SX1236 - Semtech

SX1236
WIRELESS & SENSING
DATASHEET
GENERAL DESCRIPTION
KEY PRODUCT FEATURES
The SX1236 is a fully integrated ISM band transceiver
capable of bi-band operation in most un-licensed bands in
the sub-GHz space with a minimum of external
components. It offers a combination of high link budget and
low current consumption in all operating modes. The 143 dB
link budget is achieved by a low noise CMOS receiver front
end and up to +20 dBm of transmit output power. A set of
internal power amplifiers are provided permitting either fully
regulated - for constant RF performance, or direct supply
connection - for optimal efficiency. This makes SX1236 ideal
for either M2M applications powered by alkaline battery
chemistries or long battery life metering applications using
Lithium battery chemistries.
The Low-IF architecture of the SX1236 sees fast transceiver
start times and demodulation predicated towards low
modulation index and gaussian filtered spectrally efficient
modulation formats.
This device also support high performance (G)FSK modes
for systems including WMBus, IEEE802.15.4g. The SX1236
delivers exceptional phase noise, selectivity, receiver
linearity and IIP3 for significantly lower current consumption
than competing devices.
ORDERING INFORMATION


143 dB maximum link budget
+20 dBm - 100 mW constant RF output vs. V supply
+14 dBm high efficiency PA
Programmable bit rate up to 300 kbps
High sensitivity: down to -123 dBm
Bullet-proof front end: IIP3 = -11 dBm
Excellent blocking immunity
Low RX current of 10.8 mA, 200 nA register retention
Fully integrated synthesizer with a resolution of 61 Hz
FSK, GFSK, MSK, GMSK and OOK modulation
Built-in bit synchronizer for clock recovery
Preamble detection
127 dB Dynamic Range RSSI
Ultra-fast AFC
Packet engine up to 256 bytes with CRC
Built-in temperature sensor and low battery indicator
APPLICATIONS
Part Number
Delivery
MOQ / Multiple
SX1236IMLTRT
T&R
3000 pieces
QFN 28 Package - Operating Range [-40;+85°C]
Pb-free, Halogen free, RoHS/WEEE compliant product
Rev. 1. - December 2013
©2013 Semtech Corporation





















Page 1
Automated Meter Reading.
Home and Building Automation.
Wireless Alarm and Security Systems.
Industrial Monitoring and Control
Long range Irrigation Systems
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table of contents
Section
1.
2.
Page
General Description ................................................................................................................................................. 8
1.1.
Simplified Block Diagram ................................................................................................................................. 8
1.2.
Pin Diagram .....................................................................................................................................................9
1.3.
Pin Description ...............................................................................................................................................10
1.4.
Package Marking ...........................................................................................................................................11
Electrical Characteristics ....................................................................................................................................... 12
2.1.
ESD Notice .................................................................................................................................................... 12
2.2.
Absolute Maximum Ratings ........................................................................................................................... 12
2.3.
Operating Range............................................................................................................................................ 12
2.4.
Thermal Properties ........................................................................................................................................ 12
2.5.
Chip Specification ..........................................................................................................................................13
2.5.1. Power Consumption .................................................................................................................................. 13
2.5.2. Frequency Synthesis................................................................................................................................. 13
2.5.3. FSK/OOK Mode Receiver .........................................................................................................................15
2.5.4. FSK/OOK Mode Transmitter ..................................................................................................................... 16
2.5.5. Digital Specification ...................................................................................................................................18
3.
SX1236 Features................................................................................................................................................... 19
4.
SX1236 Digital Electronics .................................................................................................................................... 21
4.1.
FSK/OOK Modem .......................................................................................................................................... 21
4.1.1. Bit Rate Setting ......................................................................................................................................... 21
4.1.2. FSK/OOK Transmission ............................................................................................................................ 22
4.1.3. FSK/OOK Reception ................................................................................................................................. 23
4.1.4. Operating Modes in FSK/OOK Mode ........................................................................................................ 28
4.1.5. Startup Times ............................................................................................................................................29
4.1.6. Receiver Startup Options .......................................................................................................................... 32
4.1.7. Receiver Restart Methods......................................................................................................................... 33
4.1.8. Top Level Sequencer ................................................................................................................................ 34
4.1.9. Data Processing in FSK/OOK Mode ......................................................................................................... 39
4.1.10. FIFO ........................................................................................................................................................40
4.1.11. Digital IO Pins Mapping ...........................................................................................................................43
4.1.12. Continuous Mode ....................................................................................................................................44
4.1.13. Packet Mode ........................................................................................................................................... 45
4.1.14. io-homecontrol® Compatibility Mode ...................................................................................................... 53
4.2.
5.
SPI Interface ..................................................................................................................................................54
SX1236 Analog & RF Frontend Electronics........................................................................................................... 55
5.1.
Power Supply Strategy .................................................................................................................................. 55
5.2.
Low Battery Detector ..................................................................................................................................... 55
5.3.
Frequency Synthesis ..................................................................................................................................... 55
5.3.1. Crystal Oscillator ....................................................................................................................................... 55
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 2
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table of contents
Section
Page
5.3.2. CLKOUT Output ........................................................................................................................................ 56
5.3.3. PLL ............................................................................................................................................................ 56
5.3.4. RC Oscillator ............................................................................................................................................. 56
5.4.
Transmitter Description ..................................................................................................................................57
5.4.1. Architecture Description ............................................................................................................................ 57
5.4.2. RF Power Amplifiers.................................................................................................................................. 57
5.4.3. High Power +20 dBm Operation ............................................................................................................... 58
5.4.4. Over Current Protection ............................................................................................................................59
5.5.
Receiver Description...................................................................................................................................... 59
5.5.1. Overview ................................................................................................................................................... 59
5.5.2. Receiver Enabled and Receiver Active States.......................................................................................... 59
5.5.3. Automatic Gain Control ............................................................................................................................. 59
5.5.4. RSSI .......................................................................................................................................................... 60
5.5.5. Channel Filter ............................................................................................................................................ 61
5.5.6. Temperature Measurement .......................................................................................................................62
6.
7.
Description of the Registers................................................................................................................................... 63
6.1.
Register Table Summary ............................................................................................................................... 63
6.2.
Register Map ..................................................................................................................................................65
6.3.
Band Specific Additional Registers ................................................................................................................ 78
Application Information .......................................................................................................................................... 80
7.1.
Crystal Resonator Specification..................................................................................................................... 80
7.2.
Reset of the Chip ........................................................................................................................................... 80
7.2.1. POR........................................................................................................................................................... 80
7.2.2. Manual Reset ............................................................................................................................................81
7.3.
Top Sequencer: Listen Mode Examples ........................................................................................................ 81
7.3.1. Wake on Preamble Interrupt ..................................................................................................................... 81
7.3.2. Wake on SyncAddress Interrupt ................................................................................................................84
7.4.
Top Sequencer: Beacon Mode ......................................................................................................................87
7.4.1. Timing diagram.......................................................................................................................................... 87
7.4.2. Sequencer Configuration........................................................................................................................... 87
8.
9.
7.5.
Example CRC Calculation .............................................................................................................................89
7.6.
Example Temperature Reading .....................................................................................................................90
Packaging Information ........................................................................................................................................... 92
8.1.
Package Outline Drawing .............................................................................................................................. 92
8.2.
Recommended Land Pattern ......................................................................................................................... 93
8.3.
Tape & Reel Information ................................................................................................................................ 94
Revision History..................................................................................................................................................... 95
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 3
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table of contents
Section
Page
Table 1. Pin Description ................................................................................................................................................10
Table 2. Absolute Maximum Ratings .............................................................................................................................12
Table 3. Operating Range .............................................................................................................................................12
Table 4. Thermal Properties ..........................................................................................................................................12
Table 5. Power Consumption Specification ...................................................................................................................13
Table 6. Frequency Synthesizer Specification ..............................................................................................................13
Table 7. FSK/OOK Receiver Specification ....................................................................................................................15
Table 8. Transmitter Specification .................................................................................................................................16
Table 9. Digital Specification .........................................................................................................................................18
Table 10. Bit Rate Examples .........................................................................................................................................21
Table 11. Preamble Detector Settings ...........................................................................................................................27
Table 12. RxTrigger Settings to Enable Timeout Interrupts ..........................................................................................28
Table 13. Basic Transceiver Modes ..............................................................................................................................28
Table 14. Receiver Startup Time Summary ..................................................................................................................30
Table 15. Receiver Startup Options ..............................................................................................................................33
Table 16. Sequencer States ..........................................................................................................................................34
Table 17. Sequencer Transition Options .......................................................................................................................35
Table 18. Sequencer Timer Settings .............................................................................................................................37
Table 19. Status of FIFO when Switching Between Different Modes of the Chip .........................................................41
Table 20. DIO Mapping, Continuous Mode ...................................................................................................................43
Table 21. DIO Mapping, Packet Mode ..........................................................................................................................43
Table 22. CRC Description ...........................................................................................................................................51
Table 23. Frequency Bands ..........................................................................................................................................56
Table 24. Power Amplifier Mode Selection Truth Table ................................................................................................57
Table 25. High Power Settings ......................................................................................................................................58
Table 26. Operating Range, +20dBm Operation ...........................................................................................................58
Table 27. Operating Range, +20dBm Operation ...........................................................................................................58
Table 28. Trimming of the OCP Current ........................................................................................................................59
Table 29. LNA Gain Control and Performances ............................................................................................................60
Table 30. RssiSmoothing Options .................................................................................................................................60
Table 31. Available RxBw Settings ................................................................................................................................61
Table 32. Registers Summary .......................................................................................................................................63
Table 33. Register Map .................................................................................................................................................65
Table 34. Low Frequency Additional Registers .............................................................................................................78
Table 35. High Frequency Additional Registers ............................................................................................................79
Table 36. Crystal Specification ......................................................................................................................................80
Table 37. Listen Mode with PreambleDetect Condition Settings ...................................................................................83
Table 38. Listen Mode with PreambleDetect Condition Recommended DIO Mapping .................................................83
Table 39. Listen Mode with SyncAddress Condition Settings .......................................................................................86
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 4
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table of contents
Section
Page
Table 40. Listen Mode with PreambleDetect Condition Recommended DIO Mapping .................................................86
Table 41. Beacon Mode Settings ..................................................................................................................................88
Table 42. Revision History .............................................................................................................................................95
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 5
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table of contents
Section
Page
Figure 1. Block Diagram .................................................................................................................................................8
Figure 2. Pin Diagram .....................................................................................................................................................9
Figure 3. Marking Diagram ...........................................................................................................................................11
Figure 4. SX1236 Block Schematic Diagram ...............................................................................................................19
Figure 5. OOK Peak Demodulator Description .............................................................................................................23
Figure 6. Floor Threshold Optimization ........................................................................................................................24
Figure 7. Bit Synchronizer Description .........................................................................................................................25
Figure 8. Startup Process .............................................................................................................................................29
Figure 9. Time to RSSI Sample ....................................................................................................................................30
Figure 10. Tx to Rx Turnaround ...................................................................................................................................31
Figure 11. Rx to Tx Turnaround ...................................................................................................................................31
Figure 12. Receiver Hopping ........................................................................................................................................32
Figure 13. Transmitter Hopping ....................................................................................................................................32
Figure 14. Timer1 and Timer2 Mechanism ...................................................................................................................36
Figure 15. Sequencer State Machine ...........................................................................................................................38
Figure 16. SX1236 Data Processing Conceptual View ................................................................................................39
Figure 17. FIFO and Shift Register (SR) ......................................................................................................................40
Figure 18. FifoLevel IRQ Source Behavior ...................................................................................................................41
Figure 19. Sync Word Recognition ...............................................................................................................................42
Figure 20. Continuous Mode Conceptual View ............................................................................................................44
Figure 21. Tx Processing in Continuous Mode .............................................................................................................44
Figure 22. Rx Processing in Continuous Mode ............................................................................................................45
Figure 23. Packet Mode Conceptual View ...................................................................................................................46
Figure 24. Fixed Length Packet Format .......................................................................................................................47
Figure 25. Variable Length Packet Format ...................................................................................................................48
Figure 26. Unlimited Length Packet Format .................................................................................................................48
Figure 27. Manchester Encoding/Decoding .................................................................................................................52
Figure 28. Data Whitening Polynomial .........................................................................................................................53
Figure 29. SPI Timing Diagram (single access) ...........................................................................................................54
Figure 30. TCXO Connection .......................................................................................................................................55
Figure 31. RF Front-end Architecture Shows the Internal PA Configuration. ...............................................................57
Figure 32. Temperature Sensor Response ..................................................................................................................62
Figure 33. POR Timing Diagram ..................................................................................................................................80
Figure 34. Manual Reset Timing Diagram ....................................................................................................................81
Figure 35. Listen Mode: Principle .................................................................................................................................81
Figure 36. Listen Mode with No Preamble Received ...................................................................................................82
Figure 37. Listen Mode with Preamble Received .........................................................................................................82
Figure 38. Wake On PreambleDetect State Machine ...................................................................................................83
Figure 39. Listen Mode with no SyncAddress Detected ...............................................................................................84
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 6
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table of contents
Section
Page
Figure 40. Listen Mode with Preamble Received and no SyncAddress .......................................................................84
Figure 41. Listen Mode with Preamble Received & Valid SyncAddress ......................................................................85
Figure 42. Wake On SyncAddress State Machine .......................................................................................................85
Figure 43. Beacon Mode Timing Diagram ....................................................................................................................87
Figure 44. Beacon Mode State Machine ......................................................................................................................87
Figure 45. Example CRC Code ....................................................................................................................................89
Figure 46. Example Temperature Reading ..................................................................................................................90
Figure 47. Example Temperature Reading (continued) ...............................................................................................91
Figure 48. Package Outline Drawing ............................................................................................................................92
Figure 49. Recommended Land Pattern ......................................................................................................................93
Figure 50. Tape and Reel Information ..........................................................................................................................94
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 7
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
1. General Description
The SX1236 is a single-chip integrated circuit ideally suited for today's high performance ISM band RF applications. The
SX1236's advanced feature set includes a state-of-the-art packet engine and top level sequencer. In conjunction with a 64
byte FIFO, these automate the entire process of packet transmission, reception and acknowledgment without incurring the
consumption penalty common to many transceivers that feature an on-chip MCU. Being easily configurable, it greatly
simplifies system design and reduces external MCU workload to an absolute minimum. The high level of integration
reduces the external BOM to passive decoupling and impedance matching components. It is intended for use as a high
performance, low-cost FSK and OOK RF transceiver for robust, frequency-agile, half-duplex, bi-directional RF links. Where
stable and constant RF performance is required over the full operating range of the device down to 1.8V the receiver and
PA are fully regulated. For transmit intensive applications - a high efficiency PA can be selected to optimize the current
consumption.
The SX1236 is intended for applications requiring high sensitivity and low receive current. Coupling the digital state
machine with an RF front end capable of delivering a link budget of 143dB (-123dBm sensitivity in conjunction with
+20dBm Pout). The SX1236 complies with both ETSI and FCC regulatory requirements and is available in a 6 x 6 mm QFN
28 lead package. The low-IF architecture of the SX1236 is well suited for low modulation index and narrow band operation.
1.1. Simplified Block Diagram
Figure 1. Block Diagram
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 8
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
1.2. Pin Diagram
The following diagram shows the pin arrangement of the QFN package, top view.
Figure 2. Pin Diagram
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 9
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
1.3. Pin Description
Table 43 Pin Description
Number
Name
Type
0
GROUND
-
Exposed ground pad.
1
RFI_LF
I
RF input for bands 2&3
2
VR_ANA
-
Regulated supply voltage for analogue circuitry
3
VBAT_ANA
-
Supply voltage for analogue circuitry
4
VR_DIG
-
Regulated supply voltage for digital blocks
5
XTA
I/O
XTAL connection or TCXO input
6
XTB
I/O
XTAL connection.
7
NRESET
I/O
Reset trigger input.
8
DIO0
I/O
Digital I/O, software configured.
9
DIO1/DCLK
I/O
Digital I/O, software configured.
10
DIO2/DATA
I/O
Digital I/O, software configured.
11
DIO3
I/O
Digital I/O, software configured.
12
DIO4
I/O
Digital I/O, software configured.
13
DIO5
I/O
Digital I/O, software configured.
14
VBAT_DIG
-
Supply voltage for digital blocks
15
GND
-
Ground
16
SCK
I
SPI Clock input
17
MISO
O
SPI Data output
18
MOSI
I
SPI Data input
19
NSS
I
SPI Chip select input
20
RXTX
O
Rx/Tx switch control: high in Tx
21
RFI_HF
I
RF input for band 1
22
RFO_HF
O
RF output for band 1
23
GND
-
Ground
24
VBAT_RF
-
Supply voltage for RF blocks
25
VR_PA
-
Regulated supply for the PA
26
GND
-
Ground
27
PA_BOOST
O
Optional high-power PA output, all frequency bands
28
RFO_LF
O
RF output for bands 2&3
Rev. 1. - December 2013
©2013 Semtech Corporation
Description
Page 10
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
1.4. Package Marking
Figure 3. Marking Diagram
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 11
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
2. Electrical Characteristics
2.1. ESD Notice
The SX1236 is a high performance radio frequency device. It satisfies:


