DATASHEET Photon Detection C30902 and C30921 Series High-speed solid state detectors for low light level applications Key Features High quantum efficiency: 77% typical at 830 nm C30902SH and C30921SH can be operated in Geiger mode C30902EH/SH-2 version with built-in 905 nm filter C30902BH version with ball-lens Hermetically sealed package Low Noise at room temperature High responsivity – internal avalanche gains in excess of 150 The C30902EH series of avalanche photodiodes is ideal for a wide range of applications, including LIDAR, range-finding, small-signal fluorescence, photon counting and bar code scanning. Excelitas Technologies’ C30902EH series of avalanche photodiodes is fabricated with a double-diffused “reach-through” structure. This structure provides high responsivity between 400 and 1000 nm as well as extremely fast rise and fall times at all wavelengths. The responsivity of the device is independent of modulation frequency up to about 800 MHz. The detector chip is hermetically-sealed behind a flat glass window in a modified TO-18 package. The useful diameter of the photosensitive surface is 0.5 mm. The C30921EH is packaged in a lightpipe TO-18 which allows efficient coupling of light to the detector from either a focused spot or an optical fiber up to 0.25 mm in diameter. The hermetically-sealed TO-18 package allows fibers to be mated to the end of the lightpipe to minimize signal losses without fear of endangering detector stability. The C30902EH-2 or C30902SH-2, with hermetic TO-18 package with inline 905nm passband filter and the C30902BH, with hermetic ball lens, complete the C30902 family. Both C30902SH and C30921SH are selected C30902EH and C30921EH photodiodes having extremely low noise and bulk dark-current. They are intended for ultra-low light level applications (optical power less than 1 pW) and can be used in either their normal linear mode (Vr < Vbr) at gains up to 250 or greater, or as photon counters in the “Geiger” mode (Vr > Vbr) where a single photoelectron may trigger an avalanche pulse of about 108 carriers. In this mode, no amplifiers are necessary and single-photon detection probabilities of up to approximately 50% are possible. Photon-counting is also advantageous where gating and coincidence techniques are employed for signal retrieval. www.excelitas.com Spectral response range – (10% Q.E. points) 400 to 1000 nm Time response – typically 0.5 ns Wide operating temperature range -40°C to +70°C RoHS compliant Applications LIDAR Range finding Small-signal fluorescence Photon counting Bar code scanning C30902 and C30921 Series High-speed solid state detectors for low light level applications Table 1. Electro-optical Characteristics Test conditions: Case temperature = 22˚C, unless otherwise specification, see notes on next page. Detector Type Parameter Photosensitive area active diameter active area Lightpipe characteristics (C30921) Numerical aperture of light pipe Index of refraction (n) of core Core diameter Field of view α (see Figure 15) with standard/ball lens window (-2) with built-in 905 nm filter with lightpipe (in air) Field of view α’ (see Figure 15) with standard window/ball lens (-2) with built-in 905 nm filter Breakdown voltage, Vbr Temperature coefficient of reverse bias, Vr, voltage for constant gain Detector Temperature (see note 2) -TC -DTC Gain (see note 1) Responsivity at 830 nm (not applicable for -2) at 900 nm Quantum efficiency at 830 nm (not applicable for -2) at 900 nm Dark current, id -TC (at 0 °C) -DTC (at -20 °C) Noise current, in (see note 3) -TC (at 0 °C) -DTC (at -20 °C) Capacitance Rise/Fall time, RL=50 Ω 10% to 90% points 90% to 10% points TEC maximal drive current -TC -DTC TEC maximal bias voltage -TC -DTC Dark count rate at 5% photon detection probability (830 nm) (see Figure 9 and note 4) Voltage above Vbr for 5% photon detection probability (830 nm) (see Figure 7 and note 4) After-pulse ratio at 5% photon detection probability (830 nm) (note 5) www.excelitas.com C30902EH/C30902EH-2 C30902BH C30921EH Min Typ Max 0.5 C30902SH C30902SH-2 C30921SH Min Typ Max Min Typ 0.5 0.2 0.5 0.2 0.55 1.61 0.25 0.55 1.61 0.25 90 55 33 90 55 33 122 N/A N/A 114 78 225 114 78 225 129 N/A 225 0.7 0.9 0.5 150 70 