transfer clock
TE bit in U0C1
register
1
0
TI bit in U0C1
register
1
0
Write data to U0TB register
Stop pulsing
because the TE bit is set to 0
Transfer from U0TB register to UART0 transmit register
Start
bit
TXD0
ST
TXEPT bit
U0C0 register
1
0
IR bit in
S0TIC register
1
0
Parity Stop
bit
bit
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
ST
D0
D1
Set to 0 when interrupt request is acknowledged, or set by a program
TC=16 (n + 1) / fj or 16 (n + 1) / fEXT
The above timing diagram applies under the following conditions:
• PRYE bit in U0MR register = 1 (parity enabled)
fj: Frequency of U0BRG count source (f1, f8, f32)
• STPS bit in U0MR register = 0 (1 stop bit)
fEXT: Frequency of U0BRG count source (external clock)
• U0IRS bit in U0C1 register = 1 (an interrupt request is generated when transmit completes)
n: Setting value to U0BRG register
• Transmit timing when transfer data is 9 bits long (parity disabled, 2 stop bits)
TC
Transfer clock
TE bit in U0C1
register
1
0
TI bit in U0C1
register
1
0
Write data to U0TB register
Transfer from U0TB register to UART0 transmit register
Stop Stop
bit
bit
Start
bit
TXD0
ST
TXEPT bit in
U0C0 register
1
0
IR bit in
S0TIC register
1
0
D0
D1
D2
D3
D4
D5
D6
D7
D8
SP SP
ST
D0
D1
D2
D3
D4
D5
D6
D7
D8
SP SP
ST
D0
Set to 0 when interrupt request is acknowledged, or set by a program
The above timing diagram applies under the following conditions:
TC=16 (n + 1) / fj or 16 (n + 1) / fEXT
• PRYE bit in U0MR register = 0 (parity disabled)
fj: Frequency of U0BRG count source (f1, f8, f32)
• STPS bit in U0MR register = 1 (2 stop bits)
fEXT: Frequency of U0BRG count source (external clock)
• U0IRS bit in U0C1 register = 0 (an interrupt request is generated when transmit buffer is empty)
n: Setting value to U0BRG register
Figure 15.11
Transmit Timing in UART Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 220 of 332
D1
R8C/2E Group, R8C/2F Group
15. Serial Interface
• Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)
U0BRG output
RE bit in
U0C1 register
1
0
Stop bit
Start bit
RXD0
D0
D1
D7
Determined to be “L” Receive data taken in
Transfer clock
Reception triggered when transfer clock
is generated by falling edge of start bit
RI bit in
U0C1 register
1
0
IR bit in
S0RIC register
1
0
Transferred from UART0 receive
register to U0RB register
Set to 0 when interrupt request is accepted, or set by a program
The above timing diagram applies when the register bits are set as follows:
• PRYE bit in U0MR register = 0 (parity disabled)
• STPS bit in U0MR register = 0 (1 stop bit)
Figure 15.12
Receive Timing Example in UART Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 221 of 332
R8C/2E Group, R8C/2F Group
15.2.1
15. Serial Interface
Bit Rate
In UART mode, the bit rate is the frequency divided by the U0BRG register.
Figure 15.13 shows a Calculation Formula of U0BRG Register Setting Value. Table 15.7 lists the Bit Rate
Setting Example in UART Mode (Internal Clock Selected).
UART mode
• Internal clock selected
U0BRG register setting value =
fj
Bit Rate ×16
-1
fj: Count source frequency of the U0BRG register (f1, f8, or f32)
• External clock selected
U0BRG register setting value =
fEXT
Bit Rate ×16
-1
fEXT: Count source frequency of the U0BRG register (external clock)
Figure 15.13
Table 15.7
Bit Rate
(bps)
1200
2400
4800
9600
14400
19200
28800
31250
38400
51200
Calculation Formula of U0BRG Register Setting Value
Bit Rate Setting Example in UART Mode (Internal Clock Selected)
BRG
Count
Source
f8
f8
f8
f1
f1
f1
f1
f1
f1
f1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
System Clock = 20 MHz
System Clock = 8 MHz
U0BRG
Actual Time
U0BRG
Actual
Error (%)
Error (%)
Setting Value
(bps)
Setting Value Time (bps)
129 (81h)
1201.92
0.16
51 (33h)
1201.92
0.16
64 (40h)
2403.85
0.16
25 (19h)
2403.85
0.16
32 (20h)
4734.85
-1.36
12 (0Ch)
4807.69
0.16
129 (81h)
9615.38
0.16
51 (33h)
9615.38
0.16
86 (56h)
14367.82
-0.22
34 (22h)
14285.71
-0.79
64 (40h)
19230.77
0.16
25 (19h)
19230.77
0.16
42 (2Ah)
29069.77
0.94
16 (10h)
29411.76
2.12
39 (27h)
31250.00
0.00
15 (0Fh)
31250.00
0.00
32 (20h)
37878.79
-1.36
12 (0Ch)
38461.54
0.16
23 (17h)
52083.33
1.73
9 (09h)
50000.00
-2.34
Page 222 of 332
R8C/2E Group, R8C/2F Group
15.3
15. Serial Interface
Notes on Serial Interface
• When reading data from the U0RB register either in the clock synchronous serial I/O mode or in the clock
asynchronous serial I/O mode, ensure the data is read in 16-bit units. When the high-order byte of the U0RB
register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0.
The check receive errors, read the U0RB register and then use the read data.
Example (when reading receive buffer register):
MOV.W
00A6H,R0
; Read the U0RB register
• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data
length, write data to the high-order byte first then the low-order byte, in 8-bit units.
Example (when reading transmit buffer register):
MOV.B
#XXH,00A3H ; Write the high-order byte of U0TB register
MOV.B
#XXH,00A2H ; Write the low-order byte of U0TB register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 223 of 332
R8C/2E Group, R8C/2F Group
16. Hardware LIN
16. Hardware LIN
The hardware LIN performs LIN communication in cooperation with timer RA and UART0.
16.1
Features
The hardware LIN has the features listed below.
Figure 16.1 shows a Block Diagram of Hardware LIN.
Master mode
• Generates Synch Break
• Detects bus collision
Slave mode
• Detects Synch Break
• Measures Synch Field
• Controls Synch Break and Synch Field signal inputs to UART0
• Detects bus collision
NOTE:
1. The WakeUp function is detected by INT1.
Hardware LIN
Synch Field
control
circuit
RXD0 pin
Timer RA
TIOSEL = 0
RXD data
LSTART bit
SBE bit
LINE bit
RXD0 input
control
circuit
Timer RA
underflow signal
TIOSEL = 1
Bus collision
detection
circuit
Timer RA
interrupt
Interrupt
control
circuit
UART0
Bits BCIE,
SBIE, and SFIE
UART0 transfer clock
UART0 TE bit
Timer RA output pulse
MST bit
UART0 TXD data
TXD0 pin
LINE, MST, SBE, LSTART, BCIE, SBIE, SFIE: Bits in LINCR register
TIOSEL: Bit in TRAIOC register
TE: Bit in U0C1 register
Figure 16.1
Block Diagram of Hardware LIN
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 224 of 332
R8C/2E Group, R8C/2F Group
16.2
16. Hardware LIN
Input/Output Pins
The pin configuration of the hardware LIN is listed in Table 16.1.
Table 16.1
Pin Configuration
Name
Receive data input
Transmit data output
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Abbreviation Input/Output
Function
RXD0
Input
Receive data input pin of the hardware LIN
TXD0
Output
Transmit data output pin of the hardware LIN
Page 225 of 332
R8C/2E Group, R8C/2F Group
16.3
16. Hardware LIN
Register Configuration
The hardware LIN contains the registers listed below.
These registers are detailed in Figures 16.2 and 16.3.
• LIN Control Register (LINCR)
• LIN Status Register (LINST)
LIN Control Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
LINCR
Bit Symbol
SFIE
Address
0106h
Bit Name
Synch Field measurementcompleted interrupt enable bit
After Reset
00h
Function
0 : Disables Synch Field measurementcompleted interrupt
1 : Enables Synch Field measurementcompleted interrupt
RW
RW
SBIE
Synch Break detection interrupt 0 : Disables Synch Break detection interrupt
1 : Enables Synch Break detection interrupt
enable bit
RW
BCIE
Bus collision detection interrupt 0 : Disables bus collision detection interrupt
1 : Enables bus collision detection interrupt
enable bit
RW
RXDSF
LSTART
SBE
RXD0 input status flag
RO
Synch Break detection start bit(1) When this bit is set to 1, timer RA input is
enabled and RXD0 input is disabled.
When read, the content is 0.
RW
0 : Unmasked after Synch Break is detected
RXD0 input unmasking timing
select bit (effective only in slave 1 : Unmasked after Synch Field measurement
is completed
mode)
RW
LIN operation mode setting bit(2)
MST
LINE
0 : RXD0 input enabled
1 : RXD0 input disabled
LIN operation start bit
0 : Slave mode
(Synch Break detection circuit actuated)
1 : Master mode
(timer RA output OR’ed w ith TXD0)
RW
0 : Causes LIN to stop
1 : Causes LIN to start operating(3)
RW
NOTES:
1. After setting the LSTART bit, confirm that the RXDSF flag is set to 1 before Synch Break input starts.
2. Before changing LIN operation modes, temporarily stop the LIN operation (LINE bit = 0).
3. Inputs to timer RA and UART0 are prohibited immediately after this bit is set to 1. (Refer to Figure 16.5 Exam ple of
Header Field Transm ission Flow chart (1) and Figure 16.9 Exam ple of Header Field Reception Flow chart
(2).)
Figure 16.2
LINCR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 226 of 332
R8C/2E Group, R8C/2F Group
16. Hardware LIN
LIN Status Register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
LINST
Bit Symbol
SFDCT
SBDCT
BCDCT
B0CLR
B1CLR
B2CLR
—
(b7-b6)
Figure 16.3
Address
0107h
Bit Name
Synch Field measurementcompleted flag
After Reset
00h
Function
1 show s Synch Field measurement completed.
Synch Break detection flag
1 show s Synch Break detected or Synch Break
generation completed.
Bus collision detection flag
1 show s Bus collision detected.
SFDCT bit clear bit
When this bit is set to 1, the SFDCT bit is set to 0.
When read, the content is 0.
RW
SBDCT bit clear bit
When this bit is set to 1, the SBDCT bit is set to 0.
When read, the content is 0.
RW
BCDCT bit clear bit
When this bit is set to 1, the BCDCT bit is set to 0.
When read, the content is 0.
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
LINST Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 227 of 332
RW
RO
RO
RO
—
R8C/2E Group, R8C/2F Group
16.4
16. Hardware LIN
Functional Description
16.4.1
Master Mode
Figure 16.4 shows typical operation of the hardware LIN when transmitting a header field in master mode.
Figures 16.5 and 16.6 show an Example of Header Field Transmission Flowchart.
When transmitting a header field, the hardware LIN operates as described below.
(1) When the TSTART bit in the TRACR register for timer RA is set by writing 1 in software, the hardware
LIN outputs “L” level from the TXD0 pin for the period that is set in registers TRAPRE and TRA for
timer RA.
(2) When timer RA underflows upon reaching the terminal count, the hardware LIN reverses the output of
the TXD0 pin and sets the SBDCT flag in the LINST register to 1. Furthermore, if the SBIE bit in the
LINCR register is set to 1, it generates a timer RA interrupt.
(3) The hardware LIN transmits 55h via UART0.
(4) The hardware LIN transmits an ID field via UART0 after it finishes sending 55h.
(5) The hardware LIN performs communication for a response field after it finishes sending the ID field.
Synch Field
Synch Break
TXD0 pin
SBDCT flag in
LINST register
IR bit in
TRAIC register
1
0
Set by writing 1 to the
B1CLR bit in the LINST
register
1
0
Cleared to 0 upon
acceptance of interrupt
request or by a program
1
0
(1)
(2)
(3)
The above applies under the following conditions.
LINE = 1, MST = 1, SBIE = 1
LINE, MST, SBIE: Bits in LINCR register
Figure 16.4
IDENTIFIER
Typical Operation when Sending a Header Field
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 228 of 332
(4)
(5)
R8C/2E Group, R8C/2F Group
16. Hardware LIN
Timer RA Set to timer mode
Bits TMOD0 to TMOD2 in TRAMR register ← 000b
Timer RA Set the pulse output level from low to start
TEDGSEL bit in TRAIOC register ← 1
Timer RA Set the INT1/TRAIO pin to P1_5
TIOSEL bit in TRAIOC register ← 1
Timer RA Set the count source (f1, f2, f8, fOCO)
Bits TCK0 to TCK2 in TRAMR register
Timer RA Set the Synch Break width
TRAPRE register
TRA register
UART0
Set to transmit/receive mode
(Transfer data length: 8 bits, Internal clock, 1 stop bit,
Parity disabled)
U0MR register
UART0
Set the BRG count source (f1, f8, f32)
Bits CLK0 to CLK2 in U0C0 register
UART0
Set the bit rate
U0BRG register
For the hardware LIN
function, set the TIOSEL bit
in the TRAIOC register to 1.
Set the count source and
registers TRA and TRAPRE
as suitable for the Synch
Break period.
Set the BRG count source
and U0BRG register as
appropriate for the bit rate.
Hardware LIN Set the LIN operation to stop
LINCR register LINE bit ← 0
Hardware LIN Set to master mode
MST bit in LINCR register ← 1
Hardware LIN Set the LIN operation to start
LINE bit in LINCR register ← 1
Hardware LIN Set the register to enable interrupts
(Bus collision detection, Synch Break detection,
Synch Field measurement)
Bits BCIE, SBIE, SFIE in LINCR register
Hardware LIN Clear the status flags
(Bus collision detection, Synch Break detection,
Synch Field measurement)
Bits B2CLR, B1CLR, B0CLR in LINST register ← 1
A
Figure 16.5
Example of Header Field Transmission Flowchart (1)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 229 of 332
During master mode, the
Synch Field measurementcompleted interrupt cannot be
used.
R8C/2E Group, R8C/2F Group
16. Hardware LIN
A
Timer RA Set the timer to start counting
TSTART bit in TRACR register ← 1
Timer RA Read the count status flag
TCSTF flag in TRACR register
TCSTF = 1 ?
NO
YES
Hardware LIN Read the Synch Break detection flag
SBDCT flag in LINST register
SBDCT = 1 ?
NO
YES
Timer RA Set the timer to stop counting
TSTART bit in TRACR register ← 0
Timer RA Read the count status flag
TCSTF flag in TRACR register
TCSTF = 0 ?
NO
YES
UART0 Communication via UART0
TE bit in U0C1 register ← 1
U0TB register ← 0055h
UART0 Communication via UART0
U0TB register ← ID field
Figure 16.6
Timer RA generates Synch Break.
If registers TRAPRE and TRA for
timer RA do not need to be read or
the register settings do not need to be
changed after writing 1 to the
TSTART bit, the procedure for reading
TCSTF flag = 1 can be omitted.
Zero to one cycle of the timer RA
count source is required after timer
RA starts counting before the TCSTF
flag is set to 1.
The timer RA interrupt may be used
to terminate generation of Synch
Break.
Three to five cycles of the CPU clock
are required after Synch Break
generation completes before the
SBDCT flag is set to 1.
After timer RA Synch Break is
generated, the timer should be made
to stop counting.
If registers TRAPRE and TRA for timer
RA do not need to be read or the
register settings do not need to be
changed after writing 0 to the TSTART
bit, the procedure for reading TCSTF
flag = 0 can be omitted.
Zero to one cycle of the timer RA count
source is required after timer RA stops
counting before the TCSTF flag is set
to 0.
Transmit the Synch Field.
Transmit the ID field.
Example of Header Field Transmission Flowchart (2)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 230 of 332
R8C/2E Group, R8C/2F Group
16.4.2
16. Hardware LIN
Slave Mode
Figure 16.7 shows typical operation of the hardware LIN when receiving a header field in slave mode. Figure
16.8 through Figure 16.10 show an Example of Header Field Transmission Flowchart.
When receiving a header field, the hardware LIN operates as described below.
(1) Synch Break detection is enabled by writing 1 to the LSTART bit in the LINCR register of the hardware
LIN.
(2) When “L” level is input for a duration equal to or greater than the period set in timer RA, the hardware
LIN detects it as Synch Break. At this time, the SBDCT flag in the LINST register is set to 1.
Furthermore, if the SBIE bit in the LINCR register is set to 1, the hardware LIN generates a timer RA
interrupt. Then it goes to Synch Field measurement.
(3) The hardware LIN receives a Synch Field (55h). At this time, it measures the period of the start bit and
bits 0 to 6 by using timer RA. In this case, it is possible to select whether to input the Synch Field signal
to RXD0 of UART0 by setting the SBE bit in the LINCR register accordingly.
(4) The hardware LIN sets the SFDCT flag in the LINST register to 1 when it finishes measuring the Synch
Field. Furthermore, if the SFIE bit in the LINCR register is set to 1, it generates a timer RA interrupt.
(5) After it finishes measuring the Synch Field, calculate a transfer rate from the count value of timer RA
and set to UART0 and registers TRAPRE and TRA of timer RA again. Then it receives an ID field via
UART0.
(6) The hardware LIN performs communication for a response field after it finishes receiving the ID field.
Synch Break
RXD0 pin
1
0
RXD0 input for
UART0
1
0
RXDSF flag in
LINCR register
SBDCT flag in
LINST register
Synch Field
IDENTIFIER
Set by writing 1 to
the LSTART bit in
the LINCR register
1
0
Cleared to 0 when Synch
Field measurement
finishes
Set by writing 1 to
the B1CLR bit in
the LINST register
1
0
Measure this period
SFDCT flag in
LINST register
1
0
IR bit in
TRAIC register
1
0
Cleared to 0 upon
acceptance of
interrupt request or
by a program
(1)
(2)
(3)
(4)
The above applies under the following conditions.
LINE = 1, MST = 0, SBE = 1, SBIE = 1, SFIE = 1
LINE, MST, SBE, SBIE, SFIE: Bits in LINCR register
Figure 16.7
Set by writing 1 to the
B0CLR bit in the LINST
register
Typical Operation when Receiving a Header Field
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 231 of 332
(5)
(6)
R8C/2E Group, R8C/2F Group
16. Hardware LIN
Timer RA Set to pulse width measurement mode
Bits TMOD0 to TMOD2 in the TRAMR register ← 011b
Timer RA Set the pulse width measurement level low
TEDGSEL bit in the TRAIOC register ← 0
Timer RA Set the INT1/TRAIO pin to P1_5
TIOSEL bit in the TRAIOC register ← 1
For the hardware LIN
function, set the TIOSEL bit
in the TRAIOC register to 1.
Timer RA Set the count source (f1, f2, f8, fOCO)
Bits TCK0 to TCK2 in the TRAMR register
Timer RA Set the Synch Break width
TRAPRE register
TRA register
Set the count source and registers
TRA and TRAPRE as appropriate
for the Synch Break period.
Hardware LIN Set the LIN operation to stop
LINE bit in the LINCR register ← 0
Hardware LIN Set to slave mode
MST bit in the LINCR register ← 0
Hardware LIN Set the LIN operation to start
LINE bit in the LINCR register ← 1
Hardware LIN Set the RXD0 input unmasking timing
(After Synch Break detection, or after Synch
Field measurement)
SBE bit in the LINCR register
Hardware LIN Set the register to enable interrupts
(Bus collision detection, Synch Break detection,
Synch Field measurement)
Bits BCIE, SBIE, SFIE in the LINCR register
A
Figure 16.8
Example of Header Field Reception Flowchart (1)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 232 of 332
Select the timing at which to
unmask the RXD0 input for UART0.
If the RXD0 input is chosen to be
unmasked after detection of Synch
Break, the Synch Field signal is
also input to UART0.
R8C/2E Group, R8C/2F Group
16. Hardware LIN
A
Hardware LIN Clear the status flags
(Bus collision detection, Synch Break
detection, Synch Field measurement)
Bits B2CLR, B1CLR, B0CLR in the LINST
register ← 1
Timer RA Set to start a pulse width measurement
TSTART bit in the TRACR register ← 1
Timer RA waits until the timer starts
counting.
Timer RA Read the count status flag
TCSTF flag in the TRACR register
TCSTF = 1 ?
NO
YES
Hardware LIN Set to start Synch Break detection
LSTART bit in the LINCR register ← 1
Hardware LIN Read the RXD0 input status flag
RXDSF flag in the LINCR register
RXDSF = 1 ?
NO
YES
Hardware LIN Read the Synch Break detection flag
SBDCT flag in the LINST register
SBDCT = 1 ?
YES
B
Figure 16.9
NO
Zero to one cycle of the timer RA
count source is required after timer
RA starts counting before the TCSTF
flag is set to 1.
Hardware LIN waits until the RXD0
input for UART0 is masked.
Do not apply “L” level to the RXD pin
until the RXDSF flag reads 1 after
writing 1 to the LSTART bit. This is
because the signal applied during this
time is input directly to UART0.
Three to five cycles of the CPU clock
are required after the LSTART bit is
set to 1 before the RXDSF flag is set
to 1. After this, input to timer RA and
UART0 is enabled.
Hardware LIN detects a Synch Break.
The interrupt of the timer RA may be
used.
When Synch Break is detected, timer
RA is reloaded with the initially set
count value.
Even if the duration of the input “L”
level is shorter than the set period,
timer RA is reloaded with the initially
set count value and waits until the
next “L” level is input.
Three to five cycles of the CPU clock
are required after Synch Break
detection before the SBDCT flag is
set to 1.
When the SBE bit in the LINCR
register is set to 0 (unmasked after
Synch Break is detected), timer RA
can be used in timer mode after the
SBDCT flag in the LINST register is
set to 1 and the RXDSF flag is set to
0.
Example of Header Field Reception Flowchart (2)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 233 of 332
R8C/2E Group, R8C/2F Group
16. Hardware LIN
B
YES
Hardware LIN Read the Synch Field measurementcompleted flag
SFDCT flag in the LINST register
SFDCT = 1 ?
NO
YES
UART0 Set the UART0 communication rate
U0BRG register
Timer RA Set the Synch Break width again
TRAPRE register
TRA register
UART0 Communication via UART0
Clock asynchronous serial interface (UART) mode
Transmit ID field
Figure 16.10
Example of Header Field Reception Flowchart (3)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 234 of 332
Hardware LIN measures the Synch
Field.
The interrupt of timer RA may be
used (the SBDCT flag is set when
the timer RA counter underflows
upon reaching the terminal count).
When the SBE bit in the LINCR
register is set to 1 (unmasked after
Synch Field measurement is
completed), timer RA may be used
in timer mode after the SFDCT bit
in the LINST register is set to 1.