Class 2 of the JEDEC standard JESD22-A114-B (Human Body Model) on all pins.
Class III of the JEDEC standard JESD22-C101C (Charged Device Model) on all pins
It should thus be handled with all the necessary ESD precautions to avoid any permanent damage.
2.2. Absolute Maximum Ratings
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for
extended periods may affect device reliability.
Table 44 Absolute Maximum Ratings
Symbol
Description
Min
Max
Unit
VDDmr
Supply Voltage
-0.5
3.9
Tmr
Temperature
-55
+115
°C
Tj
Junction temperature
-
+125
°C
Pmr
RF Input Level
-
+10
dBm
Min
Max
Note
V
Specific ratings apply to +20 dBm operation (see Section 5.4.3).
2.3. Operating Range
Table 1
Operating Range
Symbol
Description
Unit
VDDop
Supply voltage
1.8
3.7
V
Top
Operational temperature range
-40
+85
°C
Clop
Load capacitance on digital ports
-
25
pF
ML
RF Input Level
-
+10
dBm
Note
A specific supply voltage range applies to +20 dBm operation (see Section 5.4.3).
2.4. Thermal Properties
Table 2
Thermal Properties
Symbol
Description
Min
Typ
Max
Unit
THETA_JA
Package θja (Junction to ambient)
-
22.185
-
°C/W
THETA_JC
Package θjc (Junction to case ground paddle)
-
0.757
-
°C/W
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 12
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
2.5. Chip Specification
The tables below give the electrical specifications of the transceiver under the following conditions: Supply voltage
VDD=3.3 V, temperature = 25 °C, FXOSC = 32 MHz, FRF = 169/434/868/915 MHz (see specific indication), Pout =
+13dBm, 2-level FSK modulation without pre-filtering, FDA = 5 kHz, Bit Rate = 4.8 kb/s and terminated in a matched 50
Ohm impedance, shared Rx and Tx path matching, unless otherwise specified.
Note
Specification whose symbol is appended with “_LF” corresponds to the performance in Band 2 and/or Band 3, as
described in section 5.3.3. “_HF” refers to the upper Band 1
2.5.1. Power Consumption
Table 3 Power Consumption Specification
Symbol
Description
Conditions
Min
Typ
Max
Unit
-
0.2
1
uA
IDDSL
Supply current in Sleep mode
IDDIDLE
Supply current in Idle mode
RC oscillator enabled
-
1.5
-
uA
IDDST
Supply current in Standby mode
Crystal oscillator enabled
-
1.6
1.8
mA
IDDFS
Supply current in Synthesizer
mode
FSRx
-
5.8
-
mA
IDDR
Supply current in Receive mode
LnaBoost Off, band 1
LnaBoost On, band 1
Bands 2&3
-
10.8
11.5
12.0
-
mA
IDDT
Supply current in Transmit mode
with impedance matching
RFOP = +20 dBm, on PA_BOOST
RFOP = +17 dBm, on PA_BOOST
RFOP = +13 dBm, on RFO_LF/HF pin
RFOP = + 7 dBm, on RFO_LF/HF pin
-
120
87
29
20
-
mA
mA
mA
mA
2.5.2. Frequency Synthesis
Table 4 Frequency Synthesizer Specification
Symbol
Description
Conditions
Band 1
Band 2
Band 3
Typ
Max
Unit
137
410
862
-
175
525
1020
MHz
FR
Synthesizer frequency range
FXOSC
Crystal oscillator frequency
-
32
-
MHz
TS_OSC
Crystal oscillator wake-up time
-
250
-
us
TS_FS
Frequency synthesizer wake-up
time to PllLock signal
-
60
-
us
Rev. 1. - December 2013
©2013 Semtech Corporation
Programmable
Min
From Standby mode
Page 13
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
200 kHz step
1 MHz step
5 MHz step
7 MHz step
12 MHz step
20 MHz step
25 MHz step
-
20
20
50
50
50
50
50
-
us
us
us
us
us
us
us
TS_HOP
Frequency synthesizer hop time
at most 10 kHz away from the target frequency
FSTEP
Frequency synthesizer step
FSTEP = FXOSC/219
-
61.0
-
Hz
FRC
RC Oscillator frequency
After calibration
-
62.5
-
kHz
BRF
Bit rate, FSK
Programmable values (1)
1.2
-
300
kbps
BRA
Bit rate Accuracy, FSK
ABS(wanted BR - available BR)
-
-
250
ppm
BRO
Bit rate, OOK
Programmable
1.2
-
32.768
kbps
FDA
Frequency deviation, FSK (1)
Programmable
FDA + BRF/2 =< 250 kHz
0.6
-
200
kHz
Note
For Maximum Bit rate the maximum modulation index is 0.5.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 14
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
2.5.3. FSK/OOK Mode Receiver
All receiver tests are performed with RxBw = 10 kHz (Single Side Bandwidth) as programmed in RegRxBw, receiving a
PN15 sequence. Sensitivities are reported for a 0.1% BER (with Bit Synchronizer enabled), unless otherwise specified.
Blocking tests are performed with an unmodulated interferer. The wanted signal power for the Blocking Immunity, ACR,
IIP2, IIP3 and AMR tests is set 3 dB above the receiver sensitivity level.
Table 5
FSK/OOK Receiver Specification
Symbol
Description
Conditions
Min
Typ
Max
Unit
Direct tie of RFI and RFO pins,
shared Rx, Tx paths FSK sensitivity, highest LNA gain.
Bands 2&3
FDA = 5 kHz, BR = 1.2 kb/s
FDA = 5 kHz, BR = 4.8 kb/s
FDA = 40 kHz, BR = 38.4 kb/s*
FDA = 20 kHz, BR = 38.4 kb/s**
FDA = 62.5 kHz, BR = 250 kb/s***
-
-121
-117
-107
-108
-95
-
dBm
dBm
dBm
dBm
dBm
Split RF paths, the RF switch
insertion loss is not accounted for.
Bands 2&3
FDA = 5 kHz, BR = 1.2 kb/s
FDA = 5 kHz, BR = 4.8 kb/s
FDA = 40 kHz, BR = 38.4 kb/s*
FDA = 20 kHz, BR = 38.4 kb/s**
FDA = 62.5 kHz, BR = 250 kb/s***
-
-123
-119
-109
-110
-97
-
dBm
dBm
dBm
dBm
dBm
Direct tie of RFI and RFO pins,
shared Rx, Tx paths FSK sensitivity, highest LNA gain.
Band 1
FDA = 5 kHz, BR = 1.2 kb/s
FDA = 5 kHz, BR = 4.8 kb/s
FDA = 40 kHz, BR = 38.4 kb/s*
FDA = 20 kHz, BR = 38.4 kb/s**
FDA = 62.5 kHz, BR = 250 kb/s***
-
-119
-115
-105
-105
-92
-
dBm
dBm
dBm
dBm
dBm
Split RF paths, LnaBoost is turned
on, the RF switch insertion loss is
not accounted for.
Band 1
FDA = 5 kHz, BR = 1.2 kb/s
FDA = 5 kHz, BR = 4.8 kb/s
FDA = 40 kHz, BR = 38.4 kb/s*
FDA = 20 kHz, BR = 38.4 kb/s**
FDA = 62.5 kHz, BR = 250 kb/s***
-
-123
-119
-109
-109
-96
-
dBm
dBm
dBm
dBm
dBm
RFS_O
OOK sensitivity, highest LNA gain
shared Rx, Tx paths
BR = 4.8 kb/s
BR = 32 kb/s
-
-117
-108
-
dBm
dBm
CCR
Co-Channel Rejection, FSK
-
-9
-
dB
-
60
56
50
-
dB
dB
dB
RFS_F_LF
RFS_F_HF
ACR
Adjacent Channel Rejection
FDA = 5 kHz, BR=4.8kb/s
Offset = +/- 25 kHz or +/- 50kHz
Band 3
Band 2
Band 1
BI_HF
Blocking Immunity, Band 1
Offset = +/- 1 MHz
Offset = +/- 2 MHz
Offset = +/- 10 MHz
-
71
76
84
-
dB
dB
dB
BI_LF
Blocking Immunity, Bands 2&3
Offset = +/- 1 MHz
Offset = +/- 2 MHz
Offset = +/- 10 MHz
-
71
72
78
-
dB
dB
dB
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 15
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
IIP2
2nd order Input Intercept Point
Unwanted tones are 20 MHz
above the LO
Highest LNA gain
-
+55
-
dBm
IIP3_HF
3rd order Input Intercept point
Unwanted tones are 1MHz and
1.995 MHz above the LO
Band 1
Highest LNA gain G1
LNA gain G2, 5dB sensitivity hit
-
-11
-6
-
dBm
dBm
Band 2
Highest LNA gain G1
LNA gain G2, 2.5dB sensitivity hit
-
-22
-15
-
dBm
dBm
-
-15
-11
-
dBm
dBm
2.7
-
250
kHz
-
50
-
dB
-
57
-
dB
-
-127
0
-
dBm
dBm
IIP3_LF
3rd order Input Intercept point
Unwanted tones are 1MHz and
1.995 MHz above the LO
Band 3
Highest LNA gain G1
LNA gain G2, 2.5dB sensitivity hit
BW_SSB
Single Side channel filter BW
Programmable
IMR
Image Rejection
Wanted signal 3dB over sensitivity
BER=0.1%
IMA
Image Attenuation
DR_RSSI
RSSI Dynamic Range
AGC enabled
*
RxBw = 83 kHz (Single Side Bandwidth)
**
RxBw = 50 kHz (Single Side Bandwidth)
***
RxBw = 250 kHz (Single Side Bandwidth)
Min
Max
2.5.4. FSK/OOK Mode Transmitter
Table 6 Transmitter Specification
Symbol
RF_OP
ΔRF_
OP_V
Description
RF output power in 50 ohms
on RFO pin (High efficiency PA).
Conditions
RF output power in 50 ohms, on
PA_BOOST pin (Regulated PA).
RF_OPH_
MAX
Max RF output power, on
PA_BOOST pin
ΔRF_
OPH_V
RF output power stability on PA_BOOST pin versus voltage supply.
ΔRF_T
RF output power stability versus
temperature on PA_BOOST pin.
Rev. 1. - December 2013
©2013 Semtech Corporation
Typ
Max
Unit
-
+14
-1
-
dBm
dBm
-
3
8
-
dB
dB
-
+17
+2
-
dBm
dBm
-
+20
-
dBm
-
+/-1
-
dB
-
+/-1
-
dB
Programmable with steps
Max
Min
RF output power stability on RFO
pin versus voltage supply.
RF_OPH
Min
VDD = 2.5 V to 3.3 V
VDD = 1.8 V to 3.7 V
Programmable with 1dB steps
Max
Min
High power mode
VDD = 2.4 V to 3.7 V
From T = -40 °C to +85 °C
Page 16
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
169 MHz, Band 3
10kHz Offset
50kHz Offset
400kHz Offset
1MHz Offset
-
-118
-118
-128
-134
-
dBc/
Hz
10kHz Offset
50kHz Offset
400kHz Offset
1MHz Offset
-
-110
-110
-122
-129
-
dBc/
Hz
10kHz Offset
50kHz Offset
400kHz Offset
1MHz Offset
-
-103
-103
-115
-122
-
dBc/
Hz
dBm
433 MHz, Band 2
PHN
Transmitter Phase Noise
868/915 MHz, Band 1
ACP
Transmitter adjacent channel
power (measured at 25 kHz offset)
BT=1. Measurement conditions as
defined by EN 300 220-1 V2.3.1
-
-
-37
TS_TR
Transmitter wake up time, to the
first rising edge of DCLK
Frequency Synthesizer enabled, PaRamp = 10us, BR = 4.8 kb/s
-
120
-
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 17
us
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
2.5.5. Digital Specification
Conditions: Temp = 25° C, VDD = 3.3 V, FXOSC = 32 MHz, unless otherwise specified.
Table 7
Digital Specification
Symbol
Description
Conditions
Min
Typ
Max
Unit
VIH
Digital input level high
0.8
-
-
VDD
VIL
Digital input level low
-
-
0.2
VDD
VOH
Digital output level high
Imax = 1 mA
0.9
-
-
VDD
VOL
Digital output level low
Imax = -1 mA
-
-
0.1
VDD
FSCK
SCK frequency
-
-
10
MHz
tch
SCK high time
50
-
-
ns
tcl
SCK low time
50
-
-
ns
trise
SCK rise time
-
5
-
ns
tfall
SCK fall time
-
5
-
ns
tsetup
MOSI setup time
From MOSI change to SCK rising
edge.
30
-
-
ns
thold
MOSI hold time
From SCK rising edge to MOSI
change.
20
-
-
ns
tnsetup
NSS setup time
From NSS falling edge to SCK rising
edge.
30
-
-
ns
tnhold
NSS hold time
From SCK falling edge to NSS rising
edge, normal mode.
100
-
-
ns
tnhigh
NSS high time between SPI
accesses
20
-
-
ns
T_DATA
DATA hold and setup time
250
-
-
ns
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 18
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
3. SX1236 Features
This section gives a high-level overview of the functionality of the SX1236 low-power, highly integrated transceiver. The
following figure shows a simplified block diagram of the SX1236.
Figure 4. SX1236 Block Schematic Diagram
SX1236 is a half-duplex, low-IF transceiver. Here the received RF signal is first amplified by the LNA. The LNA inputs are
single ended to minimize the external BoM and for ease of design. Following the LNA inputs, the conversion to differential
is made to improve the second order linearity and harmonic rejection. The signal is then down-converted to in-phase and
quadrature (I&Q) components at the intermediate frequency (IF) by the mixer stage. A pair of sigma delta ADCs then
perform data conversion, with all subsequent signal processing and demodulation performed in the digital domain. The
digital state machine also controls the automatic frequency correction (AFC), received signal strength indicator (RSSI) and
automatic gain control (AGC). It also features the higher-level packet and protocol level functionality of the top level
sequencer (TLS).
The frequency synthesizers generate the local oscillator (LO) frequency for both receiver and transmitter, one covering the
lower UHF bands (up to 525 MHz), and the other one covering the upper UHF bands (from 860 MHz). The PLLs are
optimized for user-transparent low lock time and fast auto-calibrating operation. In transmission, frequency modulation is
performed digitally within the PLL bandwidth. The PLL also features optional pre-filtering of the bit stream to improve
spectral purity.
SX1236 features three distinct RF power amplifiers. Two of those, connected to RFO_LF and RFO_HF, can deliver up to
+14 dBm, are unregulated for high power efficiency and can be connected directly to their respective RF receiver inputs via
a pair of passive components to form a single antenna port high efficiency transceiver. The third PA, connected to the
PA_BOOST pin, can deliver up to +20 dBm via a dedicated matching network. Unlike the high efficiency PAs, this highstability PA covers all frequency bands that the frequency synthesizer addresses.
SX1236 also include two timing references, an RC oscillator and a 32 MHz crystal oscillator.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 19
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
All major parameters of the RF front end and digital state machine are fully configurable via an SPI interface which gives
access to SX1236’s configuration registers. This includes a mode auto sequencer that oversees the transition and
calibration of the SX1236 between intermediate modes of operation in the fastest time possible.
The SX1236 supports standard modulation techniques including OOK, FSK, GFSK, MSK and GMSK. The SX1236 is
especially suited to narrow band communication thanks the low-IF architecture employed and the built-in AFC functionality.
For full information on the FSK/OOK modem please consult Section 4.1 of this document.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 20
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4. SX1236 Digital Electronics
4.1. FSK/OOK Modem
4.1.1. Bit Rate Setting
The bitrate setting is referenced to the crystal oscillator and provides a precise means of setting the bit rate (or equivalently
chip) rate of the radio. In continuous transmit mode (Section 4.1.12.) the data stream to be transmitted can be inputted
directly to the modulator via pin 9 (DIO2/DATA) in an asynchronous manner, unless Gaussian filtering is used, in which
case the DCLK signal on pin 10 (DIO1/DCLK) is used to synchronize the data stream. See section 4.1.2.3 for details on the
Gaussian filter.
In Packet mode or in Continuous mode with Gaussian filtering enabled, the Bit Rate (BR) is controlled by bits Bitrate in
RegBitrateMsb and RegBitrateLsb
FXOSC
BitRate = ------------------------------------------------------------------------BitrateFrac
BitRate (15,0) + ------------------------------16
Note:
BitrateFrac bits have no effect (i.e may be considered equal to 0) in OOK modulation mode.
The quantity BitrateFrac is hence designed to allow very high precision (max. 250 ppm programing resolution) for any
bitrate in the programmable range. Table 8 below shows a range of standard bitrates and the accuracy to within which they
may be reached.
Table 8
Bit Rate Examples
Type
Classical modem baud rates
(multiples of 1.2 kbps)
Classical modem baud rates
(multiples of 0.9 kbps)
Rev. 1. - December 2013
©2013 Semtech Corporation
BitRate
(15:8)
BitRate
(7:0)
(G)FSK
(G)MSK
OOK
Actual BR
(b/s)
0x68
0x2B
1.2 kbps
1.2 kbps
1200.015
0x34
0x15
2.4 kbps
2.4 kbps
2400.060
0x1A
0x0B
4.8 kbps
4.8 kbps
4799.760
0x0D
0x05
9.6 kbps
9.6 kbps
9600.960
0x06
0x83
19.2 kbps
19.2 kbps
19196.16
0x03
0x41
38.4 kbps
38415.36
0x01
0xA1
76.8 kbps
76738.60
0x00
0xD0
153.6 kbps
153846.1
0x02
0x2C
57.6 kbps
57553.95
0x01
0x16
115.2 kbps
115107.9
Page 21
www.semtech.com
SX1236
WIRELESS & SENSING
Type
Round bit rates
(multiples of 12.5, 25 and
50 kbps)
Watch Xtal frequency
DATASHEET
BitRate
(15:8)
BitRate
(7:0)
(G)FSK
(G)MSK
OOK
Actual BR
(b/s)
0x0A
0x00
12.5 kbps
12.5 kbps
12500.00
0x05
0x00
25 kbps
25 kbps
25000.00
0x80
0x00
50 kbps
50000.00
0x01
0x40
100 kbps
100000.0
0x00
0xD5
150 kbps
150234.7
0x00
0xA0
200 kbps
200000.0
0x00
0x80
250 kbps
250000.0
0x00
0x6B
300 kbps
299065.4
0x03
0xD1
32.768 kbps
32.768 kbps
32753.32
4.1.2. FSK/OOK Transmission
4.1.2.1. FSK Modulation
FSK modulation is performed inside the PLL bandwidth, by changing the fractional divider ratio in the feedback loop of the
PLL. The high resolution of the sigma-delta modulator, allows for very narrow frequency deviation. The frequency deviation
FDEV is given by:
F DEV = F STEP × Fdev (13,0)
To ensure correct modulation, the following limit applies:
BR
F DEV + ------- ≤ ( 250 )kHz
2
Note
No constraint applies to the modulation index of the transmitter, but the frequency deviation must be set between
600 Hz and 200 kHz.
4.1.2.2. OOK Modulation
OOK modulation is applied by switching on and off the power amplifier. Digital control and ramping are available to improve
the transient power response of the OOK transmitter.
4.1.2.3. Modulation Shaping
Modulation shaping can be applied in both OOK and FSK modulation modes, to improve the narrow band response of the
transmitter. Both shaping features are controlled with PaRamp bits in RegPaRamp.

In FSK mode, a Gaussian filter with BT = 0.5 or 1 is used to filter the modulation stream, at the input of the sigma-delta
modulator. If the Gaussian filter is enabled when the SX1236 is in Continuous mode, DCLK signal on pin 10 (DIO1/
DCLK) will trigger an interrupt on the uC each time a new bit has to be transmitted. Please refer to section 4.1.12.2 for
details.