55 C30902SH-TC C30902SH-DTC 77 65 117 92 0.7 0.5 0.2 Units mm mm² [no units] [no units] mm 0.9 0.5 0.7 Degrees Degrees V 0.9 V/˚C ˚C ˚C 250 0 -20 250 128 108 128 108 A/W A/W 30 77 60 15 2 1 0.2 77 60 15 30 77 60 15 0.23 0.5 0.11 1.6 2 1.6 2 0.04 0.02 1.6 0.5 0.5 0.75 0.75 0.5 0.5 0.75 0.75 0.5 0.5 5000 15000 2 2 Page 2 of 14 Max 15 1100 (-TC) 250 (-DTC) 2 % % nA nA nA pA/Hz pA/Hz pA/Hz pF 0.75 0.75 ns ns 1.8 1.4 A A 0.8 2.0 V V 15000 cps 30 2 V 2 % C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Notes: 1. At the specific DC reverse operating voltage, Vop or Vr, supplied with each device and a light spot diameter of 0.25 mm (C30902EH, SH) or 0.10 mm (C30921EH, SH). Operated at this voltage, between 180 and 250V, the device will meet the electrical characteristic limits shown above. 2. The temperature of the thermistor in Kelvin can be calculated using the following equation: [ ] , ( ) where is the measured thermistor resistance in Ω, , , and 3. 4. 5. The theoretical expression for shot noise current in an avalanche photodiode is in = (2q (Ids + (IdbM² + PORM) F) BW)½ where q is the electronic charge, Ids is the dark surface current, Idb is the dark bulk current, F is the excess noise factor, M is the gain, PO is the optical power on the device, and BW is the noise bandwidth. For these devices F = 0.98 (2-1/M) + 0.02 M. (Reference: PP Webb, RJ McIntyre, JJ Conradi, “RCA Review”, Vol. 35 p. 234, (1974)). The C30902SH and C309021SH can be operated at a substantially higher detection probability. (see Geiger Mode Operation section). After-pulse occurring 1 µs to 60 seconds after main pulse. . Table 2 – Maximum Ratings Parameter Symbol Min Max Units Storage temperature Operating temperature Soldering for 5 seconds (leads only) Reverse current at room temperature Average value, continuous operation Peak value (1 s duration, non-repetitive) TS Top Forward current at room temperature Average value, continuous operation Peak value (1 s duration, non-repetitive) Maximum Total Power Dissipation IF -60 -40 100 70 200 °C °C °C 200 1 µA mA 5 50 60 mA mA mW Electro-Optical Characteristics Figure 1 – Typical Spectral Responsivity at case temperature of 22 °C 1000 C30902EH/921EH C30902SH/921SH C30902EH-2 C30902SH-2 Responsivity [A/W] 100 10 1 400 500 600 700 800 900 1000 1100 Wavelength [nm] www.excelitas.com Page 3 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 2 – Typical quantum efficiency vs. wavelength as a function of case temperature 100 -25 ⁰C Quantum Efficiency [%] 25 ⁰C 10 1 500 550 600 650 700 750 800 850 900 950 1000 1050 Wavelength [nm] Figure 3 – Typical responsivity @ 830nm vs. operating voltage as a function of case temperature Responsivity [A/W] 1000 100 -40 ⁰C 10 +20 ⁰C +60 ⁰C 1 140 www.excelitas.com 160 180 200 Bias Voltage [V] Page 4 of 14 220 240 260 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 4 – Typical Noise current vs. Gain Noise current [fA/√Hz] 1000 100 C30902EH C30902SH 10 10 100 Gain, M [no units] 1000 Figure 5 – Typical dark current vs. operating voltage Case temperature of 22 °C 1.E-06 Typical dark current [A] C30902EH, C30921EH C30902SH, C30921SH 1.E-07 1.E-08 150 160 170 180 190 200 210 220 230 DC operating voltage, Vop [V] www.excelitas.com Page 5 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 6 – Typical Gain –Bandwidth Product as a function of Gain Case temperature of 22 °C 400 Gain-Bandwidth product [GHz] 350 300 250 200 150 100 50 0 0 100 200 300 400 500 600 700 800 900 1000 Gain Figure 7 – Geiger mode, photoelectron detection probability @ 830nm as a function of voltage above Vbr Case temperature of 22 °C Photoelectron detection probability (PDE) [%] 60 50 40 30 20 Ideal Typical 10 0 0 5 10 15 20 25 Voltage above breakdown voltage (Vr - Vbr) www.excelitas.com Page 6 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 8 – Load Line for C30921SH in the Geiger mode 500 High RL 450 Low RL 400 Conducting state (avalanching) Dark current [mA] 350 300 250 Non-conducting state (surface dark current only) 200 150 100 50 0 Vr Vbr Figure 9 – Typical Dark Count vs. Temperature at 5% Photon Detection Efficiency (830nm) 10000 Dark count [cps] 1000 100 10 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Temperature [°C] www.excelitas.com Page 7 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 10 – Probability of after-pulse within the next 100ns vs. delay-time in an active quenched circuit (typical for C30902SH and C30921SH at Vbr, at a at case temperature of 22 °C) Probability of after-pulsing [%] 100 10 1 0.1 50 100 150 200 Delay Time [ns] 250 300 350 Package Drawings (Other packages available upon request) Figure 11 – C30902EH and C30902SH, reference dimensions shown in mm (inches) www.excelitas.com Page 8 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 12 – C30921EH and C30921EH, package outline and cutaway of the lightpipe, reference dimensions shown in mm [inches] Figure 13 – C30902EH-2 and C30902SH-2 reference dimensions shown in mm [inches] www.excelitas.com Page 9 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 14 – C30902BH, reference dimensions shown in mm Figure 15– C30902SH-TC, C30902SH-DTC, TO-66 with flange package outline, reference dimensions shown in mm (inches) www.excelitas.com Page 10 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Figure 16 – Approximate field of view – C30902 and C30921 Series For incident radiation at angles , the photosensitive surface is totally illuminated. For incident radiation at angles , but , the photosensitive surface is partially illuminated “- TC” and “- DTC” TE Cooled version TE cooled APD can be used for different reason (Figure 15). Most applications benefits from a -TC (single) or -DTC (dual) version for two reasons: 1. To reduce the thermal noise for very small signal detection as described previously. The -TC version has been design to operate the APD down to 0C whereas the -DTC version can be operated at -20C when the ambient temperature is 22C. 2. To keep a constant APD temperature no matter the ambient temperature. Because APD breakdown voltage decreases with a decrease of temperature, the TE cooler allows a single operating voltage. Also, this configuration allows constant APD performance over an extended ambient temperature range. The thermistor located inside the unit can be used to monitor the APD temperature and can be used to implement a TE cooler feedback loop to keep the APD at a constant temperature or/and to implement a temperature compensation on the APD bias voltage. A proper heat-sink is required to dissipate the heat generated by the APD and the TE cooler. Custom Designs Recognizing that different applications have different performance requirements, Excelitas offers a wide range of customization of these APDs to meet your design challenges. Dark count selection, custom device testing and packaging are among many of the application specific solutions available Geiger mode operation When biased above the breakdown voltage, an avalanche photodiode will normally conduct a large current. However, if the current is such that the current is limited to less than a particular value (about 50A for these diodes), the current is unstable and can switch off by itself. The explanation of this behavior is that the number of carriers in the avalanche region at any one time is small and fluctuating wildly. If the number happens to fluctuate to zero, the current must stop. If subsequently remains off until the avalanche pulse is retriggered by a bulk or photo-generated carrier. The “S” versions are selected to have a small bulk-generated dark-current. This makes them suitable for low-noise operation below VBR or photon-counting above Vbr in the Geiger mode. In this so-called Geiger mode, a single photoelectron (or thermally-generated electron) may trigger an avalanche pulse which discharges the photodiode from its reverse operating voltage Vr to a voltage slightly below VBR. The probability of this avalanche occurring is shown in Figure 7 as the “Photoelectron Detection Probability” and as can be seen, it increases with reverse voltage V r. For a given value of Vr-Vbr, the Photoelectron Detection Probability is independent of Temperature. To determine the Photon Detection Probability, it is necessary to multiply the Photon Detection Probability by the Quantum Efficiency, which is shown in Figure 2. The Quantum Efficiency also is relatively independent of temperature, except near the 1000 nm cut-off. The “S” versions can be used in the Geiger mode using either “passive” or “active” pulse quenching circuits. The advantages and disadvantages of each are discussed below. www.excelitas.com Page 11 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Passive-Quenching Circuit The simplest, and in many case a perfectly adequate method of quenching a breakdown pulse, is through the use of a current limiting load resistor. An example of such a “passive” quenching is shown in Figure 16. The load-line of the circuit is shown in Figure 8. To be in the conducting state at Vbr two conditions must be met: 1. 