Set a communication rate based on
the Synch Field measurement
result.
Communication via UART0
(The SBDCT flag is set when the
timer RA counter underflows upon
reaching the terminal count.)
R8C/2E Group, R8C/2F Group
16.4.3
16. Hardware LIN
Bus Collision Detection Function
The bus collision detection function can be used when UART0 is enabled for transmission (TE bit in the U0C1
register = 1).
Figure 16.11 shows Typical Operation when a Bus Collision is Detected.
TXD0 pin
1
0
RXD0 pin
1
0
Transfer clock
1
0
LINE bit in the
LINCR register
1
0
TE bit in the U0C1
register
1
0
Set to 1 by a program
Set to 1 by a program
BCDCT flag in the
LINST register
IR bit in the TRAIC
register
Figure 16.11
Set by writing 1 to
the B2CLR bit in the
LINST register
1
0
Cleared to 0 upon
acceptance of interrupt
request or by a program
1
0
Typical Operation when a Bus Collision is Detected
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 235 of 332
R8C/2E Group, R8C/2F Group
16.4.4
16. Hardware LIN
Hardware LIN End Processing
Figure 16.12 shows an Example of Hardware LIN Communication Completion Flowchart.
Use the following timing for hardware LIN end processing:
• If the hardware bus collision detection function is used
Perform hardware LIN end processing after checksum transmission completes.
• If the bus collision detection function is not used
Perform hardware LIN end processing after header field transmission and reception complete.
Timer RA
Timer RA
Set the timer to stop counting
TSTART bit in TRACR register ← 0
Read the count status flag
TCSTF flag in TRACR register
TCSTF = 0 ?
NO
Set the timer to stop counting.
Zero to one cycle of the timer RA
count source is required after timer
RA starts counting before the
TCSTF flag is set to 1.
YES
UART0 Complete transmission via UART0
Hardware LIN Clear the status flags
(Bus collision detection, Synch Break detection, Synch
Field measurement)
Bits B2CLR, B1CLR, B0CLR in the LINST register ← 1
When the bus collision detection
function is not used, end
processing for the UART0
transmission is not required.
After clearing hardware LIN
status flag, stop the hardware
LIN operation.
Hardware LIN Set the LIN operation to stop
LINE bit in the LINCR register ← 0
Figure 16.12
Example of Hardware LIN Communication Completion Flowchart
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 236 of 332
R8C/2E Group, R8C/2F Group
16.5
16. Hardware LIN
Interrupt Requests
There are four interrupt requests that are generated by the hardware LIN: Synch Break detection, Synch Break
generation completed, Synch Field measurement completed, and bus collision detection. These interrupts are
shared with timer RA.
Table 16.2 lists the Interrupt Requests of Hardware LIN.
Table 16.2
Interrupt Requests of Hardware LIN
Interrupt Request
Synch Break detection
Status Flag
SBDCT
Synch Break generation
completed
Synch Field measurement
completed
Bus collision detection
SFDCT
BCDCT
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 237 of 332
Cause of Interrupt
Generated when timer RA has underflowed after measuring
the “L” level duration of RXD0 input, or when a “L” level is
input for a duration longer than the Synch Break period during
communication.
Generated when “L” level output to TXD0 for the duration set
by timer RA completes.
Generated when measurement for 6 bits of the Synch Field by
timer RA is completed.
Generated when the RXD0 input and TXD0 output values
differed at data latch timing while UART0 is enabled for
transmission.
R8C/2E Group, R8C/2F Group
16.6
16. Hardware LIN
Notes on Hardware LIN
For the time-out processing of the header and response fields, use another timer to measure the duration of time
with a Synch Break detection interrupt as the starting point.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 238 of 332
R8C/2E Group, R8C/2F Group
17. A/D Converter
17. A/D Converter
The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive coupling
amplifier. The analog input shares pins P0_0 to P0_7, and P1_0 to P1_3. Therefore, when using these pins, ensure that
the corresponding port direction bits are set to 0 (input mode).
When not using the A/D converter, set the VCUT bit in the ADCON1 register to 0 (Vref unconnected) so that no
current will flow from the VREF pin into the resistor ladder. This helps to reduce the power consumption of the chip.
The result of A/D conversion is stored in the AD register.
Table 17.1 lists the Performance of A/D converter. Figure 17.1 shows a Block Diagram of A/D Converter.
Figures 17.2 and 17.3 show the A/D converter-related registers.
Table 17.1
Performance of A/D converter
Item
A/D conversion method
Performance
Successive approximation (with capacitive coupling amplifier)
0 V to AVCC
Analog input voltage(1)
4.2 V ≤ AVCC ≤ 5.5 V f1, f2, f4, fOCO-F
2.7 V ≤ AVCC < 4.2 V f2, f4, fOCO-F
8 bits or 10 bits selectable
AVCC = Vref = 5 V, φAD = 10 MHz
• 8-bit resolution ±2 LSB
• 10-bit resolution ±3 LSB
AVCC = Vref = 3.3 V, φAD = 10 MHz
• 8-bit resolution ±2 LSB
• 10-bit resolution ±5 LSB
Operating clock φAD(2)
Resolution
Absolute accuracy
Operating mode
Analog input pin
A/D conversion start condition
Conversion rate per pin
One-shot and repeat(3)
12 pins (AN0 to AN11)
Software trigger
Set the ADST bit in the ADCON0 register to 1 (A/D conversion starts)
• Without sample and hold function
8-bit resolution: 49φAD cycles, 10-bit resolution: 59φAD cycles
• With sample and hold function
8-bit resolution: 28φAD cycles, 10-bit resolution: 33φAD cycles
NOTES:
1. The analog input voltage does not depend on use of a sample and hold function.
When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh
in 10-bit mode and FFh in 8-bit mode.
2. When 2.7 V ≤ AVCC ≤ 5.5 V, the frequency of φAD must be 10 MHz or below.
Without a sample and hold function, the φAD frequency should be 250 kHz or above.
With a sample and hold function, the φAD frequency should be 1 MHz or above.
3. In repeat mode, only 8-bit mode can be used.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 239 of 332
R8C/2E Group, R8C/2F Group
17. A/D Converter
fOCO-F
f1
CKS0 = 1
A/D conversion rate selection
CKS1 = 1
CKS0 = 0
CKS0 = 1
φAD
f2
CKS1 = 0
f4
CKS0 = 0
VCUT = 0
AVSS
VCUT = 1
VREF
Resistor ladder
Successive conversion register
ADCON0
Vcom
AD register
Decoder
Comparator
VIN
Data bus
P0_7/AN0
P0_6/AN1
P0_5/AN2
P0_4/AN3
P0_3/AN4
P0_2/AN5
P0_1/AN6
P0_0/AN7
P1_0/AN8
P1_1/AN9
P1_2/AN10
P1_3/AN11
CH2 to CH0 = 000b
CH2 to CH0 = 001b
CH2 to CH0 = 010b
CH2 to CH0 = 011b
CH2 to CH0 = 100b
CH2 to CH0 = 101b
CH2 to CH0 = 110b
CH2 to CH0 = 111b
ADGSEL0 = 0
CH2 to CH0 = 100b
CH2 to CH0 = 101b
CH2 to CH0 = 110b
CH2 to CH0 = 111b
CH0 to CH2, ADGSEL0, CKS0: Bits in ADCON0 register
CKS1, VCUT: Bits in ADCON1 register
Figure 17.1
Block Diagram of A/D Converter
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 240 of 332
ADGSEL0 = 1
R8C/2E Group, R8C/2F Group
17. A/D Converter
A/D Control Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
ADCON0
Bit Symbol
CH0
Address
00D6h
Bit Name
Analog input pin select bits (Note 4)
After Reset
00h
Function
RW
CH2
RW
ADGSEL0
—
(b5)
ADST
A/D operating mode select 0 : One-shot mode
bit(2)
1 : Repeat mode
RW
A/D input group select bit(4) 0 : Selects port P0 group (AN0 to AN7)
1 : Selects port P1 group (AN8 to AN11)
RW
Reserved bit
Set to 0.
A/D conversion start flag
0 : Stops A/D conversion
1 : Starts A/D conversion
RW
Frequency select bit 0
[When CKS1 in ADCON1 register = 0]
0 : Select f4
1 : Select f2
[When CKS1 in ADCON1 register = 1]
0 : Select f1(3)
1 : Select fOCO-F
RW
CKS0
NOTES:
1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.
2. When changing A/D operation mode, set the analog input pin again.
3. Set øAD frequency to 10 MHz or below .
4. The analog input pin can be selected according to a combination of bits CH0 to CH2 and the ADGSEL0 bit.
CH2 to CH0 ADGSEL0 = 0
ADGSEL0 = 1
000b
Do not set.
AN0
001b
AN1
010b
AN2
011b
AN3
100b
AN4
AN8
101b
AN5
AN9
110b
AN6
AN10
111b
AN7
AN11
ADCON0 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
CH1
MD
Figure 17.2
RW
Page 241 of 332
RW
R8C/2E Group, R8C/2F Group
17. A/D Converter
A/D Control Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0
0 0 0
Symbol
Address
00D7h
ADCON1
Bit Symbol
Bit Name
Reserved bits
—
(b2-b0)
BITS
CKS1
VCUT
—
(b6-b7)
After Reset
00h
Function
RW
Set to 0.
RW
8/10-bit mode select bit(2)
0 : 8-bit mode
1 : 10-bit mode
RW
Frequency select bit 1
Refer to the description of the CKS0 bit in the
ADCON0 register function.
RW
VREF connect bit(3)
0 : VREF not connected
1 : VREF connected
RW
Reserved bits
Set to 0.
RW
NOTES:
1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is undefined.
2. Set the BITS bit to 0 (8-bit mode) in repeat mode.
3. When the VCUT bit is set to 1 (connected) from 0 (not connected), w ait for 1 µs or more before starting
A/D conversion.
A/D Control Register 2(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0
Symbol
ADCON2
Bit Symbol
Address
00D4h
Bit Name
A/D conversion method select bit
After Reset
00h
Function
0 : Without sample and hold
1 : With sample and hold
—
(b3-b1)
Reserved bits
Set to 0.
—
(b7-b4)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
SMP
RW
RW
RW
—
NOTE:
1. If the ADCON2 register is rew ritten during A/D conversion, the conversion result is undefined.
A/D Register
(b15)
b7
(b8)
b0 b7
b0
Symbol
AD
Address
00C1h-00C0h
After Reset
Undefined
Function
When BITS bit in ADCON1 register is
set to 1 (10-bit mode).
8 low -order bits in A/D conversion result
2 high-order bits in A/D conversion result
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
Figure 17.3
Registers ADCON1, ADCON2, and AD
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 242 of 332
When BITS bit in ADCON1 register is
set to 0 (8-bit mode).
A/D conversion result
When read, the content is undefined.
RW
RO
RO
—
R8C/2E Group, R8C/2F Group
17.1
17. A/D Converter
One-Shot Mode
In one-shot mode, the input voltage of one selected pin is A/D converted once.
Table 17.2 lists the Specification of One-Shot Mode. Figure 17.4 shows the ADCON0 Register in One-Shot Mode
and Figure 17.5 shows the ADCON1 Register in One-Shot Mode.
Table 17.2
Specification of One-Shot Mode
Item
Specification
Function
The input voltage of one pin selected by bits CH2 to CH0 and ADGSEL0 is
A/D converted once
Start condition
Set the ADST bit to 1 (A/D conversion starts)
Stop condition
• A/D conversion completes (ADST bit is set to 0)
• Set the ADST bit to 0
Interrupt request generation A/D conversion completes
timing
Input pin
Select one of AN0 to AN11
Reading of A/D conversion Read AD register
result
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 243 of 332
R8C/2E Group, R8C/2F Group
17. A/D Converter
A/D Control Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
0
0
Symbol
ADCON0
Bit Symbol
CH0
Address
00D6h
Bit Name
Analog input pin select bits (Note 4)
After Reset
00h
Function
RW
CH2
RW
ADGSEL0
—
(b5)
ADST
A/D operating mode select 0 : One-shot mode
bit(2)
RW
A/D input group select bit(4) 0 : Selects port P0 group (AN0 to AN7)
1 : Selects port P1 group (AN8 to AN11)
RW
Reserved bit
Set to 0.
A/D conversion start flag
0 : Stops A/D conversion
1 : Starts A/D conversion
RW
Frequency select bit 0
[When CKS1 in ADCON1 register = 0]
0 : Select f4
1 : Select f2
[When CKS1 in ADCON1 register = 1]
0 : Select f1(3)
1 : Select fOCO-F
RW
CKS0
NOTES:
1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.
2. After changing the A/D operating mode, select the analog input pin again.
3. Set øAD frequency to 10 MHz or below .
4. The analog input pin can be selected according to a combination of bits CH0 to CH2 and the ADGSEL0 bit.
CH2 to CH0 ADGSEL0 = 0
ADGSEL0 = 1
000b
Do not set.
AN0
001b
AN1
010b
AN2
011b
AN3
100b
AN4
AN8
101b
AN5
AN9
110b
AN6
AN10
111b
AN7
AN11
ADCON0 Register in One-Shot Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
CH1
MD
Figure 17.4
RW
Page 244 of 332
RW
R8C/2E Group, R8C/2F Group
17. A/D Converter
A/D Control Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 1
0 0 0
Symbol
Address
00D7h
ADCON1
Bit Symbol
Bit Name
Reserved bits
—
(b2-b0)
BITS
CKS1
VCUT
—
(b6-b7)
After Reset
00h
Function
Set to 0.
0 : 8-bit mode
1 : 10-bit mode
RW
Frequency select bit 1
Refer to the description of the CKS0 bit in the
ADCON0 register function.
RW
VREF connect bit(2)
1 : VREF connected
Reserved bits
Set to 0.
ADCON1 Register in One-Shot Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
8/10-bit mode select bit
NOTES:
1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is undefined.
2. When the VCUT bit is set to 1 (connected) from 0 (not connected), w ait for 1 µs or more before starting
A/D conversion.
Figure 17.5
RW
Page 245 of 332
RW
RW
R8C/2E Group, R8C/2F Group
17.2
17. A/D Converter
Repeat Mode
In repeat mode, the input voltage of one selected pin is A/D converted repeatedly.
Table 17.3 lists the Repeat Mode Specifications. Figure 17.6 shows the ADCON0 Register in Repeat Mode and
Figure 17.7 shows ADCON1 Register in Repeat Mode.
Table 17.3
Repeat Mode Specifications
Item
Specification
Function
The Input voltage of one pin selected by bits CH2 to CH0 and ADGSEL0 is
A/D converted repeatedly
Start conditions
Set the ADST bit to 1 (A/D conversion starts)
Stop condition
Set the ADST bit to 0
Interrupt request generation Not generated
timing
Input pin
Select one of AN0 to AN11
Reading of result of A/D
Read AD register
converter
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 246 of 332
R8C/2E Group, R8C/2F Group
17. A/D Converter
A/D Control Register 0(1)
b7 b6 b5 b4 b3 b2 b1 b0
0
1
Symbol
ADCON0
Bit Symbol
CH0
Address
00D6h
Bit Name
Analog input pin select bits (Note 4)
After Reset
00h
Function
RW
CH2
RW
ADGSEL0
—
(b5)
ADST
A/D operating mode select 1 : Repeat mode
bit(2)
RW
A/D input group select bit(4) 0 : Selects port P0 group (AN0 to AN7)
1 : Selects port P1 group (AN8 to AN11)
RW
Reserved bit
Set to 0.
A/D conversion start flag
0 : Stops A/D conversion
1 : Starts A/D conversion
RW
Frequency select bit 0
[When CKS1 in ADCON1 register = 0]
0 : Select f4
1 : Select f2
[When CKS1 in ADCON1 register = 1]
0 : Select f1(3)
1 : Do not set.
RW
CKS0
NOTES:
1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.
2. After changing A/D operation mode, select the analog input pin again.
3. Set øAD frequency to 10 MHz or below .
4. The analog input pin can be selected according to a combination of bits CH0 to CH2 and the ADGSEL0 bit.
CH2 to CH0 ADGSEL0 = 0
ADGSEL0 = 1
000b
Do not set.
AN0
001b
AN1
010b
AN2
011b
AN3
100b
AN4
AN8
101b
AN5
AN9
110b
AN6
AN10
111b
AN7
AN11
ADCON0 Register in Repeat Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
CH1
MD
Figure 17.6
RW
Page 247 of 332
RW
R8C/2E Group, R8C/2F Group
17. A/D Converter
A/D Control Register 1(1)
b7 b6 b5 b4 b3 b2 b1 b0
0 0 1
0 0 0 0
Symbol
Address
00D7h
ADCON1
Bit Symbol
Bit Name
Reserved bits
—
(b2-b0)
BITS
CKS1
VCUT
—
(b6-b7)
After Reset
00h
Function
Set to 0.
8/10-bit mode select bit(2)
0 : 8-bit mode
Frequency select bit 1
Refer to the description of the CKS0 bit in the
ADCON0 register function.
VREF connect bit(3)
1 : VREF connected
Reserved bits
Set to 0.
NOTES:
1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is undefined.
2. Set the BITS bit to 0 (8-bit mode) in repeat mode.
3. When the VCUT bit is set to 1 (connected) from 0 (not connected), w ait for 1 µs or more before starting
A/D conversion.
Figure 17.7
ADCON1 Register in Repeat Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 248 of 332
RW
RW
RW
RW
RW
RW
R8C/2E Group, R8C/2F Group
17.3
17. A/D Converter
Sample and Hold
When the SMP bit in the ADCON2 register is set to 1 (sample and hold function enabled), the A/D conversion rate
per pin increases. The sample and hold function is available in all operating modes. Start A/D conversion after
selecting whether the sample and hold circuit is to be used or not.
Figure 17.8 shows a Timing Diagram of A/D Conversion.
Sample and hold
disabled
Conversion time of 1st bit
2nd bit
Comparison Sampling time Comparison Sampling time Comparison
2.5ø AD cycles
2.5ø AD cycles
time
time
time
Sampling time
4ø AD cycles
* Repeat until conversion ends
Sample and hold
enabled
2nd bit
Conversion time of 1st bit
Comparison
time
Sampling time
4ø AD cycles
Comparison Comparison Comparison
time
time
time
* Repeat until conversion ends
Figure 17.8
17.4
Timing Diagram of A/D Conversion
A/D Conversion Cycles
Figure 17.9 shows the A/D Conversion Cycles.
Conversion time at the 1st bit
A/D Conversion Mode
Conversion
Time
Sampling
Time
Comparison
Time
Conversion time at the 2nd
bit and the follows
Sampling
Time
End process
Comparison
End process
Time
Without Sample & Hold
8 bits
49φAD
4φAD
2.0φAD
2.5φAD
2.5φAD
8.0φAD
Without Sample & Hold
10 bits
59φAD
4φAD
2.0φAD
2.5φAD
2.5φAD
8.0φAD
With Sample & Hold
8 bits
28φAD
4φAD
2.5φAD
0.0φAD
2.5φAD
4.0φAD
With Sample & Hold
10 bits
33φAD
4φAD
2.5φAD
0.0φAD
2.5φAD
4.0φAD
Figure 17.9
A/D Conversion Cycles
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 249 of 332
R8C/2E Group, R8C/2F Group
17.5
17. A/D Converter
Internal Equivalent Circuit of Analog Input
Figure 17.10 shows the Internal Equivalent Circuit of Analog Input.
VCC
VCC VSS
AVCC
ON Resistor
Approx. 2kΩ Wiring Resistor
Approx. 0.2kΩ
Parasitic Diode
AN0
SW1
ON Resistor
Approx. 0.6kΩ
Analog Input
Voltage
SW2
Parasitic Diode
i Ladder-type
Switches
i=12
AMP
VIN
ON Resistor
Approx. 5kΩ
Sampling
Control Signal
VSS
C = Approx.1.5pF
SW3
SW4
i Ladder-type
Wiring Resistors
AVSS
ON Resistor
Approx. 2kΩ Wiring Resistor
Approx. 0.2kΩ
Chopper-type
Amplifier
AN11
SW1
b4 b2 b1 b0
A/D Control Register 0
Reference
Control Signal
A/D Successive
Conversion Register
Vref
VREF
Resistor
ladder
SW5
Comparison
voltage
ON Resistor
Approx. 0.6k f
A/D Conversion
Interrupt Request
AVSS
Comparison reference voltage
(Vref) generator
Sampling Comparison
SW1 conducts only on the ports selected for analog input.
Connect to
Control signal
for SW2
Connect to
Connect to
Control signal
for SW3
SW2 and SW3 are open when A/D conversion is not in progress;
their status varies as shown by the waveforms in the diagrams on the left.
SW4 conducts only when A/D conversion is not in progress.
Connect to
SW5 conducts when compare operation is in progress.
NOTE:
1. Use only as a standard for designing this data.
Mass production may cause some changes in device characteristics.
Figure 17.10
Internal Equivalent Circuit of Analog Input
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 250 of 332
R8C/2E Group, R8C/2F Group
17.6
17. A/D Converter
Output Impedance of Sensor under A/D Conversion
To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 17.11 has to be completed
within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor
equivalent circuit be R0, internal resistance of microcomputer be R, precision (error) of the A/D converter be X,
and the resolution of A/D converter be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).
VC is generally
And when t = T,
1
– -------------------------C ( R0 + R )

VC = VIN  1 – e

t



X
X
VC = VIN – ---- VIN = VIN  1 – ----

Y
Y
1
– --------------------------T
C
(
R0
+ R) = X
---e
Y
1
– -------------------------T = ln X
---C ( R0 + R )
Y
Hence,
T
R0 = – ------------------- – R
X
C • ln ---Y
Figure 17.11 shows Analog Input Pin and External Sensor Equivalent Circuit. When the difference between VIN
and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to
0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision
added to 0.1LSB.
When f(XIN) = 10 MHz, T = 0.25 µs in the A/D conversion mode without sample and hold. Output impedance R0
for sufficiently charging capacitor C within time T is determined as follows.
T = 0.25 µs, R = 2.8 kΩ, C = 6.0 pF, X = 0.1, and Y = 1024. Hence,
3
3
0.25 × 10 – 6
R0 = – --------------------------------------------------- – 2.8 ×10 ≈ 1.7 ×10
0.1 6.0 × 10 – 12 • ln ----------1024
Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less,
is approximately 1.7 kΩ. maximum.
MCU
Sensor equivalent
circuit
R0
R (2.8 kΩ)
VIN
C (6.0 pF)
VC
NOTE:
1. The capacity of the terminal is assumed to be 4.5 pF.
Figure 17.11
Analog Input Pin and External Sensor Equivalent Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 251 of 332
R8C/2E Group, R8C/2F Group
17.7
17. A/D Converter
Notes on A/D Converter
• Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit
•
•
•
•
•
•
•
in the ADCON2 register when A/D conversion is stopped (before a trigger occurs).