When OOK modulation is used, the PA bias voltages are ramped up and down smoothly when the PA is turned on and
off, to reduce spectral splatter.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 22
www.semtech.com
SX1236
WIRELESS & SENSING
Note
DATASHEET
The transmitter must be restarted if the ModulationShaping setting is changed, in order to recalibrate the built-in
filter.
4.1.3. FSK/OOK Reception
4.1.3.1. FSK Demodulator
The FSK demodulator of the SX1236 is designed to demodulate FSK, GFSK, MSK and GMSK modulated signals. It is
most efficient when the modulation index of the signal is greater than 0.5 and below 10:
2 × F DEV
0.5 ≤ β = ---------------------- ≤ 10
BR
The output of the FSK demodulator can be fed to the Bit Synchronizer to provide the companion processor with a
synchronous data stream in Continuous mode.
4.1.3.2. OOK Demodulator
The OOK demodulator performs a comparison of the RSSI output and a threshold value. Three different threshold modes
are available, configured through bits OokThreshType in RegOokPeak.
The recommended mode of operation is the “Peak” threshold mode, illustrated in Figure 5:
RSSI
[dBm]
‘’Peak -6dB’’ Threshold
‘’Floor’’ threshold defined by
OokFixedThresh
Noise floor of
receiver
Time
Zoom
Zoom
Decay in dB as defined in
OokPeakThreshStep
Fixed 6dB difference
Period as defined in
OokPeakThreshDec
Figure 5. OOK Peak Demodulator Description
In peak threshold mode the comparison threshold level is the peak value of the RSSI, reduced by 6dB. In the absence of
an input signal, or during the reception of a logical ‘0’, the acquired peak value is decremented by one OokPeakThreshStep
every OokPeakThreshDec period.
When the RSSI output is null for a long time (for instance after a long string of “0” received, or if no transmitter is present),
the peak threshold level will continue falling until it reaches the “Floor Threshold”, programmed in OokFixedThresh.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 23
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
The default settings of the OOK demodulator lead to the performance stated in the electrical specification. However, in
applications in which sudden signal drops are awaited during a reception, the three parameters should be optimized
accordingly.
Optimizing the Floor Threshold
OokFixedThresh determines the sensitivity of the OOK receiver, as it sets the comparison threshold for weak input signals
(i.e. those close to the noise floor). Significant sensitivity improvements can be generated if configured correctly.
Note that the noise floor of the receiver at the demodulator input depends on:




The noise figure of the receiver
The gain of the receive chain from antenna to base band
The matching - including SAW filter if any
The bandwidth of the channel filters
It is therefore important to note that the setting of OokFixedThresh will be application dependant. The following procedure
is recommended to optimize OokFixedThresh.
Set SX1236 in OOK Rx mode
Adjust Bit Rate, Channel filter BW
Default OokFixedThresh setting
No input signal
Continuous Mode
Monitor DIO2/DATA pin
Increment
OokFixedThresh
Glitch activity
on DATA ?
Optimization complete
Figure 6. Floor Threshold Optimization
The new floor threshold value found during this test should be used for OOK reception with those receiver settings.
Optimizing OOK Demodulator for Fast Fading Signals
A sudden drop in signal strength can cause the bit error rate to increase. For applications where the expected signal drop
can be estimated, the following OOK demodulator parameters OokPeakThreshStep and OokPeakThreshDec can be
optimized as described below for a given number of threshold decrements per bit. Refer to RegOokPeak to access those
settings.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 24
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Alternative OOK Demodulator Threshold Modes
In addition to the Peak OOK threshold mode, the user can alternatively select two other types of threshold detectors:


Fixed Threshold: The value is selected through OokFixedThresh
Average Threshold: Data supplied by the RSSI block is averaged, and this operation mode should only be used with
DC-free encoded data.
4.1.3.3. Bit Synchronizer
The bit synchronizer provides a clean and synchronized digital output based upon timing recovery information gleaned
from the received data edge transitions. Its output is made available on pin DIO1/DCLK in Continuous mode and can be
disabled through register settings. However, for optimum receiver performance, especially in Continuous receive mode, its
use is strongly advised.
The Bit Synchronizer is automatically activated in Packet mode. Its bit rate is controlled by BitRateMsb and BitRateLsb in
RegBitrate.
Raw demodulator
output
(FSK or OOK)
DATA
BitSync Output
To pin DATA and
DCLK in continuous
mode
DCLK
Figure 7. Bit Synchronizer Description
To ensure correct operation of the Bit Synchronizer, the following conditions have to be satisfied:

A preamble (0x55 or 0xAA) of at least 12 bits is required for synchronization, the longer the synchronization phase is the
better the ensuing packet detection rate will be

The subsequent payload bit stream must have at least one edge transition (either rising or falling) every 16 bits during
data transmission

The absolute error between transmitted and received bit rate must not exceed 6.5%
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 25
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.3.4. Frequency Error Indicator
This frequency error indicator measures the frequency error between the programmed RF center frequency and the carrier
frequency of the modulated input signal to the receiver. When the FEI is performed, the frequency error is measured and
the signed result is loaded in FeiValue in RegFei, in 2’s complement format. The time required for an FEI evaluation is 4 bit
periods.
To ensure correct operation of the FEI:


The measurement must be launched during the reception of preamble.
The sum of the frequency offset and the 20 dB signal bandwidth must be lower than the base band filter bandwidth, i.e.
the whole modulated spectrum must be received.
The 20 dB bandwidth of the signal can be evaluated as follows (double-side bandwidth):
BR
BW 20dB = 2 ×  F DEV + -------

2
The frequency error, in Hz, can be calculated with the following formula:
FEI = F STEP × FeiValue
The FEI is enabled automatically upon the transition to receive mode and automatically updated every 4 bits.
4.1.3.5. AFC
The AFC is based on the FEI measurement, therefore the same input signal and receiver setting conditions apply. When
the AFC procedure is performed the AfcValue is directly subtracted from the register that defines the frequency of
operation of the chip, FRF. The AFC is executed every time the receiver is enabled, if AfcAutoOn = 1.
When the AFC is enabled (AfcAutoOn = 1), the user has the option to:

Clear the former AFC correction value, if AfcAutoClearOn = 1, allowing the next frequency correction to be performed
from the initial center frequency.

Start the AFC evaluation from the previously corrected frequency. This may be useful in systems in which the center
frequency experiences cumulative drift - such as the ageing of a crystal reference.
The SX1236 offers an alternate receiver bandwidth setting during the AFC phase allowing the accommodation of larger
frequency errors. The setting RegAfcBw sets the receive bandwidth during the AFC process. In a typical receiver
application, once the AFC is performed, the radio will revert to the receiver communication or channel bandwidth
(RegRxBw) for the ensuing communication phase.
Note that the FEI measurement is valid only during the reception of preamble. The provision of the PreambleDetect flag
can hence be used to detect this condition and allow a reliable AFC or FEI operation to be triggered. This process can be
performed automatically by using the appropriate options in StartDemodOnPreamble found in the RegRxConfig register.
A detailed description of the receiver setup to enable the AFC is provided in section 4.1.6.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 26
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.3.6. Preamble Detector
The Preamble Detector indicates the reception of a carrier modulated with a 0101...sequence. It is insensitive to the
frequency offset, as long as the receiver bandwidth is large enough. The size of detection can be programmed from 1 to 3
bytes with PreambleDetectorSize in RegPreambleDetect as defined in the next table.
Table 9
Preamble Detector Settings
PreambleDetectorSize
# of Bytes
00
1
01
2 (recommended)
10
3
11
reserved
For normal operation, PreambleDetectTol should be set to be set to 10 (0x0A), with a qualifying preamble size of 2 bytes.
The PreambleDetect interrupt (either in RegIrqFlags1 or mapped to a specific DIO) then goes high every time a valid
preamble is detected, assuming PreambleDetectorOn=1.
The preamble detector can also be used as a gate to ensure that AFC and AGC are performed on valid preamble. See
section 4.1.6. for details.
4.1.3.7. Image Rejection Mixer
The SX1236 employs an image rejection mixer (IRM) which, uncalibrated, 35 dB image rejection. A low phase noise PLL is
used to perform calibration of the receiver chain. This increases the typical image rejection to 48 dB.
4.1.3.8. Image and RSSI Calibration
An automatic calibration process is used to calibrate the phase and gain of both I and Q receive paths. This calibration
allows enhanced image frequency rejection and improves the RSSI precision. This Calibration process is launched under
the following circumstances:

Automatically at Power On Reset or after a Manual Reset of the chip (refer to section 7.2). For applications where the
temperature remains stable, or if the Image Rejection is not a major concern, this single calibration will suffice.


Automatically when a pre-defined temperature change is observed.
Upon User request, by setting bit ImageCalStart in RegImageCal, when the device is in Standby mode.
A selectable temperature change, set with TempThreshold (5, 10, 15 or 20°C), is detected and reported in TempChange, if
the temperature monitoring is turned On with TempMonitorOff=0.
This interrupt flag can be used by the application to launch a new image calibration at a convenient time if
AutoImageCalOn=0, or immediately when this temperature variation is detected, if AutoImageCalOn=1.
The calibration process takes approximately 10ms.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 27
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.3.9. Timeout Function
The SX1236 includes a Timeout function, which allows it to automatically shut-down the receiver after a receive sequence
and therefore save energy.

Timeout interrupt is generated TimeoutRxRssi x 16 x Tbit after switching to Rx mode if the Rssi flag does not raise
within this time frame (RssiValue > RssiThreshold)

Timeout interrupt is generated TimeoutRxPreamble x 16 x Tbit after switching to Rx mode if the PreambleDetect flag
does not raise within this time frame

Timeout interrupt is generated TimeoutSignalSync x 16 x Tbit after switching to Rx mode if the SyncAddress flag does
not raise within this time frame
This timeout interrupt can be used to warn the companion processor to shut down the receiver and return to a lower power
mode. To become active, these timeouts must also be enabled by setting the correct RxTrigger parameters in
RegRxConfig:
Table 10 RxTrigger Settings to Enable Timeout Interrupts
Receiver
Triggering Event
None
Rssi Interrupt
PreambleDetect
Rssi Interrupt & PreambleDetect
RxTrigger
(2:0)
000
001
110
111
Timeout on
Rssi
Off
Active
Off
Active
Timeout on
Preamble
Off
Off
Active
Active
Timeout on
SyncAddress
Active
4.1.4. Operating Modes in FSK/OOK Mode
The SX1236 has several working modes, manually programmed in RegOpMode. Fully automated mode selection, packet
transmission and reception is also possible using the Top Level Sequencer described in Section 4.1.8.
Table 11 Basic Transceiver Modes
Mode
Selected mode
Symbol
Enabled blocks
000
Sleep mode
Sleep
None
001
Standby mode
Stdby
Top regulator and crystal oscillator
010
Frequency synthesiser to Tx
frequency
FSTx
Frequency synthesizer at Tx frequency (Frf)
011
Transmit mode
Tx
Frequency synthesizer and transmitter
100
Frequency synthesiser to Rx
frequency
FSRx
Frequency synthesizer at frequency for reception (Frf-IF)
101
Receive mode
Rx
Frequency synthesizer and receiver
When switching from a mode to another, the sub-blocks are woken up according to a pre-defined optimized sequence.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 28
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.5. Startup Times
The startup time of the transmitter or the receiver is dependent upon which mode the transceiver was in at the beginning.
For a complete description, Figure 8 below shows a complete startup process, from the lower power mode “Sleep”.
Current
Drain
IDDR (Rx) or IDDT (Tx)
IDDFS
IDDST
IDDSL
0
Timeline
TS_OSC
TS_OSC
+TS_FS
TS_OSC
+TS_FS
+TS_TR
FSTx
Sleep
mode
TS_OSC
+TS_FS
+TS_RE
Transmit
Stdby
mode
FSRx
Receive
Figure 8. Startup Process
TS_OSC is the startup time of the crystal oscillator which depends on the electrical characteristics of the crystal. TS_FS is
the startup time of the PLL including systematic calibration of the VCO.
Typical values of TS_OSC and TS_FS are given in Section 2.5.
4.1.5.1. Transmitter Startup Time
The transmitter startup time, TS_TR, is calculated as follows in FSK mode:
1
TS _ TR = 5μs + 1.25 × PaRamp + × Tbit
2
,
where PaRamp is the ramp-up time programmed in RegPaRamp and Tbit is the bit time.
In OOK mode, this equation can be simplified to the following:
1
TS _ TR = 5μs + × Tbit
2
4.1.5.2. Receiver Startup Time
The receiver startup time, TS_RE, only depends upon the receiver bandwidth effective at the time of startup. When AFC is
enabled (AfcAutoOn=1), AfcBw should be used instead of RxBw to extract the receiver startup time:
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 29
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table 12 Receiver Startup Time Summary
RxBw if AfcAutoOn=0
RxBwAfc if AfcAutoOn=1
2.6 kHz
3.1 kHz
3.9 kHz
5.2 kHz
6.3 kHz
7.8 kHz
10.4 kHz
12.5 kHz
15.6 kHz
20.8 kHz
25.0 kHz
31.3 kHz
41.7 kHz
50.0 kHz
62.5 kHz
83.3 kHz
100.0 kHz
125.0 kHz
166.7 kHz
200.0 kHz
250.0 kHz
TS_RE
(+/-5%)
2.33 ms
1.94 ms
1.56 ms
1.18 ms
984 us
791 us
601 us
504 us
407 us
313 us
264 us
215 us
169 us
144 us
119 us
97 us
84 us
71 us
85 us
74 us
63 us
TS_RE or later after setting the device in Receive mode, any incoming packet will be detected and demodulated by the
transceiver.
4.1.5.3. Time to RSSI Evaluation
The first RSSI sample will be available TS_RSSI after the receiver is ready, in other words TS_RE + TS_RSSI after the
receiver was requested to turn on.
Timeline
0
FSRx
TS_RE
TS_RE
+TS_RSSI
Rssi IRQ
Rssi sample
ready
Rx
Figure 9. Time to RSSI Sample
TS_RSSI depends on the receiver bandwidth, as well as the RssiSmoothing option that was selected. The formula used to
calculate TS_RSSI is provided in section 5.5.4.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 30
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.5.4. Tx to Rx Turnaround Time
Timeline
0
TS_HOP
+TS_RE
Tx Mode
1. set new Frf (*)
2. set Rx mode
Rx Mode
(*) Optional
Figure 10. Tx to Rx Turnaround
Note
The SPI instruction times are omitted, as they can generally be very small as compared to other timings (up to
10MHz SPI clock).
4.1.5.5. Rx to Tx
Timeline
0
TS_HOP
+TS_TR
Rx Mode
1. set new Frf (*)
2. set Tx mode
Tx Mode
(*) Optional
Figure 11. Rx to Tx Turnaround
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 31
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.5.6. Receiver Hopping, Rx to Rx
Two methods are possible:
First method
Timeline
0
TS_HOP
+TS_RE
Rx Mode,
Channel A
Rx Mode,
Channel B
1. set new Frf
2. set RestartRxWithPllLock
Second method
Timeline
0
~TS_HOP
Rx Mode,
Channel A
1. set FastHopOn=1
2. set new Frf (*)
3. wait for TS_HOP
Rx Mode,
Channel B
(*) RegFrfLsb must be written to
trigger a frequency change
Figure 12. Receiver Hopping
The second method is quicker, and should be used if a very quick RF sniffing mechanism is to be implemented.
4.1.5.7. Tx to Tx
Timeline
~PaRamp
+TS_HOP
0
Tx Mode,
Channel A
1. set new Frf (*)
2. set FSTx mode
~PaRamp
+TS_HOP
+TS_TR
FSTx
Set Tx mode
Tx Mode,
Channel B
Figure 13. Transmitter Hopping
4.1.6. Receiver Startup Options
The SX1236 receiver can automatically control the gain of the receiving chain (AGC) and adjust the receiver LO frequency
(AFC). Those processes are carried out on a packet-by-packet basis. They occur:


When the receiver is turned On.

When the receiver is automatically restarted after the reception of a valid packet, or after a packet collision.
When the Receiver is restarted upon user request, through the use of trigger bits RestartRxWithoutPllLock or
RestartRxWithPllLock, in RegRxConfig.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 32
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Automatic restart capabilities are detailed in Section 4.1.7.
The receiver startup options available in SX1236 are described in Table 13.
Table 13 Receiver Startup Options
AgcAutoOn
AfcAutoOn
None
AGC
AGC & AFC
AGC
AGC & AFC
AGC
0
1
1
1
1
1
0
0
1
0
1
0
RxTrigger
(2:0)
000
001
001
110
110
111
AGC & AFC
1
1
111
Triggering Event Realized Function
None
Rssi Interrupt
PreambleDetect
Rssi Interrupt
&
PreambleDetect
When AgcAutoOn=0, the LNA gain is manually selected by choosing LnaGain bits in RegLna.
4.1.7. Receiver Restart Methods
The options for restart of the receiver are covered below. This is typically of use to prepare for the reception of a new signal
whose strength or carrier frequency is different from the preceding packet to allow the AGC or AFC to be re-evaluated.
4.1.7.1. Restart Upon User Request
In Receive mode the user can request a receiver restart. This can be useful in conjunction with the use of a Timeout
interrupt following a period of inactivity in the channel of interest. Two options are available:

No change in the Local Oscillator upon restart: the AFC is disabled, and the Frf register has not been changed through
SPI before the restart instruction: set bit RestartRxWithoutPllLock in RegRxConfig to 1.

Local Oscillator change upon restart: if AFC is enabled (AfcAutoOn=1), and/or the Frf register had been changed during
the last Rx period: set bit RestartRxWithPllLock in RegRxConfig to 1.
Note
ModeReady must be at logic level 1 for a new RestartRx command to be taken into account.
4.1.7.2. Automatic Restart after valid Packet Reception
The bits AutoRestartRxMode in RegSyncConfig control the automatic restart feature of the SX1236 receiver, when a valid
packet has been received:

If AutoRestartRxMode = 00, the function is off, and the user should manually restart the receiver upon valid packet
reception (see section 4.1.7.1).

If AutoRestartRxMode = 01, after the user has emptied the FIFO following a PayloadReady interrupt, the receiver will
automatically restart itself after a delay of InterPacketRxDelay, allowing for the distant transmitter to ramp down, hence
avoiding a false RSSI detection on the ‘tail’ of the previous packet.