2. The Avalanche must have been triggered by either a photoelectron or a bulk-generated electron entering at the avalanche region of the diode. (Note: holes are inefficient at starting avalanches in silicon.) The probability of an avalanche being initiated is discussed above. To continue to be in the conducting state a sufficiently large current, called the latching current I LATCH, must be passing through the device so that there is always an electron or hole in the avalanche region. Typically in the C30902SH and C30921SH, ILATCH = 50 A. For currents (Vr-Vbr)/RL, much greater than ILATCH, the diode remains conducting. If the current (Vr-Vbr)/RL, is much less than ILATCH, the diode switches almost immediately to the non-conducting state. If (Vr-Vbr)/RL is approximately equal to ILATCH, then the diode will switch at an arbitrary time from the conducting to the non-conducting state depending on when the number of electrons and holes in the avalanche region statistically fluctuates to zero. When RL is large, the photodiode is normally conducting, and the operating point is at Vr-IDSRL in the non-conducting state. Following an avalanche breakdown, the device recharges to the voltage Vr - IDSRL with the time constant RLC, where C is the total device capacitance including stray capacitance. Using C = 1.6 pF and RL = 200 k a recharge time constant of 0.32 s is calculated. The rise-time is fast, 5 to 50ns, and decreases as Vr - Vbr increases, and is very dependent on the capacitances of the load resistors, leads, etc. The jitter at the half-voltage point is typically the same order of magnitude as the rise-time. For timing purposes where it is important to have minimum jitter, the lowest possible threshold of the rising pulse should be used. VR2 Output voltage [arb. units] Figure 16 – Sample of passive quench circuit 0 200 400 600 800 1000 Time [ns] www.excelitas.com Page 12 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications Active-Quenching Circuit Until the C30902SH is recharged, the probability of detecting another incoming photoelectron is relatively low. To avoid an excessive dead-time when operating at a large voltage above Vbr, an “actively quenched” circuit can be used. The circuit temporarily drops the bias voltage for a fraction of a microsecond following the detection of an avalanche discharge. This delay time allows all electrons and holes to be collected, including most of those temporarily “trapped” at various impurity sites in the silicon. When the higher voltage is reapplied, there are no electrons in the depletion region to trigger another avalanche or latch the diode. Recharging can now be very rapid through a small load resistor. Alternatively, the bias voltage can be maintained but the load resistor is replaced by a transistor which is kept off for a short time after an avalanche, and then turned on for a period sufficient to recharge the photodiode. Timing Resolution For photon counting applications, the time of the TTL triggered pulse after detecting a photon, when plotted on a curve, and with the FWHM averaged, is the timing resolution or time jitter. The jitter at the half-voltage point is typically the same order of magnitude as the rise-time. For timing purposes where it is important to have minimum jitter, the lowest possible threshold of the rising pulse should be used. After-Pulsing An after-pulse is an avalanche breakdown pulse which follows, and is induced by, a photon-generated pulse. An after-pulse is 8 usually caused by one of the approximately 10 carriers which pass through the diode during an avalanche. This