When the VCUT bit in the ADCON1 register is changed from 0 (VREF not connected) to 1 (VREF
connected), wait for at least 1 µs before starting the A/D conversion.
After changing the A/D operating mode, select an analog input pin again.
When using the one-shot mode, ensure that A/D conversion is completed before reading the AD register. The
IR bit in the ADIC register or the ADST bit in the ADCON0 register can be used to determine whether A/D
conversion is completed.
When using the repeat mode, select the frequency of the A/D converter operating clock φAD or more for the
CPU clock during A/D conversion.
Do not select the fOCO-F for the φAD.
If the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program and A/D conversion
is forcibly terminated during an A/D conversion operation, the conversion result of the A/D converter will be
undefined. If the ADST bit is set to 0 by a program, do not use the value of the AD register.
Connect 0.1 µF capacitor between the P4_2/VREF pin and AVSS pin.
Do not enter stop mode during A/D conversion.
Do not enter wait mode when the CM02 bit in the CM0 register is set to 1 (peripheral function clock stops in
wait mode) during A/D conversion.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 252 of 332
R8C/2E Group, R8C/2F Group
18. D/A Converter
18. D/A Converter
The D/A converters are 8-bit R-2R type units. The D/A converter 0 and D/A converter 1 are two independent D/A
converters.
D/A conversion is performed by writing to the DAi register (i = 0 or 1). To output the conversion result, set the DAiE
bit in the DACON register to 1 (output enabled) and set the VRiSEL bit in the ACCRi register to 0 (AVREFi pin
input). Before using D/A conversion, the corresponding port direction bit must be set to 0 (input mode). Setting the
DAiE bit to 1 removes the pull-up from the corresponding port.
The output analog voltage (V) is determined by the setting value n (n: decimal) of the DAi register.
V = Vref × n/256 (n = 0 to 255)
Vref: Reference voltage
Table 18.1 lists the D/A Converter Specifications. Figure 18.1 shows the Block Diagram of D/A Converter. Figures
18.2 and 18.3 show the D/A converter related registers. Figure 18.4 shows the D/A Converter Equivalent Circuit.
Table 18.1
D/A Converter Specifications
Item
D/A conversion method
Resolution
Analog output pins
Performance
R-2R method
8 bits
2 (DA0 and DA1)
Data bus
DA0 register
0
1
1
0
R-2R resistor ladder
DA0
VR0SEL bit
DA0E bit
DA1 register
0
1
1
0
R-2R resistor ladder
DA1
DA1E bit
VR1SEL bit
DA0E, DA1E: Bits in DACON register
VR0SEL: Bit in ACCR0 register
VR1SEL: Bit in ACCR1 register
Figure 18.1
Block Diagram of D/A Converter
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 253 of 332
R8C/2E Group, R8C/2F Group
18. D/A Converter
D/Ai Register (i = 0 or 1)(1)
b7
b0
Symbol
DA0
DA1
Address
00D8h
After Reset
00h
00h
00DAh
Function
Output value of D/A conversion
Setting Range
RW
00h to FFh
RW
NOTE:
1. When not using the D/A converter, set the DAiE bit (i = 0 or 1) to 0 (output disabled) and set the DAi register to 00h to
prevent current from flow ing into the R-2R resistor ladder to reduce unnecessary current consumption.
D/A Control Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
DACON
Address
00DCh
After Reset
00h
Bit Symbol
Bit Name
Function
DA0E
DA1E
—
(b7-b2)
RW
D/A0 output enable bit
0 : Output disabled
1 : Output enabled
RW
D/A1 output enable bit
0 : Output disabled
1 : Output enabled
RW
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
—
NOTE:
1. When not using the D/A converter, set the DAiE bit (i = 0 or 1) to 0 (output disabled) and set the DAi register to 00h to
prevent current from flow ing into the R-2R resistor ladder to reduce unnecessary current consumption.
Figure 18.2
Registers DA0 to DA1 and DACON
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 254 of 332
R8C/2E Group, R8C/2F Group
18. D/A Converter
Comparator i Control Register (i = 0 or 1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
ACCR0
ACCR1
Bit Symbol
CMiE
CMiOE
VRiSEL
CMiLV
FLTi0
Address
After Reset
0174h
00001000b
0175h
00001000b
Bit Name
Function
Comparator i enable operation bit 0 : Disable operation
1 : Enable operation
RW
ACOUTi output enable bit
0 : Disable output
1 : Enable output
RW
Comparator i reference input
select bit
0 : AVREFi pin input
1 : D/A converter i output(1)
RW
Comparison result monitor flag
0 : ACMPi input < reference input
1 : ACMPi input > reference input
RO
Comparator i digital filter select
bits
b5 b4
0 0 : No filter
0 1 : Filter w ith f2 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
FLTi1
CMiIE
RW
RW
RW
Comparator i interrupt enable bit
0 : Disable interrupt by CMiF bit
1 : Enable interrupt by CMiF bit
RW
Comparator i interrupt flag
[Source for setting this bit to 0]
Write 0 after read(2)
[Source for setting this bit to 1]
When the comparison result is changed
RW
CMiF
NOTES:
1. When setting the VRiSEL bit to 1 (D/A converter i output), set the DAiE bit in the DACON register to 1 (output
enabled). How ever, at this time, the D/A conversion result is not output from DAi pin.
2. The w riting results are as follow s:
• This bit is set to 0 w hen the read result is 1 and 0 is w ritten to the same bit.
• This bit remains unchanged even if the read result is 0 and 0 is w ritten to the same bit. (This bit remains 1
even if it is set to 1 from 0 after reading, and w riting 0.)
• This bit remains unchanged if 1 is w ritten to it.
Figure 18.3
Registers ACCR0 to ACCR1
DAiE bit
r
0
R
R
R
R
2R
2R
2R
2R
R
R
R
2R
DAi
1
2R
MSB
DAi register
2R
2R
LSB
0
1
AVSS
VREF(2)
i = 0 to 1
NOTES:
1. The above diagram applies when the value of the DAi register is 2Ah.
2. VREF is not affected by the setting of the VCUT bit in the ADCON1 register.
Figure 18.4
2R
D/A Converter Equivalent Circuit
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 255 of 332
R8C/2E Group, R8C/2F Group
19. Comparator
19. Comparator
The comparators compare a reference input voltage and an analog input voltage. Comparator 0 and comparator 1 are
two independent comparators.
19.1
Overview
The comparison result of the reference input voltage and analog input voltage can be read by software. The result
also can be output from the ACOUTi (i = 0 or 1) pin. An input to the AVREFi pin or output from D/A converter i
can be selected as the reference input voltage.
Table 19.1 lists the Specifications for Comparator, Figure 19.1 shows the Block Diagram of Comparator, and Table
19.2 lists the I/O Pins.
Table 19.1
Specifications for Comparator
Item
Specification
Analog input voltage
Reference input voltage
Comparison result
Interrupt request
generation timing
Select functions
Input voltage to ACMPi pin
Input voltage to AVREFi pin or output voltage of D/A converter i
Read the CMiLV bit in the ACCRi register
When the comparison result changes
• The comparison result can be output from the ACOUTi pin.
• ACOUTi pin output polarity
Whether the comparison result output is inverted or not inverted can be
selected.
• Digital filter function
For the CMACOUTi signal (comparison result), whether the digital filter is
applied or not and the sampling frequency can be selected.
i = 0 or 1
FLT01 to FLT00
f2 = 01b
Sampling clock
f8 = 10b
CM0E
f32 = 11b
0
ACMP0
1
AVREF0
+
1
-
VR0SEL
CMACOUT0
signal
CM0OE
CM1E
0
1
1
VR1SEL
CM1POR
f32 = 11b
+
-
CM1OE
= other than 00b
CMACOUT1
signal
ACOUT0
1
= 00b
0
AVREF1
0
Digital filter
FLT11 to FLT10
f2 = 01b
Sampling clock
f8 = 10b
ACMP1
Pin output
select circuit
CM0LV
= other than 00b
0
CM0POR
0
Digital filter
ACOUT1
1
= 00b
CM1LV
VR0SEL
DA0
DA1
DA0E
1
0
0
1
1
0
1
VR1SEL
D/A Converter 0
0
D/A Converter 1
Interrupt control
circuit
Comparator 0
interrupt request
Comparator 1
interrupt request
DA1E
CM0E, CM0OE, VR0SEL, CM0LV, FLT00 to FLT01: Bits in ACCR0 register
CM1E, CM1OE, VR1SEL, CM1LV, FLT10 to FLT11: Bits in ACCR1 register
CM0POR, CM1POR: Bits in ACMR register
DA0E, DA1E: Bits in DACON register
CMACOUT0 signal, CMACOUT1 signal: Internal signal
Figure 19.1
Block Diagram of Comparator
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 256 of 332
R8C/2E Group, R8C/2F Group
Table 19.2
19. Comparator
I/O Pins
Pin Name
ACMP0
AVREF0
ACOUT0
ACMP1
AVREF1
ACOUT1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
I/O
Input
Input
Output
Input
Input
Output
Function
Comparator 0 analog pin
Comparator 0 reference voltage pin
Comparator 0 comparison result output pin
Comparator 1 analog pin
Comparator 1 reference voltage pin
Comparator 1 comparison result output pin
Page 257 of 332
R8C/2E Group, R8C/2F Group
19.2
19. Comparator
Register Functions
Figure 19.2 shows the Registers ACCR0 to ACCR1 and Figure 19.3 shows the ACMR Register.
Comparator i Control Register (i = 0 or 1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
ACCR0
ACCR1
Bit Symbol
CMiE
CMiOE
VRiSEL
CMiLV
FLTi0
Address
After Reset
0174h
00001000b
0175h
00001000b
Bit Name
Function
Comparator i enable operation bit 0 : Disable operation
1 : Enable operation
0 : Disable output
1 : Enable output
RW
Comparator i reference input
select bit
0 : AVREFi pin input
1 : D/A converter i output(1)
RW
Comparison result monitor flag
0 : ACMPi input < reference input
1 : ACMPi input > reference input
RO
Comparator i digital filter select
bits
b5 b4
0 0 : No filter
0 1 : Filter w ith f2 sampling
1 0 : Filter w ith f8 sampling
1 1 : Filter w ith f32 sampling
RW
0 : Disable interrupt by CMiF bit
1 : Enable interrupt by CMiF bit
RW
Comparator i interrupt flag
[Source for setting this bit to 0]
Write 0 after read(2)
[Source for setting this bit to 1]
When the comparison result is changed
RW
NOTES:
1. When setting the VRiSEL bit to 1 (D/A converter i output), set the DAiE bit in the DACON register to 1 (output
enabled). How ever, at this time, the D/A conversion result is not output from DAi pin.
2. The w riting results are as follow s:
• This bit is set to 0 w hen the read result is 1 and 0 is w ritten to the same bit.
• This bit remains unchanged even if the read result is 0 and 0 is w ritten to the same bit. (This bit remains 1
even if it is set to 1 from 0 after reading, and w riting 0.)
• This bit remains unchanged if 1 is w ritten to it.
Registers ACCR0 to ACCR1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
RW
Comparator i interrupt enable bit
CMiF
Figure 19.2
RW
ACOUTi output enable bit
FLTi1
CMiIE
RW
Page 258 of 332
R8C/2E Group, R8C/2F Group
19. Comparator
Comparator Mode Register
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0
0
Symbol
ACMR
Bit Symbol
CM0POR
CM1POR
ACOUT1 output polarity select bit 0 : Output the non-inverted comparator 1
comparison result to ACOUT1
1 : Output the inverted comparator 1
comparison result to ACOUT1
Reserved bit
(b3)
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
(b7)
Reserved bits
Set to 0.
Nothing is assigned. If necessary, set to 0.
When read, the content is 0.
ACMR Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Set to 0.
(b2)
(b6-b4)
Figure 19.3
Address
After Reset
0177h
00h
Bit Name
Function
ACOUT0 output polarity select bit 0 : Output the non-inverted comparator 0
comparison result to ACOUT0
1 : Output the inverted comparator 0
comparison result to ACOUT0
Page 259 of 332
RW
RW
RW
RW
—
RW
—
R8C/2E Group, R8C/2F Group
19.3
19. Comparator
Functional Description
Comparator 0 and comparator 1 operate independently. Their operations are the same.
Table 19.3 lists the Procedure for Setting Registers Associated with Comparator
Table 19.3
Procedure for Setting Registers Associated with Comparator
Step Register
Bit
Setting Value
1
Function selection of ACMPi, AVREFi, and ACOUTi pin. Refer to 7.4 Port Setting.
Set registers and bits other than listed in step 2 and the following steps.
2
ACMR
CMiPOR
When using the ACOUTi output: Select the ACOUTi output polarity.
3
ACCRi
FLTi1 to FLTi0
Select to enable or disable the filter, and select the sampling clock
frequency.
VRiSEL
Select the reference input.
4
DACON
DAiE
When setting the D/A converter i output voltage to reference
voltage: 1 (D/A output enabled)
5
ACCRi
CMiE
1 (operation enabled)
6
Wait until comparator stability time (max. 10 µs)
7
ACCRi
CMiF
Read (dummy read to initialize the interrupt flag)
8
ACCRi
CMiOE
When using the ACOUTi output: 1 (ACOUTi output enabled)
CMiIE
When using interrupts: 1 (interrupt enabled)
CMiF
When using interrupts: 0 (no interrupt requested: Initialization)
9
CMiIC
ILVL2 to ILVL0
When using interrupts: Select the interrupt priority level.
IR
When using interrupts: 0 (no interrupt requested: Initialization)
i = 0 or 1
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 260 of 332
R8C/2E Group, R8C/2F Group
19. Comparator
Figure 19.4 shows an Operating Example of Comparator i (i = 0 or 1).
If the analog input voltage is higher than the reference input voltage, the CMiLV bit in the ACCRi register is set
to 1. If the analog input voltage is lower than the reference input voltage, the CMiLV bit is set to 0. When the
comparison result changes, the CMiF bit in the ACCRi register is set to 1. If the value of the CMiIE bit in the
ACCRi register is 1 (interrupt by CMiF bit enabled) at this time, a comparator i interrupt request is generated.
Refer to 19.4 Comparator 0 Interrupt and Comparator 1 Interrupt for information of interrupts.
Analog input voltage (V)
Reference input voltage
0
CMiLV bit in
ACCRi register
1
0
Set to 0 by a program
CMiF bit in
ACCRi register
ACOUTi output
(when CMiPOR bit
in ACMR register
is set to 0)
ACOUTi output
(when CMiPOR bit
in ACMR register
is set to 1)
1
0
1
0
1
0
The above applies under the following conditions:
CMiOE bit in the ACCRi register = 1 (output enabled)
Bits FLTi1 to FLTi0 in the ACCRi register = 00b (no filter)
CMiPOR bit in the ACMR register = 0 (non-inverted comparator i compare result output to ACOUTi)
CMiPOR bit in the ACMR register = 1 (inverted comparator i compare result output to ACOUTi)
i = 0 or 1
Figure 19.4
19.3.1
Operating Example of Comparator i (i = 0 or 1)
Comparison Result Output
When the CMiOE bit in the ACCRi register is set to 1 (output enabled), the comparison result can be output
from the ACOUTi pin. Also, the CMiPOR bit in the ACMR register can be used to select whether the ACOUTi
pin output polarity is inverted or not inverted.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 261 of 332
R8C/2E Group, R8C/2F Group
19.3.2
19. Comparator
Digital Filter
The digital filter can be applied to the CMACOUTi (i = 0 or1) signal.
The CMACOUTi signal is sampled, and the level is considered to be determined when two matches occur. The
digital filter function and sampling frequency are selected using bits FLTi0 to FLTi1 in the ACCRi register.
Figure 19.5 shows a Block Diagram of Digital Filter.
FLTi1 to FLTi0
= 01b
f2
f8 = 10b
f32 = 11b
Sampling clock
C
CMACOUTi
signal
D
C
Q
Latch
D
Match
detect
circuit
Q
Latch
FLTi1 to FLTi0
= 01b, 10b, 11b
C
D
Q
Latch
= 00b
Clock cycle selected by
FLTi1 to FLTi0
Sampling clock
CMACOUTi
signal
Two matches
occur and a
signal change
is confirmed.
Input signal after passing
through digital filter
If fewer than two matches
occur, the matches are
treated as noise and no
transmission is performed.
Maximum signal
transmission
delay is 2.5
sampling clock
pulses.
FLTi0 to FLTi1: Bits in ACCRi register
i = 0 or 1
Figure 19.5
Block Diagram of Digital Filter
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 262 of 332
R8C/2E Group, R8C/2F Group
19.4
19. Comparator
Comparator 0 Interrupt and Comparator 1 Interrupt
Comparator 0 and Comparator 1 generate interrupt request from two sources. The comparator i (i = 0 or 1)
interrupt uses the corresponding CMiIC register (bits IR and ILVL0 to ILVL2) and vector. When the
comparison result changes, the CMiF bit in the ACCRi register is set to 1. If the value of the CMiIE bit in the
ACCRi register is 1 (interrupt by CMiF bit enabled) at this time, a comparator i interrupt request is generated.
Table 19.4 lists the Registers and Bits Associated with Comparator Interrupt, and Figure 19.6 is a Block
Diagram of Comparator Interrupt.
Table 19.4
Registers and Bits Associated with Comparator Interrupt
Comparator i Control Register,
Comparator i Interrupt Flag
CMiF bit in ACCRi register
Comparator i Interrupt Control Register,
Comparator i Interrupt Enable Bit
CMiE bit in ACCRi register
Comparator i Interrupt
Control Register
CMiIC
i = 0 or 1
CM0F bit
CM0IE bit
CM1F bit
CM1IE bit
Comparator 0 interrupt request
(IR bit in CM0IC register)
Comparator 1 interrupt request
(IR bit in CM1IC register)
CM0F, CM0IE: Bits in ACCR0 register
CM1F, CM1IE: Bits in ACCR1 register
Figure 19.6
Block Diagram of Comparator Interrupt
Like other maskable interrupts, the comparator i interrupt is controlled by the combination of the I flag, IR bit,
bits ILVL0 to ILVL2, and IPL.
However, the existence of the bits CMiF and CMiIE results in the following differences from other maskable
interrupts.
• The IR bit in the CMiIC register is set to 1 (interrupt requested) when the CMiF bit in the ACCRi register
is set to 1 and the CMiIE bit in the ACCRi register is set to 1 (interrupt enabled).
• The IR bit is set to 0 (no interrupt requested) when the CMiF bit or CMiIE bit is set to 0, or both are set to
0. In other words, the interrupt request is not maintained if the IR bit is once set to 1 but the interrupt is not
acknowledged.
• The CMiF bit is not automatically set to 0 when an interrupt is acknowledged. Set it to 0 within the
interrupt routine. Refer to Figure 19.2 Registers ACCR0 to ACCR1, for the procedure for setting these
bits to 0.
Refer to 12.1.6 Interrupt Control, for details of the CMiIC register and 12.1.5.2 Relocatable Vector Tables,
for information on interrupt vectors.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 263 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
20. Flash Memory Version
20.1
Overview
In the flash memory, rewrite operations to the flash memory can be performed in three modes: CPU rewrite,
standard serial I/O, and parallel I/O.
Table 20.1 lists the Flash Memory Performance (refer to Table 1.1, Table 1.2, Table 1.3, and Table 1.4
Specifications for items not listed in Table 20.1).
Table 20.1
Flash Memory Performance
Item
Flash memory operating mode
Division of erase block
Programming method
Erase method
Programming and erasure control method(3)
Rewrite control method
Specification
3 modes (CPU rewrite, standard serial I/O, and parallel I/O)
Refer to Figure 20.1 and Figure 20.2
Byte unit
Block erase
Program and erase control by software command
Rewrite control for blocks 0 and 1 by FMR02 bit in FMR0
register
Rewrite control for block 0 by FMR15 bit and block 1 by
FMR16 bit in FMR1 register
5 commands
R8C/2E Group: 100 times; R8C/2F Group: 1,000 times
Number of commands
Programming Blocks 0 and 1 (program
and erasure ROM)
endurance(1) Blocks A and B (data flash)(2) 10,000 times
ID code check function
ROM code protect
Standard serial I/O mode supported
Parallel I/O mode supported
NOTES:
1. Definition of programming and erasure endurance
The programming and erasure endurance is defined on a per-block basis. If the programming and erasure
endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are
performed to block A, a 1-Kbyte block, and then the block is erased, the erase count stands at one. When
performing 100 or more rewrites, the actual erase count can be reduced by executing programming operations
in such a way that all blank areas are used before performing an erase operation. Avoid rewriting only particular
blocks and try to average out the programming and erasure endurance of the blocks. It is also advisable to
retain data on the erase count of each block and limit the number of erase operations to a certain number.
2. Blocks A and B are implemented only in the R8C/2F group.
3. To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform
programming and erasure at less than 2.7 V.
Table 20.2
Flash Memory Rewrite Modes
Flash memory
Rewrite mode
Function
Standard Serial I/O
Mode
User ROM area is rewritten by executing User ROM area is
rewritten by a
software commands from the CPU.
dedicated serial
EW0 mode: Rewritable in the RAM
EW1 mode: Rewritable in flash memory programmer.
User ROM area
User ROM area
CPU Rewrite Mode
Areas which can
be rewritten
Operating mode
Single chip mode
ROM Programmer None
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 264 of 332
Boot mode
Serial programmer
Parallel I/O Mode
User ROM area is
rewritten by a
dedicated parallel
programmer.
User ROM area
Parallel I/O mode
Parallel programmer
R8C/2E Group, R8C/2F Group
20.2
20. Flash Memory Version
Memory Map
The flash memory contains a user ROM area and a boot ROM area (reserved area). Figure 20.1 shows the Flash
Memory Block Diagram for R8C/2E Group. Figure 20.2 shows a Flash Memory Block Diagram for R8C/2F
Group.
The user ROM area of the R8C/2F Group contains an area (program ROM) which stores MCU operating programs
and blocks A and B (data flash) each 1 Kbyte in size.
The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite mode and
standard serial I/O and parallel I/O modes.
When rewriting blocks 0 and 1 in CPU rewrite mode, set the FMR02 bit in the FMR0 register to 1 (rewrite
enabled). When the FMR15 bit in the FMR1 register is set to 0 (rewrite enabled), block 0 is rewritable. When the
FMR16 bit is set to 0 (rewrite enabled), block 1 is rewritable.
The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot
ROM area and the user ROM area share the same address, but have separate memory areas.