If AutoRestartRxMode = 10 should be used if the next reception is expected on a new frequency, i.e. Frf is changed
after the reception of the previous packet. An additional delay is systematically added, in order for the PLL to lock at a
new frequency.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 33
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.7.3. Automatic Restart when Packet Collision is Detected
In receive mode the SX1236 is able to detect packet collision and restart the receiver. Collisions are detected by a sudden
rise in received signal strength, detected by the RSSI. This functionality can be useful in network configurations where
many asynchronous slaves attempt periodic communication with a single a master node.
The collision detector is enabled by setting bit RestartRxOnCollision to 1.
The decision to restart the receiver is based on the detection of RSSI change. The sensitivity of the system can be adjusted
in 1 dB steps by using register RssiCollisionThreshold in RegRxConfig.
4.1.8. Top Level Sequencer
Depending on the application, it is desirable to be able to change the mode of the circuit according to a predefined
sequence without access to the serial interface. In order to define different sequences or scenarios, a user-programmable
state machine, called Top Level Sequencer (Sequencer in short), can automatically control the chip modes.
The Sequencer is activated by setting the SequencerStart bit in RegSeqConfig1 to 1 in Sleep or Standby mode (called
initial mode).
It is also possible to force the Sequencer off by setting the Stop bit in RegSeqConfig1 to 1 at any time.
Note
SequencerStart and Stop bit must never be set at the same time.
4.1.8.1. Sequencer States
As shown in the table below, with the aid of a pair of interrupt timers (T1 and T2), the sequencer can take control of the chip
operation in all modes.
Table 14 Sequencer States
Sequencer
State
SequencerOff State
Description
The Sequencer is not activated. Sending a SequencerStart command will launch it.
When coming from LowPowerSelection state, the Sequencer will be Off, whilst the chip will
return to its initial mode (either Sleep or Standby mode).
Idle State
The chip is in low-power mode, either Standby or Sleep, as defined by IdleMode in
RegSeqConfig1. The Sequencer waits only for the T1 interrupt.
Transmit State
The transmitter in On.
Receive State
The receiver in On.
PacketReceived
The receiver is On and a packet has been received. It is stored in the FIFO.
LowPowerSelection
Selects low power state (SequencerOff or Idle State)
RxTimeout
Defines the action to be taken on a RxTimeout interrupt.
RxTimeout interrupt can be a TimeoutRxRssi, TimeoutRxPreamble or TimeoutSignalSync
interrupt.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 34
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.8.2. Sequencer Transitions
The transitions between sequencer states are listed in the forthcoming table:
Table 15 Sequencer Transition Options
Variable
Transition
IdleMode
Selects the chip mode during Idle state:
0: Standby mode
1: Sleep mode
FromStart
Controls the Sequencer transition when the SequencerStart bit is set to 1 in Sleep or Standby mode:
00: to LowPowerSelection
01: to Receive state
10: to Transmit state
11: to Transmit state on a FifoThreshold interrupt
LowPowerSelection
Selects Sequencer LowPower state after a to LowPowerSelection transition
0: SequencerOff state with chip on Initial mode
1: Idle state with chip on Standby or Sleep mode depending on IdleMode
Note: Initial mode is the chip LowPower mode at Sequencer start.
FromIdle
Controls the Sequencer transition from the Idle state on a T1 interrupt:
0: to Transmit state
1: to Receive state
FromTransmit
Controls the Sequencer transition from the Transmit state:
0: to LowPowerSelection on a PacketSent interrupt
1: to Receive state on a PacketSent interrupt
FromReceive
Controls the Sequencer transition from the Receive state:
000 and 111: unused
001: to PacketReceived state on a PayloadReady interrupt
010: to LowPowerSelection on a PayloadReady interrupt
011: to PacketReceived state on a CrcOk interrupt. If CRC is wrong (corrupted packet, with CRC on but
CrcAutoClearOn is off), the PayloadReady interrupt will drive the sequencer to RxTimeout state.
100: to SequencerOff state on a Rssi interrupt
101: to SequencerOff state on a SyncAddress interrupt
110: to SequencerOff state on a PreambleDetect interrupt
Irrespective of this setting, transition to LowPowerSelection on a T2 interrupt
FromRxTimeout
Controls the state-machine transition from the Receive state on a RxTimeout interrupt (and on
PayloadReady if FromReceive = 011):
00: to Receive state via ReceiveRestart
01: to Transmit state
10: to LowPowerSelection
11: to SequencerOff state
Note: RxTimeout interrupt is a TimeoutRxRssi, TimeoutRxPreamble or TimeoutSignalSync interrupt.
FromPacketReceived
Controls the state-machine transition from the PacketReceived state:
000: to SequencerOff state
001: to Transmit on a FifoEmpty interrupt
010: to LowPowerSelection
011: to Receive via FS mode, if frequency was changed
100: to Receive state (no frequency change)
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 35
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.8.3. Timers
Two timers (Timer1 and Timer2) are also available in order to define periodic sequences. These timers are used to
generate interrupts, which can trigger transitions of the Sequencer.
T1 interrupt is generated (Timer1Resolution * Timer1Coefficient) after T2 interrupt or SequencerStart. command.
T2 interrupt is generated (Timer2Resolution * Timer2Coefficient) after T1 interrupt.
The timers’ mechanism is summarized on the following diagram.
Sequencer Start
T2
interrupt
Timer1
Timer2
T1
interrupt
Figure 14. Timer1 and Timer2 Mechanism
Note
The timer sequence is completed independently of the actual Sequencer state. Thus, both timers need to be on to
achieve periodic cycling.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 36
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table 16 Sequencer Timer Settings
Variable
Description
Timer1Resolution
Resolution of Timer1
00: disabled
01: 64 us
10: 4.1 ms
11: 262 ms
Timer2Resolution
Resolution of Timer2
00: disabled
01: 64 us
10: 4.1 ms
11: 262 ms
Timer1Coefficient
Multiplying coefficient for Timer1
Timer2Coefficient
Multiplying coefficient for Timer2
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 37
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.8.4. Sequencer State Machine
The following graphs summarize every possible transition between each Sequencer state. The Sequencer states are
highlighted in grey. The transitions are represented by arrows. The condition activating them is described over the
transition arrow. For better readability, the start transitions are separated from the rest of the graph.
Transitory states are highlighted in light grey, and exit states are represented in red. It is also possible to force the
Sequencer off by setting the Stop bit in RegSeqConfig1 to 1 at any time.
Sequencer: Start transitions
Sequencer Off
&
Initial mode = Sleep or Standby
On SequencerStart bit rising edge
Start
On FifoThreshold
if FromStart = 11
If FromStart = 00
If FromStart = 01 If FromStart = 10
LowPower
Selection
Receive
Transmit
Sequencer: State machine
Standby if IdleMode = 0
Sleep if IdleMode = 1
If LowPowerSelection = 1
LowPower
Selection
If LowPowerSelection = 0
( Mode   Initial mode )
Sequencer Off
Idle
On T1 if FromIdle = 0
If FromPacketReceived = 000
On T1 if FromIdle = 1
If FromPacketReceived = 010
Packet
Received
On PayloadReady
if FromReceive = 010
On T2
On PayloadReady if FromReceive = 011
(CRC failed and CrcAutoClearOn=0)
On RxTimeout
If FromRxTimeout = 10
RxTimeout
If FromPacketReceived = 100
Via FS mode if FromPacketReceived = 011
On PayloadReady if FromReceive = 001
On CrcOk if FromReceive = 011
Receive
On Rssi if FromReceive = 100
On SyncAdress if FromReceive = 101
On Preamble if FromReceive = 110
On PacketSent
if FromTransmit = 1
Via ReceiveRestart
if FromRxTimeout = 00
If FromRxTimeout = 11
Transmit
On PacketSent
if FromTransmit = 0
Sequencer Off
If FromRxTimeout = 01
Figure 15. Sequencer State Machine
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 38
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.9. Data Processing in FSK/OOK Mode
4.1.9.1. Block Diagram
Figure below illustrates the SX1236 data processing circuit. Its role is to interface the data to/from the modulator/
demodulator and the uC access points (SPI and DIO pins). It also controls all the configuration registers.
The circuit contains several control blocks which are described in the following paragraphs.
DIO0
DIO1
DIO2
DIO3
DIO4
DIO5
Tx/Rx
CONTROL
Data
Rx
SYNC
RECOG.
PACKET
HANDLER
FIFO
(+SR)
SPI
NSS
SCK
MOSI
MISO
Tx
Potential datapaths (data operation mode dependant)
Figure 16. SX1236 Data Processing Conceptual View
The SX1236 implements several data operation modes, each with their own data path through the data processing.
Depending on the data operation mode selected, some control blocks are active whilst others remain disabled.
4.1.9.2. Data Operation Modes
The SX1236 has two different data operation modes selectable by the user:

Continuous mode: each bit transmitted or received is accessed in real time at the DIO2/DATA pin. This mode may be
used if adequate external signal processing is available.

Packet mode (recommended): user only provides/retrieves payload bytes to/from the FIFO. The packet is automatically
built with preamble, Sync word, and optional CRC and DC-free encoding schemes The reverse operation is performed
in reception. The uC processing overhead is hence significantly reduced compared to Continuous mode. Depending on
the optional features activated (CRC, etc) the maximum payload length is limited to 255, 2047 bytes or unlimited.
Each of these data operation modes is fully described in the following sections.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 39
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.10. FIFO
Overview and Shift Register (SR)
In packet mode of operation, both data to be transmitted and that has been received are stored in a configurable FIFO
(First In First Out) device. It is accessed via the SPI interface and provides several interrupts for transfer management.
The FIFO is 1 byte wide hence it only performs byte (parallel) operations, whereas the demodulator functions serially. A
shift register is therefore employed to interface the two devices. In transmit mode it takes bytes from the FIFO and outputs
them serially (MSB first) at the programmed bit rate to the modulator. Similarly in Rx, the shift register gets bit by bit data
from the demodulator and writes them byte by byte to the FIFO. This is illustrated in figure below.
FIFO
byte1
byte0
8
Data Tx/Rx
SR (8bits)
1
MSB
LSB
Figure 17. FIFO and Shift Register (SR)
Note
When switching to Sleep mode, the FIFO can only be used once the ModeReady flag is set (quasi immediate from
all modes except from Tx)
The FIFO size is fixed to 64 bytes.
Interrupt Sources and Flags

FifoEmpty: FifoEmpty interrupt source is high when byte 0, i.e. whole FIFO, is empty. Otherwise it is low. Note that when
retrieving data from the FIFO, FifoEmpty is updated on NSS falling edge, i.e. when FifoEmpty is updated to low state,
the currently started read operation must be completed. In other words, FifoEmpty state must be checked after each
read operation for a decision on the next one (FifoEmpty = 0: more byte(s) to read; FifoEmpty = 1: no more byte to
read).


FifoFull: FifoFull interrupt source is high when the last FIFO byte, i.e. the whole FIFO, is full. Otherwise it is low.


PacketSent: PacketSent interrupt source goes high when the SR's last bit has been sent.
FifoOverrunFlag: FifoOverrunFlag is set when a new byte is written by the user (in Tx or Standby modes) or the SR (in
Rx mode) while the FIFO is already full. Data is lost and the flag should be cleared by writing a 1, note that the FIFO will
also be cleared.
FifoLevel: Threshold can be programmed by FifoThreshold in RegFifoThresh. Its behavior is illustrated in figure below.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 40
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
FifoLevel
1
0
B
B+1
# of bytes in FIFO
Figure 18. FifoLevel IRQ Source Behavior
Notes - FifoLevel interrupt is updated only after a read or write operation on the FIFO. Thus the interrupt cannot be
dynamically updated by only changing the FifoThreshold parameter
- FifoLevel interrupt is valid as long as FifoFull does not occur. An empty FIFO will restore its normal operation
FIFO Clearing
Table below summarizes the status of the FIFO when switching between different modes.
Table 17 Status of FIFO when Switching Between Different Modes of the Chip
From
Stdby
Sleep
Stdby/Sleep
Stdby/Sleep
Rx
Rx
Tx
To
Sleep
Stdby
Tx
Rx
Tx
Stdby/Sleep
Any
FIFO status
Not cleared
Not cleared
Not cleared
Cleared
Cleared
Not cleared
Cleared
Comments
To allow the user to write the FIFO in Stdby/Sleep before Tx
To allow the user to read FIFO in Stdby/Sleep mode after Rx
4.1.10.1. Sync Word Recognition
Overview
Sync word recognition (also called Pattern recognition) is activated by setting SyncOn in RegSyncConfig. The bit
synchronizer must also be activated in Continuous mode (automatically done in Packet mode).
The block behaves like a shift register; it continuously compares the incoming data with its internally programmed Sync
word and sets SyncAddressMatch when a match is detected. This is illustrated in Figure 19 below.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 41
www.semtech.com
SX1236
WIRELESS & SENSING
Rx DATA
Bit N-x =
(NRZ)
Sync_value[x]
DATASHEET
Bit N-1 =
Bit N =
Sync_value[1] Sync_value[0]
DCLK
SyncAddressMatch
Figure 19. Sync Word Recognition
During the comparison of the demodulated data, the first bit received is compared with bit 7 (MSB) of RegSyncValue1 and
the last bit received is compared with bit 0 (LSB) of the last byte whose address is determined by the length of the Sync
word.
When the programmed Sync word is detected, the user can assume that this incoming packet is for the node and can be
processed accordingly.
SyncAddressMatch is cleared when leaving Rx or FIFO is emptied.
Configuration

Size: Sync word size can be set from 1 to 8 bytes (i.e. 8 to 64 bits) via SyncSize in RegSyncConfig. In Packet mode this
field is also used for Sync word generation in Tx mode.

Value: The Sync word value is configured in SyncValue(63:0). In Packet mode this field is also used for Sync word
generation in Tx mode.
Note
SyncValue choices containing 0x00 bytes are not allowed.
Packet Handler
The packet handler is the block used in Packet mode. Its functionality is fully described in Section 4.1.13.
Control
The control block configures and controls the full chip's behavior according to the settings programmed in the configuration
registers.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 42
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.11. Digital IO Pins Mapping
Six general purpose IO pins are available on the SX1236, and their configuration in Continuous or Packet mode is
controlled through RegDioMapping1 and RegDioMapping2.
Table 18 DIO Mapping, Continuous Mode
DIOx Mapping
DIO0
DIO1
DIO2
DIO3
DIO4
DIO5
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
Sleep
Standby
FSRx/Tx
-
Rx
Tx
SyncAddress
Rssi / PreambleDetect
RxReady
TxReady
TxReady
-
Dclk
Rssi / PreambleDetect
-
-
Data
Data
Data
Data
Timeout
Rssi / PreambleDetect
-
TempChange / LowBat
-
ModeReady
ClkOut
ClkOut if RC
-
ModeReady
TempChange / LowBat
TempChange / LowBat
PllLock
TimeOut
ModeReady
ClkOut
PllLock
Rssi / PreambleDetect
ModeReady
Table 19 DIO Mapping, Packet Mode
DIOx Mapping
00
DIO0
DIO1
DIO2
DIO3
DIO4
DIO5
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
Rev. 1. - December 2013
©2013 Semtech Corporation
Sleep
Standby
FSRx/Tx
TempChange / LowBat
FifoLevel
FifoEmpty
FifoFull
FifoFull
FifoLevel
FifoEmpty
FifoFull
FifoFull
FifoFull
FifoFull
FifoEmpty
FifoEmpty
FifoEmpty
TempChange / LowBat
-
ClkOut
ClkOut if RC
-
Tx
PacketSent
-
TempChange / LowBat
FifoLevel
FifoEmpty
FifoFull
FifoFull
RxReady
TimeOut
SyncAddress
FifoEmpty
FifoEmpty
FifoEmpty
Rx
PayloadReady
CrcOk
ModeReady
Page 43
FifoFull
FifoFull
FifoEmpty
TxReady
FifoEmpty
FifoEmpty
TempChange / LowBat
PllLock
TimeOut
Rssi / PreambleDetect
ClkOut
PllLock
Data
ModeReady
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.12. Continuous Mode
4.1.12.1. General Description
As illustrated in Figure 20, in Continuous mode, the NRZ data to (from) the (de)modulator is directly accessed by the uC on
the bidirectional DIO2/DATA pin. The FIFO and packet handler are thus inactive.
DIO0
DIO1/DCLK
DIO2/DATA
DIO3
DIO4
DIO5
Tx/Rx
CONTROL
Data
Rx
SYNC
RECOG.
SPI
NSS
SCK
MOSI
MISO
Figure 20. Continuous Mode Conceptual View
4.1.12.2. Tx Processing
In Tx mode, a synchronous data clock for an external uC is provided on DIO1/DCLK pin. Clock timing with respect to the
data is illustrated in Figure 21. DATA is internally sampled on the rising edge of DCLK so the uC can change logic state
anytime outside the grayed out setup/hold zone.
T_DATA
T_DATA
DATA
(NRZ)
DCLK
Figure 21. Tx Processing in Continuous Mode
Note
The use of DCLK is required when the modulation shaping is enabled.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 44
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.12.3. Rx Processing
If the bit synchronizer is disabled, the raw demodulator output is made directly available on DATA pin and no DCLK signal
is provided.
Conversely, if the bit synchronizer is enabled, synchronous cleaned data and clock are made available respectively on
DIO2/DATA and DIO1/DCLK pins. DATA is sampled on the rising edge of DCLK and updated on the falling edge as
illustrated below.
DATA (NRZ)
DCLK
Figure 22. Rx Processing in Continuous Mode
Note
In Continuous mode it is always recommended to enable the bit synchronizer to clean the DATA signal even if the
DCLK signal is not used by the uC (bit synchronizer is automatically enabled in Packet mode).
4.1.13. Packet Mode
4.1.13.1. General Description
In Packet mode the NRZ data to (from) the (de)modulator is not directly accessed by the uC but stored in the FIFO and
accessed via the SPI interface.
In addition, the SX1236 packet handler performs several packet oriented tasks such as Preamble and Sync word
generation, CRC calculation/check, whitening/dewhitening of data, Manchester encoding/decoding, address filtering, etc.
This simplifies software and reduces uC overhead by performing these repetitive tasks within the RF chip itself.
Another important feature is ability to fill and empty the FIFO in Sleep/Stdby mode, ensuring optimum power consumption
and adding more flexibility for the software.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 45
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
DIO0
DIO1
DIO2
DIO3
DIO4
DIO5
CONTROL
Data
Rx
SYNC
RECOG.
PACKET
HANDLER
FIFO
(+SR)
SPI
NSS
SCK
MOSI
MISO
Tx
Figure 23. Packet Mode Conceptual View
Note
The Bit Synchronizer is automatically enabled in Packet mode.
4.1.13.2. Packet Format
Fixed Length Packet Format
Fixed length packet format is selected when bit PacketFormat is set to 0 and PayloadLength is set to any value greater
than 0.
In applications where the packet length is fixed in advance, this mode of operation may be of interest to minimize RF
overhead (no length byte field is required). All nodes, whether Tx only, Rx only, or Tx/Rx should be programmed with the
same packet length value.
The length of the payload is limited to 2047 bytes.
The length programmed in PayloadLength relates only to the payload which includes the message and the optional
address byte. In this mode, the payload must contain at least one byte, i.e. address or message byte.
An illustration of a fixed length packet is shown below. It contains the following fields:





Preamble (1010...)
Sync word (Network ID)
Optional Address byte (Node ID)
Message data
Optional 2-bytes CRC checksum
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 46
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Optional DC free data coding
CRC checksum calculation
Preamble
Sync Word
0 to 65536 bytes 0 to 8 bytes
Address
byte
Message
Up to 2047 bytes
CRC
2-bytes
Payload
(min 1 byte)
Fields added by the packet handler in Tx and processed and removed in Rx
Optional User provided fields which are part of the payload
Message part of the payload
Figure 24. Fixed Length Packet Format
Variable Length Packet Format
Variable length packet format is selected when bit PacketFormat is set to 1.
This mode is useful in applications where the length of the packet is not known in advance and can vary over time. It is then
necessary for the transmitter to send the length information together with each packet in order for the receiver to operate
properly.
In this mode the length of the payload, indicated by the length byte, is given by the first byte of the FIFO and is limited to
255 bytes. Note that the length byte itself is not included in its calculation. In this mode, the payload must contain at least 2
bytes, i.e. length + address or message byte.
An illustration of a variable length packet is shown below. It contains the following fields:





Preamble (1010...)
Sync word (Network ID)
Length byte
Optional Address byte (Node ID)
Message data
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 47
www.semtech.com
SX1236
WIRELESS & SENSING

DATASHEET
Optional 2-bytes CRC checksum
Optional DC free data coding
CRC checksum calculation
Preamble
Sync Word
0 to 65536 bytes 0 to 8 bytes
Length
byte
Address
byte
Message
Up to 255 bytes
CRC
2-bytes
Payload
(min 2 bytes)
Fields added by the packet handler in Tx and processed and removed in Rx
Optional User provided fields which are part of the payload
Message part of the payload
Figure 25. Variable Length Packet Format
Unlimited Length Packet Format
Unlimited length packet format is selected when bit PacketFormat is set to 0 and PayloadLength is set to 0. The user can
then transmit and receive packet of arbitrary length and PayloadLength register is not used in Tx/Rx modes for counting
the length of the bytes transmitted/received.
In Tx the data is transmitted depending on the TxStartCondition bit. On the Rx side the data processing features like
Address filtering, Manchester encoding and data whitening are not available if the sync pattern length is set to zero
(SyncOn = 0). The CRC detection in Rx is also not supported in this mode of the packet handler, however CRC generation
in Tx is operational. The interrupts like CrcOk & PayloadReady are not available either.
An unlimited length packet shown below is made up of the following fields:





Preamble (1010...)
Sync word (Network ID)
Optional Address byte (Node ID)
Message data
Optional 2-bytes CRC checksum (Tx only)
DC free Data encoding
Preamble
0 to 65535
bytes
Sync Word
0 to 8 bytes
Address
byte
Message
unlimited length
Payload
Fields added by the packet handler in Tx and processed and removed in Rx
Message part of the payload
Optional User provided fields which are part of the payload
Figure 26. Unlimited Length Packet Format
4.1.13.3. Tx Processing
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 48
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
In Tx mode the packet handler dynamically builds the packet by performing the following operations on the payload
available in the FIFO:



Add a programmable number of preamble bytes

Optional DC-free encoding of the data (Manchester or whitening)
Add a programmable Sync word
Optionally calculating CRC over complete payload field (optional length byte + optional address byte + message) and
appending the 2 bytes checksum
Only the payload (including optional address and length fields) is required to be provided by the user in the FIFO.
The transmission of packet data is initiated by the Packet Handler only if the chip is in Tx mode and the transmission
condition defined by TxStartCondition is fulfilled. If transmission condition is not fulfilled then the packet handler transmits a
preamble sequence until the condition is met. This happens only if the preamble length /= 0, otherwise it transmits a zero or
one until the condition is met to transmit the packet data.
The transmission condition itself is defined as:

if TxStartCondition = 1, the packet handler waits until the first byte is written into the FIFO, then it starts sending the
preamble followed by the sync word and user payload