electron or hole is captured and trapped at some impurity site in the silicon, as previously described. When this charge-carrier is liberated, usually in less than 100 ns but sometimes several milliseconds later, it may start another avalanche. The probability of an after-pulse occurring more than one microsecond later is typically less than 1% at 2 volts above V br, using the circuit shown in Figure 16. After-pulsing increases with bias voltage. If it is necessary to reduce after-pulses, it is recommended that one keep Vr-Vbr low, use an actively-quenched circuit with a long delay-line, or a passively-quenched circuit with a long RLC constant. Stray capacitances must also be minimized. Electronic gating of the signal can be performed in certain situations. Should afterpulses be a serious complication in a particular application, operation below Vbr with a good amplifier might be considered. Dark Current “S” versions have been selected to have a low dark-count rate. Cooling to -25C can reduce this by a factor of about 50, since the dependence of dark-count rate on temperature is exponential. The dark-count increases with voltage following the same curve as the Photoelectron Detection Probability until a voltage where after-pulsing is responsible for a feedback mechanism which dramatically increases the dark-count rate. This maximum voltage is circuit dependent, and is not warranted other than the values listed on Table 1. In most cases, with a delay time of 300 ns, the diode can be used effectively at Vr up to Vbr + 25V. The C30902 should not be forward biased or, when unbiased, exposed to strong illumination. These conditions result in a greatly enhanced dark-count, which may require up to 24 hours returning to its nominal value. www.excelitas.com Page 13 of 14 C30902 and C30921 Series-Rev.1-2014.09 C30902 and C30921 Series High-speed solid state detectors for low light level applications RoHS Compliance The C30902 and C30921 series of avalanche photodiodes are designed and built to be fully compliant with the European Union Directive 2011/65/EU – Restriction of the use of certain Hazardous Substances (RoHS) in Electrical and Electronic equipment. Warranty A standard 12-month warranty following shipment applies. Any warranty is null and void if the photodiode window has been opened. About Excelitas Technologies Excelitas Technologies is a global technology leader focused on delivering innovative, customized solutions to meet the lighting, detection and other high-performance technology needs of OEM customers. Excelitas has a long and rich history of serving our OEM customer base with optoelectronic sensors and modules for more than 45 years beginning with PerkinElmer, EG&G, and RCA. The constant throughout has been our innovation and commitment to delivering the highest quality solutions to our customers worldwide. From aerospace and defense to analytical instrumentation, clinical diagnostics, medical, industrial, and safety and security applications, Excelitas Technologies is committed to enabling our customers' success in their specialty end-markets. Excelitas Technologies has approximately 3,000 employees in North America, Europe and Asia, serving customers across the world. Excelitas Technologies 22001 Dumberry Road Vaudreuil-Dorion, Quebec Canada J7V 8P7 Telephone: (+1) 450 424 3300 Toll-free: (+1) 800 775 6786 Fax: (+1) 450 424 3345 [email protected] Excelitas Technologies GmbH & Co. KG Wenzel-Jaksch-Str. 31 D-65199 Wiesbaden Germany Telephone: (+49) 611 492 430 Fax: (+49) 611 492 165 [email protected] Excelitas Technologies Singapore, Pte. Ltd. 8 Tractor Road Singapore 627969 Telephone: (+65) 6775 2022 (Main number) Telephone: (+65) 6770 4366 (Customer Service) Fax: (+65) 6778-1752 [email protected] For a complete listing of our global offices, visit www.excelitas.com/locations © 2014 Excelitas Technologies Corp. All rights reserved. The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks not owned by Excelitas Technologies or its subsidiaries that are depicted herein are the property of their respective owners. Excelitas reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors. www.excelitas.com Page 14 of 14 C30902 and C30921 Series-Rev.1-2014.09