16 Kbyte ROM product
0C000h
0DFFFh
0E000h
Block 1: 8 Kbytes(1)
Block 0: 8 Kbytes(1)
0FFFFh
8 Kbyte ROM product
0E000h
Block 0: 8 Kbytes(1)
0E000h
8 Kbytes
0FFFFh
0FFFFh
User ROM area
Program ROM
User ROM area
Boot ROM area
(reserved area)(2)
NOTES:
1. When the FMR02 bit in the FMR0 register is set to 1 (rewrite enabled) and the FMR15 bit in the FMR1 register is set to 0
(rewrite enabled), block 0 is rewritable. When the FMR16 bit is set to 0 (rewrite enabled), block 1 is rewritable (only for
CPU rewrite mode).
2. This area is for storing the boot program provided by Renesas Technology.
Figure 20.1
Flash Memory Block Diagram for R8C/2E Group
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 265 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
8 Kbytes ROM product
16 Kbytes ROM product
02400h
Block A: 1 Kbyte
02400h
Block A: 1 Kbyte
Data flash
02BFFh
Block B: 1 Kbyte
02BFFh
Block B: 1 Kbyte
Block 0: 16 Kbytes(1)
0C000h
0DFFFh
0E000h
Program ROM
Block 1: 8 Kbytes(1)
Block 0: 8 Kbytes(1)
0E000h
Block 0: 8 Kbytes(1)
0FFFFh
0FFFFh
User ROM area
0E000h
8 Kbytes
0FFFFh
User ROM area
Boot ROM area
(reserved area)(2)
NOTES:
1. When the FMR02 bit in the FMR0 register is set to 1 (rewrite enabled) and the FMR15 bit in the FMR1 register is set to 0
(rewrite enabled), block 0 is rewritable. When the FMR16 bit is set to 0 (rewrite enabled), block 1 is rewritable (only for CPU
rewrite mode).
2. This area is for storing the boot program provided by Renesas Technology.
Figure 20.2
Flash Memory Block Diagram for R8C/2F Group
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 266 of 332
R8C/2E Group, R8C/2F Group
20.3
20. Flash Memory Version
Functions to Prevent Rewriting of Flash Memory
Standard serial I/O mode has an ID code check function, and parallel I/O mode has a ROM code protect function to
prevent the flash memory from being read or rewritten easily.
20.3.1
ID Code Check Function
This function is used in standard serial I/O mode. Unless the flash memory is blank, the ID codes sent from the
programmer and the ID codes written in the flash memory are checked to see if they match. If the ID codes do
not match, the commands sent from the programmer are not acknowledged. The ID codes consist of 8 bits of
data each, the areas of which, beginning with the first byte, are 00FFDFh, 00FFE3h, 00FFEBh, 00FFEFh,
00FFF3h, 00FFF7h, and 00FFFBh. Write programs in which the ID codes are set at these addresses and write
them to the flash memory.
Address
00FFDFh to 00FFDCh
ID1
Undefined instruction vector
00FFE3h to 00FFE0h
ID2
Overflow vector
BRK instruction vector
00FFE7h to 00FFE4h
00FFEBh to 00FFE8h
ID3
Address match vector
00FFEFh to 00FFECh
ID4
Single step vector
00FFF3h to 00FFF0h
ID5
00FFF7h to 00FFF4h
ID6
00FFFBh to 00FFF8h
ID7
00FFFFh to 00FFFCh
(Note 1)
Oscillation stop detection/watchdog
timer/voltage monitor 1 and voltage
monitor 2 vector
Address break
(Reserved)
Reset vector
4 bytes
NOTE:
1. The OFS register is assigned to 00FFFFh.
Refer to Figure 20.4 OFS Register for OFS register details.
Figure 20.3
Address for Stored ID Code
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 267 of 332
R8C/2E Group, R8C/2F Group
20.3.2
20. Flash Memory Version
ROM Code Protect Function
The ROM code protect function disables reading or changing the contents of the on-chip flash memory by the
OFS register in parallel I/O mode. Figure 20.4 shows the OFS Register.
The ROM code protect function is enabled by writing 0 to the ROMCP1 bit and 1 to the ROMCR bit. It disables
reading or changing the contents of the on-chip flash memory.
Once ROM code protect is enabled, the content in the internal flash memory cannot be rewritten in parallel I/O
mode. To disable ROM code protect, erase the block including the OFS register with CPU rewrite mode or
standard serial I/O mode.
Option Function Select Register(1)
b7 b6 b5 b4 b3 b2 b1 b0
1 0 1
1
Symbol
OFS
Bit Symbol
Address
0FFFFh
Bit Name
Watchdog timer start
select bit
When Shipping
FFh(2)
Function
0 : Starts w atchdog timer automatically after reset
1 : Watchdog timer is inactive after reset
Reserved bit
Set to 1.
ROM code protect
disabled bit
0 : ROM code protect disabled
1 : ROMCP1 enabled
RW
ROM code protect bit
0 : ROM code protect enabled
1 : ROM code protect disabled
RW
—
(b4)
Reserved bit
Set to 1.
—
(b5)
Reserved bit
Set to 0.
—
(b6)
Reserved bit
Set to 1.
WDTON
—
(b1)
ROMCR
ROMCP1
Count source protect
CSPROINI mode after reset select
bit
0 : Count source protect mode enabled after reset
1 : Count source protect mode disabled after reset
RW
RW
RW
RW
RW
RW
RW
NOTES:
1. The OFS register is on the flash memory. Write to the OFS register w ith a program. After w riting is completed, do not
w rite additions to the OFS register.
2. If the block including the OFS register is erased, FFh is set to the OFS register.
Figure 20.4
OFS Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 268 of 332
R8C/2E Group, R8C/2F Group
20.4
20. Flash Memory Version
CPU Rewrite Mode
In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU.
Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a
ROM programmer. Execute the program and block erase commands only to blocks in the user ROM area.
The flash module has an erase-suspend function when an interrupt request is generated during an erase operation in
CPU rewrite mode. It performs an interrupt process after the erase operation is halted temporarily. During erasesuspend, the user ROM area can be read by a program.
In case an interrupt request is generated during an auto-program operation in CPU rewrite mode, the flash module
contains a program-suspend function which performs the interrupt process after the auto-program operation is
suspended. During program-suspend, the user ROM area can be read by a program.
CPU rewrite mode has an erase write 0 mode (EW0 mode) and an erase write 1 mode (EW1 mode). Table 20.3 lists
the Differences between EW0 Mode and EW1 Mode.
Table 20.3
Differences between EW0 Mode and EW1 Mode
Item
Operating mode
Areas in which a rewrite
control program can be
located
Areas in which a rewrite
control program can be
executed
Areas which can be
rewritten
EW0 Mode
Single-chip mode
User ROM area
Necessary to transfer to any area other
Executing directly in user ROM or RAM
than the flash memory (e.g., RAM) before area possible
executing
User ROM area
User ROM area
However, blocks which contain a rewrite
control program are excluded(1)
None
• Program and block erase commands
Cannot be run on any block which
contains a rewrite control program
• Read status register command
Cannot be executed
Read status register mode
Read array mode
Software command
restrictions
Modes after program or
erase
Modes after read status
register
CPU status during autowrite and auto-erase
Flash memory status
detection
Read status register mode
Do not execute this command
Operating
Conditions for transition to
erase-suspend
Conditions for transitions to
program-suspend
CPU clock
EW1 Mode
Single-chip mode
User ROM area
Hold state (I/O ports hold state before the
command is executed)
• Read bits FMR00, FMR06, and FMR07 Read bits FMR00, FMR06, and FMR07 in
in the FMR0 register by a program
the FMR0 register by a program
• Execute the read status register
command and read bits SR7, SR5, and
SR4 in the status register.
Set bits FMR40 and FMR41 in the FMR4 The FMR40 bit in the FMR4 register is set
register to 1 by a program.
to 1 and the interrupt request of the
enabled maskable interrupt is generated
Set bits FMR40 and FMR42 in the FMR4 The FMR40 bit in the FMR4 register is set
register to 1 by a program.
to 1 and the interrupt request of the
enabled maskable interrupt is generated
5 MHz or below
No restriction (on clock frequency to be
used)
NOTE:
1. When the FMR02 bit in the FMR0 register is set to 1 (rewrite enabled), rewriting block 0 is enabled
by setting the FMR15 bit in the FMR1 register to 0 (rewrite enabled), and rewriting block 1 is
enabled by setting the FMR16 bit to 0 (rewrite enabled).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 269 of 332
R8C/2E Group, R8C/2F Group
20.4.1
20. Flash Memory Version
EW0 Mode
The MCU enters CPU rewrite mode and software commands can be acknowledged by setting the FMR01 bit in
the FMR0 register to 1 (CPU rewrite mode enabled). In this case, since the FMR11 bit in the FMR1 register is
set to 0, EW0 mode is selected.
Use software commands to control program and erase operations. The FMR0 register or the status register can
be used to determine when program and erase operations complete.
During auto-erasure, set the FMR40 bit to 1 (erase-suspend enabled) and the FMR41 bit to 1 (request erasesuspend). Wait for td(SR-SUS) and ensure that the FMR46 bit is set to 1 (read enabled) before accessing the
user ROM area. The auto-erase operation can be restarted by setting the FMR41 bit to 0 (erase restarts).
To enter program-suspend during the auto-program operation, set the FMR40 bit to 1 (suspend enabled) and the
FMR42 bit to 1 (request program-suspend). Wait for td(SR-SUS) and ensure that the FMR46 bit is set to 1 (read
enabled) before accessing the user ROM area. The auto-program operation can be restarted by setting the
FMR42 bit to 0 (program restarts).
20.4.2
EW1 Mode
The MCU is switched to EW1 mode by setting the FMR11 bit to 1 (EW1 mode) after setting the FMR01 bit to
1 (CPU rewrite mode enabled).
The FMR0 register can be used to determine when program and erase operations complete. Do not execute
commands that use the read status register in EW1 mode.
To enable the erase-suspend function during auto-erasure, execute the block erase command after setting the
FMR40 bit to 1 (erase-suspend enabled). The interrupt to enter erase-suspend should be in interrupt enabled
status. After waiting for td(SR-SUS) after the block erase command is executed, the interrupt request is
acknowledged.
When an interrupt request is generated, the FMR41 bit is automatically set to 1 (requests erase-suspend) and the
auto-erase operation suspends. If an auto-erase operation does not complete (FMR00 bit is 0) after an interrupt
process completes, the auto-erase operation restarts by setting the FMR41 bit to 0 (erasure restarts)
To enable the program-suspend function during auto-programming, execute the program command after setting
the FMR40 bit to 1 (suspend enabled). The interrupt to enter program-suspend should be in interrupt enabled
status. After waiting for td(SR-SUS) after the program command is executed, an interrupt request is
acknowledged.
When an interrupt request is generated, the FMR42 bit is automatically set to 1 (request program-suspend) and
the auto-program operation suspends. When the auto-program operation does not complete (FMR00 bit is 0)
after the interrupt process completes, the auto-program operation can be restarted by setting the FMR42 bit to 0
(programming restarts).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 270 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Figure 20.5 shows the FMR0 Register. Figure 20.6 shows the FMR1 Register. Figure 20.7 shows the FMR4
Register.
20.4.2.1
FMR00 Bit
This bit indicates the operating status of the flash memory. The bits value is 0 during programming, erasure
(including suspend periods), or erase-suspend mode; otherwise, it is 1.
20.4.2.2
FMR01 Bit
The MCU is made ready to accept commands by setting the FMR01 bit to 1 (CPU rewrite mode).
20.4.2.3
FMR02 Bit
Rewriting of blocks 0 and 1 does not accept program or block erase commands if the FMR02 bit is set to 0
(rewrite disabled).
Rewriting of blocks 0 and 1 are controlled by bits FMR15 and FMR16 if the FMR02 bit is set to 1 (rewrite
enabled).
20.4.2.4
FMSTP Bit
This bit is used to initialize the flash memory control circuits, and also to reduce the amount of current
consumed by the flash memory. Access to the flash memory is disabled by setting the FMSTP bit to 1.
Therefore, the FMSTP bit must be written to by a program transferred to the RAM.
In the following cases, set the FMSTP bit to 1:
• When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit
not reset to 1 (ready))
• To provide lower consumption in high-speed on-chip oscillator mode and low-speed on-chip oscillator
mode (XIN clock stops).
Figure 20.11 shows the handling to provide lower consumption in high-speed on-chip oscillator mode and lowspeed on-chip oscillator mode (XIN clock stops). Handle according to this flowchart. Note that when going to
stop or wait mode while the CPU rewrite mode is disabled, the FMR0 register does not need to be set because
the power for the flash memory is automatically turned off and is turned back on again after returning from stop
or wait mode.
20.4.2.5
FMR06 Bit
This is a read-only bit indicating the status of an auto-program operation. The bit is set to 1 when a program
error occurs; otherwise, it is cleared to 0. For details, refer to the description in 20.4.5 Full Status Check.
20.4.2.6
FMR07 Bit
This is a read-only bit indicating the status of an auto-erase operation. The bit is set to 1 when an erase error
occurs; otherwise, it is set to 0. Refer to 20.4.5 Full Status Check for details.
20.4.2.7
FMR11 Bit
Setting this bit to 1 (EW1 mode) places the MCU in EW1 mode.
20.4.2.8
FMR15 Bit
When the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit is set to 0 (rewrite enabled), block 0
accepts program and block erase commands.
20.4.2.9
FMR16 Bit
When the FMR02 bit is set to 1 (rewrite enabled) and the FMR16 bit is set to 0 (rewrite enabled), block 1
accepts program and block erase commands.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 271 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
20.4.2.10 FMR40 Bit
The suspend function is enabled by setting the FMR40 bit to 1 (enable).
20.4.2.11 FMR41 Bit
In EW0 mode, the MCU enters erase-suspend mode when the FMR41 bit is set to 1 by a program. The FMR41
bit is automatically set to 1 (request erase-suspend) when an interrupt request of an enabled interrupt is
generated in EW1 mode, and then the MCU enters erase-suspend mode.
Set the FMR41 bit to 0 (erase restarts) when the auto-erase operation restarts.
20.4.2.12 FMR42 Bit
In EW0 mode, the MCU enters program-suspend mode when the FMR42 bit is set to 1 by a program. The
FMR42 bit is automatically set to 1 (request program-suspend) when an interrupt request of an enabled
interrupt is generated in EW1 mode, and then the MCU enters program-suspend mode.
Set the FMR42 bit to 0 (program restart) when the auto-program operation restarts.
20.4.2.13 FMR43 Bit
When the auto-erase operation starts, the FMR43 bit is set to 1 (erase execution in progress). The FMR43 bit
remains set to 1 (erase execution in progress) during erase-suspend operation.
When the auto-erase operation ends, the FMR43 bit is set to 0 (erase not executed).
20.4.2.14 FMR44 Bit
When the auto-program operation starts, the FMR44 bit is set to 1 (program execution in progress). The FMR44
bit remains set to 1 (program execution in progress) during program-suspend operation.
When the auto-program operation ends, the FMR44 bit is set to 0 (program not executed).
20.4.2.15 FMR46 Bit
The FMR46 bit is set to 0 (reading disabled) during auto-program or auto-erase execution and set to 1 (reading
enabled) in suspend mode. Do not access the flash memory while this bit is set to 0.
20.4.2.16 FMR47 Bit
Power consumption when reading the flash memory can be reduced by setting the FMR47 bit to 1 (enabled) in
low-speed on-chip oscillator mode (XIN clock stops).
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 272 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Flash Memory Control Register 0
b7 b6 b5 b4 b3 b2 b1 b0
0 0
Symbol
FMR0
Bit Symbol
FMR00
FMR01
FMR02
Address
01B7h
____
Bit Name
RY/BY status flag
FMR06
FMR07
Function
0 : Busy (w riting or erasing in progress)
1 : Ready
RW
RO
CPU rew rite mode select bit(1)
0 : CPU rew rite mode disabled
1 : CPU rew rite mode enabled
RW
Blocks 0, 1 rew rite enable bit(2, 6)
0 : Disables rew rite
1 : Enables rew rite
RW
Flash memory stop bit(3, 5)
0 : Enables flash memory operation
1 : Stops flash memory
(enters low -pow er consumption state
and flash memory is reset)
RW
FMSTP
—
(b5-b4)
After Reset
00000001b
Reserved bits
Set to 0.
Program status flag(4)
0 : Completed successfully
1 : Terminated by error
RO
Erase status flag(4)
0 : Completed successfully
1 : Terminated by error
RO
RW
NOTES:
1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit
to 0 and setting it to 1. Enter read array mode and set this bit to 0.
2. Set this bit to 1 immediately after setting it first to 0 w hile the FMR01 bit is set to 1.
Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
3. Set this bit by a program transferred to the RAM.
4. This bit is set to 0 by executing the clear status command.
5. This bit is enabled w hen the FMR01 bit is set to 1 (CPU rew rite mode enabled). When the FMR01 bit is set to 0,
w riting 1 to the FMSTP bit causes the FMSTP bit to be set to 1. The flash memory does not enter low -pow er
consumption state nor is it reset.
6. When setting the FMR01 bit to 0 (CPU rew rite mode disabled), the FMR02 bit is set to 0 (disables rew rite).
Figure 20.5
FMR0 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 273 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Flash Memory Control Register 1
b7 b6 b5 b4 b3 b2 b1 b0
1
0 0 0
Symbol
Address
01B5h
FMR1
Bit Symbol
Bit Name
—
Reserved bit
(b0)
After Reset
1000000Xb
Function
When read, the content is undefined.
(1, 2)
FMR11
—
(b4-b2)
FMR15
FMR16
—
(b7)
EW1 mode select bit
0 : EW0 mode
1 : EW1 mode
Reserved bits
Set to 0.
Block 0 rew rite disable bit
(2,3)
Block 1 rew rite disable bit
(2,3)
Reserved bit
RW
RO
RW
RW
0 : Enables rew rite
1 : Disables rew rite
RW
0 : Enables rew rite
1 : Disables rew rite
RW
Set to 1.
RW
NOTES:
1. To set this bit to 1, set it to 1 immediately after setting it first to 0 w hile the FMR01 bit is set to 1 (CPU rew rite mode
enable) . Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
2. This bit is set to 0 by setting the FMR01 bit in the FMR0 register to 0 (CPU rew rite mode disabled).
3. When the FMR01 bit is set to 1 (CPU rew rite mode enabled), bits FMR15 and FMR16 can be w ritten to.
To set this bit to 0, set it to 0 immediately after setting it first to 1.
To set this bit to 1, set it to 1.
Figure 20.6
FMR1 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 274 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Flash Memory Control Register 4
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol
FMR4
Bit Symbol
FMR40
FMR41
FMR42
FMR43
FMR44
—
(b5)
FMR46
FMR47
Address
01B3h
Bit Name
Erase-suspend function
enable bit(1)
Erase-suspend request bit(2)
After Reset
01000000b
Function
RW
0 : Disable
1 : Enable
RW
0 : Erase restart
1 : Erase-suspend request
RW
Program-suspend request bit(3) 0 : Program restart
1 : Program-suspend request
RW
Erase command flag
0 : Erase not executed
1 : Erase execution in progress
RO
Program command flag
0 : Program not executed
1 : Program execution in progress
RO
Reserved bit
Set to 0.
Read status flag
0 : Disables reading
1 : Enables reading
Low -pow er consumption read 0 : Disable
1 : Enable
mode enable bit (1, 4, 5)
RO
RO
RW
NOTES:
1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit
to 0 and setting it to 1.
2. This bit is enabled w hen the FMR40 bit is set to 1 (enable) and it can be w ritten to during the period betw een issuing
an erase command and completing the erase. (This bit is set to 0 during periods other than the above.)
In EW0 mode, it can be set to 0 or 1 by a program.
In EW1 mode, it is automatically set to 1 if a maskable interrupt is generated during an erase
operation w hile the FMR40 bit is set to 1. Do not set this bit to 1 by a program (0 can be w ritten).
3. The FMR42 bit is enabled only w hen the FMR40 bit is set to 1 (enable) and programming to the FMR42 bit is enabled
until auto-programming ends after a program command is generated. (This bit is set to 0 during periods other than the
above.)
In EW0 mode, 0 or 1 can be programmed to the FMR42 bit by a program.
In EW1 mode, the FMR42 bit is automatically set to 1 by generating a maskable interrupt during auto-programming
w hen the FMR40 bit is set to 1. 1 cannot be w ritten to the FMR42 bit by a program.
4. In high-speed clock mode and high-speed on-chip oscillator mode, set the FMR47 bit to 0 (disabled).
5. Set the FMR01 bit in the FMR0 register to 0 (CPU rew rite mode disabled) in low -pow er consumption read mode.
Figure 20.7
FMR4 Register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 275 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Figure 20.8 shows the Timing of Suspend Operation.
Erasure
starts
Erasure
suspends
Programming Programming Programming Programming Erasure
starts
suspends
restarts
ends
restarts
During erasure
FMR00 bit in
FMR0 register
1
FMR46 bit in
FMR4 register
1
FMR44 bit in
FMR4 register
1
FMR43 bit in
FMR4 register
1
During programming
During programming
Erasure
ends
During erasure
Remains 0 during suspend
0
0
0
0
Remains 1 during suspend
Check that the
FMR43 bit is set to 1
(during erase
execution), and that
the erase-operation
has not ended.
Check that the
FMR44 bit is set to 1
(during program
execution), and that
the program has not
ended.
Check the status,
and that the
programming ends
normally.
Check the status,
and that the
erasure ends
normally.
The above figure shows an example of the use of program-suspend during programming following erase-suspend.
NOTE:
1. If program-suspend is entered during erase-suspend, always restart programming.
Figure 20.8
Timing of Suspend Operation
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 276 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Figure 20.9 shows How to Set and Exit EW0 Mode. Figure 20.10 shows How to Set and Exit EW1 Mode.
EW0 Mode Operating Procedure
Rewrite control program
Write 0 to the FMR01 bit before writing 1
(CPU rewrite mode enabled)(2)
Set registers(1) CM0 and CM1
Execute software commands
Transfer a rewrite control program which uses CPU
rewrite mode to the RAM.
Execute the read array command(3)
Write 0 to the FMR01 bit
(CPU rewrite mode disabled)
Jump to the rewrite control program which has been
transferred to the RAM.
(The subsequent process is executed by the rewrite
control program in the RAM.)
Jump to a specified address in the flash memory
NOTES:
1. Select 5 MHz or below for the CPU clock by the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register.
2. To set the FMR01 bit to 1, write 0 to the FMR01 bit before writing 1. Do not generate an interrupt between writing 0 and 1.
Write to the FMR01 bit in the RAM.