If TxStartCondition = 0, the packet handler waits until the number of bytes written in the FIFO is equal to the number
defined in RegFifoThresh + 1

If the condition for transmission was already fulfilled i.e. the FIFO was filled in Sleep/Stdby then the transmission of
packet starts immediately on enabling Tx
4.1.13.4. Rx Processing
In Rx mode the packet handler extracts the user payload to the FIFO by performing the following operations:





Receiving the preamble and stripping it off
Detecting the Sync word and stripping it off
Optional DC-free decoding of data
Optionally checking the address byte
Optionally checking CRC and reflecting the result on CrcOk.
Only the payload (including optional address and length fields) is made available in the FIFO.
When the Rx mode is enabled the demodulator receives the preamble followed by the detection of sync word. If fixed
length packet format is enabled, then the number of bytes received as the payload is given by the PayloadLength
parameter.
In variable length mode the first byte received after the sync word is interpreted as the length of the received packet. The
internal length counter is initialized to this received length. The PayloadLength register is set to a value which is greater
than the maximum expected length of the received packet. If the received length is greater than the maximum length stored
in PayloadLength register the packet is discarded otherwise the complete packet is received.
If the address check is enabled, then the second byte received in case of variable length and first byte in case of fixed
length is the address byte. If the address matches the one in the NodeAddress field, reception of the data continues
otherwise it is stopped. The CRC check is performed if CrcOn = 1 and the result is available in CrcOk indicating that the
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 49
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
CRC was successful. An interrupt (PayloadReady) is also generated on DIO0 as soon as the payload is available in the
FIFO. The payload available in the FIFO can also be read in Sleep/Standby mode.
If the CRC fails the PayloadReady interrupt is not generated and the FIFO is cleared. This function can be overridden by
setting CrcAutoClearOff = 1, forcing the availability of PayloadReady interrupt and the payload in the FIFO even if the CRC
fails.
4.1.13.5. Handling Large Packets
When PayloadLength exceeds FIFO size (64 bytes) whether in fixed, variable or unlimited length packet format, in addition
to PacketSent in Tx and PayloadReady or CrcOk in Rx, the FIFO interrupts/flags can be used as described below:

For Tx: FIFO can be prefilled in Sleep/Standby but must be refilled “on-the-fly” during Tx with the rest of the payload.
1) Pre-fill FIFO (in Sleep/Standby first or directly in Tx mode) until FifoThreshold or FifoFull is set
2) In Tx, wait for FifoThreshold or FifoEmpty to be set (i.e. FIFO is nearly empty)
3) Write bytes into the FIFO until FifoThreshold or FifoFull is set
4) Continue to step 2 until the entire message has been written to the FIFO (PacketSent will fire when the last bit of the
packet has been sent).

For Rx: FIFO must be unfilled “on-the-fly” during Rx to prevent FIFO overrun.
1) Start reading bytes from the FIFO when FifoEmpty is cleared or FifoThreshold becomes set
2) Suspend reading from the FIFO if FifoEmpty fires before all bytes of the message have been read
3) Continue to step 1 until PayloadReady or CrcOk fires
4) Read all remaining bytes from the FIFO either in Rx or Sleep/Standby mode
4.1.13.6. Packet Filtering
The SX1236 packet handler offers several mechanisms for packet filtering, ensuring that only useful packets are made
available to the uC, reducing significantly system power consumption and software complexity.
Sync Word Based
Sync word filtering/recognition is used for identifying the start of the payload and also for network identification. As
previously described, the Sync word recognition block is configured (size, value) in RegSyncConfig and RegSyncValue(i)
registers. This information is used, both for appending Sync word in Tx, and filtering packets in Rx.
Every received packet which does not start with this locally configured Sync word is automatically discarded and no
interrupt is generated.
When the Sync word is detected, payload reception automatically starts and SyncAddressMatch is asserted.
Note
Sync Word values containing 0x00 byte(s) are forbidden
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 50
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Address Based
Address filtering can be enabled via the AddressFiltering bits. It adds another level of filtering, above Sync word (i.e. Sync
must match first), typically useful in a multi-node networks where a network ID is shared between all nodes (Sync word)
and each node has its own ID (address).
Two address based filtering options are available:

AddressFiltering = 01: Received address field is compared with internal register NodeAddress. If they match then the
packet is accepted and processed, otherwise it is discarded.

AddressFiltering = 10: Received address field is compared with internal registers NodeAddress and BroadcastAddress.
If either is a match, the received packet is accepted and processed, otherwise it is discarded. This additional check with
a constant is useful for implementing broadcast in a multi-node networks
Please note that the received address byte, as part of the payload, is not stripped off the packet and is made available in
the FIFO. In addition, NodeAddress and AddressFiltering only apply to Rx. On Tx side, if address filtering is expected, the
address byte should simply be put into the FIFO like any other byte of the payload.
As address filtering requires a Sync word match, both features share the same interrupt flag SyncAddressMatch.
Length Based
In variable length Packet mode, PayloadLength must be programmed with the maximum payload length permitted. If
received length byte is smaller than this maximum, then the packet is accepted and processed, otherwise it is discarded.
Please note that the received length byte, as part of the payload, is not stripped off the packet and is made available in the
FIFO.
To disable this function, the user should set the value of the PayloadLength to 2047.
CRC Based
The CRC check is enabled by setting bit CrcOn in RegPacketConfig1. It is used for checking the integrity of the message.

On Tx side a two byte CRC checksum is calculated on the payload part of the packet and appended to the end of the
message

On Rx side the checksum is calculated on the received payload and compared with the two checksum bytes received.
The result of the comparison is stored in bit CrcOk
By default, if the CRC check fails then the FIFO is automatically cleared and no interrupt is generated. This filtering function
can be disabled via CrcAutoClearOff bit and in this case, even if CRC fails, the FIFO is not cleared and only PayloadReady
interrupt goes high. Please note that in both cases, the two CRC checksum bytes are stripped off by the packet handler
and only the payload is made available in the FIFO. Two CRC implementations are selected with bit CrcWhiteningType.
Table 20 CRC Description
Crc Type
CCITT
IBM
CrcWhiteningType
Polynomial
0 (default)
X16
1
X16
+
X12
+
X15
+
X5
+
X2
Seed Value
Complemented
+1
0x1D0F
Yes
+1
0xFFFF
No
A C code implementation of each CRC type is proposed in Application Section 7.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 51
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.1.13.7. DC-Free Data Mechanisms
The payload to be transmitted may contain long sequences of 1's and 0's, which introduces a DC bias in the transmitted
signal. The radio signal thus produced has a non uniform power distribution over the occupied channel bandwidth. It also
introduces data dependencies in the normal operation of the demodulator. Thus it is useful if the transmitted data is random
and DC free.
For such purposes, two techniques are made available in the packet handler: Manchester encoding and data whitening.
Note
Only one of the two methods can be enabled at a time.
Manchester Encoding
Manchester encoding/decoding is enabled if DcFree = 01 and can only be used in Packet mode.
The NRZ data is converted to Manchester code by coding '1' as “10” and '0' as “01”.
In this case, the maximum chip rate is the maximum bit rate given in the specifications and the actual bit rate is half the chip
rate.
Manchester encoding and decoding is only applied to the payload and CRC checksum while preamble and Sync word are
kept NRZ. However, the chip rate from preamble to CRC is the same and defined by BitRate in RegBitRate (Chip Rate =
Bit Rate NRZ = 2 x Bit Rate Manchester).
Manchester encoding/decoding is thus made transparent for the user, who still provides/retrieves NRZ data to/from the
FIFO.
1/BR ...Sync
RF chips @ BR
User/NRZ bits
Manchester OFF
User/NRZ bits
Manchester ON
1/BR
...
1
1
1
0
1
0
0
1
0
0
1
Payload...
0
1
1
0
1
0
...
...
1
1
1
0
1
0
0
1
0
0
1
0
0
1
0
...
...
1
1
1
0
1
0
0
1
0
1
0
1
1
1
t
...
Figure 27. Manchester Encoding/Decoding
Data Whitening
Another technique called whitening or scrambling is widely used for randomizing the user data before radio transmission.
The data is whitened using a random sequence on the Tx side and de-whitened on the Rx side using the same sequence.
Comparing to Manchester technique it has the advantage of keeping NRZ data rate i.e. actual bit rate is not halved.
The whitening/de-whitening process is enabled if DcFree = 10. A 9-bit LFSR is used to generate a random sequence. The
payload and 2-byte CRC checksum is then XORed with this random sequence as shown below. The data is de-whitened
on the receiver side by XORing with the same random sequence.
Payload whitening/de-whitening is thus made transparent for the user, who still provides/retrieves NRZ data to/from the
FIFO.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 52
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
L F S R P o ly n o m ia l = X 9 + X 5 + 1
X8
X7
X6
X5
X4
X3
T ran sm it d ata
X2
X1
X0
W hite ne d d ata
Figure 28. Data Whitening Polynomial
4.1.13.8. Beacon Tx Mode
In some short range wireless network topologies a repetitive message, also known as beacon, is transmitted periodically
by a transmitter. The Beacon Tx mode allows for the re-transmission of the same packet without having to fill the FIFO
multiple times with the same data.
When BeaconOn in RegPacketConfig2 is set to 1, the FIFO can be filled only once in Sleep or Stdby mode with the
required payload. After a first transmission, FifoEmpty will go high as usual, but the FIFO content will be restored when the
chip exits Transmit mode. FifoEmpty, FifoFull and FifoLevel flags are also restored.
This feature is only available in Fixed packet format, with the Payload Length smaller than the FIFO size. The control of the
chip modes (Tx-Sleep-Tx....) can either be undertaken by the microcontroller, or be automated in the Top Sequencer. See
example in Section 4.1.8.
The Beacon Tx mode is exited by setting BeaconOn to 0, and clearing the FIFO by setting FifoOverrun to 1.
4.1.14. io-homecontrol® Compatibility Mode
The SX1236 features a io-homecontrol® compatibility mode. Please contact your local Semtech representative for details
on its implementation.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 53
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
4.2. SPI Interface
The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to
CPOL = 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.
Three access modes to the registers are provided:

SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and
a read byte is received for the read access. The NSS pin goes low at the beginning of the frame and goes high after the
data byte.

BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally
between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the
beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.

FIFO access: if the address byte corresponds to the address of the FIFO, then succeeding data byte will address the
FIFO. The address is not automatically incremented but is memorized and does not need to be sent between each data
byte. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the
last byte transfer.
The figure below shows a typical SPI single access to a register.
Figure 29. SPI Timing Diagram (single access)
MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the
rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.
A transfer is always started by the NSS pin going low. MISO is high impedance when NSS is high.
The first byte is the address byte. It is comprises:


A wnr bit, which is 1 for write access and 0 for read access.
Then 7 bits of address, MSB first.
The second byte is a data byte, either sent on MOSI by the master in case of a write access or received by the master on
MISO in case of read access. The data byte is transmitted MSB first.
Proceeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without a rising NSS
edge and re-sending the address. In FIFO mode, if the address was the FIFO address then the bytes will be written / read
at the FIFO address. In Burst mode, if the address was not the FIFO address, then it is automatically incremented for each
new byte received.
The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is
therefore a special case of FIFO / BURST mode with only 1 data byte transferred.
During the write access, the byte transferred from the slave to the master on the MISO line is the value of the written
register before the write operation.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 54
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5. SX1236 Analog & RF Frontend Electronics
5.1. Power Supply Strategy
The SX1236 employs an internal voltage regulation scheme which provides stable operating voltage, and hence device
characteristics, over the full industrial temperature and operating voltage range of operation. This includes up to +17 dBm
of RF output power which is maintained from 1.8 V to 3.7 V and +20 dBm from 2.4 V to 3.7 V.
The SX1236 can be powered from any low-noise voltage source via pins VBAT_ANA, VBAT_RF and VBAT_DIG.
Decoupling capacitors should be connected, as suggested in the reference design of the applications section of this
document, on VR_PA, VR_DIG and VR_ANA pins to ensure correct operation of the built-in voltage regulators.
5.2. Low Battery Detector
A low battery detector is also included allowing the generation of an interrupt signal in response to the supply voltage
dropping below a programmable threshold that is adjustable through the register RegLowBat. The interrupt signal can be
mapped to any of the DIO pins by programming RegDioMapping.
5.3. Frequency Synthesis
5.3.1. Crystal Oscillator
The crystal oscillator is the main timing reference of the SX1236. It is used as the reference for the PLL’s frequency
synthesis and as the clock signal for all digital processing.
The crystal oscillator startup time, TS_OSC, depends on the electrical characteristics of the crystal reference used, for
more information on the electrical specification of the crystal see section 7.1. The crystal connects to the Pierce oscillator
on pins XTA and XTB. The SX1236 optimizes the startup time and automatically triggers the PLL when the oscillator signal
is stable.
Optionally, an external clock can be used to replace the crystal oscillator. This typically takes the form of a tight tolerance
temperature compensated crystal oscillator (TCXO). When using an external clock source the bit TcxoInputOn of register
RegTcxo should be set to 1 and the external clock has to be provided on XTA (pin 5). XTB (pin 6) should be left open.
The peak-peak amplitude of the input signal must never exceed 1.8 V. Please consult your TCXO supplier for an
appropriate value of decoupling capacitor, CD.
XTA
XTB
NC
TCXO
32 MHz
OP
Vcc
GND
Vcc
CD
Figure 30. TCXO Connection
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 55
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5.3.2. CLKOUT Output
The reference frequency, or a fraction of it, can be provided on DIO5 (pin 13) by modifying bits ClkOut in RegDioMapping2.
Two typical applications of the CLKOUT output include:

To provide a clock output for a companion processor, thus saving the cost of an additional oscillator. CLKOUT can be
made available in any operation mode except Sleep mode and is automatically enabled at power on reset.