3. Disable the CPU rewrite mode after executing the read array command.
Figure 20.9
How to Set and Exit EW0 Mode
EW1 Mode Operating Procedure
Program in ROM
Write 0 to the FMR01 bit before writing 1 (CPU
rewrite mode enabled)(1)
Write 0 to the FMR11 bit before writing 1 (EW1
mode)
Execute software commands
Write 0 to the FMR01 bit
(CPU rewrite mode disabled)
NOTE:
1. To set the FMR01 bit to 1, write 0 to the FMR01 bit before writing 1.
Do not generate an interrupt between writing 0 and 1.
Figure 20.10
How to Set and Exit EW1 Mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 277 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
High-speed on-chip oscillator mode
and low-speed on-chip oscillator
mode (XIN clock stops) program
Transfer a high-speed on-chip oscillator mode and
low-speed on-chip oscillator mode (XIN clock stops)
program to the RAM.
Jump to the high-speed on-chip oscillator mode and
low-speed on-chip oscillator mode (XIN clock stops)
program which has been transferred to the RAM.
(The subsequent processing is executed by the
program in the RAM.)
Write 0 to the FMR01 bit before writing 1
(CPU rewrite mode enabled)
Write 1 to the FMSTP bit (flash memory stops.
Low power consumption mode)(1)
Switch the clock source for the CPU clock.
Turn XIN off
Process in high-speed on-chip oscillator
mode and low-speed on-chip oscillator
mode (XIN clock stops)
Turn XIN clock on → wait until oscillation
stabilizes → switch the clock source for CPU
clock(2)
Write 0 to the FMSTP bit
(flash memory operation)
Write 0 to the FMR01 bit
(CPU rewrite mode disabled)
NOTES:
1. Set the FMR01 bit to 1 (CPU rewrite mode enabled) before setting the
FMSTP bit to 1.
2. Before switching to a different clock source for the CPU, make sure
the designated clock is stable.
3. Insert a 30 µs wait time in a program. Do not access to the flash
memory during this wait time.
Figure 20.11
Wait until the flash memory circuit stabilizes
(30 µs)(3)
Jump to a specified address in the flash memory
Process to Reduce Power Consumption in High-Speed On-Chip Oscillator Mode and
Low-Speed On-Chip Oscillator Mode (XIN Clock Stops)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 278 of 332
R8C/2E Group, R8C/2F Group
20.4.3
20. Flash Memory Version
Software Commands
The software commands are described below. Read or write commands and data in 8-bit units.
Table 20.4
Software Commands
First Bus Cycle
Command
Read array
Read status register
Clear status register
Program
Block erase
Mode
Write
Write
Write
Write
Write
Address
×
×
×
WA
×
Data
Mode
(D7 to D0)
FFh
70h
Read
50h
40h
Write
20h
Write
Second Bus Cycle
Address
Data
(D7 to D0)
×
SRD
WA
BA
WD
D0h
SRD: Status register data (D7 to D0)
WA: Write address (Ensure the address specified in the first bus cycle is the same address as the write
address specified in the second bus cycle.)
WD: Write data (8 bits)
BA: Given block address
×: Any specified address in the user ROM area
20.4.3.1
Read Array Command
The read array command reads the flash memory.
The MCU enters read array mode when FFh is written in the first bus cycle. When the read address is entered in
the following bus cycles, the content of the specified address can be read in 8-bit units.
Since the MCU remains in read array mode until another command is written, the contents of multiple
addresses can be read continuously.
In addition, the MCU enters read array mode after a reset.
20.4.3.2
Read Status Register Command
The read status register command is used to read the status register.
When 70h is written in the first bus cycle, the status register can be read in the second bus cycle (refer to 20.4.4
Status Registers). When reading the status register, specify an address in the user ROM area.
Do not execute this command in EW1 mode.
The MCU remains in read status register mode until the next read array command is written.
20.4.3.3
Clear Status Register Command
The clear status register command sets the status register to 0.
When 50h is written in the first bus cycle, bits FMR06 to FMR07 in the FMR0 register and SR4 to SR5 in the
status register are set to 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 279 of 332
R8C/2E Group, R8C/2F Group
20.4.3.4
20. Flash Memory Version
Program Command
The program command writes data to the flash memory in 1-byte units.
By writing 40h in the first bus cycle and data in the second bus cycle to the write address, an auto-program
operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the
same address as the write address specified in the second bus cycle.
The FMR00 bit in the FMR0 register can be used to determine whether auto-programming has completed.
When suspend function disabled, the FMR00 bit is set to 0 during auto-programming and set to 1 when autoprogramming completes.
When suspend function enabled, the FMR44 bit is set to 1 during auto-programming and set to 0 when autoprogramming completes.
The FMR06 bit in the FMR0 register can be used to determine the result of auto-programming after it has been
finished (refer to 20.4.5 Full Status Check).
Do not write additions to the already programmed addresses.
When the FMR02 bit in the FMR0 register is set to 0 (rewriting disabled), or the FMR02 bit is set to 1 (rewrite
enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewriting disabled), program commands targeting
block 0 are not acknowledged. When the FMR16 bit is set to 1 (rewriting disabled), program commands
targeting block 1 are not acknowledged.
Figure 20.12 shows Program Command (When Suspend Function Disabled). Figure 20.13 shows Program
Command (When Suspend Function Enabled).
In EW1 mode, do not execute this command for any address which a rewrite control program is allocated.
In EW0 mode, the MCU enters read status register mode at the same time auto-programming starts and the
status register can be read. The status register bit 7 (SR7) is set to 0 at the same time auto-programming starts
and set back to 1 when auto-programming completes. In this case, the MCU remains in read status register
mode until the next read array command is written. The status register can be read to determine the result of
auto-programming after auto-programming has completed.
Start
Write the command code 40h to
the write address
Write data to the write address
FMR00 = 1?
No
Yes
Full status check
Program completed
Figure 20.12
Program Command (When Suspend Function Disabled)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 280 of 332
R8C/2E Group, R8C/2F Group
EW0 Mode
20. Flash Memory Version
Maskable interrupt(1)
Start
I = 1 (enable interrupt)(3)
FMR44 = 1 ?
No
Yes
FMR40 = 1
FMR42 = 1(4)
Write the command code 40h
to the write address
FMR46 = 1 ?
No
Access flash memory
Write data to the write address
Yes
Access flash memory
FMR44 = 0 ?
No
FMR42 = 0
Yes
REIT
Full status check
Program completed
EW1 Mode
Start
Maskable interrupt (2)
I = 1 (enable interrupt)
Access flash memory
FMR40 = 1
REIT
Write the command code 40h
Write data to the write address
FMR42 = 0
FMR44 = 0 ?
No
Yes
Full status check
Program completed
NOTES:
1. In EW0 mode, the interrupt vector table and interrupt routine for interrupts to be used should be allocated to the RAM area.
2. td(SR-SUS) is needed until the interrupt request is acknowledged after it is generated. The interrupt to enter suspend
should be in interrupt enabled status.
3. When no interrupt is used, the instruction to enable interrupts is not needed.
4. td(SR-SUS) is needed until program is suspended after the FMR42 bit in the FMR4 register is set to 1.
Figure 20.13
Program Command (When Suspend Function Enabled)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 281 of 332
R8C/2E Group, R8C/2F Group
20.4.3.5
20. Flash Memory Version
Block Erase
When 20h is written in the first bus cycle and D0h is written to a given address of a block in the second bus
cycle, an auto-erase operation (erase and verify) of the specified block starts.
The FMR00 bit in the FMR0 register can determine whether auto-erasure has completed.
The FMR00 bit is set to 0 during auto-erasure and set to 1 when auto-erasure completes.
The FMR07 bit in the FMR0 register can be used to determine the result of auto-erasure after auto-erasure has
completed (refer to 20.4.5 Full Status Check).
When the FMR02 bit in the FMR0 register is set to 0 (rewriting disabled) or the FMR02 bit is set to 1 (rewriting
enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewriting disabled), the block erase commands
targeting block 0 are not acknowledged. When the FMR16 bit is set to 1 (rewriting disabled), block erase
commands targeting block 1 are not acknowledged.
Do not use the block erase command during program-suspend.
Figure 20.14 shows the Block Erase Command (When Erase-Suspend Function Disabled). Figure 20.15 shows
the Block Erase Command (When Erase-Suspend Function Enabled).
In EW1 mode, do not execute this command for any address to which a rewrite control program is allocated.
In EW0 mode, the MCU enters read status register mode at the same time auto-erasure starts and the status
register can be read. The status register bit 7 (SR7) is set to 0 at the same time auto-erasure starts and set back to
1 when auto-erasure completes. In this case, the MCU remains in read status register mode until the next read
array command is written.
Start
Write the command code 20h
Write D0h to a given block
address
FMR00 = 1?
No
Yes
Full status check
Block erase completed
Figure 20.14
Block Erase Command (When Erase-Suspend Function Disabled)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 282 of 332
R8C/2E Group, R8C/2F Group
EW0 Mode
20. Flash Memory Version
Maskable interrupt(1)
Start
I = 1 (enable interrupt)(3)
FMR43 = 1 ?
No
Yes
FMR40 = 1
FMR41 = 1(4)
Write the command code 20h
FMR46 = 1 ?
No
Access flash memory
Write D0h to any block
address
Yes
Access flash memory
FMR00 = 1 ?
No
FMR41 = 0
Yes
REIT
Full status check
Block erase completed
EW1 Mode
Start
Maskable interrupt(2)
I = 1 (enable interrupt)
Access flash memory
FMR40 = 1
REIT
Write the command code 20h
Write D0h to any block
address
FMR41 = 0
FMR00 = 1 ?
No
Yes
Full status check
Block erase completed
NOTES:
1. In EW0 mode, the interrupt vector table and interrupt routine for interrupts to be used should be allocated to the RAM area.
2. td(SR-SUS) is needed until the interrupt request is acknowledged after it is generated. The interrupt to enter suspend
should be in interrupt enabled status.
3. When no interrupt is used, the instruction to enable interrupts is not needed.
4. td(SR-SUS) is needed until erase is suspended after the FMR41 bit in the FMR4 register is set to 1.
Figure 20.15
Block Erase Command (When Erase-Suspend Function Enabled)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 283 of 332
R8C/2E Group, R8C/2F Group
20.4.4
20. Flash Memory Version
Status Registers
The status register indicates the operating status of the flash memory and whether an erase or program operation
has completed normally or in error. Status of the status register can be read by bits FMR00, FMR06, and
FMR07 in the FMR0 register.
Table 20.5 lists the Status Register Bits.
In EW0 mode, the status register can be read in the following cases:
• When a given address in the user ROM area is read after writing the read status register command
• When a given address in the user ROM area is read after executing the program or block erase command
but before executing the read array command.
20.4.4.1
Sequencer Status (SR7 and FMR00 Bits)
The sequencer status bits indicate the operating status of the flash memory. SR7 is set to 0 (busy) during autoprogramming and auto-erasure, and is set to 1 (ready) at the same time the operation completes.
20.4.4.2
Erase Status (SR5 and FMR07 Bits)
Refer to 20.4.5 Full Status Check.
20.4.4.3
Program Status (SR4 and FMR06 Bits)
Refer to 20.4.5 Full Status Check.
Table 20.5
Status Register Bits
Status Register
Bit
SR0 (D0)
SR1 (D1)
SR2 (D2)
SR3 (D3)
SR4 (D4)
SR5 (D5)
SR6 (D6)
SR7 (D7)
FMR0 Register
Bit
−
−
−
−
FMR06
FMR07
−
FMR00
Status Name
Reserved
Reserved
Reserved
Reserved
Program status
Erase status
Reserved
Sequencer
status
Description
0
−
−
−
−
Completed normally
Completed normally
−
Busy
Value after
Reset
1
−
−
−
−
Error
Error
−
Ready
−
−
−
−
0
0
−
1
D0 to D7:Indicate the data bus which is read when the read status register command is executed.
Bits FMR07 (SR5) to FMR06 (SR4) are set to 0 by executing the clear status register command.
When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to 1, the program and block erase commands cannot
be accepted.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 284 of 332
R8C/2E Group, R8C/2F Group
20.4.5
20. Flash Memory Version
Full Status Check
When an error occurs, bits FMR06 to FMR07 in the FMR0 register are set to 1, indicating the occurrence of an
error. Therefore, checking these status bits (full status check) can be used to determine the execution result.
Table 20.6 lists the Errors and FMR0 Register Status. Figure 20.16 shows the Full Status Check and Handling
Procedure for Individual Errors.
Table 20.6
Errors and FMR0 Register Status
FRM0 Register (Status
Register) Status
Error
FMR07(SR5) FMR06(SR4)
1
1
Command
sequence
error
1
0
Erase error
0
1
Program error
Error Occurrence Condition
• When a command is not written correctly
• When invalid data other than that which can be written
in the second bus cycle of the block erase command is
written (i.e., other than D0h or FFh)(1)
• When the program command or block erase command
is executed while rewriting is disabled by the FMR02 bit
in the FMR0 register, or the FMR15 or FMR16 bit in the
FMR1 register.
• When an address not allocated in flash memory is input
during erase command input
• When attempting to erase the block for which rewriting
is disabled during erase command input.
• When an address not allocated in flash memory is input
during write command input.
• When attempting to write to a block for which rewriting
is disabled during the write command input.
• When the block erase command is executed but autoerasure does not complete correctly
• When the program command is executed but not autoprogramming does not complete.
NOTE:
1. The MCU enters read array mode when FFh is written in the second bus cycle of these commands.
At the same time, the command code written in the first bus cycle is disabled.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 285 of 332
R8C/2E Group, R8C/2F Group
20. Flash Memory Version
Command sequence error
Full status check
Execute the clear status register command
(set these status flags to 0)
FMR06 = 1
and
FMR07 = 1?
Yes
Command sequence error
Check if command is properly input
No
Re-execute the command
FMR07 = 1?
Yes
Erase error
Erase error
No
Execute the clear status register command
(set these status flags to 0)
Erase command
re-execution times ≤ 3 times?
FMR06 = 1?
Yes
Program error
No
Yes
Re-execute block erase command
No
Program error
Execute the clear status register
command
(set these status flags to 0)
Full status check completed
Specify the other address besides the
write address where the error occurs for
the program address(1)
NOTE:
1. To rewrite to the address where the program error occurs, check if the full
status check is complete normally and write to the address after the block
erase command is executed.
Figure 20.16
Re-execute program command
Full Status Check and Handling Procedure for Individual Errors
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 286 of 332
Block targeting for erasure
cannot be used
R8C/2E Group, R8C/2F Group
20.5
20. Flash Memory Version
Standard Serial I/O Mode
In standard serial I/O mode, the user ROM area can be rewritten while the MCU is mounted on-board by using a
serial programmer which is suitable for the MCU.
There are three types of Standard serial I/O modes:
• Standard serial I/O mode 1 ............Clock synchronous serial I/O used to connect with a serial programmer
• Standard serial I/O mode 2 ............Clock asynchronous serial I/O used to connect with a serial programmer
• Standard serial I/O mode 3 ............Special clock asynchronous serial I/O used to connect with a serial
programmer
This MCU uses Standard serial I/O mode 2 and Standard serial I/O mode 3.
Refer to Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging Emulator.
Contact the manufacturer of your serial programmer for details. Refer to the user’s manual of your serial
programmer for instructions on how to use it.
Table 20.7 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 2), Table 20.8 lists the Pin Functions
(Flash Memory Standard Serial I/O Mode 3). Figure 20.17 shows Pin Connections for Standard Serial I/O Mode 3.
After processing the pins shown in Table 20.8 and rewriting the flash memory using the programmer, apply “H” to
the MODE pin and reset the hardware to run a program in the flash memory in single-chip mode.
20.5.1
ID Code Check Function
The ID code check function determines whether the ID codes sent from the serial programmer and those written
in the flash memory match (refer to 20.3 Functions to Prevent Rewriting of Flash Memory).
Table 20.7
Pin Functions (Flash Memory Standard Serial I/O Mode 2)
Pin
VCC,VSS
Name
Power input
RESET
P4_6/XIN
P4_7/XOUT
P0_0 to P0_7
P1_0 to P1_7
P3_0, P3_1, P3_3 to
P3_6
P4_2/VREF
P5_3, P5_4
MODE
P3_7
P4_5
Reset input
I
P4_6 input/clock input
P4_7 input/clock output
Input port P0
Input port P1
Input port P3
I
I/O
I
I
I
Input port P4
Input port P5
MODE
TXD output
RXD input
I
I
I/O
O
I
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 287 of 332
I/O
Description
Apply the voltage guaranteed for programming and
erasure to the VCC pin and 0 V to the VSS pin.
Reset input pin.
Connect a ceramic resonator or crystal oscillator
between the XIN and XOUT pins.
Input “H” or “L” level signal or leave the pin open.
Input “L”.
Serial data output pin.
Serial data input pin.
R8C/2E Group, R8C/2F Group
Table 20.8
20. Flash Memory Version
Pin Functions (Flash Memory Standard Serial I/O Mode 3)
Pin
VCC,VSS
Name
Power input
I/O
Description
Apply the voltage guaranteed for programming and
erasure to the VCC pin and 0 V to the VSS pin.
Reset input pin.
RESET
P4_6/XIN
Reset input
I
P4_6 input/clock input
I
Input port P0
Input port P1
Input port P3
I
I
I
Input port P4
Input port P5
MODE
I
I
I/O Serial data I/O pin. Connect to the flash
programmer.
Connect a ceramic resonator or crystal oscillator
between the XIN and XOUT pins when connecting
P4_7 input/clock output I/O external oscillator. Apply “H” and “L” or leave the pin
open when using as input port.
P4_7/XOUT
P0_0 to P0_7
P1_0 to P1_7
P3_0, P3_1, P3_3 to
P3_7
P4_2/VREF, P4_5
P5_3, P5_4
MODE
Input “H” or “L” level signal or leave the pin open.
24 23 22 21 20 19 18 17
25
16
26
15
27
14
28
13
R8C/2E Group, R8C/2F Group
29
12
30
11
31
10
32
9
1
2
3
4
5
6
7
8
MODE
VSS
VCC
Connect oscillator circuit(1)
Mode setting
Signal
Value
MODE
Voltage from programmer
RESET
VSS → VCC
Figure 20.17
Package: PLQP0032GB-A
NOTE:
1. It is not necessary to connect an oscillating circuit
when operating with the on-chip oscillator clock.
Pin Connections for Standard Serial I/O Mode 3
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 288 of 332
R8C/2E Group, R8C/2F Group
20.5.1.1
20. Flash Memory Version
Example of Circuit Application in the Standard Serial I/O Mode
Figure 20.18 shows an example of Pin Processing in Standard Serial I/O Mode 2, Figure 20.19 shows an
example of Pin Processing in Standard Serial I/O Mode 3. Since the controlled pins vary depending on the
programmer, refer to the manual of your serial programmer for details.
MCU
Data Output
TXD
Data Input
RXD
MODE
NOTES:
1. In this example, modes are switched between single-chip mode and
standard serial I/O mode by controlling the MODE input with a switch.
2. Connecting the oscillation is necessary. Set the main clock frequency 1
MHz to 20 MHz. Refer to Appendix Figure 2.1 Connecting examples
with M16C Flash Starter (M3A-0806).
Figure 20.18
Pin Processing in Standard Serial I/O Mode 2
MCU
MODE I/O
MODE
Reset input
RESET
User reset signal
NOTES:
1. Controlled pins and external circuits vary depending on the programmer.
Refer to the programmer manual for details.
2. In this example, modes are switched between single-chip mode and
standard serial I/O mode by connecting a programmer.
3. When operating with the on-chip oscillator clock, it is not necessary to
connect an oscillating circuit.
Figure 20.19
Pin Processing in Standard Serial I/O Mode 3
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 289 of 332
R8C/2E Group, R8C/2F Group
20.6
20. Flash Memory Version
Parallel I/O Mode
Parallel I/O mode is used to input and output software commands, addresses and data necessary to control (read,
program, and erase) the on-chip flash memory. Use a parallel programmer which supports this MCU. Contact the
manufacturer of the parallel programmer for more information, and refer to the user’s manual of the parallel
programmer for details on how to use it.
ROM areas shown in Figures 20.1 and 20.2 can be rewritten in parallel I/O mode.
20.6.1
ROM Code Protect Function
The ROM code protect function disables the reading and rewriting of the flash memory. (Refer to the 20.3
Functions to Prevent Rewriting of Flash Memory.)
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 290 of 332
R8C/2E Group, R8C/2F Group
20.7
20. Flash Memory Version
Notes on Flash Memory Version
20.7.1
CPU Rewrite Mode
20.7.1.1
Operating Speed
Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit
in the CM0 register and bits CM16 to CM17 in the CM1 register. This does not apply to EW1 mode.
20.7.1.2
Prohibited Instructions
The following instructions cannot be used in EW0 mode because they reference internal data in flash memory:
UND, INTO, and BRK.
20.7.1.3
Interrupts
Table 20.9 lists the EW0 Mode Interrupts and Table 20.10 lists the EW1 Mode Interrupt.
Table 20.9
Mode
EW0 Mode Interrupts
Status
EW0 During auto-erasure
When Maskable
Interrupt Request is
Acknowledged
Any interrupt can be used
by allocating a vector in
RAM
Auto-programming
When Watchdog Timer, Oscillation Stop
Detection, Voltage Monitor 1, or Voltage Monitor
2 Interrupt Request is Acknowledged
Once an interrupt request is acknowledged, the
auto-programming or auto-erasure is forcibly
stopped immediately and the flash memory is
reset. Interrupt handling starts after the fixed
period and the flash memory restarts. Since the
block during auto-erasure or the address during
auto-programming is forcibly stopped, the
normal value may not be read. Execute autoerasure again and ensure it completes normally.
Since the watchdog timer does not stop during
the command operation, interrupt requests may
be generated. Reset the watchdog timer
regularly.
NOTES:
1. Do not use the address match interrupt while a command is being executed because the vector of
the address match interrupt is allocated in ROM.
2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed
vector is allocated in block 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 291 of 332
R8C/2E Group, R8C/2F Group
Table 20.10
Mode
20. Flash Memory Version
EW1 Mode Interrupt
When Watchdog Timer, Oscillation Stop
Detection, Voltage Monitor 1, or Voltage
Monitor 2 Interrupt Request is
Acknowledged
Auto-erasure is suspended after Once an interrupt request is
acknowledged, auto-programming or
td(SR-SUS) and interrupt
auto-erasure is forcibly stopped
handling is executed. Autoimmediately and the flash memory is
erasure can be restarted by
reset. Interrupt handling starts after the
setting the FMR41 bit in the
FMR4 register to 0 (erase restart) fixed period and the flash memory
restarts. Since the block during autoafter interrupt handling
erasure or the address during autocompletes.
Auto-erasure has priority and the programming is forcibly stopped, the
normal value may not be read. Execute
interrupt request
auto-erasure again and ensure it
acknowledgement is put on
completes normally.
standby. Interrupt handling is
Since the watchdog timer does not stop
executed after auto-erasure
during the command operation,
completes.
Auto-programming is suspended interrupt requests may be generated.
Reset the watchdog timer regularly
after td(SR-SUS) and interrupt
using the erase-suspend function.
handling is executed.
Auto-programming can be
restarted by setting the FMR42 bit
in the FMR4 register to 0
(program restart) after interrupt
handling completes.
Auto-programming has priority
and the interrupt request
acknowledgement is put on
standby. Interrupt handling is
executed after auto-programming
completes.
When Maskable Interrupt
Request is Acknowledged
Status
EW1 During auto-erasure
(erase-suspend
function enabled)
During auto-erasure
(erase-suspend
function disabled)
During autoprogramming
(program suspend
function enabled)
During autoprogramming
(program suspend
function disabled)
NOTES:
1. Do not use the address match interrupt while a command is executing because the vector of the
address match interrupt is allocated in ROM.
2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed
vector is allocated in block 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 292 of 332
R8C/2E Group, R8C/2F Group
20.7.1.4
20. Flash Memory Version
How to Access
Write 0 before writing 1 when setting the FMR01, FMR02, or FMR11 bit to 1. Do not generate an interrupt
between writing 0 and 1.
20.7.1.5
Rewriting User ROM Area
In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is
stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be
rewritten correctly. In this case, use standard serial I/O mode.
20.7.1.6
Program
Do not write additions to the already programmed address.
20.7.1.7
Entering Stop Mode or Wait Mode
Do not enter stop mode or wait mode during erase-suspend.
20.7.1.8
Program and Erase Voltage for Flash Memory
To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform
programming and erasure at less than 2.7 V.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 293 of 332
R8C/2E Group, R8C/2F Group
21. Electrical Characteristics
21. Electrical Characteristics
Table 21.1
Absolute Maximum Ratings
Symbol
VCC/AVCC
VI
VO
Pd
Topr
Parameter
Supply voltage
Input voltage
Output voltage
Power dissipation
Operating ambient temperature
Tstg
Storage temperature
Table 21.2
IOH(sum)
IOH(peak)
IOH(avg)
IOL(sum)
Sum of all pins IOH(peak)
Max.
5.5
−
VCC
0.2 VCC
−160
Supply voltage
Supply voltage
Input “H” voltage
Input “L” voltage
Peak sum output
“H” current
Average sum
output “H” current
Peak output “H”
current
Sum of all pins IOH(avg)
−
−
−80
mA
Except P1_0 to P1_7
P1_0 to P1_7
Except P1_0 to P1_7
P1_0 to P1_7
Sum of all pins IOL(peak)
−
−
−10
−
−
−20
−
−
−5
−
−
−10
−
−
160
mA
mA
mA
mA
mA
Average output
“H” current
−
−
80
mA
−
−
−
−
−
−
−
−
0
0
0
0
−
−
−
125
10
20
5
10
20
10
20
10
−
mA
mA
mA
mA
MHz
MHz
MHz
MHz
kHz
−
−
20
MHz
−
−
10
MHz
−
System clock
IOL(avg)
°C
Standard
Typ.
−
0
−
−
−
f(XIN)
IOL(peak)
Unit
V
V
V
mW
°C
Min.
2.7
−
0.8 VCC
0
−
Parameter
Peak sum output
“L” currents
Average sum
Sum of all pins IOL(avg)
output “L” currents
Peak output “L”
Except P1_0 to P1_7
currents
P1_0 to P1_7
Average output
Except P1_0 to P1_7
“L” current
P1_0 to P1_7
XIN clock input oscillation frequency
IOL(sum)
Topr = 25°C
Rated Value
−0.3 to 6.5
−0.3 to VCC + 0.3
−0.3 to VCC + 0.3
500
−20 to 85 (N version) /
−40 to 85 (D version)
−65 to 150
Recommended Operating Conditions
Symbol
VCC/AVCC
VSS/AVSS
VIH
VIL
IOH(sum)
Condition
OCD2 = 0
XlN clock selected
OCD2 = 1
On-chip oscillator clock
selected
Conditions
3.0 V ≤ VCC ≤ 5.5 V
2.7 V ≤ VCC < 3.0 V
3.0 V ≤ VCC ≤ 5.5 V
2.7 V ≤ VCC < 3.0 V
FRA01 = 0
Low-speed on-chip
oscillator clock selected
FRA01 = 1
High-speed on-chip
oscillator clock selected
3.0 V ≤ VCC ≤ 5.5 V
FRA01 = 1
High-speed on-chip
oscillator clock selected
2.7 V ≤ VCC ≤ 5.5 V
−
−
NOTES:
1. VCC = 2.7 to 5.5 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
2. The average output current indicates the average value of current measured during 100 ms.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 294 of 332
Unit
V
V
V
V
mA
R8C/2E Group, R8C/2F Group
21. Electrical Characteristics
P0
P1
30pF
P3
P4
P5
Figure 21.1
Table 21.3
Ports P0, P1, and P3 to P5 Timing Measurement Circuit
A/D Converter Characteristics
Symbol
Parameter
−
Resolution
−
Absolute
accuracy
Conditions
Standard
Min.
Typ.
Max.
Unit
Vref = AVCC
−
−
10
Bits
10-bit mode
φAD = 10 MHz, Vref = AVCC = 5.0 V
−
−
±3
LSB
8-bit mode
φAD = 10 MHz, Vref = AVCC = 5.0 V
−
−
±2
LSB
10-bit mode
φAD = 10 MHz, Vref = AVCC = 3.3 V
−
−
±5
LSB
8-bit mode
φAD = 10 MHz, Vref = AVCC = 3.3 V
−
−
±2
LSB
Rladder
Resistor ladder
Vref = AVCC
10
−
40
kΩ
tconv
Conversion time 10-bit mode
φAD = 10 MHz, Vref = AVCC = 5.0 V
3.3
−
−
µs
φAD = 10 MHz, Vref = AVCC = 5.0 V
2.8
−
−
µs
2.7
−
AVCC
V
0
−
AVCC
V
8-bit mode
Vref
Reference voltage
VIA
Analog input
−
A/D operating
clock frequency
voltage(2)
Without sample and hold
Vref = AVCC = 2.7 to 5.5 V
0.25
−
10
MHz
With sample and hold
Vref = AVCC = 2.7 to 5.5 V
1
−
10
MHz
NOTES:
1. AVCC = 2.7 to 5.5 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in
8-bit mode.
Table 21.4
D/A Converter Characteristics
Symbol
Parameter
Conditions
Standard
Min.
Typ.
Max.
Unit
−
Resolution
−
−
8
−
Absolute accuracy
−
−
1.0
%
tsu
Setup time
−
−
3
µs
RO
Output resistor
4
10
20
kΩ
IVref
Reference power input current
−
−
1.5
mA
(NOTE 2)
Bit
NOTES:
1. AVCC = 2.7 to 5.5 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h.
The resistor ladder of the A/D converter is not included. Also, even if the VCUT bit in the ADCON1 register is set to 0 (VREF
not connected), IVref flows into the D/A converters.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 295 of 332
R8C/2E Group, R8C/2F Group
Table 21.5
21. Electrical Characteristics
Comparator Characteristics(1)
Symbol
Parameter
Conditions
Standard
Min.
Typ.
Max.
Unit
0
−
VCC−1.2
−0.3
−
VCC+0.3
V
Input offset voltage
−
−
±100
mV
Response time
−
−
200
ns
Vcref
Comparator reference voltage
Vcin
Comparator input voltage
Vofs
Tcrsp
V
NOTE:
1. VCC = 2.7 to 5.5 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
Table 21.6
Flash Memory (Program ROM) Electrical Characteristics
Symbol
−
Parameter
Program/erase endurance(2)
Conditions
Standard
Unit
Min.
Typ.
Max.
R8C/2E Group
100(3)
−
−
times
R8C/2F Group
1,000(3)
−
−
times
µs
−
Byte program time
−
50
400
−
Block erase time
−
0.4
9
s
td(SR-SUS)
Time delay from suspend request until
suspend
−
−
97+CPU clock
× 6 cycles
µs
−
Interval from erase start/restart until
following suspend request
650
−
−
µs
−
Interval from program start/restart until
following suspend request
0
−
−
ns
−
Time from suspend until program/erase
restart
−
−
3+CPU clock
× 4 cycles
µs
−
Program, erase voltage
2.7
−
5.5
V
−
Read voltage
2.7
−
5.5
V
−
Program, erase temperature
0
−
60
°C
−
Data hold time(7)
20
−
−
year
Ambient temperature = 55°C
NOTES:
1. VCC = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.
2. Definition of programming/erasure endurance
The programming and erasure endurance is defined on a per-block basis.
If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024
1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance
still stands at one.
However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential
addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example,
when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups
before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the
number of erase operations to a certain number.
5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase
command at least three times until the erase error does not occur.
6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
7. The data hold time includes time that the power supply is off or the clock is not supplied.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 296 of 332
R8C/2E Group, R8C/2F Group
Table 21.7
Flash Memory (Data flash Block A, Block B) Electrical Characteristics(4)
Symbol
−
Parameter
−
Program/erase endurance(2)
Byte program time
(program/erase endurance ≤ 1,000 times)
Byte program time
(program/erase endurance > 1,000 times)
Block erase time
(program/erase endurance ≤ 1,000 times)
Block erase time
(program/erase endurance > 1,000 times)
Time delay from suspend request until
suspend
Interval from erase start/restart until
following suspend request
Interval from program start/restart until
following suspend request
Time from suspend until program/erase
restart
Program, erase voltage
Read voltage
Program, erase temperature
−
Data hold time(9)
−
−
−
−
td(SR-SUS)
−
−
−
−
−
21. Electrical Characteristics
Conditions
Min.
Unit
Max.
−
times
50
400
µs
−
65
−
µs
−
0.2
9
s
−
0.3
−
s
−
−
µs
650
−
97+CPU clock
× 6 cycles
−
µs
0
−
−
ns
−
−
µs
2.7
2.7
−
−20(8)
−
3+CPU clock
× 4 cycles
5.5
5.5
85
20
−
−
year
10,000(3)
−
Ambient temperature = 55 °C
Standard
Typ.
−
−
V
V
°C
NOTES:
1. VCC = 2.7 to 5.5 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
2. Definition of programming/erasure endurance
The programming and erasure endurance is defined on a per-block basis.
If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024
1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance
still stands at one.
However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times
is the same as that in program ROM.
5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential
addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example,
when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups
before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the
number of erase operations to a certain number.
6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase
command at least three times until the erase error does not occur.
7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
8. −40°C for D version.
9. The data hold time includes time that the power supply is off or the clock is not supplied.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 297 of 332
R8C/2E Group, R8C/2F Group
21. Electrical Characteristics
Suspend request
(maskable interrupt request)
FMR46
Clock-dependent
time
Fixed time
Access restart
td(SR-SUS)
Figure 21.2
Table 21.8
Time delay until Suspend
Voltage Detection 1 Circuit Electrical Characteristics
Symbol
Parameter
Condition
Vdet1
Voltage detection level(4)
−
Voltage monitor 1 interrupt request generation time(2)
Voltage detection circuit self power consumption
Waiting time until voltage detection circuit operation
starts(3)
MCU operating voltage minimum value
−
td(E-A)
Vccmin
VCA26 = 1, VCC = 5.0 V
Min.
2.7
Standard
Typ.
Max.
2.85
3.00
Unit
V
−
40
−
µs
−
0.6
−
−
100
µA
−
2.7
−
−
V
µs
NOTES:
1. The measurement condition is VCC = 2.7 V to 5.5 V and Topr = −20 to 85°C (N version) / −40 to 85°C (D version).
2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2
register to 0.
4. This parameter shows the voltage detection level when the power supply drops.
The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply
drops by approximately 0.1 V.
Table 21.9
Voltage Detection 2 Circuit Electrical Characteristics
Symbol
Vdet2
−
−
td(E-A)
Parameter
Condition
Voltage detection level
time(2)
Voltage monitor 2 interrupt request generation
Voltage detection circuit self power consumption
Waiting time until voltage detection circuit operation
starts(3)
VCA27 = 1, VCC = 5.0 V
Min.
3.3
Standard
Typ.
Max.
3.6
3.9
Unit
V
−
40
−
µs
−
0.6
−
−
µA
100
µs
−
NOTES:
1. The measurement condition is VCC = 2.7 V to 5.5 V and Topr = −20 to 85°C (N version) / −40 to 85°C (D version).
2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2
register to 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 298 of 332
R8C/2E Group, R8C/2F Group
Table 21.10
Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics
Symbol
Vpor1
21. Electrical Characteristics
Parameter
Condition
Power-on reset valid voltage(3)
Power-on reset valid voltage
Vpor2
trth
Min.
−
0
20
External power VCC rise gradient(2)
Standard
Typ.
−
−
−
Max.
0.1
2.6
−
Unit
V
V
mV/msec
NOTES:
1. The measurement condition is Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
2. This condition (external power VCC rise gradient) does not apply if VCC ≥ 1.0 V.
3. tw(por1) indicates the duration the external power VCC must be held below the effective voltage (Vpor1) to enable a power on
reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if −20°C ≤ Topr ≤ 85°C, maintain tw(por1) for
3,000 s or more if −40°C ≤ Topr < −20°C.
max. 2.6 V
max. 2.6 V
2.2 V
trth
trth
External
Power VCC
Vpor2
Vpor1
Sampling time(1, 2)
tw(por1)
Internal
reset signal
(“L” valid)
1
× 32
fOCO-S
NOTES:
1. Ensure that the voltage is 2.2 V or above during the sampling time.
2. The sampling time is fOCO-S divided by 1 × 4 cycles.
Figure 21.3
Reset Circuit Electrical Characteristics
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 299 of 332
1
× 32
fOCO-S
R8C/2E Group, R8C/2F Group
Table 21.11
21. Electrical Characteristics
High-speed On-Chip Oscillator Circuit Electrical Characteristics
Symbol
Parameter
fOCO40M
High-speed on-chip oscillator frequency
temperature • supply voltage dependence
High-speed on-chip oscillator frequency when
correction value in FRA7 register is written to
FRA1 register
−
Value in FRA1 register after reset
Oscillation frequency adjustment unit of highspeed on-chip oscillator
Oscillation stability time
Self power consumption at oscillation
−
−
−
Condition
VCC = 4.75 V to 5.25 V
0°C ≤ Topr ≤ 60°C(2)
VCC = 3.0 V to 5.5 V
−20°C ≤ Topr ≤ 85°C(2)
VCC = 3.0 V to 5.5 V
−40°C ≤ Topr ≤ 85°C(2)
VCC = 2.7 V to 5.5 V
−20°C ≤ Topr ≤ 85°C(2)
VCC = 2.7 V to 5.5 V
−40°C ≤ Topr ≤ 85°C(2)
VCC = 5.0 V ±10%
−20°C ≤ Topr ≤ 85°C(2)
VCC = 5.0 V ±10%
−40°C ≤ Topr ≤ 85°C(2)
VCC = 5.0 V, Topr = 25°C
VCC = 2.7 V to 5.5 V
−20°C ≤ Topr ≤ 85°C
Adjust FRA1 register
(value after reset) to −1
Min.
39.2
Standard
Typ.
40
Max.
40.8
MHz
38.8
40
41.2
MHz
38.4
40
41.6
MHz
38
40
42
MHz
37.6
40
42.4
MHz
38.8
40
40.8
MHz
38.4
40
40.8
MHz
−
−3%
36.864
−
−
3%
MHz
%
08h
−
−
+0.3
F7h
−
−
MHz
−
10
400
100
−
µA
VCC = 5.0 V, Topr = 25°C
−
Unit
µs
NOTES:
1. VCC = 2.7 to 5.5 V, Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
2. These standard values show when the FRA1 register value after reset is assumed.
Table 21.12
Low-speed On-Chip Oscillator Circuit Electrical Characteristics
Symbol
Parameter
fOCO-S
Low-speed on-chip oscillator frequency
Oscillation stability time
Self power consumption at oscillation
−
−
Condition
VCC = 5.0 V, Topr = 25°C
Standard
Typ.
125
10
15
Min.
30
−
−
Max.
250
100
−
Unit
kHz
µs
µA
NOTE:
1. VCC = 2.7 to 5.5 V, Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.
Table 21.13
Power Supply Circuit Timing Characteristics
Symbol
Parameter
td(P-R)
Time for internal power supply stabilization during
power-on(2)
td(R-S)
STOP exit time(3)
Condition
NOTES:
1. The measurement condition is VCC = 2.7 to 5.5 V and Topr = 25°C.
2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 300 of 332
Min.
1
−
Standard
Typ.
Max.
−
2000
−
150
Unit
µs
µs
R8C/2E Group, R8C/2F Group
Table 21.14
Electrical Characteristics (1) [VCC = 5 V]
Symbol
VOH
Parameter
Output “H” voltage Except P1_0 to P1_7,
XOUT
P1_0 to P1_7
XOUT
VOL
Output “L” voltage Except P1_0 to P1_7,
XOUT
P1_0 to P1_7
XOUT
VT+-VT-
21. Electrical Characteristics
Hysteresis
Condition
IOH = −5 mA
IOH = −200 µA
Drive capacity HIGH
Drive capacity LOW
Drive capacity HIGH
Drive capacity LOW
IOL = 5 mA
IOL = 200 µA
Drive capacity HIGH
Drive capacity LOW
Drive capacity HIGH
Drive capacity LOW
INT0, INT1, INT3,
KI0, KI1, KI2, KI3,
TRAIO, RXD0, CLK0
RESET
IIH
IIL
RPULLUP
RfXIN
VRAM
Input “H” current
Input “L” current
Pull-up resistance
Feedback
XIN
resistance
RAM hold voltage
VI = 5 V, VCC = 5 V
VI = 0 V, VCC = 5 V
VI = 0 V, VCC = 5 V
During stop mode
IOH = −10 mA
IOH = −5 mA
IOH = −1 mA
IOH = −500 µA
IOL = 10 mA
IOL = 5 mA
IOL = 1 mA
IOL = 500 µA
Standard
Min.
Typ.
VCC − 2.0
−
VCC − 0.5
−
VCC − 2.0
−
VCC − 2.0
−
VCC − 2.0
−
VCC − 2.0
−
−
−
−
−
−
−
−
−
−
−
−
−
0.1
0.5
Max.
VCC
VCC
VCC
VCC
VCC
VCC
2.0
0.45
2.0
2.0
2.0
2.0
−
Unit
V
V
V
V
V
V
V
V
V
V
V
V
V
−
V
−
5.0
µA
−
−5.0
30
−
50
1.0
167
−
µA
kΩ
MΩ
1.8
−
−
V
0.1
1.0
−
−
NOTE:
1. VCC = 4.2 to 5.5 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 301 of 332
R8C/2E Group, R8C/2F Group
Table 21.15
Symbol
ICC
21. Electrical Characteristics
Electrical Characteristics (2) [Vcc = 5 V]
(Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.)
Parameter
Condition
Power supply
High-speed
clock mode
current
(VCC = 3.3 to 5.5 V)
Single-chip mode,
output pins are
open, other pins
are VSS
Standard
Typ.
Max.
10
17
Unit
mA
XIN = 16 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
No division
−
9
15
mA
XIN = 10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
No division
−
6
−
mA
XIN = 20 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
−
5
−
mA
XIN = 16 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
−
4
−
mA
XIN = 10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
−
2.5
−
mA
XIN clock off
High-speed on-chip oscillator on fOCO = 20 MHz
Low-speed on-chip oscillator on = 125 kHz
No division
−
10
15
mA
XIN clock off
High-speed on-chip oscillator on fOCO = 20 MHz
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
−
4
−
mA
XIN clock off
High-speed on-chip oscillator on fOCO = 10 MHz
Low-speed on-chip oscillator on = 125 kHz
No division
−
5.5
10
mA
XIN clock off
High-speed on-chip oscillator on fOCO = 10 MHz
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
−
2.5
−
mA
Low-speed
on-chip
oscillator mode
XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8, FMR47 = 1
−
130
300
µA
Wait mode
XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
While a WAIT instruction is executed
Peripheral clock operation
VCA27 = VCA26 = 0
VCA20 = 1
−
25
75
µA
XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
While a WAIT instruction is executed
Peripheral clock off
VCA27 = VCA26 = 0
VCA20 = 1
−
23
60
µA
XIN clock off, Topr = 25°C
High-speed on-chip oscillator off
Low-speed on-chip oscillator off
CM10 = 1
Peripheral clock off
VCA27 = VCA26 = 0
−
0.8
3.0
µA
XIN clock off, Topr = 85°C
High-speed on-chip oscillator off
Low-speed on-chip oscillator off
CM10 = 1
Peripheral clock off
VCA27 = VCA26 = 0
−
1.2
−
µA
High-speed
on-chip
oscillator mode
Stop mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
XIN = 20 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
No division
Min.
−
Page 302 of 332
R8C/2E Group, R8C/2F Group
21. Electrical Characteristics
Timing Requirements
(Unless Otherwise Specified: VCC = 5 V, VSS = 0 V at Topr = 25°C) [VCC = 5 V]
Table 21.16
XIN Input
Symbol
tc(XIN)
tWH(XIN)
tWL(XIN)
Standard
Min.
Max.
50
−
25
−
25
−
Parameter
XIN input cycle time
XIN input “H” width
XIN input “L” width
tC(XIN)
Unit
ns
ns
ns
VCC = 5 V
tWH(XIN)
XIN input
tWL(XIN)
Figure 21.4
Table 21.17
XIN Input Timing Diagram when VCC = 5 V
TRAIO Input
Symbol
tc(TRAIO)
tWH(TRAIO)
tWL(TRAIO)
Standard
Min.
Max.
100
−
40
−
40
−
Parameter
TRAIO input cycle time
TRAIO input “H” width
TRAIO input “L” width
tC(TRAIO)
tWH(TRAIO)
TRAIO input
tWL(TRAIO)
Figure 21.5
TRAIO Input Timing Diagram when VCC = 5 V
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 303 of 332
Unit
ns
ns
ns
VCC = 5 V
R8C/2E Group, R8C/2F Group
Table 21.18
21. Electrical Characteristics
Serial Interface
Symbol
tc(CK)
tW(CKH)
tW(CKL)
td(C-Q)
th(C-Q)
tsu(D-C)
th(C-D)
Standard
Min.
Max.