To provide an oscillator reference output. Measurement of the CLKOUT signal enables simple software trimming of the
initial crystal tolerance.
Note
To minimize the current consumption of the SX1236, please ensure that the CLKOUT signal is disabled when not
required.
5.3.3. PLL
The local oscillator of the SX1236 is derived from two almost identical fractional-N PLLs that are referenced to the crystal
oscillator circuit. Both PLLs feature a programmable bandwidth setting where one of four discrete preset bandwidths may
be accessed.
The SX1236 PLL uses a 19-bit sigma-delta modulator whose frequency resolution, constant over the whole frequency
range, is given by:
F XOSC
F STEP = --------------19
2
The carrier frequency is programmed through RegFrf, split across addresses 0x06 to 0x08:
F RF = F STEP × Frf (23,0)
Note
The Frf setting is split across 3 bytes. A change in the center frequency will only be taken into account when the
least significant byte FrfLsb in RegFrfLsb is written. This allows the potential for user generation of m-ary FSK at
very low bit rates. This is possible where frequency modulation is achieved by direct programming of the
programmed RF centre frequency. To enable this functionality set the FastHopOn bit of register RegPllHop.
Three frequency bands are supported, defined as follows:
Table 21 Frequency Bands
Name
Frequency Limits
Band 1 (HF)
820-1020 MHz
Band 2 (LF)
410-525 MHz
Band 3 (LF)
137-175 MHz
5.3.4. RC Oscillator
All timing operations in the low-power Sleep state of the Top Level Sequencer rely on the accuracy of the internal lowpower RC oscillator. This oscillator is automatically calibrated at the device power-up not requiring any user input.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 56
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5.4. Transmitter Description
The transmitter of SX1236 comprises the frequency synthesizer, modulator, and power amplifier blocks, together with the
DC biasing and ramping functionality that is provided through the VR_PA block.
5.4.1. Architecture Description
The architecture of the RF front end is shown in the following diagram:
Figure 31. RF Front-end Architecture Shows the Internal PA Configuration.
5.4.2. RF Power Amplifiers
PA_HF and PA_LF are high efficiency amplifiers capable of yielding RF power programmable in 1 dB steps from -4 to
+14dBm directly into a 50 ohm load with low current consumption. PA_LF covers the lower bands (up to 525 MHz), whilst
PA_HF will cover the upper bands (from 860 MHz). The output power is sensitive to the power supply voltage, and typically
their performance is expressed at 3.3V.
PA_HP (High Power), connected to the PA_BOOST pin, covers all frequency bands that the chip addresses. It permits
continuous operation at up to +17 dBm and duty cycled operation at up to +20dBm. For full details of operation at +20dBm
please consult section 5.4.3
Table 22 Power Amplifier Mode Selection Truth Table
Mode
PaSelect
Power Range
Pout Formula
0
PA_HF or PA_LF on RFO_HF or RFO_LF
-4 to +15dBm
Pout=Pmax-(15-OutputPower)
Pmax=10.8+0.6*MaxPower [dBm]
1
PA_HP on PA_BOOST, any frequency
+2 to +17dBm
Pout=17-(15-OutputPower) [dBm]
Notes - For +20 dBm restrictions on operation please consult the following section.
- To ensure correct operation at the highest power levels ensure that the current limiter OcpTrim is adjusted to
permit delivery of the requisite supply current.
- If the PA_BOOST pin is not used, it may be left floating.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 57
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5.4.3. High Power +20 dBm Operation
The SX1236 have a high power +20 dBm capability on PA_BOOST pin, with the following settings:
Table 23 High Power Settings
Register
Address
Value for
High Power
Default value
PA_HF/LF or
+17dBm
Description
RegPaDac
0x4d
0x87
0x84
Set Pmax to +20dBm for PA_HP
Notes - High Power settings must be turned off when using PA_LF or PA_HF
- The Over Current Protection limit should be adapted to the actual power level, in RegOcp
Specific Absolute Maximum Ratings and Operating Range restrictions apply to the +20 dBm operation. They are listed in
Table 24 and Table 25.
Table 24 Operating Range, +20dBm Operation
Symbol
Description
Min
Max
Unit
DC_20dBm
Duty Cycle of transmission at +20 dBm output
-
1
%
VSWR_20dBm
Maximum VSWR at antenna port, +20 dBm output
-
3:1
-
Min
Max
Unit
2.4
3.7
V
Table 25 Operating Range, +20dBm Operation
Symbol
VDDop_20dBm
Description
Supply voltage, +20 dBm output
The duty cycle of transmission at +20 dBm is limited to 1%, with a maximum VSWR of 3:1 at antenna port, over the
standard operating range [-40;+85°C]. For any other operating condition, contact your Semtech representative.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 58
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5.4.4. Over Current Protection
The power amplifiers of SX1236 are protected against current over supply in adverse RF load conditions by the over
current protection block. This has the added benefit of protecting battery chemistries with limited peak current capability
and minimising worst case PA consumption in battery life calculation. The current limiter value is controlled by the OcpTrim
bits in RegOcp, and is calculated according to the following formulae:
Table 26 Trimming of the OCP Current
OcpTrim
IMAX
Imax Formula
0 to 15
45 to 120 mA
45 + 5*OcpTrim [mA]
16 to 27
130 to 240 mA
-30 + 10*OcpTrim [mA]
27+
240 mA
240 mA
Note Imax sets a limit on the current drain of the Power Amplifier only, hence the maximum current drain of the SX1236 is
equal to Imax + IFS.
5.5. Receiver Description
5.5.1. Overview
The SX1236 features a digital receiver with the analog to digital conversion process being performed directly following the
LNA-Mixers block. The low-IF receiver is able to demodulate ASK, OOK, (G)FSK and (G)MSK modulation. All filtering,
demodulation, gain control, synchronization and packet handling are performed digitally allowing a high degree of
programmable flexibility. The receiver also has automatic gain calibration, improving the precision of RSSI measurement
and enhancing image rejection.
5.5.2. Receiver Enabled and Receiver Active States
In the receiver operating mode two states of functionality are defined. Upon initial transition to receiver operating mode the
receiver is in the ‘receiver-enabled’ state. In this state the receiver awaits for either the user defined valid preamble or RSSI
detection criterion to be fulfilled. Once met the receiver enters ‘receiver-active’ state. In this second state the received
signal is processed by the packet engine and top level sequencer. For a complete description of the digital functions of the
SX1236 receiver please see section 4 of the datasheet.
5.5.3. Automatic Gain Control
The AGC feature allows receiver to handle a wide Rx input dynamic range from the sensitivity level up to maximum input
level of 0dBm or more, whilst optimizing the system linearity.
The following table shows typical NF and IIP3 performances for the SX1236 LNA gains available.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 59
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table 27 LNA Gain Control and Performances
Gain
Setting
LnaGain
Relative LNA
Gain [dB]
NF
Band 3/2/1
[dB]
IIP3
Band 3/2/1
[dBm]
Pin <= AgcThresh1
G1
‘001’
0 dB
4/5.5/7
-15/-22/-11
AgcThresh1 < Pin <= AgcThresh2
G2
‘010’
-6 dB
6.5/8/12
-11/-15/-6
AgcThresh2 < Pin <= AgcThresh3
G3
‘011’
-12 dB
11/12/17
-11/-12/0
AgcThresh3 < Pin <= AgcThresh4
G4
‘100’
-24 dB
20/21/27
2/3/9
AgcThresh4 < Pin <= AgcThresh5
G5
‘110’
-26 dB
32/33/35
10/10/14
AgcThresh5 < Pin
G6
‘111’
-48 dB
44/45/43
11/12/14
RX input level (Pin)
5.5.4. RSSI
The RSSI provides a measure of the incoming signal power at RF input port, measured within the receiver bandwidth. The
signal power is available in RssiValue. This value is absolute in units of dBm and with a resolution of 0.5 dB. The formula
below relates the register value to the absolute input signal level at the RF input port:
RssiValue = −2 ⋅ RF level [dBm] + RssiOffset [dB ]
The RSSI value can be compensated to take into account the loss in the matching network or even the gain of an
additional LNA by using RssiOffset. The offset can be chosen in 1 dB steps from -16 to +15 dB. When compensation is
applied, the effective signal strength is read as follows:
RSSI [dBm] = −
RssiValue
2
The RSSI value is smoothed on a user defined number of measured RSSI samples. The precision of the RSSI value is
related to the number of RSSI samples used. RssiSmoothing selects the number of RSSI samples from a minimum of 2
samples up to 256 samples in increments of power of 2. Table 28 gives the estimation of the RSSI accuracy for a 10 dB
SNR and response time versus the number of RSSI samples programmed in RssiSmoothing.
Table 28 RssiSmoothing Options
RssiSmoothing
‘000’
‘001’
‘010’
‘011’
‘100’
‘101’
‘110’
‘111’
Number of Samples
2
4
8
16
32
64
128
256
Estimated Accuracy
± 6 dB
± 5 dB
± 4 dB
± 3 dB
± 2 dB
± 1.5 dB
± 1.2 dB
± 1.1 dB
Response Time
2 (RssiSmoothing +1)
[ms]
4 ⋅ RxBw[kHz ]
The RSSI is calibrated when the image and RSSI calibration process is launched.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 60
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5.5.5. Channel Filter
The role of the channel filter is to reject noise and interference outside of the wanted channel. The SX1236 channel filtering
is implemented with a 16-tap finite impulse response (FIR) filter. Rejection of the filter is high enough that the filter stopband performance is not the dominant influence on adjacent channel rejection performance. This is instead limited by the
SX1236 local oscillator phase noise.
Note
To respect sampling criterion in the decimation chain of the receiver, the communication bit rate cannot be set
higher than twice the single side receiver bandwidth (BitRate < 2 x RxBw).
The single-side channel filter bandwidth RxBw is controlled by the parameters RxBwMant and RxBwExp in RegRxBw:
FXOSC
RxBw = ----------------------------------------------------------------RxBwExp + 2
RxBwMant × 2
The following channel filter bandwidths are hence accessible in the case of a 32 MHz reference oscillator:
Table 29 Available RxBw Settings
RxBwMant
(binary/value)
RxBwExp
(decimal)
10b / 24
01b / 20
00b / 16
10b / 24
01b / 20
00b / 16
10b / 24
01b / 20
00b / 16
10b / 24
01b / 20
00b / 16
10b / 24
01b / 20
00b / 16
10b / 24
01b / 20
00b / 16
10b / 24
01b / 20
00b / 16
Other settings
Rev. 1. - December 2013
©2013 Semtech Corporation
7
7
7
6
6
6
5
5
5
4
4
4
3
3
3
2
2
2
1
1
1
Page 61
RxBw (kHz)
FSK/OOK
2.6
3.1
3.9
5.2
6.3
7.8
10.4
12.5
15.6
20.8
25.0
31.3
41.7
50.0
62.5
83.3
100.0
125.0
166.7
200.0
250.0
reserved
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
5.5.6. Temperature Measurement
A stand alone temperature measurement block is used in order to measure the temperature in any mode except Sleep and
Standby. It is enabled by default, and can be stopped by setting TempMonitorOff to 1. The result of the measurement is
stored in TempValue in RegTemp.
Due to process variations, the absolute accuracy of the result is +/- 10 °C. Higher precision requires a calibration procedure
at a known temperature. The figure below shows the influence of just such a calibration process. For more information,
including source code, please consult the applications section of this document.
Figure 32. Temperature Sensor Response
When using the temperature sensor in the application, the following sequence should be followed:







Set the device to Standby and wait for oscillator startup
Set the device to FSRx mode
Set TempMonitorOff = 0 (enables the sensor). It is not required to wait for the PLL Lock indication
Wait for 140 microseconds
Set TempMonitorOff = 1
Set device back to Sleep of Standby mode
Access temperature value in RegTemp
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 62
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
6. Description of the Registers
The following table summarises the location and function of each register.
6.1. Register Table Summary
Table 30 Registers Summary
Register Name
Description
FSK/OOK Mode
Reset
(POR)
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14
0x15
0x16
RegFifo
RegOpMode
RegBitrateMsb
RegBitrateLsb
RegFdevMsb
RegFdevLsb
RegFrfMsb
RegFrfMid
RegFrfLsb
RegPaConfig
RegPaRamp
RegOcp
RegLna
RegRxConfig
RegRssiConfig
RegRssiCollision
RegRssiThresh
RegRssiValue
RegRxBw
RegAfcBw
RegOokPeak
RegOokFix
RegOokAvg
0x00
0x01
0x1A
0x0B
0x00
0x52
0x6C
0x80
0x00
0x4F
0x09
0x2B
0x20
0x08
0x02
0x0A
0xFF
n/a
0x15
0x0B
0x28
0x0C
0x12
FIFO read/write access
Operating mode selection
Bit Rate setting, Most Significant Bits
Bit Rate setting, Least Significant Bits
Frequency Deviation setting, Most Significant Bits
Frequency Deviation setting, Least Significant Bits
RF Carrier Frequency, Most Significant Bits
RF Carrier Frequency, Intermediate Bits
RF Carrier Frequency, Least Significant Bits
PA selection and Output Power control
Control of PA ramp time, low phase noise PLL
Over Current Protection control
LNA settings
AFC, AGC, ctrl
RSSI
RSSI Collision detector
RSSI Threshold control
RSSI value in dBm
Channel Filter BW Control
AFC Channel Filter BW
OOK demodulator
Threshold of the OOK demod
Average of the OOK demod
0x17
Reserved17
0x47
-
0x18
Reserved18
0x32
-
0x19
Reserved19
0x3E
-
0x1A
0x1B
0x1C
0x1D
0x1E
RegAfcFei
RegAfcMsb
RegAfcLsb
RegFeiMsb
RegFeiLsb
RegPreambleDetect
RegRxTimeout1
RegRxTimeout2
RegRxTimeout3
RegRxDelay
RegOsc
0x00
0x00
0x00
0x00
0x00
AFC and FEI control
0x40
Settings of the Preamble Detector
0x00
0x00
0x00
0x00
0x05
Timeout Rx request and RSSI
Timeout RSSI and PayloadReady
Timeout RSSI and SyncAddress
Delay between Rx cycles
RC Oscillators Settings, CLKOUT frequency
Address
0x1F
0x20
0x21
0x22
0x23
0x24
Rev. 1. - December 2013
©2013 Semtech Corporation
FSK Mode
Frequency correction value of the AFC
Value of the calculated
frequency error
Page 63
www.semtech.com
SX1236
WIRELESS & SENSING
Address
0x25
0x26
0x27
0x280x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
0x40
0x41
0x42
0x44
0x4B
0x4D
0x5B
0x5D
0x61
0x62
0x63
0x64
0x70
others
Note:
Register Name
DATASHEET
Description
FSK/OOK Mode
Reset
(POR)
RegPreambleMsb
RegPreambleLsb
RegSyncConfig
0x00
0x03
0x93
Preamble length, MSB
Preamble length, LSB
Sync Word Recognition control
RegSyncValue1-8
0x55
Sync Word bytes, 1 through 8
RegPacketConfig1
RegPacketConfig2
RegPayloadLength
RegNodeAdrs
RegBroadcastAdrs
RegFifoThresh
RegSeqConfig1
RegSeqConfig2
RegTimerResol
RegTimer1Coef
RegTimer2Coef
RegImageCal
RegTemp
RegLowBat
RegIrqFlags1
RegIrqFlags2
RegDioMapping1
RegDioMapping2
RegVersion
RegPllHop
RegTcxo
RegPaDac
RegFormerTemp
RegBitRateFrac
RegAgcRef
RegAgcThresh1
RegAgcThresh2
RegAgcThresh3
RegPll
RegTest
0x90
0x40
0x40
0x00
0x00
0x0F
0x00
0x00
0x00
0xF5
0x20
0x82
0x02
0x80
0x40
0x00
0x00
0x12
0x2D
0x09
0x84
0x00
0x13
0x0E
0x5B
0xDB
0xD0
-
Packet mode settings
Packet mode settings
Payload length setting
Node address
Broadcast address
Fifo threshold, Tx start condition
Top level Sequencer settings
Top level Sequencer settings
Timer 1 and 2 resolution control
Timer 1 setting
Timer 2 setting
Image calibration engine control
Temperature Sensor value
Low Battery Indicator Settings
Status register: PLL Lock state, Timeout, RSSI
Status register: FIFO handling flags, Low Battery
Mapping of pins DIO0 to DIO3
Mapping of pins DIO4 and DIO5, ClkOut frequency
Semtech ID relating the silicon revision
Control the fast frequency hopping mode
TCXO or XTAL input setting
Higher power settings of the PA
Stored temperature during the former IQ Calibration
Fractional part in the Bit Rate division ratio
FSK Mode
Adjustment of the AGC thresholds
Control of the PLL bandwidth
Internal test registers. Do not overwrite
Reset values are automatically refreshed in the chip at Power On Reset
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 64
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
6.2. Register Map
This section details the SX1236 register mapping and the precise contents of each register.
Convention: r: read, w: write, t: trigger, c: clear
Table 31 Register Map
Name
(Address)
Bits
Variable Name
Mode
Default
value
RegFifo
(0x00)
7-0
Fifo
rw
0x00
FSK/OOK Description
FIFO data input/output
Registers for Common settings
7
RegOpMode
(0x01)
RegBitrateMsb
(0x02)
RegBitrateLsb
(0x03)
reserved
rw
0x00
reserved
6-5
ModulationType
rw
0x00
Modulation scheme:
00  FSK
01  OOK
10  11  reserved
4
reserved
r
0x0
reserved
3
LowFrequencyModeOn
rw
0x01
Access Low Frequency Mode registers (from address 0x61 on)
0  High Frequency Mode (access to HF test registers)
1  Low Frequency Mode (access to LF test registers)
2-0
Mode
rw
0x01
Transceiver modes
000  Sleep mode
001  Stdby mode
010  FS mode TX (FSTx)
011  Transmitter mode (Tx)
100  FS mode RX (FSRx)
101  Receiver mode (Rx)
110  reserved
111  reserved
7-0
BitRate(15:8)
rw
0x1a
MSB of Bit Rate (chip rate if Manchester encoding is enabled)
7-0
BitRate(7:0)
rw
0x0b
LSB of bit rate (chip rate if Manchester encoding is enabled)
FXOSC
BitRate = ------------------------------------------------------------------------BitrateFrac
BitRate (15,0) + ------------------------------16
Default value: 4.8 kb/s
RegFdevMsb
(0x04)
7-6
reserved
rw
0x00
reserved
5-0
Fdev(13:8)
rw
0x00
MSB of the frequency deviation
LSB of the frequency deviation
RegFdevLsb
(0x05)
7-0
Fdev(7:0)
rw
0x52
Fdev = Fstep × Fdev (15,0)
Default value: 5 kHz
RegFrfMsb
(0x06)
7-0
Rev. 1. - December 2013
©2013 Semtech Corporation
Frf(23:16)
rw
0x6c
Page 65
MSB of the RF carrier frequency
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Name
(Address)
Bits
Variable Name
Mode
Default
value
RegFrfMid
(0x07)
7-0
Frf(15:8)
rw
0x80
FSK/OOK Description
MSB of the RF carrier frequency
LSB of RF carrier frequency
Frf = Fstep × Frf ( 23 ;0 )
RegFrfLsb
(0x08)
7-0
Frf(7:0)
rw
0x00
Default value: 434.000 MHz
The RF frequency is taken into account internally only when:
- entering FSRX/FSTX modes
- re-starting the receiver
Registers for the Transmitter
RegPaConfig
(0x09)
7
PaSelect
rw
0x00
Selects PA output pin
0  RFO pin. Maximum power of +14 dBm
1  PA_BOOST pin. Maximum power of +20 dBm
6-4
MaxPower
rw
0x04
Select max output power: Pmax=10.8+0.6*MaxPower [dBm]
3-0
OutputPower
rw
0x0f
Pout=Pmax-(15-OutputPower) if PaSelect = 0 (RFO pins)
Pout=17-(15-OutputPower)
if PaSelect = 1 (PA_BOOST pin)
7
unused
r
0x00
unused
6-5
ModulationShaping
rw
0x00
Data shaping:
In FSK:
00  no shaping
01  Gaussian filter BT = 1.0
10  Gaussian filter BT = 0.5
11  Gaussian filter BT = 0.3
In OOK:
00  no shaping
01  filtering with fcutoff = bit_rate
10  filtering with fcutoff = 2*bit_rate (for bit_rate < 125 kb/s)
11  reserved
4
reserved
rw
0x00
reserved
0x09
Rise/Fall time of ramp up/down in FSK
0000  3.4 ms
0001  2 ms
0010  1 ms
0011  500 us
0100  250 us
0101  125 us
0110  100 us
0111  62 us
1000  50 us
1001  40 us (d)
1010  31 us
1011  25 us
1100  20 us
1101  15 us
1110  12 us
1111  10 us
RegPaRamp
(0x0A)
3-0
Rev. 1. - December 2013
©2013 Semtech Corporation
PaRamp
rw
Page 66
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
DATASHEET
Bits
Variable Name
Mode
Default
value
7-6
unused
r
0x00
unused
5
OcpOn
rw
0x01
Enables overload current protection (OCP) for the PA:
0  OCP disabled
1  OCP enabled
0x0b
Trimming of OCP current:
Imax = 45+5*OcpTrim [mA] if OcpTrim <= 15 (120 mA) /
Imax = -30+10*OcpTrim [mA] if 15 < OcpTrim <= 27 (130 to 240
mA)
Imax = 240mA for higher settings
Default Imax = 100mA
RegOcp
(0x0B)
4-0
OcpTrim
rw
FSK/OOK Description
Registers for the Receiver
7-5
LnaGain
rw
0x01
LNA gain setting:
000  reserved
001  G1 = highest gain
010  G2 = highest gain – 6 dB
011  G3 = highest gain – 12 dB
100  G4 = highest gain – 24 dB
101  G5 = highest gain – 36 dB
110  G6 = highest gain – 48 dB
111  reserved
Note:
Reading this address always returns the current LNA gain (which
may be different from what had been previously selected if AGC
is enabled.
4-3
LnaBoostLf
rw
0x00
Low Frequency (RFI_LF) LNA current adjustment
00  Default LNA current
Other  Reserved
2
reserved
rw
0x00
reserved
1-0
LnaBoostHf
rw
0x00
High Frequency (RFI_HF) LNA current adjustment
00  Default LNA current
11  Boost on, 150% LNA current
RegLna
(0x0C)
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 67
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
RegRxConfig
(0x0d)
Variable Name
Bits
DATASHEET
Mode
Default
value
FSK/OOK Description
7
RestartRxOnCollision
rw
0x00
Turns on the mechanism restarting the receiver automatically if it
gets saturated or a packet collision is detected
0  No automatic Restart
1  Automatic restart On
6
RestartRxWithoutPllLock
wt
0x00
Triggers a manual Restart of the Receiver chain when set to 1.
Use this bit when there is no frequency change,
RestartRxWithPllLock otherwise.
5
RestartRxWithPllLock
wt
0x00
Triggers a manual Restart of the Receiver chain when set to 1.
Use this bit when there is a frequency change, requiring some
time for the PLL to re-lock.
4
AfcAutoOn
rw
0x00
0  No AFC performed at receiver startup
1  AFC is performed at each receiver startup
3
AgcAutoOn
rw
0x01
0  LNA gain forced by the LnaGain Setting
1  LNA gain is controlled by the AGC
2-0
RxTrigger
rw
0x06
*
Selects the event triggering AGC and/or AFC at receiver startup.
See Table 18 for a description.
7-3
RssiOffset
rw
0x00
Signed RSSI offset, to compensate for the possible losses/gains
in the front-end (LNA, SAW filter...)
1dB / LSB, 2’s complement format
2-0
RssiSmoothing
rw
0x02
Defines the number of samples taken to average the RSSI result:
000  2 samples used
001  4 samples used
010  8 samples used
011  16 samples used
100  32 samples used
101  64 samples used
110  128 samples used
111  256 samples used
RegRssiCollision
(0x0f)
7-0
RssiCollisionThreshold
rw
0x0a
Sets the threshold used to consider that an interferer is detected,
witnessing a packet collision. 1dB/LSB (only RSSI increase)
Default: 10dB
RegRssiThresh
(0x10)
7-0
RssiThreshold
rw
0xff
RSSI trigger level for the Rssi interrupt:
- RssiThreshold / 2 [dBm]
RegRssiValue
(0x11)
7-0
RssiValue
r
-
Absolute value of the RSSI in dBm, 0.5dB steps.
RSSI = - RssiValue/2 [dBm]
7
unused
r
-
unused
6-5
reserved
rw
0x00
reserved
4-3
RxBwMant
rw
0x02
Channel filter bandwidth control:
00  RxBwMant = 16
10  RxBwMant = 24
01  RxBwMant = 20
11  reserved
2-0
RxBwExp
rw
0x05
Channel filter bandwidth control
7-5
reserved
rw
0x00
reserved
4-3
RxBwMantAfc
rw
0x01
RxBwMant parameter used during the AFC
2-0
RxBwExpAfc
rw
0x03
RxBwExp parameter used during the AFC
RegRssiConfig
(0x0e)
RegRxBw
(0x12)
RegAfcBw
(0x13)
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 68
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
RegOokPeak
(0x14)
RegOokFix
(0x15)
RegOokAvg
(0x16)
Bits
Variable Name
Mode
Default
value
7-6
reserved
rw
0x00
reserved
5
BitSyncOn
rw
0x01
Enables the Bit Synchronizer.
0  Bit Sync disabled (not possible in Packet mode)
1  Bit Sync enabled
4-3
OokThreshType
rw
0x01
Selects the type of threshold in the OOK data slicer:
00  fixed threshold
10  average mode
01  peak mode (default)
11  reserved
RegAfcFei
(0x1a)
FSK/OOK Description
2-0
OokPeakTheshStep
rw
0x00
Size of each decrement of the RSSI threshold in the OOK
demodulator:
000  0.5 dB
001  1.0 dB
010  1.5 dB
011  2.0 dB
100  3.0 dB
101  4.0 dB
110  5.0 dB
111  6.0 dB
7-0
OokFixedThreshold
rw
0x0C
Fixed threshold for the Data Slicer in OOK mode
Floor threshold for the Data Slicer in OOK when Peak mode is
used
7-5
OokPeakThreshDec
rw
0x00
Period of decrement of the RSSI threshold in the OOK
demodulator:
000  once per chip
001  once every 2 chips
010  once every 4 chips
011  once every 8 chips
100  twice in each chip
101  4 times in each chip
110  8 times in each chip 111  16 times in each chip
4
reserved
rw
0x01
reserved
0x00
Static offset added to the threshold in average mode in order to
reduce glitching activity (OOK only):
00  0.0 dB
10  4.0 dB
01  2.0 dB
11  6.0 dB
3-2
RegRes17
to
RegRes19
DATASHEET
OokAverageOffset
rw
1-0
OokAverageThreshFilt
rw
0x02
Filter coefficients in average mode of the OOK demodulator:
00  fC ≈ chip rate / 32.π
01  fC ≈ chip rate / 8.π
10  fC ≈ chip rate / 4.π
11 fC ≈ chip rate / 2.π
7-0
reserved
rw
0x47
0x32
0x3E
reserved. Keep the Reset values.
7-5
unused
r
-
4
AgcStart
wt
0x00
Triggers an AGC sequence when set to 1.
3
reserved
rw
0x00
reserved
2
unused
-
-
1
AfcClear
wc
0x00
Clear AFC register set in Rx mode. Always reads 0.
0x00
Only valid if AfcAutoOn is set
0  AFC register is not cleared at the beginning of the automatic
AFC phase
1  AFC register is cleared at the beginning of the automatic
AFC phase
0
Rev. 1. - December 2013
©2013 Semtech Corporation
AfcAutoClearOn
rw
Page 69
unused
unused
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Name
(Address)
Bits
Variable Name
Mode
Default
value
RegAfcMsb
(0x1b)
7-0
AfcValue(15:8)
rw
0x00
MSB of the AfcValue, 2’s complement format. Can be used to
overwrite the current AFC value
RegAfcLsb
(0x1c)
7-0
AfcValue(7:0)
rw
0x00
LSB of the AfcValue, 2’s complement format. Can be used to
overwrite the current AFC value
RegFeiMsb
(0x1d)
7-0
FeiValue(15:8)
rw
-
MSB of the measured frequency offset, 2’s complement. Must be
read before RegFeiLsb.
RegFeiLsb
(0x1e)
7-0
FeiValue(7:0)
rw
-
LSB of the measured frequency offset, 2’s complement
Frequency error = FeiValue x Fstep
Enables Preamble detector when set to 1. The AGC settings
supersede this bit during the startup / AGC phase.
0  Turned off
1  Turned on
RegPreambleDetect
(0x1f)
FSK/OOK Description
7
PreambleDetectorOn
rw
0x01
*
6-5
PreambleDetectorSize
rw
0x01
*
Number of Preamble bytes to detect to trigger an interrupt
00  1 byte
10  3 bytes
01  2 bytes
11  Reserved
4-0
PreambleDetectorTol
rw
0x0A
*
Number or chip errors tolerated over PreambleDetectorSize.
4 chips per bit.
RegRxTimeout1
(0x20)
7-0
TimeoutRxRssi
rw
0x00
Timeout interrupt is generated TimeoutRxRssi*16*Tbit after
switching to Rx mode if Rssi interrupt doesn’t occur (i.e.
RssiValue > RssiThreshold)
0x00: TimeoutRxRssi is disabled
RegRxTimeout2
(0x21)
7-0
TimeoutRxPreamble
rw
0x00
Timeout interrupt is generated TimeoutRxPreamble*16*Tbit after
switching to Rx mode if Preamble interrupt doesn’t occur
0x00: TimeoutRxPreamble is disabled
RegRxTimeout3
(0x22)
7-0
TimeoutSignalSync
rw
0x00
Timeout interrupt is generated TimeoutSignalSync*16*Tbit after
the Rx mode is programmed, if SyncAddress doesn’t occur
0x00: TimeoutSignalSync is disabled
RegRxDelay
(0x23)
7-0
InterPacketRxDelay
rw
0x00
Additional delay before an automatic receiver restart is launched:
Delay = InterPacketRxDelay*4*Tbit
RC Oscillator registers
7-4
unused
r
-
3
RcCalStart
wt
0x00
Triggers the calibration of the RC oscillator when set. Always
reads 0. RC calibration must be triggered in Standby mode.
0x07
*
Selects CLKOUT frequency:
000  FXOSC
001  FXOSC / 2
010  FXOSC / 4
011  FXOSC / 8
100  FXOSC / 16
101  FXOSC / 32
110  RC (automatically enabled)
111  OFF
RegOsc
(0x24)
2-0
ClkOut
rw
unused
Packet Handling registers
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 70
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Name
(Address)
Bits
Variable Name
Mode
Default
value
RegPreambleMsb
(0x25)
7-0
PreambleSize(15:8)
rw
0x00
Size of the preamble to be sent (from TxStartCondition fulfilled).
(MSB byte)
RegPreambleLsb
(0x26)
7-0
PreambleSize(7:0)
rw
0x03
Size of the preamble to be sent (from TxStartCondition fulfilled).
(LSB byte)
FSK/OOK Description
7-6
AutoRestartRxMode
rw
0x02
Controls the automatic restart of the receiver after the reception of
a valid packet (PayloadReady or CrcOk):
00  Off
01  On, without waiting for the PLL to re-lock
10  On, wait for the PLL to lock (frequency changed)
11  reserved
5
PreamblePolarity
rw
0x00
Sets the polarity of the Preamble
0  0xAA (default)
1  0x55
4
SyncOn
rw
0x01
Enables the Sync word generation and detection:
0  Off
1  On
3
reserved
rw
0x00
reserved
2-0
SyncSize
rw
0x03
Size of the Sync word:
(SyncSize + 1) bytes, (SyncSize) bytes if ioHomeOn=1
RegSyncValue1
(0x28)
7-0
SyncValue(63:56)
rw
0x01
*
1st byte of Sync word. (MSB byte)
Used if SyncOn is set.
RegSyncValue2
(0x29)
7-0
SyncValue(55:48)
rw
0x01
*
2nd byte of Sync word
Used if SyncOn is set and (SyncSize +1) >= 2.
RegSyncValue3
(0x2a)
7-0
SyncValue(47:40)
rw
0x01
*
3rd byte of Sync word.
Used if SyncOn is set and (SyncSize +1) >= 3.
RegSyncValue4
(0x2b)
7-0
SyncValue(39:32)
rw
0x01
*
4th byte of Sync word.
Used if SyncOn is set and (SyncSize +1) >= 4.
RegSyncValue5
(0x2c)
7-0
SyncValue(31:24)
rw
0x01
*
5th byte of Sync word.
Used if SyncOn is set and (SyncSize +1) >= 5.
RegSyncValue6
(0x2d)
7-0
SyncValue(23:16)
rw
0x01
*
6th byte of Sync word.
Used if SyncOn is set and (SyncSize +1) >= 6.
RegSyncValue7
(0x2e)
7-0
SyncValue(15:8)
rw
0x01
*
7th byte of Sync word.
Used if SyncOn is set and (SyncSize +1) >= 7.
RegSyncValue8
(0x2f)
7-0
SyncValue(7:0)
rw
0x01
*
8th byte of Sync word.
Used if SyncOn is set and (SyncSize +1) = 8.
RegSyncConfig
(0x27)
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 71
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
DATASHEET
Bits
Variable Name
Mode
Default
value
7
PacketFormat
rw
0x01
Defines the packet format used:
0  Fixed length
1  Variable length
FSK/OOK Description
6-5
DcFree
rw
0x00
Defines DC-free encoding/decoding performed:
00  None (Off)
01  Manchester
10  Whitening
11  reserved
4
CrcOn
rw
0x01
Enables CRC calculation/check (Tx/Rx):
0  Off
1  On
0x00
Defines the behavior of the packet handler when CRC check fails:
0  Clear FIFO and restart new packet reception. No
PayloadReady interrupt issued.
1  Do not clear FIFO. PayloadReady interrupt issued.
RegPacketConfig1
(0x30)
3
CrcAutoClearOff
rw
2-1
AddressFiltering
rw
0x00
Defines address based filtering in Rx:
00  None (Off)
01  Address field must match NodeAddress
10  Address field must match NodeAddress or
BroadcastAddress
11  reserved
0
CrcWhiteningType
rw
0x00
Selects the CRC and whitening algorithms:
0  CCITT CRC implementation with standard whitening
1  IBM CRC implementation with alternate whitening
7
unused
r
-
6
DataMode
rw
0x01
Data processing mode:
0  Continuous mode
1  Packet mode
5
IoHomeOn
rw
0x00
Enables the io-homecontrol® compatibility mode
0  Disabled
1  Enabled
4
IoHomePowerFrame
rw
0x00
reserved - Linked to io-homecontrol® compatibility mode
3
BeaconOn
rw
0x00
Enables the Beacon mode in Fixed packet format
2-0
PayloadLength(10:8)
rw
0x00
Packet Length Most significant bits
RegPayloadLength
(0x32)
7-0
PayloadLength(7:0)
rw
0x40
If PacketFormat = 0 (fixed), payload length.
If PacketFormat = 1 (variable), max length in Rx, not used in Tx.
RegNodeAdrs
(0x33)
7-0
NodeAddress
rw
0x00
RegBroadcastAdrs
(0x34)
7-0
BroadcastAddress
rw
0x00
RegPacketConfig2
(0x31)
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 72
unused
Node address used in address filtering.
Broadcast address used in address filtering.
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
RegFifoThresh
(0x35)
Variable Name
Bits
DATASHEET
Mode
Default
value
7
TxStartCondition
rw
0x01
*
6
unused
r
-
5-0
FifoThreshold
rw
0x0f
FSK/OOK Description
Defines the condition to start packet transmission:
0  FifoLevel (i.e. the number of bytes in the FIFO exceeds
FifoThreshold)
1  FifoEmpty goes low(i.e. at least one byte in the FIFO)
unused
Used to trigger FifoLevel interrupt, when:
number of bytes in FIFO >= FifoThreshold + 1
Sequencer registers
7
SequencerStart
wt
0x00
Controls the top level Sequencer
When set to ‘1’, executes the “Start” transition.
The sequencer can only be enabled when the chip is in Sleep or
Standby mode.
6
SequencerStop
wt
0x00
Forces the Sequencer Off.
Always reads ‘0’
5
IdleMode
rw
0x00
Selects chip mode during the state:
0: Standby mode
1: Sleep mode
0x00
Controls the Sequencer transition when SequencerStart is set to 1
in Sleep or Standby mode:
00: to LowPowerSelection
01: to Receive state
10: to Transmit state
11: to Transmit state on a FifoLevel interrupt
0x00
Selects the Sequencer LowPower state after a to
LowPowerSelection transition:
0: SequencerOff state with chip on Initial mode
1: Idle state with chip on Standby or Sleep mode depending on
IdleMode
Note: Initial mode is the chip LowPower mode at Sequencer
Start.
4-3
FromStart
rw
RegSeqConfig1
(0x36)
2
LowPowerSelection
rw
1
FromIdle
rw
0x00
Controls the Sequencer transition from the Idle state on a T1
interrupt:
0: to Transmit state
1: to Receive state
0
FromTransmit
rw
0x00
Controls the Sequencer transition from the Transmit state:
0: to LowPowerSelection on a PacketSent interrupt
1: to Receive state on a PacketSent interrupt
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 73
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
Variable Name
Bits
7-5
FromReceive
DATASHEET
Mode
rw
Default
value
0x00
FSK/OOK Description
Controls the Sequencer transition from the Receive state
000 and 111: unused
001: to PacketReceived state on a PayloadReady interrupt
010: to LowPowerSelection on a PayloadReady interrupt
011: to PacketReceived state on a CrcOk interrupt (1)
100: to SequencerOff state on a Rssi interrupt
101: to SequencerOff state on a SyncAddress interrupt
110: to SequencerOff state on a PreambleDetect interrupt
Irrespective of this setting, transition to LowPowerSelection on a
T2 interrupt
(1) If the CRC is wrong (corrupted packet, with CRC on but
CrcAutoClearOn=0), the PayloadReady interrupt will drive the
sequencer to RxTimeout state.
RegSeqConfig2
(0x37)
4-3
FromRxTimeout
rw
0x00
Controls the state-machine transition from the Receive state on a
RxTimeout interrupt (and on PayloadReady if FromReceive =
011):
00: to Receive State, via ReceiveRestart
01: to Transmit state
10: to LowPowerSelection
11: to SequencerOff state
Note: RxTimeout interrupt is a TimeoutRxRssi,
TimeoutRxPreamble or TimeoutSignalSync interrupt
2-0
FromPacketReceived
rw
0x00
Controls the state-machine transition from the PacketReceived
state:
000: to SequencerOff state
001: to Transmit state on a FifoEmpty interrupt
010: to LowPowerSelection
011: to Receive via FS mode, if frequency was changed
100: to Receive state (no frequency change)
7-4
unused
r
-
unused
0x00
Resolution of Timer 1
00: Timer1 disabled
01: 64 us
10: 4.1 ms
11: 262 ms
3-2
Timer1Resolution
rw
RegTimerResol
(0x38)
1-0
Timer2Resolution
rw
0x00
Resolution of Timer 2
00: Timer2 disabled
01: 64 us
10: 4.1 ms
11: 262 ms
RegTimer1Coef
(0x39)
7-0
Timer1Coefficient
rw
0xf5
Multiplying coefficient for Timer 1
RegTimer2Coef
(0x3a)
7-0
Timer2Coefficient
rw
0x20
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 74
Multiplying coefficient for Timer 2
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
Bits
Variable Name
DATASHEET
Mode
Default
value
FSK/OOK Description
Service registers
RegImageCal
(0x3b)
7
AutoImageCalOn
rw
0x00
*
Controls the Image calibration mechanism
0  Calibration of the receiver depending on the temperature is
disabled
1  Calibration of the receiver depending on the temperature
enabled.
6
ImageCalStart
wt
-
Triggers the IQ and RSSI calibration when set in Standby mode.
5
ImageCalRunning
r
0x00
4
unused
r
-
3
2-1
RegTemp
(0x3c)
TempChange
TempThreshold
r
rw
Set to 1 while the Image and RSSI calibration are running.
Toggles back to 0 when the process is completed
unused
0x00
IRQ flag witnessing a temperature change exceeding
TempThreshold since the last Image and RSSI calibration:
0  Temperature change lower than TempThreshold
1  Temperature change greater than TempThreshold
0x01
Temperature change threshold to trigger a new I/Q calibration
00  5 °C
01  10 °C
10  15 °C
11  20 °C
Controls the temperature monitor operation:
0  Temperature monitoring done in all modes except Sleep and
Standby
1  Temperature monitoring stopped.
0
TempMonitorOff
rw
0x00
7-0
TempValue
r
-
Measured temperature
-1°C per Lsb
Needs calibration for absolute accuracy
7-4
unused
r
-
unused
3
LowBatOn
rw
0x00
Low Battery detector enable signal
0  LowBat detector disabled
1  LowBat detector enabled
0x02
Trimming of the LowBat threshold:
000  1.695 V
001  1.764 V
010  1.835 V (d)
011  1.905 V
100  1.976 V
101  2.045 V
110  2.116 V
111  2.185 V
RegLowBat
(0x3d)
2-0
LowBatTrim
rw
Status registers
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 75
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
RegIrqFlags1
(0x3e)
RegIrqFlags2
(0x3f)
Bits
DATASHEET
Variable Name
Mode
Default
value
FSK/OOK Description
7
ModeReady
r
-
Set when the operation mode requested in Mode, is ready
- Sleep: Entering Sleep mode
- Standby: XO is running
- FS: PLL is locked
- Rx: RSSI sampling starts
- Tx: PA ramp-up completed
Cleared when changing the operating mode.
6
RxReady
r
-
Set in Rx mode, after RSSI, AGC and AFC.
Cleared when leaving Rx.
5
TxReady
r
-
Set in Tx mode, after PA ramp-up.
Cleared when leaving Tx.
4
PllLock
r
-
Set (in FS, Rx or Tx) when the PLL is locked.
Cleared when it is not.
3
Rssi
rwc
-
Set in Rx when the RssiValue exceeds RssiThreshold.
Cleared when leaving Rx or setting this bit to 1.
2
Timeout
r
-
Set when a timeout occurs
Cleared when leaving Rx or FIFO is emptied.
1
PreambleDetect
rwc
-
Set when the Preamble Detector has found valid Preamble.
bit clear when set to 1
0
SyncAddressMatch
rwc
-
Set when Sync and Address (if enabled) are detected.
Cleared when leaving Rx or FIFO is emptied.
This bit is read only in Packet mode, rwc in Continuous mode
7
FifoFull
r
-
Set when FIFO is full (i.e. contains 66 bytes), else cleared.
6
FifoEmpty
r
-
Set when FIFO is empty, and cleared when there is at least 1 byte
in the FIFO.
5
FifoLevel
r
-
Set when the number of bytes in the FIFO strictly exceeds
FifoThreshold, else cleared.
4
FifoOverrun
rwc
-
Set when FIFO overrun occurs. (except in Sleep mode)
Flag(s) and FIFO are cleared when this bit is set. The FIFO then
becomes immediately available for the next transmission /
reception.
3
PacketSent
r
-
Set in Tx when the complete packet has been sent.
Cleared when exiting Tx
2
PayloadReady
r
-
Set in Rx when the payload is ready (i.e. last byte received and
CRC, if enabled and CrcAutoClearOff is cleared, is Ok). Cleared
when FIFO is empty.
1
CrcOk
r
-
Set in Rx when the CRC of the payload is Ok. Cleared when FIFO
is empty.
0
LowBat
rwc
-
Set when the battery voltage drops below the Low Battery
threshold. Cleared only when set to 1 by the user.
IO control registers
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 76
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
RegDioMapping1
(0x40)
RegDioMapping2
(0x41)
DATASHEET
Bits
Variable Name
Mode
Default
value
7-6
Dio0Mapping
rw
0x00
5-4
Dio1Mapping
rw
0x00
3-2
Dio2Mapping
rw
0x00
1-0
Dio3Mapping
rw
0x00
7-6
Dio4Mapping
rw
0x00
5-4
Dio5Mapping
rw
0x00
3-1
reserved
rw
0x00
reserved. Retain default value
0x00
Allows the mapping of either Rssi Or PreambleDetect to the DIO
pins, as summarized on Table 27 and Table 28
0  Rssi interrupt
1  PreambleDetect interrupt
0
MapPreambleDetect
rw
FSK/OOK Description
Mapping of pins DIO0 to DIO5
See Table 27 for mapping in Continuous mode
See table 28 for mapping in Packet mode
Version register
RegVersion
(0x42)
7-0
Version
r
0x12
Version code of the chip. Bits 7-4 give the full revision number;
bits 3-0 give the metal mask revision number.
Additional registers
RegPllHop
(0x44)
RegTcxo
(0x4b)
RegPaDac
(0x4d)
RegFormerTemp
(0x5b)
RegBitrateFrac
(0x5d)
7
FastHopOn
rw
0x00
Bypasses the main state machine for a quick frequency hop.
Writing RegFrfLsb will trigger the frequency change.
0  Frf is validated when FSTx or FSRx is requested
1  Frf is validated triggered when RegFrfLsb is written
6-0
reserved
rw
0x2d
reserved
7-5
reserved
rw
0x00
reserved. Retain default value
4
TcxoInputOn
rw
0x00
Controls the crystal oscillator
0  Crystal Oscillator with external Crystal
1  External clipped sine TCXO AC-connected to XTA pin
3-0
reserved
rw
0x09
Reserved. Retain default value.
7-3
reserved
rw
0x10
reserved. Retain default value
2-0
PaDac
rw
0x04
Enables the +20dBm option on PA_BOOST pin
0x04  Default value
0x07  +20dBm on PA_BOOST when OutputPower=1111
7-0
FormerTemp
rw
-
Temperature saved during the latest IQ (RSSI and Image)
calibrated. Same format as TempValue in RegTemp.
7-4
unused
r
0x00
unused
Fractional part of the bit rate divider (Only valid for FSK)
If BitRateFrac> 0 then:
3-0
Rev. 1. - December 2013
©2013 Semtech Corporation
BitRateFrac
rw
0x00
Page 77
FXOSC
BitRate = ------------------------------------------------------------------------BitrateFrac
BitRate (15,0) + ------------------------------16
www.semtech.com
SX1236
WIRELESS & SENSING
Name
(Address)
RegAgcRef
(0x61)
DATASHEET
Bits
Variable Name
Mode
Default
value
7-6
unused
r
-
FSK/OOK Description
unused
Sets the floor reference for all AGC thresholds:
AGC Reference[dBm]=
-174dBm+10*log(2*RxBw)+SNR+AgcReferenceLevel
SNR = 8dB, fixed value
5-0
AgcReferenceLevel
rw
0x19
RegAgcThresh1
(0x62)
7-5
unused
r
-
4-0
AgcStep1
rw
0x0c
Defines the 1st AGC Threshold
RegAgcThresh2
(0x63)
7-4
AgcStep2
rw
0x04
Defines the 2nd AGC Threshold:
3-0
AgcStep3
rw
0x0b
Defines the 3rd AGC Threshold:
RegAgcThresh3
(0x64)
7-4
AgcStep4
rw
0x0c
Defines the 4th AGC Threshold:
3-0
AgcStep5
rw
0x0c
Defines the 5th AGC Threshold:
unused
6.3. Band Specific Additional Registers
The registers in the address space from 0x61 to 0x73 are specific for operation in the lower frequency bands (below 525
MHz), or in the upper frequency bands (above 860 MHz). Their programmed value may differ, and are retained when
switching from lower to high frequency and vice-versa. The access to the band specific registers is granted by enabling or
disabling the bit 3 LowFrequencyModeOn of the RegOpMode register. By default, the bit LowFrequencyModeOn is at ‘1’
indicating that the registers are configured for the low frequency band.
Table 32 Low Frequency Additional Registers
Name
(Address)
RegAgcRefLf
(0x61)
Bits
Variable Name
Mode
Default
value
7-6
unused
r
-
Low Frequency Additional Registers
unused
Sets the floor reference for all AGC thresholds:
AGC Reference[dBm]=
-174dBm+10*log(2*RxBw)+SNR+AgcReferenceLevel
SNR = 8dB, fixed value
5-0
AgcReferenceLevel
rw
0x19
RegAgcThresh1Lf
(0x62)
7-5
unused
r
-
4-0
AgcStep1
rw
0x0c
Defines the 1st AGC Threshold
RegAgcThresh2Lf
(0x63)
7-4
AgcStep2
rw
0x04
Defines the 2nd AGC Threshold:
3-0
AgcStep3
rw
0x0b
Defines the 3rd AGC Threshold:
RegAgcThresh3Lf
(0x64)
7-4
AgcStep4
rw
0x0c
Defines the 4th AGC Threshold:
3-0
AgcStep5
rw
0x0c
Defines the 5th AGC Threshold:
RegPllLf
(0x70)
7-6
PllBandwidth
rw
0x03
Controls the PLL bandwidth:
00  75 kHz
10  225 kHz
01  150 kHz
11  300 kHz
5-0
reserved
rw
0x10
reserved. Retain default value
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 78
unused
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Table 33 High Frequency Additional Registers
Name
(Address)
RegAgcRefHf
(0x61)
Bits
Variable Name
Mode
Default
value
7-6
unused
r
-
Low Frequency Additional Registers
unused
Sets the floor reference for all AGC thresholds:
AGC Reference[dBm]=
-174dBm+10*log(2*RxBw)+SNR+AgcReferenceLevel
SNR = 8dB, fixed value
5-0
AgcReferenceLevel
rw
0x1c
RegAgcThresh1Hf
(0x62)
7-5
unused
r
-
4-0
AgcStep1
rw
0x0e
Defines the 1st AGC Threshold
RegAgcThresh2Hf
(0x63)
7-4
AgcStep2
rw
0x05
Defines the 2nd AGC Threshold:
3-0
AgcStep3
rw
0x0b
Defines the 3rd AGC Threshold:
RegAgcThresh3Hf
(0x64)
7-4
AgcStep4
rw
0x0c
Defines the 4th AGC Threshold:
3-0
AgcStep5
rw
0x0c
Defines the 5th AGC Threshold:
RegPllHf
(0x70)
7-6
PllBandwidth
rw
0x03
Controls the PLL bandwidth:
00  75 kHz
10  225 kHz
01  150 kHz
11  300 kHz
5-0
reserved
rw
0x10
reserved. Retain default value
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 79
unused
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7. Application Information
7.1. Crystal Resonator Specification
Table 34 shows the crystal resonator specification for the crystal reference oscillator circuit of the SX1236. This
specification covers the full range of operation of the SX1236 and is employed in the reference design.
Table 34 Crystal Specification
Symbol
Description
FXOSC
Conditions
Min
Typ
Max
XTAL Frequency
-
32
-
MHz
RS
XTAL Serial Resistance
-
15
100
ohms
C0
XTAL Shunt Capacitance
-
1
3
pF
CFOOT
External Foot Capacitance
10
15
22
pF
CLOAD
Crystal Load Capacitance
6
-
12
pF
On each pin XTA and XTB
Unit
Notes - The initial frequency tolerance, temperature stability and ageing performance should be chosen in accordance
with the target operating temperature range and the receiver bandwidth selected.
- The loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL.
7.2. Reset of the Chip
A power-on reset of the SX1236 is triggered at power up. Additionally, a manual reset can be issued by controlling pin 7.
7.2.1. POR
If the application requires the disconnection of VDD from the SX1236, despite of the extremely low Sleep Mode current, the
user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI bus. Pin 7
(NRESET) should be left floating during the POR sequence.
Figure 33. POR Timing Diagram
Please note that any CLKOUT activity can also be used to detect that the chip is ready.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 80
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.2.2. Manual Reset
A manual reset of the SX1236 is possible even for applications in which VDD cannot be physically disconnected. Pin 7
should be pulled low for a hundred microseconds, and then released. The user should then wait for 5 ms before using the
chip.
Figure 34. Manual Reset Timing Diagram
Note
Whilst pin 7 is driven low, an over current consumption of up to one milliampere can be seen on VDD.
7.3. Top Sequencer: Listen Mode Examples
In this scenario, the circuit spends most of the time in Idle mode, during which only the RC oscillator is on. Periodically the
receiver wakes up and looks for incoming signal. If a wanted signal is detected, the receiver is kept on and data are
analyzed. Otherwise, if there was no wanted signal for a defined period of time, the receiver is switched off until the next
receive period.
During Listen mode, the Radio stays most of the time in a Low Power mode, resulting in very low average power
consumption. The general timing diagram of this scenario is given in Figure 35.
Listen mode : principle
Receive
Idle ( Sleep + RC )
Receive
Idle
Figure 35. Listen Mode: Principle
An interrupt request is generated on a packet reception. The user can then take appropriate action.
Depending on the application and environment, there are several ways to implement Listen mode:



Wake on a PreambleDetect interrupt
Wake on a SyncAddress interrupt
Wake on a PayloadReady interrupt
7.3.1. Wake on Preamble Interrupt
In one possible scenario, the sequencer polls for a Preamble detection. If a preamble signal is detected, the sequencer is
switched off and the circuit stays in Receive mode until the user switches modes. Otherwise, the receiver is switched off
until the next Rx period.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 81
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.3.1.1. Timing Diagram
When no signal is received, the circuit wakes every Timer1 + Timer2 and switches to Receive mode for a time defined by
Timer2, as shown on the following diagram. If no Preamble is detected, it then switches back to Idle mode, i.e. Sleep mode
with RC oscillator on.
No received signal
Receive
Idle ( Sleep + RC )
Receive
Timer2
Idle
Timer2
Timer1
Timer1
Timer1
Figure 36. Listen Mode with No Preamble Received
If a Preamble signal is detected, the Sequencer is switched off. The PreambleDetect signal can be mapped to DIO4, in
order to request the user's attention. The user can then take appropriate action.
Received signal
Preamble ( As long as T1 + 2 * T2 )
Idle ( Sleep + RC )
Timer1
Sync
Word
Timer2
Payload
Crc
Receive
Timer2
Preamble
Detect
Figure 37. Listen Mode with Preamble Received
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 82
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.3.1.2. Sequencer Configuration
The following graph shows Listen mode - Wake on PreambleDetect state machine:
State Machine
Sequencer Off
&
Initial mode = Sleep or Standby
IdleMode = 1 : Sleep
Start bit set
Start
FromStart = 00
LowPower
Selection
LowPowerSelection = 1
Idle
On T1
FromIdle = 1
On T2
Receive
On PreambleDetect
FromReceive = 110
Sequencer Off
Figure 38. Wake On PreambleDetect State Machine
This example configuration is achieved as follows:
Table 35 Listen Mode with PreambleDetect Condition Settings
Variable
IdleMode
FromStart
LowPowerSelection
FromIdle
FromReceive
Effect
1: Sleep mode
00: To LowPowerSelection
1: To Idle state
1: To Receive state on T1 interrupt
110: To Sequencer Off on PreambleDetect interrupt
TTimer2 defines the maximum duration the chip stays in Receive mode as long as no Preamble is detected. In order to
optimize power consumption, Timer2 must be set just long enough for Preamble detection.
TTimer1 + TTimer2 defines the cycling period, i.e. time between two Preamble polling starts. In order to optimize average
power consumption, Timer1 should be relatively long. However, increasing Timer1 also extends packet reception duration.
In order to insure packet detection and optimize the receiver's power consumption, the received packet Preamble should
be as long as TTimer1 + 2 x TTimer2.
An example of DIO configuration for this mode is described in the following table:
Table 36 Listen Mode with PreambleDetect Condition Recommended DIO Mapping
DIO
0
1
3
4
Value
01
00
00
11
Rev. 1. - December 2013
©2013 Semtech Corporation
Description
CrcOk
FifoLevel
FifoEmpty
PreambleDetect – Note: MapPreambleDetect bit should be set.
Page 83
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.3.2. Wake on SyncAddress Interrupt
In another possible scenario, the sequencer polls for a Preamble detection and then for a valid SyncAddress interrupt. If
events occur, the sequencer is switched off and the circuit stays in Receive mode until the user switches modes.
Otherwise, the receiver is switched off until the next Rx period.
7.3.2.1. Timing Diagram
Most of the sequencer running time is spent while no wanted signal is received. As shown by the timing diagram in
Figure 39, the circuit wakes periodically for a short time, defined by RxTimeout. The circuit is in a Low Power mode for the
rest of Timer1 + Timer2 (i.e. Timer1 + Timer2 - TrxTimeout)
No wanted signal
Idle
Receive
Idle ( Sleep + RC )
Receive
Idle
Timer2
Timer2
Timer1
Timer1
RxTimeout
Timer1
RxTimeout
Figure 39. Listen Mode with no SyncAddress Detected
If a preamble is detected before RxTimeout timer ends, the circuit stays in Receive mode and waits for a valid
SyncAddress detection. If none is detected by the end of Timer2, Receive mode is deactivated and the polling cycle
resumes, without any user intervention.
Unwanted Signal
Preamble ( Preamble + Sync = T2 )
Idle
Wrong
Word
Receive
Payload
Idle
Receive
Timer2
Timer1
Crc
Idle
Timer2
RxTimeout
Timer1
Timer1
RxTimeout
Preamble
Detect
Figure 40. Listen Mode with Preamble Received and no SyncAddress
But if a valid Sync Word is detected, a SyncAddress interrupt is fired, the Sequencer is switched off and the circuit stays in
Receive mode as long as the user doesn't switch modes.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 84
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Wanted Signal
Preamble ( Preamble + Sync = T2 )
Idle
Sync
Word
Payload
Crc
Receive
Timer2
Timer1
RxTimeout
Preamble
Detect
Sync
Address
Fifo
Level
Figure 41. Listen Mode with Preamble Received & Valid SyncAddress
7.3.2.2. Sequencer Configuration
The following graph shows Listen mode - Wake on SyncAddress state machine:
State Machine
Sequencer Off
&
Initial mode = Sleep or Standby
IdleMode = 1 : Sleep
Start bit set
Start
FromStart = 00
LowPower
Selection
LowPowerSelection = 1
Idle
On T1
FromIdle = 1
FromRxTimeout = 10
RxTimeout
On T2
Receive
On SyncAdress
FromReceive = 101
Sequencer Off
On RxTimeout
Figure 42. Wake On SyncAddress State Machine
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 85
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
This example configuration is achieved as follows:
Table 37 Listen Mode with SyncAddress Condition Settings
Variable
IdleMode
FromStart
LowPowerSelection
FromIdle
FromReceive
FromRxTimeout
Effect
1: Sleep mode
00: To LowPowerSelection
1: To Idle state
1: To Receive state on T1 interrupt
101: To Sequencer off on SyncAddress interrupt
10: To LowPowerSelection
TTimeoutRxPreamble should be set to just long enough to catch a preamble (depends on PreambleDetectSize and BitRate).
TTimer1 should be set to 64 µs (shortest possible duration).
TTimer2 is set so that TTimer1 + TTimer2 defines the time between two starts of reception.
In order to insure packet detection and optimize the receiver power consumption, the received packet Preamble should be
defined so that TPreamble = TTimer2 - TSyncAddress with TSyncAddress = (SyncSize + 1)*8/BitRate.
An example of DIO configuration for this mode is described in the following table:
Table 38 Listen Mode with PreambleDetect Condition Recommended DIO Mapping
DIO
0
1
2
3
4
Value
01
00
11
00
11
Rev. 1. - December 2013
©2013 Semtech Corporation
Description
CrcOk
FifoLevel
SyncAddress
FifoEmpty
PreambleDetect – Note: MapPreambleDetect bit should be set.
Page 86
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.4. Top Sequencer: Beacon Mode
In this mode, a repetitive message is transmitted periodically. If the Payload being sent is always identical, and
PayloadLength is smaller than the FIFO size, the use of the BeaconOn bit in RegPacketConfig2 together with the
Sequencer permit to achieve periodic beacon without any user intervention.
7.4.1. Timing diagram
In this mode, the Radio is switched to Transmit mode every TTimer1 + TTimer2 and back to Idle mode after PacketSent, as
shown in the diagram below. The Sequencer insures minimal time is spent in Transmit mode, and therefore power
consumption is optimized.
Beacon mode
Idle
Transmit
Idle ( Sleep + RC )
Transmit
Timer2
Idle
Timer2
Timer1
Timer1
Timer1
Packet
Sent
Packet
Sent
Figure 43. Beacon Mode Timing Diagram
7.4.2. Sequencer Configuration
The Beacon mode state machine is presented in the following graph. It is noticeable that the sequencer enters an infinite
loop and can only be stopped by setting SequencerStop bit in RegSeqConfig1.
State Machine
Sequencer Off
&
Initial mode = Sleep or Standby
IdleMode = 1 : Sleep
Start bit set
Start
FromStart = 00
LowPower
Selection
LowPowerSelection = 1
Idle
On T1
FromIdle = 0
On PacketSent
FromTransmit = 0
Transmit
Figure 44. Beacon Mode State Machine
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 87
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
This example is achieved by programming the Sequencer as follows:
Table 39 Beacon Mode Settings
Variable
IdleMode
FromStart
LowPowerSelection
FromIdle
FromTransmit
Effect
1: Sleep mode
00: To LowPowerSelection
1: To Idle state
0: To Transmit state on T1 interrupt
0: To LowPowerSelection on PacketSent interrupt
TTimer1 + TTimer2 define the time between the start of two transmissions.
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 88
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.5. Example CRC Calculation
The following routine(s) may be implemented to mimic the CRC calculation of the SX1236:
Figure 45. Example CRC Code
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 89
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
7.6. Example Temperature Reading
The following routine(s) may be implemented to read the temperature and calibrate the sensor:
Figure 46. Example Temperature Reading
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 90
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
Figure 47. Example Temperature Reading (continued)
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 91
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
8. Packaging Information
8.1. Package Outline Drawing
The SX1236 is available in a 28-lead QFN package as shown in Figure 48.
Figure 48. Package Outline Drawing
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 92
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
8.2. Recommended Land Pattern
Figure 49. Recommended Land Pattern
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 93
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
8.3. Tape & Reel Information
Figure 50. Tape and Reel Information
Rev. 1. - December 2013
©2013 Semtech Corporation
Page 94
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
9. Revision History
Table 40 Revision History
Revision
1
Date
Dec 2013
Rev. 1. - December 2013
©2013 Semtech Corporation
Comment
First FINAL Release
Page 95
www.semtech.com
SX1236
WIRELESS & SENSING
DATASHEET
© Semtech 2013
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable
and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication
thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes
no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper
installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to
parameters beyond the specified maximum ratings or operation outside the specified range.
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN
LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF
SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S
OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall
indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs damages and attorney fees which could arise.
Contact information
Semtech Corporation Wireless & Sensing Products
Taiwan
Korea
Shanghai
Phone: + 886 2 2748 3380
Fax: + 886 2 2748 3390
Phone: + 82 2 527 4377
Fax: + 82 2 527 4376
Phone: + 86 21 6391 0830
Fax: + 86 21 6391 0831
Japan
Phone: + 81 3 5719 7560
Fax: + 81 3 5719 7561
Sweden
Phone: + 46 700 380 799
Rev. 1. - December 2013
©2013 Semtech Corporation
Switzerland
Phone: + 41 32 729 4000
Fax: + 41 32 729 4001
France
Phone : + 33 1 69 28 22 00
Fax: + 33 1 69 28 12 98
Germany
Phone: + 49 811 998 7280
Fax: + 49 811 998 728 60
Italy
Phone: + 39 339 57 56 355
Page 96
www.semtech.com