200
−
100
−
100
−
−
50
0
−
50
−
90
−
Parameter
CLK0 input cycle time
CLK0 input “H” width
CLK0 input “L” width
TXD0 output delay time
TXD0 hold time
RXD0 input setup time
RXD0 input hold time
Unit
ns
ns
ns
ns
ns
ns
ns
VCC = 5 V
tC(CK)
tW(CKH)
CLK0
tW(CKL)
th(C-Q)
TXD0
td(C-Q)
tsu(D-C)
th(C-D)
RXD0
Figure 21.6
Table 21.19
Serial Interface Timing Diagram when VCC = 5 V
External Interrupt INTi (i = 0, 1, 3) Input
tW(INH)
INTi input “H” width
Standard
Min.
Max.
(1)
−
250
tW(INL)
INTi input “L” width
250(2)
Symbol
Parameter
−
Unit
ns
ns
NOTES:
1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock
frequency × 3) or the minimum value of standard, whichever is greater.
2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock
frequency × 3) or the minimum value of standard, whichever is greater.
VCC = 5 V
tW(INL)
INTi input
tW(INH)
i = 0, 1, 3
Figure 21.7
External Interrupt INTi Input Timing Diagram when VCC = 5 V
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 304 of 332
R8C/2E Group, R8C/2F Group
Table 21.20
Electrical Characteristics (3) [VCC = 3 V]
Symbol
VOH
21. Electrical Characteristics
Standard
Min.
Typ.
VCC − 0.5
−
Max.
VCC
IOH = −2 mA
VCC − 0.5
−
VCC
V
IOH = −1 mA
VCC − 0.5
−
VCC
V
IOH = −0.1 mA VCC − 0.5
−
VCC
V
IOH = −50 µA
VCC − 0.5
−
VCC
V
−
−
0.5
V
IOL = 2 mA
−
−
0.5
V
IOL = 1 mA
−
−
0.5
V
IOL = 0.1 mA
−
−
0.5
V
IOL = 50 µA
−
−
0.5
V
INT0, INT1, INT3,
KI0, KI1, KI2, KI3,
TRAIO, RXD0, CLK0
0.1
0.3
−
V
RESET
0.1
0.4
−
V
−
−
4.0
µA
−
−
−4.0
66
−
1.8
160
3.0
−
500
−
−
µA
kΩ
MΩ
V
Parameter
Output “H” voltage
Except P1_0 to P1_7,
XOUT
P1_0 to P1_7
XOUT
VOL
Output “L” voltage
Except P1_0 to P1_7,
XOUT
P1_0 to P1_7
XOUT
VT+-VT-
IIH
IIL
RPULLUP
RfXIN
VRAM
Hysteresis
Input “H” current
Input “L” current
Pull-up resistance
Feedback resistance
RAM hold voltage
Condition
IOH = −1 mA
Drive capacity
HIGH
Drive capacity
LOW
Drive capacity
HIGH
Drive capacity
LOW
IOL = 1 mA
Drive capacity
HIGH
Drive capacity
LOW
Drive capacity
HIGH
Drive capacity
LOW
VI = 3 V, VCC = 3 V
VI = 0 V, VCC = 3 V
VI = 0 V, VCC = 3 V
XIN
During stop mode
Unit
V
NOTE:
1. VCC =2.7 to 3.3 V at Topr = −20 to 85°C (N version) / −40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 305 of 332
R8C/2E Group, R8C/2F Group
Table 21.21
Symbol
ICC
21. Electrical Characteristics
Electrical Characteristics (4) [Vcc = 3 V]
(Topr = −20 to 85°C (N version) / −40 to 85°C (D version), unless otherwise specified.)
Parameter
Condition
Power supply current High-speed
(VCC = 2.7 to 3.3 V)
clock mode
Single-chip mode,
output pins are open,
other pins are VSS
High-speed
on-chip
oscillator
mode
Low-speed
on-chip
oscillator
mode
Wait mode
Stop mode
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
XIN = 10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
No division
XIN = 10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
XIN clock off
High-speed on-chip oscillator on fOCO = 10 MHz
Low-speed on-chip oscillator on = 125 kHz
No division
XIN clock off
High-speed on-chip oscillator on fOCO = 10 MHz
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8, FMR47 = 1
XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
While a WAIT instruction is executed
Peripheral clock operation
VCA27 = VCA26 = 0
VCA20 = 1
XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
While a WAIT instruction is executed
Peripheral clock off
VCA27 = VCA26 = 0
VCA20 = 1
XIN clock off, Topr = 25°C
High-speed on-chip oscillator off
Low-speed on-chip oscillator off
CM10 = 1
Peripheral clock off
VCA27 = VCA26 = 0
XIN clock off, Topr = 85°C
High-speed on-chip oscillator off
Low-speed on-chip oscillator off
CM10 = 1
Peripheral clock off
VCA27 = VCA26 = 0
Page 306 of 332
Min.
−
Standard
Typ.
Max.
6
−
Unit
mA
−
2
−
mA
−
5
9
mA
−
2
−
mA
−
130
300
µA
−
25
70
µA
−
23
55
µA
−
0.7
3.0
µA
−
1.1
−
µA
R8C/2E Group, R8C/2F Group
21. Electrical Characteristics
Timing requirements
(Unless Otherwise Specified: VCC = 3 V, VSS = 0 V at Topr = 25°C) [VCC = 3 V]
Table 21.22
XIN Input
Symbol
tc(XIN)
tWH(XIN)
tWL(XIN)
Standard
Min.
Max.
100
−
40
−
40
−
Parameter
XIN input cycle time
XIN input “H” width
XIN input “L” width
tC(XIN)
Unit
ns
ns
ns
VCC = 3 V
tWH(XIN)
XIN input
tWL(XIN)
Figure 21.8
XIN Input Timing Diagram when VCC = 3 V
Table 21.23
TRAIO Input
Symbol
tc(TRAIO)
tWH(TRAIO)
tWL(TRAIO)
Standard
Min.
Max.
300
−
120
−
120
−
Parameter
TRAIO input cycle time
TRAIO input “H” width
TRAIO input “L” width
tC(TRAIO)
tWH(TRAIO)
TRAIO input
tWL(TRAIO)
Figure 21.9
TRAIO Input Timing Diagram when VCC = 3 V
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 307 of 332
Unit
ns
ns
ns
VCC = 3 V
R8C/2E Group, R8C/2F Group
Table 21.24
21. Electrical Characteristics
Serial Interface
Symbol
tc(CK)
tW(CKH)
tW(CKL)
td(C-Q)
th(C-Q)
tsu(D-C)
th(C-D)
Standard
Min.
Max.
300
−
150
−
150
−
−
80
0
−
70
−
90
−
Parameter
CLK0 input cycle time
CLK0 input “H” width
CLK0 Input “L” width
TXD0 output delay time
TXD0 hold time
RXD0 input setup time
RXD0 input hold time
Unit
ns
ns
ns
ns
ns
ns
ns
VCC = 3 V
tC(CK)
tW(CKH)
CLK0
tW(CKL)
th(C-Q)
TXD0
td(C-Q)
tsu(D-C)
th(C-D)
RXD0
Figure 21.10
Table 21.25
Serial Interface Timing Diagram when VCC = 3 V
External Interrupt INTi (i = 0, 1, 3) Input
INTi input “H” width
Standard
Min.
Max.
−
380(1)
INTi input “L” width
380(2)
Symbol
tW(INH)
tW(INL)
Parameter
Unit
−
ns
ns
NOTES:
1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock
frequency × 3) or the minimum value of standard, whichever is greater.
2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock
frequency × 3) or the minimum value of standard, whichever is greater.
VCC = 3 V
tW(INL)
INTi input
tW(INH)
i = 0, 1, 3
Figure 21.11
External Interrupt INTi Input Timing Diagram when VCC = 3 V
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 308 of 332
R8C/2E Group, R8C/2F Group
22. Usage Notes
22. Usage Notes
22.1
Notes on Clock Generation Circuit
22.1.1
Stop Mode
When entering stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and the
CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction
which sets the CM10 bit to 1 (stop mode) and the program stops.
Insert at least 4 NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit
to 1.
• Program example to enter stop mode
BCLR
BSET
FSET
BSET
JMP.B
LABEL_001 :
NOP
NOP
NOP
NOP
22.1.2
1,FMR0
0,PRCR
I
0,CM1
LABEL_001
; CPU rewrite mode disabled
; Protect disabled
; Enable interrupt
; Stop mode
Wait Mode
When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and
execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the
program stops. Insert at least 4 NOP instructions after the WAIT instruction.
• Program example to execute the WAIT instruction
BCLR
1,FMR0
FSET
I
WAIT
NOP
NOP
NOP
NOP
22.1.3
; CPU rewrite mode disabled
; Enable interrupt
; Wait mode
Oscillation Stop Detection Function
Since the oscillation stop detection function cannot be used if the XIN clock frequency is 2 MHz or below, set
bits OCD1 to OCD0 to 00b.
22.1.4
Oscillation Circuit Constants
Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system.
To use this MCU with supply voltage below VCC = 2.7 V, it is recommended to set the CM11 bit in the CM1
register to 1 (on-chip feedback resistor disabled), the CM15 bit to 1 (high drive capacity), and connect the
feedback resistor to the chip externally.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 309 of 332
R8C/2E Group, R8C/2F Group
22.2
22. Usage Notes
Notes on Interrupts
22.2.1
Reading Address 00000h
Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads
interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At
this time, the acknowledged interrupt IR bit is set to 0.
If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the
enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be
generated.
22.2.2
SP Setting
Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an
interrupt is acknowledged before setting a value in the SP, the program may run out of control.
22.2.3
External Interrupt and Key Input Interrupt
Either “L” level or an “H” level of width shown in the Electrical Characteristics is necessary for the signal input
to pins INT0, INT1, INT3 and pins KI0 to KI3, regardless of the CPU clock.
For details, refer to Table 21.19 (VCC = 5V), Table 21.25 (VCC = 3V) External Interrupt INTi (i = 0, 1, 3)
Input.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 310 of 332
R8C/2E Group, R8C/2F Group
22.2.4
22. Usage Notes
Changing Interrupt Sources
The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source
changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source.
In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to
individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral
function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after
the change. Refer to the individual peripheral function for its related interrupts.
Figure 22.1 shows an Example of Procedure for Changing Interrupt Sources.
Interrupt source change
Disable interrupts(2, 3)
Change interrupt source (including mode
of peripheral function)
Set the IR bit to 0 (interrupt not requested)
using the MOV instruction(3)
Enable interrupts (2, 3)
Change completed
IR bit:
The interrupt control register bit of an
interrupt whose source is changed.
NOTES:
1. Execute the above settings individually. Do not execute two
or more settings at once (by one instruction).
2. To prevent interrupt requests from being generated, disable
the peripheral function before changing the interrupt
source. In this case, use the I flag if all maskable interrupts
can be disabled. If all maskable interrupts cannot be
disabled, use bits ILVL0 to ILVL2 of the interrupt whose
source is changed.
3. Refer to 12.6.5 Changing Interrupt Control Register for
the instructions to be used and usage notes.
Figure 22.1
Example of Procedure for Changing Interrupt Sources
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 311 of 332
R8C/2E Group, R8C/2F Group
22.2.5
22. Usage Notes
Changing Interrupt Control Register Contents
(a) The contents of an interrupt control register can only be changed while no interrupt requests
corresponding to that register are generated. If interrupt requests may be generated, disable interrupts
before changing the interrupt control register contents.
(b) When changing the contents of an interrupt control register after disabling interrupts, be careful to
choose appropriate instructions.
Changing any bit other than IR bit
If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit
may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a
problem, use the following instructions to change the register: AND, OR, BCLR, BSET
Changing IR bit
If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used.
Therefore, use the MOV instruction to set the IR bit to 0.
(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer
to (b) regarding changing the contents of interrupt control registers by the sample programs.
Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt
control register is changed for reasons of the internal bus or the instruction queue buffer.
Example 1:
Use NOP instructions to prevent I flag from being set to 1 before interrupt control register
is changed
INT_SWITCH1:
FCLR
I
; Disable interrupts
AND.B #00H,0056H
; Set TRAIC register to 00h
NOP
;
NOP
FSET
I
; Enable interrupts
Example 2: Use dummy read to delay FSET instruction
INT_SWITCH2:
FCLR
I
; Disable interrupts
AND.B #00H,0056H
; Set TRAIC register to 00h
MOV.W MEM,R0
; Dummy read
FSET
I
; Enable interrupts
Example 3: Use POPC instruction to change I flag
INT_SWITCH3:
PUSHC FLG
FCLR
I
; Disable interrupts
AND.B #00H,0056H
; Set TRAIC register to 00h
POPC
FLG
; Enable interrupts
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 312 of 332
R8C/2E Group, R8C/2F Group
22.3
22. Usage Notes
Notes on Timers
22.3.1
Notes on Timer RA
• Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the
•
•
•
•
•
•
count starts.
Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by
the MCU. Consequently, the timer value may be updated during the period when these two registers are
being read.
In pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by
writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the
READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0
although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or
TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and
TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler
immediately after the count starts, then set the TEDGF bit to 0.
The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1
(count starts) while the count is stopped.
During this time, do not access registers associated with timer RA(1) other than the TCSTF bit. Timer RA
starts counting at the first valid edge of the count source after The TCSTF bit is set to 1 (during count).
The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count
stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0.
During this time, do not access registers associated with timer RA(1) other than the TCSTF bit.
NOTE:
1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.
• When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow
three or more cycles of the count source clock for each write interval.
• When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three
or more cycles of the prescaler underflow for each write interval.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 313 of 332
R8C/2E Group, R8C/2F Group
22.3.2
22. Usage Notes
Notes on Timer RB
• Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the
count starts.
• Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the
MCU. Consequently, the timer value may be updated during the period when these two registers are being
read.
• In programmable one-shot generation mode and programmable wait one-shot generation mode, when
setting the TSTART bit in the TRBCR register to 0, 0 (stops counting) or setting the TOSSP bit in the
TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore,
in programmable one-shot generation mode and programmable wait one-shot generation mode, read the
timer count value before the timer stops.
• The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to
1 (count starts) while the count is stopped.
During this time, do not access registers associated with timer RB(1)other than the TCSTF bit. Timer RB
starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).
The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count
stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0.
During this time, do not access registers associated with timer RB(1) other than the TCSTF bit.
NOTE:
1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and
TRBPR.
• If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
• If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes
after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period
between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be
set to either 0 or 1 depending on the content state. Likewise, if the TOSST bit is written to 1 during the
period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit
may be set to either 0 or 1.
22.3.2.1
Timer mode
The following workaround should be performed in timer mode.
To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following
points:
• When the TRBPRE register is written continuously, allow three or more cycles of the count source for each
write interval.
• When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow
for each write interval.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 314 of 332
R8C/2E Group, R8C/2F Group
22.3.2.2
22. Usage Notes
Programmable waveform generation mode
The following three workarounds should be performed in programmable waveform generation mode.
(1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the
following points:
• When the TRBPRE register is written continuously, allow three or more cycles of the count source for each
write interval.
• When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow
for each write interval.
(2) To change registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), synchronize
the TRBO output cycle using a timer RB interrupt, etc. This operation should be preformed only once in
the same output cycle. Also, make sure that writing to the TRBPR register does not occur during period
A shown in Figures 22.2 and 22.3.
The following shows the detailed workaround examples.
• Workaround example (a):
As shown in Figure 22.2, write to registers TRBSC and TRBPR in the timer RB interrupt routine. These
write operations must be completed by the beginning of period A.
Period A
Count source/
prescaler
underflow signal
TRBO pin output
IR bit in
TRBIC register
Primary period
(a)
Interrupt request is
acknowledged
Secondary period
Ensure sufficient time
(b)
Interrupt request
is generated
Instruction in
Interrupt
sequence interrupt routine
Set the secondary and then
the primary register immediately
(a) Period between interrupt request generation and the completion of execution of an instruction. The length of time
varies depending on the instruction being executed.
The DIVX instruction requires the longest time, 30 cycles (assuming no wait states and that a register is set as
the divisor).
(b) 20 cycles. 21 cycles for address match and single-step interrupts.
Figure 22.2
Workaround Example (a) When Timer RB interrupt is Used
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 315 of 332
R8C/2E Group, R8C/2F Group
22. Usage Notes
• Workaround example (b):
As shown in Figure 22.3 detect the start of the primary period by the TRBO pin output level and write to
registers TRBSC and TRBPR. These write operations must be completed by the beginning of period A.
If the port register’s bit value is read after the port direction register’s bit corresponding to the TRBO pin is
set to 0 (input mode), the read value indicates the TRBO pin output value.
Period A
Count source/
prescaler
underflow signal
TRBO pin output
Read value of the port register’s
bit corresponding to the TRBO pin
(when the bit in the port direction
register is set to 0)
Primary period
Secondary period
(i) (ii) (iii)
Ensure sufficient time
The TRBO output inversion
is detected at the end of the
secondary period.
Figure 22.3
Upon detecting (i), set the secondary and
then the primary register immediately.
Workaround Example (b) When TRBO Pin Output Value is Read
(3) To stop the timer counting in the primary period, use the TSTOP bit in the TRBCR register. In this case,
registers TRBPRE and TRBPR are initialized and their values are set to the values after reset.
22.3.2.3
Programmable one-shot generation mode
The following two workarounds should be performed in programmable one-shot generation mode.
(1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the
following points:
• When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow
three or more cycles of the count source for each write interval.
• When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow
three or more cycles of the prescaler underflow for each write interval.
(2) Do not set both the TRBPRE and TRBPR registers to 00h.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 316 of 332
R8C/2E Group, R8C/2F Group
22.3.2.4
22. Usage Notes
Programmable wait one-shot generation mode
The following three workarounds should be performed in programmable wait one-shot generation mode.
(1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the
following points:
• When the TRBPRE register is written continuously, allow three or more cycles of the count source for each
write interval.
• When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow
for each write interval.
(2) Do not set both the TRBPRE and TRBPR registers to 00h.
(3) Set registers TRBSC and TRBPR using the following procedure.
(a) To use “INT0 pin one-shot trigger enabled” as the count start condition
Set the TRBSC register and then the TRBPR register. At this time, after writing to the TRBPR
register, allow an interval of 0.5 or more cycles of the count source before trigger input from the
INT0 pin.
(b) To use “writing 1 to TOSST bit” as the start condition
Set the TRBSC register, the TRBPR register, and then TOSST bit. At this time, after writing to the
TRBPR register, allow an interval of 0.5 or more cycles of the count source before writing to the
TOSST bit.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 317 of 332
R8C/2E Group, R8C/2F Group
22.3.3
22. Usage Notes
Notes on Timer RC
22.3.3.1
TRC Register
• The following note applies when the CCLR bit in the TRCCR1 register is set to 1 (clear TRC register at
compare match with TRCGRA register).
When using a program to write a value to the TRC register while the TSTART bit in the TRCMR register is
set to 1 (count starts), ensure that the write does not overlap with the timing with which the TRC register is
set to 0000h.
If the timing of the write to the TRC register and the setting of the TRC register to 0000h coincide, the
write value will not be written to the TRC register and the TRC register will be set to 0000h.
• Reading from the TRC register immediately after writing to it can result in the value previous to the write
being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.
Program Example
MOV.W
#XXXXh, TRC
;Write
JMP.B
L1
;JMP.B instruction
L1:
MOV.W
TRC,DATA
;Read
22.3.3.2
TRCSR Register
Reading from the TRCSR register immediately after writing to it can result in the value previous to the write
being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.
Program Example
MOV.B
#XXh, TRCSR
;Write
JMP.B
L1
;JMP.B instruction
L1:
MOV.B
TRCSR,DATA
;Read
22.3.3.3
Count Source Switching
• Stop the count before switching the count source.
Switching procedure
(1) Set the TSTART bit in the TRCMR register to 0 (count stops).
(2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
• After switching the count source from fOCO40M to another clock, allow a minimum of two cycles of f1 to
elapse after changing the clock setting before stopping fOCO40M.
Switching procedure
(1) Set the TSTART bit in the TRCMR register to 0 (count stops).
(2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
(3) Wait for a minimum of two cycles of f1.
(4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).
22.3.3.4
Input Capture Function
• The pulse width of the input capture signal should be three cycles or more of the timer RC operation clock
(refer to Table 14.11 Timer RC Operation Clock).
• The value of the TRC register is transferred to the TRCGRj register one or two cycles of the timer RC
operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the
digital filter function is not used).
22.3.3.5
TRCMR Register in PWM2 Mode
When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with the TRCGRA
register), do not set the TRCMR register at compare match timing of registers TRC and TRCGRA.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 318 of 332
R8C/2E Group, R8C/2F Group
22.3.4
22. Usage Notes
Notes on Timer RE
22.3.4.1
Starting and Stopping Count
Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates
count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.
Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count
starts). It takes up to 2 cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to
1. During this time, do not access registers associated with timer RE(1) other than the TCSTF bit.
Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0
(count stops). It takes the time for up to 2 cycles of the count source until the TCSTF bit is set to 0 after setting
the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF
bit.
NOTE:
1. Registers associated with timer RE: TRESEC, TREMIN, TRECR1, TRECR2, and TRECSR.
22.3.4.2
Register Setting
Write to the following registers or bits when timer RE is stopped.
• Registers TRESEC, TREMIN, and TRECR2
• INT bit in TRECR1 register
• Bits RCS0 to RCS2 and b3 in TRECSR register
Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).
Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the
TRECR2 register.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 319 of 332
R8C/2E Group, R8C/2F Group
22.4
22. Usage Notes
Notes on Serial Interface
• When reading data from the U0RB register either in the clock synchronous serial I/O mode or in the clock
asynchronous serial I/O mode, ensure the data is read in 16-bit units. When the high-order byte of the U0RB
register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0.
The check receive errors, read the U0RB register and then use the read data.
Example (when reading receive buffer register):
MOV.W
00A6H,R0
; Read the U0RB register
• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data
length, write data to the high-order byte first then the low-order byte, in 8-bit units.
Example (when reading transmit buffer register):
MOV.B
#XXH,00A3H ; Write the high-order byte of U0TB register
MOV.B
#XXH,00A2H ; Write the low-order byte of U0TB register
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 320 of 332
R8C/2E Group, R8C/2F Group
22.5
22. Usage Notes
Notes on Hardware LIN
For the time-out processing of the header and response fields, use another timer to measure the duration of time
with a Synch Break detection interrupt as the starting point.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 321 of 332
R8C/2E Group, R8C/2F Group
22.6
22. Usage Notes
Notes on A/D Converter
• Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit
•
•
•
•
•
•
•
in the ADCON2 register when A/D conversion is stopped (before a trigger occurs).
When the VCUT bit in the ADCON1 register is changed from 0 (VREF not connected) to 1 (VREF
connected), wait for at least 1 µs before starting the A/D conversion.
After changing the A/D operating mode, select an analog input pin again.
When using the one-shot mode, ensure that A/D conversion is completed before reading the AD register. The
IR bit in the ADIC register or the ADST bit in the ADCON0 register can be used to determine whether A/D
conversion is completed.
When using the repeat mode, select the frequency of the A/D converter operating clock φAD or more for the
CPU clock during A/D conversion.
Do not select the fOCO-F for the φAD.
If the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program and A/D conversion
is forcibly terminated during an A/D conversion operation, the conversion result of the A/D converter will be
undefined. If the ADST bit is set to 0 by a program, do not use the value of the AD register.
Connect 0.1 µF capacitor between the P4_2/VREF pin and AVSS pin.
Do not enter stop mode during A/D conversion.
Do not enter wait mode when the CM02 bit in the CM0 register is set to 1 (peripheral function clock stops in
wait mode) during A/D conversion.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 322 of 332
R8C/2E Group, R8C/2F Group
22.7
22. Usage Notes
Notes on Flash Memory Version
22.7.1
CPU Rewrite Mode
22.7.1.1
Operating Speed
Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit
in the CM0 register and bits CM16 to CM17 in the CM1 register. This does not apply to EW1 mode.
22.7.1.2
Prohibited Instructions
The following instructions cannot be used in EW0 mode because they reference internal data in flash memory:
UND, INTO, and BRK.
22.7.1.3
Interrupts
Table 22.1 lists the EW0 Mode Interrupts and Table 22.2 lists the EW1 Mode Interrupt.
Table 22.1
Mode
EW0 Mode Interrupts
Status
EW0 During auto-erasure
When Maskable
Interrupt Request is
Acknowledged
Any interrupt can be used
by allocating a vector in
RAM
Auto-programming
When Watchdog Timer, Oscillation Stop
Detection, Voltage Monitor 1, or Voltage Monitor
2 Interrupt Request is Acknowledged
Once an interrupt request is acknowledged, the
auto-programming or auto-erasure is forcibly
stopped immediately and the flash memory is
reset. Interrupt handling starts after the fixed
period and the flash memory restarts. Since the
block during auto-erasure or the address during
auto-programming is forcibly stopped, the
normal value may not be read. Execute autoerasure again and ensure it completes normally.
Since the watchdog timer does not stop during
the command operation, interrupt requests may
be generated. Reset the watchdog timer
regularly.
NOTES:
1. Do not use the address match interrupt while a command is being executed because the vector of
the address match interrupt is allocated in ROM.
2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed
vector is allocated in block 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 323 of 332
R8C/2E Group, R8C/2F Group
Table 22.2
Mode
22. Usage Notes
EW1 Mode Interrupt
When Watchdog Timer, Oscillation Stop
Detection, Voltage Monitor 1, or Voltage
Monitor 2 Interrupt Request is
Acknowledged
Auto-erasure is suspended after Once an interrupt request is
acknowledged, auto-programming or
td(SR-SUS) and interrupt
auto-erasure is forcibly stopped
handling is executed. Autoimmediately and the flash memory is
erasure can be restarted by
reset. Interrupt handling starts after the
setting the FMR41 bit in the
FMR4 register to 0 (erase restart) fixed period and the flash memory
restarts. Since the block during autoafter interrupt handling
erasure or the address during autocompletes.
Auto-erasure has priority and the programming is forcibly stopped, the
normal value may not be read. Execute
interrupt request
auto-erasure again and ensure it
acknowledgement is put on
completes normally.
standby. Interrupt handling is
Since the watchdog timer does not stop
executed after auto-erasure
during the command operation,
completes.
Auto-programming is suspended interrupt requests may be generated.
Reset the watchdog timer regularly
after td(SR-SUS) and interrupt
using the erase-suspend function.
handling is executed.
Auto-programming can be
restarted by setting the FMR42 bit
in the FMR4 register to 0
(program restart) after interrupt
handling completes.
Auto-programming has priority
and the interrupt request
acknowledgement is put on
standby. Interrupt handling is
executed after auto-programming
completes.
When Maskable Interrupt
Request is Acknowledged
Status
EW1 During auto-erasure
(erase-suspend
function enabled)
During auto-erasure
(erase-suspend
function disabled)
During autoprogramming
(program suspend
function enabled)
During autoprogramming
(program suspend
function disabled)
NOTES:
1. Do not use the address match interrupt while a command is executing because the vector of the
address match interrupt is allocated in ROM.
2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed
vector is allocated in block 0.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 324 of 332
R8C/2E Group, R8C/2F Group
22.7.1.4
22. Usage Notes
How to Access
Write 0 before writing 1 when setting the FMR01, FMR02, or FMR11 bit to 1. Do not generate an interrupt
between writing 0 and 1.
22.7.1.5
Rewriting User ROM Area
In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is
stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be
rewritten correctly. In this case, use standard serial I/O mode.
22.7.1.6
Program
Do not write additions to the already programmed address.
22.7.1.7
Entering Stop Mode or Wait Mode
Do not enter stop mode or wait mode during erase-suspend.
22.7.1.8
Program and Erase Voltage for Flash Memory
To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform
programming and erasure at less than 2.7 V.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 325 of 332
R8C/2E Group, R8C/2F Group
22.8
22. Usage Notes
Notes on Noise
22.8.1
Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure
against Noise and Latch-up
Connect a bypass capacitor (at least 0.1 µF) using the shortest and thickest write possible.
22.8.2
Countermeasures against Noise Error of Port Control Registers
During rigorous noise testing or the like, external noise (mainly power supply system noise) can exceed the
capacity of the MCU's internal noise control circuitry. In such cases the contents of the port related registers
may be changed.
As a firmware countermeasure, it is recommended that the port registers, port direction registers, and pull-up
control registers be reset periodically. However, examine the control processing fully before introducing the
reset routine as conflicts may be created between the reset routine and interrupt routines.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 326 of 332
R8C/2E Group, R8C/2F Group
23. Notes for On-Chip Debugger
23. Notes for On-Chip Debugger
When using the on-chip debugger to develop and debug programs for the R8C/2E Group and R8C/2F Group take note
of the following.
(1)
(2)
(3)
(4)
Some of the user flash memory and RAM areas are used by the on-ship debugger. These areas cannot be
accessed by the user.
Refer to the on-chip debugger manual for which areas are used.
Do not set the address match interrupt (registers AIER, RMAD0, and RMAD1 and fixed vector tables) in a
user system.
Do not use the BRK instruction in a user system.
Debugging is available under the condition of supply voltage VCC = 2.7 to 5.5 V. Debugging with the on-chip
debugger under less than 2.7 V is not allowed.
Connecting and using the on-chip debugger has some special restrictions. Refer to the on-chip debugger manual for
details.
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 327 of 332
R8C/2E Group, R8C/2F Group
Appendix 1. Package Dimensions
Appendix 1. Package Dimensions
Diagrams showing the latest package dimensions and mounting information are available in the “Packages” section of
the Renesas Technology website.
JEITA Package Code
P-LQFP32-7x7-0.80
RENESAS Code
PLQP0032GB-A
Previous Code
32P6U-A
MASS[Typ.]
0.2g
HD
*1
D
24
17
NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
16
25
bp
c
c1
HE
*2
E
b1
Reference Dimension in Millimeters
Symbol
32
9
1
ZE
Terminal cross section
8
ZD
c
A
A1
F
A2
Index mark
L
D
E
A2
HD
HE
A
A1
bp
b1
c
c1
L1
y
e
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
*3
Detail F
bp
x
Page 328 of 332
e
x
y
ZD
ZE
L
L1
Min Nom Max
6.9 7.0 7.1
6.9 7.0 7.1
1.4
8.8 9.0 9.2
8.8 9.0 9.2
1.7
0.1 0.2
0
0.32 0.37 0.42
0.35
0.09 0.145 0.20
0.125
0°
8°
0.8
0.20
0.10
0.7
0.7
0.3 0.5 0.7
1.0
R8C/2E Group, R8C/2F Group Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging
Appendix 2. Connection Examples between Serial Writer and On-Chip
Debugging Emulator
Appendix Figure 2.1 shows a Connection Example with M16C Flash Starter (M3A-0806) and Appendix Figure 2.2
shows a Connection Example with E8 Emulator (R0E000080KCE00).
VCC
25
26
27
28
29
30
32
31
1
24
2
23
(2)
RESET
R8C/2E Group,
R8C/2F Group
TXD
3
Connect oscillation circuit (1)
VSS
4
5
6
7
MODE
22
21
20
19
18
17
8
16
15
14
13
12
11
9
10
10
TXD
7 VSS
RXD 4
1 VCC
(2)
M16C Flash Starter
(M3A-0806)
RXD
NOTES:
1. An oscillation circuit must be connected, even when operating with the on-chip oscillator clock.
2. For development tools only.
Appendix Figure 2.1
Connection Example with M16C Flash Starter (M3A-0806)
VCC
12
13
4
5
21
20
19
18
17
15
16
14
13
12
9
11
MODE
10
8
VCC
7
22
8
RESET
10
25
14
26
23
6
4.7kΩ ±10%
27
24
2
R8C/2E Group,
R8C/2F Group
VSS
28
30
1
3
Connect oscillation circuit (1)
29
32
31
Open collector buffer
User logic
4.7kΩ or more
7 MODE
6
4
2
VSS
E8 emulator
(R0E000080KCE00)
Appendix Figure 2.2
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
NOTE:
1. It is not necessary to connect an oscillation circuit when
operating with the on-chip oscillator clock.
Connection Example with E8 Emulator (R0E000080KCE00)
Page 329 of 332
R8C/2E Group, R8C/2F Group
Appendix 3. Example of Oscillation Evaluation Circuit
Appendix 3. Example of Oscillation Evaluation Circuit
Appendix Figure 3.1 shows an Example of Oscillation Evaluation Circuit.
VCC
25
26
27
28
24
2
23
R8C/2E Group,
R8C/2F Group
3
4
VSS
29
30
Connect
oscillation
circuit
31
32
RESET
1
5
6
7
22
21
20
19
18
8
17
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Example of Oscillation Evaluation Circuit
Page 330 of 332
16
Appendix Figure 3.1
15
14
13
12
11
10
9
NOTE:
1. After reset, the XIN clock stops.
Write a program to oscillate the XIN clock.
R8C/2E Group, R8C/2F Group
Index
Index
[A]
ACCR0 to ACCR1 ....................................................... 255, 258
ACMR .................................................................................. 259
AD ....................................................................................... 242
ADCON0 ............................................................................. 241
ADCON1 ............................................................................. 242
ADCON2 ............................................................................. 242
ADIC ...................................................................................... 95
AIER .................................................................................... 110
[C]
CM0 ....................................................................................... 67
CM0IC ................................................................................... 96
CM1 ....................................................................................... 68
CM1IC ................................................................................... 96
CSPR .................................................................................. 117
[D]
DA0 to DA1 ......................................................................... 254
DACON ............................................................................... 254
[F]
FMR0 .................................................................................. 273
FMR1 .................................................................................. 274
FMR4 .................................................................................. 275
FRA0 ..................................................................................... 70
FRA1 ..................................................................................... 70
FRA2 ..................................................................................... 70
FRA7 ..................................................................................... 71
[I]
INT0IC ................................................................................... 97
INT1IC ................................................................................... 97
INT3IC ................................................................................... 97
INTEN ................................................................................. 104
INTF .................................................................................... 105
[K]
KIEN .................................................................................... 108
KUPIC ................................................................................... 95
[L]
LINCR ................................................................................. 226
LINST .................................................................................. 227
[O]
OCD ...................................................................................... 69
OFS ....................................................................... 26, 117, 268
[P]
P1DRR .................................................................................. 51
PDi (i = 0, 1, and 3 to 5) ........................................................ 48
Pi (i = 0, 1, and 3 to 5) ........................................................... 49
PINSR2 ................................................................................. 50
PINSR3 ................................................................................. 50
PM0 ....................................................................................... 63
PM1 ....................................................................................... 63
PMR .............................................................................. 50, 212
PRCR .................................................................................... 89
PUR0 ..................................................................................... 51
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 331 of 332
PUR1 ..................................................................................... 51
[R]
RMAD0 ................................................................................ 110
RMAD1 ................................................................................ 110
[S]
S0RIC .................................................................................... 95
S0TIC .................................................................................... 95
[T]
TRA ..................................................................................... 124
TRACR ................................................................................ 123
TRAIC .................................................................................... 95
TRAIOC ....................................... 123, 125, 128, 130, 132, 135
TRAMR ................................................................................ 124
TRAPRE .............................................................................. 124
TRBCR ................................................................................ 139
TRBIC .................................................................................... 95
TRBIOC ............................................... 140, 142, 146, 149, 153
TRBMR ................................................................................ 140
TRBOCR ............................................................................. 139
TRBPR ................................................................................ 141
TRBPRE .............................................................................. 141
TRBSC ................................................................................ 141
TRC ..................................................................................... 166
TRCCR1 ...................................................... 163, 186, 190, 195
TRCCR2 .............................................................................. 167
TRCDF ................................................................................ 168
TRCGRA ............................................................................. 166
TRCGRB ............................................................................. 166
TRCGRC ............................................................................. 166
TRCGRD ............................................................................. 166
TRCIC .................................................................................... 96
TRCIER ............................................................................... 164
TRCIOR0 ............................................................. 170, 179, 184
TRCIOR1 ............................................................. 170, 180, 185
TRCMR ................................................................................ 162
TRCOER ............................................................................. 169
TRCSR ................................................................................ 165
TRECR1 .............................................................................. 203
TRECR2 .............................................................................. 204
TRECSR .............................................................................. 204
TREIC .................................................................................... 95
TREMIN ............................................................................... 203
TRESEC .............................................................................. 203
[U]
U0BRG ................................................................................ 210
U0C0 ................................................................................... 211
U0C1 ................................................................................... 212
U0MR .................................................................................. 210
U0RB ................................................................................... 209
U0TB ................................................................................... 209
[V]
VCA1 ..................................................................................... 33
VCA2 ............................................................................... 33, 71
VW1C .................................................................................... 34
VW2C .................................................................................... 35
R8C/2E Group, R8C/2F Group
[W]
WDC .................................................................................... 116
WDTR ................................................................................. 116
WDTS .................................................................................. 116
Rev.1.00 Dec 14, 2007
REJ09B0349-0100
Page 332 of 332
Index
REVISION HISTORY
REVISION HISTORY
R8C/2E Group, R8C/2F Group Hardware Manual
R8C/2E Group, R8C/2F Group Hardware Manual
Description
Rev.
Date
0.01
Nov 17, 2006
−
First Edition issued
0.03a
May 31, 2007
−
“RENESAS TECHNICAL UPDATE” reflected:
TN-16C-A164A/E, TN-16C-A167A/E
25
Figure 5.3 revised
26
Figure 5.4 NOTE1 revised
29
5.2 and Figure 5.7 revised
33
Figure 6.4; VCA2 register NOTE5 revised
56
Table 7.18 revised
67
10 revised
68
Figure 10.1 revised
72
Figure 10.5 FRA1 register revised
73
Figure 10.6 NOTE5 revised
74
Figure 10.7 added
79
10.4.1.3 revised
83
10.4.2.5 and Figure 10.10 revised
85
Figure 10.11 revised
87
10.5.1 revised
94
12.1.3.1 revised
106
12.2.1 revised
111
Table 12.6 revised
114
12.6.4 deleted
115
Figure 12.19 NOTE2 revised
119
Figure 13.3 OFS register NOTE1 revised
128
Figure 14.5; “Following conditions” revised
139
14.1.6 revised
142
Figure 14.14 TRBMR register revised
143
Figure 14.15 TRBPR register; NOTE2 revised
146
Figure 14.17; “Following conditions” revised
154
Table 14.10 revised
Page
Summary
157 to 160 14.2.5.1 to 14.2.5.4 added
212
Figure 15.4 U0MR to U1MR Register NOTE2 deleted
222
Table 15.5 NOTE2 added
233
Figure 16.6 revised
234
Figure 16.7; “B0CLR“bit name revised
236
Figure 16.9 revised
238
Figure 16.11; “BCDCT” flag name revised.
255
17.7 revised
267
Table 20.2 revised
C-1
REVISION HISTORY
Rev.
Date
0.03a
May 31, 2007
R8C/2E Group, R8C/2F Group Hardware Manual
Description
Page
Summary
271
Figure 20.4 NOTE1 revised
272
Table 20.3 revised
274
20.4.2.4 revised
275
20.4.2.15 revised
276
Figure 20.5 revised
278
Figure 20.7 NOTE5 revised
280
Figure 20.9 revised
281
Figure 20.11 revised
283
20.4.3.4 revised
284
Figure 20.13 revised
286
Figure 20.15 revised
288
Table 20.6; “FRM00 Register” → “FRM0 Register” revised
303
Table 21.11 revised
313
22.2.4 deleted
314
Figure 22.1 NOTE2 revised
316
22.3.1 revised
317 to 320 21.3.2.1 to 21.3.2.4 added
0.10
Aug 01, 2007
325
22.6 revised
332
Appendix Figure 2.1 NOTE2 deleted
333
Appendix Figure 3.1 NOTE1 revised
2, 4
Table 1.1 and Table 1.3; “Serial Interface” revised
3, 5
Table 1.2 and Table 1.4; revised specifications of “Operating Frequency/
Supply Voltage” and “Current consumption”
6
Table 1.5 and Figure 1.1; “factory programming product” added
7
Table 1.6 and Figure 1.2; “factory programming product” added
8
Figure 1.3 “UART or clock synchronous serial I/O (8 bits × 1)” revised
9
Figure 1.4 revised
10
Table 1.7 revised
11
Table 1.8 revised
15
Figure 3.1 revised
16
Figure 3.2 revised
18
Table 4.2; - 0053h “S1TIC register” deleted,
- 0054h “S1RIC register” deleted
19
Table 4.3; - 00A8h “U1MR register” deleted,
- 00A9h “U1BRG register” deleted,
- 00AAh to 00ABh “U1TB register” deleted,
- 00ACh “U1C0 register” deleted,
- 00ADh “U1C1 register” deleted,
- 00AEh to 00AFh “U1RB register” deleted
20
Table 4.4; - 00F5h “PINSR1 register” deleted
C-2
REVISION HISTORY
Rev.
Date
0.10
Aug 01, 2007
R8C/2E Group, R8C/2F Group Hardware Manual
Description
Page
Summary
29
Figure 5.7 revised
43
Figure 7.1 P1_0 to P1_3 and P1_4 revised
44
Figure 7.2 revised
50
Figure 7.9 PINSR1 register deleted, Figure 7.10 PMR register revised
52
Table 7.4 revised
53
Table 7.9 revised
59
Table 7.30 and Table 7.31 revised, Table 7.32 revised
60
Table 7.33 revised
65
Table 10.1 NOTE2 revised
66
Figure 10.1 revised
77
10.4.1.3 “low-speed clock mode” → “low-speed on-chip oscillator mode”
revised
94
Table 12.2 revised
95
Figure 12.3 Registers S1TIC and S1RIC deleted
103
Figure 12.11 revised
138
14.2 “The reload register and counter are allocated at the same
address.” deleted
141
Figure 14.15 “Programmable one-shot generation mode” mode name revised
203
Figure 14.64 revised
207 to 223 15. Serial Interface; “UART1” deleted
(“UARTi (i = 0 or 1)” → “UART0” and “i (i = 0 or 1)” → “0” revised)
207
Figure 15.1 revised
208
Figure 15.2 revised
209
Figure 15.3 U1TB register and U1RB register deleted
210
Figure 15.4 U1BRG register and U1MR register deleted, U0MR register
NOTE1 revised
211
Figure 15.5 U1C0 register deleted
212
Figure 15.6 U1C1 register deleted, Figure 15.7 PMR register revised
213
Table 15.1 revised
214
Table 15.2 and Table 15.3 revised
215
Figure 15.8 revised
216
Figure 15.9 and Figure 15.10 revised
218
Table 15.4 revised
219
Table 15.5 and Table 15.6 revised
220
Figure 15.11 revised
221
Figure 15.12 revised
222
Figure 15.13 revised
223
15.3 revised
224
Figure 16.1 revised
C-3
REVISION HISTORY
Rev.
Date
0.10
Aug 01, 2007
1.00
R8C/2E Group, R8C/2F Group Hardware Manual
Description
Page
Summary
229
Figure 16.5 revised
230
Figure 16.6 “Zero to one cycle of” revised
233
Figure 16.9 revised
236
Figure 16.12 revised
294
Table 21.2 revised
296
Table 21.5 and Table 21.6 revised
297
Table 21.7 revised
298
Table 21.8 NOTE4 added
299
Table 21.10 and Figure 21.3 revised
301
Table 21.14 revised
304
Table 21.18 and Figure 21.6 “i (i = 0 or 1)” → “0” revised
305
Table 21.20 revised
308
Table 21.24 and Figure 21.10 “i (i = 0 or 1)” → “0” revised
320
22.4 “i (i = 0 or 1)” → “0” revised
327
23 (1) deleted
329
Appendix Figure 2.1 NOTE2 added, Appendix Figure 2.2 revised
Dec 14, 2007 All pages “Under development” deleted
2, 4
Table 1.1 and Table 1.3 “Interrupts” revised
6, 7
Table 1.5 and Table 1.6 “(D)” deleted
15, 16
Figure 3.1 and Figure 3.2 “Expanded area” deleted
17
Table 4.1 “002Ch” added
29
5.2 “2.5 V” → “2.6 V” revised
66
Figure 10.1 revised
71
Figure 10.6 “FRA7 Register” added
74
10.2.2 revised
75
10.3.8 added
79
Table 10.3 revised
94
Table 12.2 revised
122
Figure 14.1 “TSTART” → “TCSTF” revised
170
Figure 14.36 TRCIOR0: b3 revised, NOTE4 added
177
14.3.4 and Table 14.16 revised
178
Figure 14.42 revised
179
Figure 14.43 b3 revised, NOTE3 added
184
Figure 14.47 b3 revised
233
Figure 16.9 revised
250
Figure 17.10 revised
294
Table 21.2 IOH(sum) and NOTE2 revised
300
Table 21.11 Symbol “fOCO40M”: Parameter added
C-4
R8C/2E Group, R8C/2F Group Hardware Manual
Publication Date:
Published by:
Rev.0.01
Rev.1.00
Nov 17, 2006
Dec 14, 2007
Sales Strategic Planning Div.
Renesas Technology Corp.
© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan
R8C/2E Group, R8C/2F Group
Hardware Manual
2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan