PCA9542A 2-channel I2C-bus multiplexer and interrupt logic

PCA9542A
2-channel I2C-bus multiplexer and interrupt logic
Rev. 5.1 — 15 July 2015
Product data sheet
1. General description
The PCA9542A is a 1-of-2 bidirectional translating multiplexer, controlled via the I2C-bus.
The SCL/SDA upstream pair fans out to two SCx/SDx downstream pairs, or channels.
Only one SCx/SDx channel is selected at a time, determined by the contents of the
programmable control register. Two interrupt inputs, INT0 and INT1, one for each of the
SCx/SDx downstream pairs, are provided. One interrupt output, INT, which acts as an
AND of the two interrupt inputs, is provided.
A power-on reset function puts the registers in their default state and initializes the I2C-bus
state machine with no channels selected.
The pass gates of the multiplexer are constructed such that the VDD pin can be used to
limit the maximum high voltage which will be passed by the PCA9542A. This allows the
use of different bus voltages on each SCx/SDx pair, so that 1.8 V, 2.5 V, or 3.3 V parts can
communicate with 5 V parts without any additional protection. External pull-up resistors
pull the bus up to the desired voltage level for each channel. All I/O pins are 5 V tolerant.
2. Features and benefits
















1-of-2 bidirectional translating multiplexer
I2C-bus interface logic; compatible with SMBus
2 active LOW interrupt inputs (INT0, INT1)
Active LOW interrupt output (INT)
3 address pins allowing up to 8 devices on the I2C-bus
Channel selection via I2C-bus
Powers up with all multiplexer channels deselected
Low Ron switches
Allows voltage level translation between 1.8 V, 2.5 V, 3.3 V and 5 V buses
No glitch on power-up
Supports hot insertion
Low standby current
Operating power supply voltage range of 2.3 V to 5.5 V
5 V tolerant inputs
0 Hz to 400 kHz clock frequency
ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per
JESD22-C101
 Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
 Packages offered: SO14, TSSOP14
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
3. Ordering information
Table 1.
Ordering information
Type number
Topside
marking
Package
Name
Description
Version
PCA9542AD
PCA9542AD
SO14
plastic small outline package; 14 leads; body width 3.9 mm
SOT108-1
PCA9542APW
PA9542A
TSSOP14
plastic thin shrink small outline package; 14 leads;
body width 4.4 mm
SOT402-1
3.1 Ordering options
Table 2.
Ordering options
Type number
Orderable
part number
Package
Packing method
PCA9542AD
PCA9542AD,112
SO14
Standard marking
1140
*IC’s tube - DSC bulk pack
Tamb = 40 C to +85 C
PCA9542AD,118
SO14
Reel 13” Q1/T1
*Standard mark SMD
2500
Tamb = 40 C to +85 C
PCA9542APW,112
TSSOP14
Standard marking
2400
*IC’s tube - DSC bulk pack
Tamb = 40 C to +85 C
PCA9542APW,118
TSSOP14
Reel 13” Q1/T1
*Standard mark SMD
Tamb = 40 C to +85 C
PCA9542APW
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
Minimum
order
quantity
2500
Temperature range
© NXP Semiconductors N.V. 2015. All rights reserved.
2 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
4. Block diagram
PCA9542A
SC0
SC1
SD0
SD1
VSS
VDD
SCL
SDA
SWITCH CONTROL LOGIC
POWER-ON
RESET
INPUT
FILTER
A0
I2C-BUS
CONTROL
A1
A2
INT[1:0]
INT
INTERRUPT LOGIC
002aae303
Fig 1.
PCA9542A
Product data sheet
Block diagram of PCA9542A
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
3 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
5. Pinning information
5.1 Pinning
A0
1
14 VDD
A1
2
13 SDA
A2
3
12 SCL
INT0
4
SD0
5
A0
1
14 VDD
A1
2
13 SDA
A2
3
INT0
4
SD0
5
10 SC1
SC0
6
9
SD1
VSS
7
8
INT1
PCA9542AD 11 INT
10 SC1
SC0
6
9
SD1
VSS
7
8
INT1
Pin configuration for SO14
11 INT
002aae302
002aae301
Fig 2.
12 SCL
PCA9542APW
Fig 3.
Pin configuration for TSSOP14
5.2 Pin description
Table 3.
PCA9542A
Product data sheet
Pin description
Symbol
Pin
Description
A0
1
address input 0
A1
2
address input 1
A2
3
address input 2
INT0
4
active LOW interrupt input 0
SD0
5
serial data 0
SC0
6
serial clock 0
VSS
7
supply ground
INT1
8
active LOW interrupt input 1
SD1
9
serial data 1
SC1
10
serial clock 1
INT
11
active LOW interrupt output
SCL
12
serial clock line
SDA
13
serial data line
VDD
14
supply voltage
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
4 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
6. Functional description
Refer to Figure 1 “Block diagram of PCA9542A”.
6.1 Device addressing
Following a START condition the bus master must output the address of the slave it is
accessing. The address of the PCA9542A is shown in Figure 4. To conserve power, no
internal pull-up resistors are incorporated on the hardware selectable address pins and
they must be pulled HIGH or LOW.
1
1
1
0
fixed
A2
A1
A0 R/W
hardware
selectable
002aab189
Fig 4.
Slave address
The last bit of the slave address defines the operation to be performed. When set to
logic 1 a read is selected, while a logic 0 selects a write operation.
6.2 Control register
Following the successful acknowledgement of the slave address, the bus master will send
a byte to the PCA9542A which will be stored in the control register. If multiple bytes are
received by the PCA9542A, it will save the last byte received. This register can be written
and read via the I2C-bus.
interrupt bits
(read only)
bit
7
6
X
X
5
4
INT1 INT0
writable,
but always read 0
Fig 5.
channel selection bits
(read/write)
3
2
1
0
X
B2
B1
B0
enable bit
002aae304
Control register
6.2.1 Control register definition
A SCx/SDx downstream pair, or channel, is selected by the contents of the control
register. This register is written after the PCA9542A has been addressed. The 3 LSBs of
the control byte are used to determine which channel is to be selected. When a channel is
selected, it will become active after a STOP condition has been placed on the I2C-bus.
This ensures that all SCx/SDx lines will be in a HIGH state when the channel is made
active, so that no false conditions are generated at the time of connection.
Bits INT0, INT1, D6 and D7 are all writable, but will read the chip status. INT0 and INT1
indicate the state of the corresponding interrupt input. D7 and D6 always read 0.
See Section 6.3.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
5 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
Table 4.
Control register: Write—channel selection; Read—channel status
D7
D6
INT1
INT0
D3
B2
B1
B0
Command
X
X
X
X
X
0
X
X
no channel selected
X
X
X
X
X
1
0
0
channel 0 enabled
X
X
X
X
X
1
0
1
channel 1 enabled
X
X
X
X
X
1
1
X
no channel selected
0
0
0
0
0
0
0
0
no channel selected;
power-up default state
6.3 Interrupt handling
The PCA9542A provides 2 interrupt inputs, one for each channel and one open-drain
interrupt output. When an interrupt is generated by any device, it will be detected by the
PCA9542A and the interrupt output will be driven LOW. The channel need not be active
for detection of the interrupt. A bit is also set in the control byte.
Bits 5:4 of the control byte correspond to channel 1, channel 0 of the PCA9542A,
respectively. Therefore, if an interrupt is generated by any device connected to channel 1,
the state of the interrupt inputs is loaded into the control register when a read is
accomplished. Likewise, an interrupt on any device connected to channel 0 would cause
bit 4 of the control register to be set on the read. The master can then address the
PCA9542A and read the contents of the control byte to determine which channel contains
the device generating the interrupt. The master can then reconfigure the PCA9542A to
select this channel, and locate the device generating the interrupt and clear it.
It should be noted that more than one device can be providing an interrupt on a channel,
so it is up to the master to ensure that all devices on a channel are interrogated for an
interrupt.
The interrupt inputs may be used as general purpose inputs if the interrupt function is not
required.
If unused, interrupt input(s) must be connected to VDD through a pull-up resistor.
Table 5.
D7
Control register read — interrupt
D6
0
0
0
0
INT1
X
0
1
INT0
0
1
X
D3
B2
B1
B0
X
X
X
X
X
X
X
X
Command
no interrupt on channel 0
interrupt on channel 0
no interrupt on channel 1
interrupt on channel 1
Remark: The two interrupts can be active at the same time. D6 and D7 always read 0.
6.4 Power-on reset
When power is applied to VDD, an internal Power-On Reset (POR) holds the PCA9542A in
a reset condition until VDD has reached VPOR. At this point, the reset condition is released
and the PCA9542A registers and I2C-bus state machine are initialized to their default
states (all zeroes), causing all the channels to be deselected. Thereafter, VDD must be
lowered below 0.2 V for at least 5 s in order to reset the device.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
6 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
6.5 Voltage translation
The pass gate transistors of the PCA9542A are constructed such that the VDD voltage can
be used to limit the maximum voltage that will be passed from one I2C-bus to another.
002aaa964
5.0
Vo(sw)
(V)
4.0
(1)
(2)
3.0
(3)
2.0
1.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VDD (V)
(1) maximum
(2) typical
(3) minimum
Fig 6.
Pass gate voltage versus supply voltage
Figure 6 shows the voltage characteristics of the pass gate transistors (note that the graph
was generated using the data specified in Section 12 “Dynamic characteristics” of this
data sheet). In order for the PCA9542A to act as a voltage translator, the Vo(sw) voltage
should be equal to, or lower than the lowest bus voltage. For example, if the main bus was
running at 5 V, and the downstream buses were 3.3 V and 2.7 V, then Vo(sw) should be
equal to or below 2.7 V to effectively clamp the downstream bus voltages. Looking at
Figure 6, we see that Vo(sw)(max) will be at 2.7 V when the PCA9542A supply voltage is
3.5 V or lower so the PCA9542A supply voltage could be set to 3.3 V. Pull-up resistors
can then be used to bring the bus voltages to their appropriate levels (see Figure 13).
More Information can be found in Application Note AN262, PCA954X family of I2C/SMBus
multiplexers and switches.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
7 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
7. Characteristics of the I2C-bus
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be
connected to a positive supply via a pull-up resistor when connected to the output stages
of a device. Data transfer may be initiated only when the bus is not busy.
7.1 Bit transfer
One data bit is transferred during each clock pulse. The data on the SDA line must remain
stable during the HIGH period of the clock pulse as changes in the data line at this time
will be interpreted as control signals (see Figure 7).
SDA
SCL
data line
stable;
data valid
Fig 7.
change
of data
allowed
mba607
Bit transfer
7.2 START and STOP conditions
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW
transition of the data line while the clock is HIGH is defined as the START condition (S). A
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP
condition (P) (see Figure 8).
SDA
SCL
S
P
START condition
STOP condition
mba608
Fig 8.
Definition of START and STOP conditions
7.3 System configuration
A device generating a message is a ‘transmitter’, a device receiving is the ‘receiver’. The
device that controls the message is the ‘master’ and the devices which are controlled by
the master are the ‘slaves’ (see Figure 9).
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
8 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
SDA
SCL
MASTER
TRANSMITTER/
RECEIVER
SLAVE
RECEIVER
SLAVE
TRANSMITTER/
RECEIVER
MASTER
TRANSMITTER
MASTER
TRANSMITTER/
RECEIVER
I2C-BUS
MULTIPLEXER
SLAVE
002aaa966
Fig 9.
System configuration
7.4 Acknowledge
The number of data bytes transferred between the START and the STOP conditions from
transmitter to receiver is not limited. Each byte of eight bits is followed by one
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,
whereas the master generates an extra acknowledge related clock pulse.
A slave receiver which is addressed must generate an acknowledge after the reception of
each byte. Also, a master must generate an acknowledge after the reception of each byte
that has been clocked out of the slave transmitter. The device that acknowledges has to
pull down the SDA line during the acknowledge clock pulse so that the SDA line is stable
LOW during the HIGH period of the acknowledge related clock pulse; set-up and hold
times must be taken into account.
A master receiver must signal an end of data to the transmitter by not generating an
acknowledge on the last byte that has been clocked out of the slave. In this event, the
transmitter must leave the data line HIGH to enable the master to generate a STOP
condition.
data output
by transmitter
not acknowledge
data output
by receiver
acknowledge
SCL from master
1
2
S
START
condition
8
9
clock pulse for
acknowledgement
002aaa987
Fig 10. Acknowledgement on the I2C-bus
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
9 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
7.5 Bus transactions
slave address
SDA
S
1
1
1
0
A2
control register
A1
A0
START condition
0
A
R/W
X
X
X
X
X
B2
acknowledge
from slave
B1
B0
A
P
acknowledge
from slave
STOP condition
002aae299
Fig 11. Write control register
slave address
SDA
S
1
1
1
0
A2
last byte
control register
A1
A0
START condition
1
A
R/W
X
X
INT INT
1
0
X
B2
acknowledge
from slave
B1
B0
NA
P
no acknowledge
from master
STOP condition
002aae305
Fig 12. Read control register
8. Application design-in information
VDD = 2.7 V to 5.5 V
VDD = 3.3 V
V = 2.7 V to 5.5 V
(1)
SDA
SDA
SD0
SCL
SCL
SC0
INT
INT0
PCA9542A
I2C-bus/SMBus master
channel 0
V = 2.7 V to 5.5 V
(1)
A2
A1
SD1
A0
SC1
VSS
INT1
channel 1
002aae306
(1) If the device generating the interrupt has an open-drain output structure or can be 3-stated,
a pull-up resistor is required.
If the device generating the interrupt has a totem pole output structure and cannot be 3-stated,
a pull-up resistor is not required.
The interrupt inputs should not be left floating.
Fig 13. Typical application
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
10 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
9. Limiting values
Table 6.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Voltages are referenced to ground (VSS = 0 V).[1]
Symbol
Parameter
VDD
VI
Conditions
Min
Max
Unit
supply voltage
0.5
+7.0
V
input voltage
0.5
+7.0
V
II
input current
-
20
mA
IO
output current
-
25
mA
IDD
supply current
-
100
mA
ISS
ground supply current
-
100
mA
Ptot
total power dissipation
-
400
mW
-
125
C
Tj(max)
maximum junction temperature
Tstg
storage temperature
Tamb
ambient temperature
[1]
[1]
operating
60
+150
C
40
+85
C
The performance capability of a high-performance integrated circuit in conjunction with its thermal
environment can create junction temperatures which are detrimental to reliability. The maximum junction
temperature of this integrated circuit should not exceed 125 C.
10. Thermal characteristics
Table 7.
PCA9542A
Product data sheet
Thermal characteristics
Symbol
Parameter
Conditions
Typ
Unit
Rth(j-a)
thermal resistance from junction
to ambient
SO14 package
127
C/W
TSSOP14 package
175
C/W
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
11 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
11. Static characteristics
Table 8.
Static characteristics at VDD = 2.3 V to 3.6 V
VSS = 0 V; Tamb = 40 C to +85 C; unless otherwise specified. See Table 9 for VDD = 4.5 V to 5.5 V.[1]
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Supply
VDD
supply voltage
2.3
-
3.6
V
IDD
supply current
operating mode; VDD = 3.6 V;
no load; VI = VDD or VSS;
fSCL = 100 kHz
-
10
30
A
Istb
standby current
standby mode; VDD = 3.6 V; no load;
VI = VDD or VSS; fSCL = 0 kHz
-
0.1
1
A
VPOR
power-on reset voltage
no load; VI = VDD or VSS
-
1.6
2.1
V
[2]
Input SCL; input/output SDA
VIL
LOW-level input voltage
0.5
-
+0.3VDD
V
VIH
HIGH-level input voltage
0.7VDD
-
6
V
IOL
LOW-level output current
VOL = 0.4 V
3
7
-
mA
VOL = 0.6 V
6
10
-
mA
IL
leakage current
VI = VDD or VSS
1
-
+1
A
Ci
input capacitance
VI = VSS
-
9
10
pF
0.5
-
+0.3VDD
V
Select inputs A0, A1, A2, INT0, INT1
VIL
LOW-level input voltage
VIH
HIGH-level input voltage
0.7VDD
-
6
V
ILI
input leakage current
VI = VDD or VSS
1
-
+1
A
Ci
input capacitance
VI = VSS
-
1.6
3
pF
ON-state resistance
VDD = 3.0 V to 3.6 V; VO = 0.4 V;
IO = 15 mA
5
11
30

VDD = 2.3 V to 2.7 V; VO = 0.4 V;
IO = 10 mA
7
16
55

Vi(sw) = VDD = 3.3 V; Io(sw) = 100 A
-
1.9
-
V
Vi(sw) = VDD = 3.0 V to 3.6 V;
Io(sw) = 100 A
1.6
-
2.8
V
Vi(sw) = VDD = 2.5 V; Io(sw) = 100 A
-
1.5
-
V
Vi(sw) = VDD = 2.3 V to 2.7 V;
Io(sw) = 100 A
1.1
-
2.0
V
Pass gate
Ron
Vo(sw)
switch output voltage
IL
leakage current
VI = VDD or VSS
1
-
+1
A
Cio
input/output capacitance
VI = VSS
-
3
5
pF
IOL
LOW-level output current
VOL = 0.4 V
3
-
-
mA
IOH
HIGH-level output current
-
-
+10
A
INT output
[1]
For operation between published voltage ranges, refer to worst case parameter in both ranges.
[2]
VDD must be lowered to 0.2 V for at least 5 s in order to reset part.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
12 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
Table 9.
Static characteristics at VDD = 4.5 V to 5.5 V
VSS = 0 V; Tamb = 40 C to +85 C; unless otherwise specified. See Table 8 for VDD = 2.3 V to 3.6 V.[1]
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
4.5
-
5.5
V
Supply
VDD
supply voltage
IDD
supply current
operating mode; VDD = 5.5 V;
no load; VI = VDD or VSS;
fSCL = 100 kHz
-
25
100
A
Istb
standby current
standby mode; VDD = 5.5 V; no load;
VI = VDD or VSS; fSCL = 0 kHz
-
0.3
1
A
VPOR
power-on reset voltage
no load; VI = VDD or VSS
-
1.7
2.1
V
[2]
Input SCL; input/output SDA
VIL
LOW-level input voltage
0.5
-
+0.3VDD
V
VIH
HIGH-level input voltage
0.7VDD
-
6
V
IOL
LOW-level output current
VOL = 0.4 V
3
-
-
mA
VOL = 0.6 V
6
-
-
mA
IL
leakage current
VI = VDD or VSS
1
-
+1
A
Ci
input capacitance
VI = VSS
-
9
10
pF
Select inputs A0, A1, A2, INT0, INT1
VIL
LOW-level input voltage
0.5
-
+0.3VDD
V
VIH
HIGH-level input voltage
0.7VDD
-
6
V
ILI
input leakage current
VI = VDD or VSS
1
-
+1
A
Ci
input capacitance
VI = VSS
-
2
5
pF
Ron
ON-state resistance
VDD = 4.5 V to 5.5 V; VO = 0.4 V;
IO = 15 mA
4
9
24

Vo(sw)
switch output voltage
Vi(sw) = VDD = 5.0 V; Io(sw) = 100 A
-
3.6
-
V
Vi(sw) = VDD = 4.5 V to 5.5 V;
Io(sw) = 100 A
2.6
-
4.5
V
Pass gate
IL
leakage current
VI = VDD or VSS
1
-
+1
A
Cio
input/output capacitance
VI = VSS
-
3
5
pF
IOL
LOW-level output current
VOL = 0.4 V
3
-
-
mA
IOH
HIGH-level output current
-
-
+10
A
INT output
[1]
For operation between published voltage ranges, refer to worst case parameter in both ranges.
[2]
VDD must be lowered to 0.2 V for at least 5 s in order to reset part.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
13 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
12. Dynamic characteristics
Table 10.
Symbol
Dynamic characteristics
Parameter
Conditions
Standard-mode
I2C-bus
from SDA to SDx,
or SCL to SCx
Fast-mode I2C-bus
Unit
Min
Max
Min
Max
-
0.3[1]
-
0.3[1]
ns
0
100
0
400
kHz
4.7
-
1.3
-
s
4.0
-
0.6
-
s
s
tPD
propagation delay
fSCL
SCL clock frequency
tBUF
bus free time between a STOP and
START condition
tHD;STA
hold time (repeated) START
condition
tLOW
LOW period of the SCL clock
4.7
-
1.3
-
tHIGH
HIGH period of the SCL clock
4.0
-
0.6
-
s
tSU;STA
set-up time for a repeated START
condition
4.7
-
0.6
-
s
tSU;STO
set-up time for STOP condition
4.0
-
0.6
-
s
[2]
tHD;DAT
data hold time
0[3]
3.45
0[3]
0.9
s
tSU;DAT
data set-up time
250
-
100
-
ns
tr
rise time of both SDA and SCL
signals
-
1000
20 + 0.1Cb[4]
300
ns
tf
fall time of both SDA and SCL
signals
-
300
20 + 0.1Cb[4]
300
ns
Cb
capacitive load for each bus line
-
400
-
400
pF
tSP
pulse width of spikes that must be
suppressed by the input filter
-
50
-
50
ns
tVD;DAT
data valid time
tVD;ACK
HIGH-to-LOW
[5]
-
1
-
1
s
LOW-to-HIGH
[5]
-
0.6
-
0.6
s
-
1
-
1
s
data valid acknowledge time
INT
tv(INTnN-INTN) valid time from INTn to INT signal
[5]
-
4
-
4
s
td(INTnN-INTN) delay time from INTn to INT inactive
[5]
-
2
-
2
s
INTn inputs
[5]
1
-
1
-
s
INTn inputs
[5]
0.5
-
0.5
-
s
tw(rej)L
tw(rej)H
LOW-level rejection time
HIGH-level rejection time
[1]
Pass gate propagation delay is calculated from the 20  typical Ron and the 15 pF load capacitance.
[2]
After this period, the first clock pulse is generated.
[3]
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH(min) of the SCL signal) in order to
bridge the undefined region of the falling edge of SCL.
[4]
Cb = total capacitance of one bus line in pF.
[5]
Measurements taken with 1 k pull-up resistor and 50 pF load.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
14 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
î9''
6'$
î9''
WU
W%8)
WI
W+'67$
W63
W/2:
î9''
6&/
î9''
W+'67$
3
6
W+''$7
W+,*+
W68'$7
W6867$
6U
W68672
3
DDD
Fig 14. Definition of timing on the I2C-bus
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
15 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
13. Package outline
62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP
627
'
(
$
;
F
\
+(
Y 0 $
=
4
$
$
$
$
SLQLQGH[
ș
/S
/
H
GHWDLO;
Z 0
ES
PP
VFDOH
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
81,7
$
PD[
$
$
$
ES
F
'
(
H
+(
/
/S
4
Y
Z
\
=
PP
LQFKHV ș
R
R
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
5()(5(1&(6
287/,1(
9(56,21
,(&
-('(&
627
(
06
-(,7$
(8523($1
352-(&7,21
,668('$7(
Fig 15. Package outline SOT108-1 (SO14)
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
16 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
76623SODVWLFWKLQVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP
'
627
(
$
;
F
\
+(
Y 0 $
=
4
$
SLQLQGH[
$
$
$
ș
/S
/
H
GHWDLO;
Z 0
ES
PP
VFDOH
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
81,7
$
PD[
$
$
$
ES
F
'
(
H
+(
/
/S
4
Y
Z
\
=
ș
PP
R
R
1RWHV
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
3ODVWLFLQWHUOHDGSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
287/,1(
9(56,21
627
5()(5(1&(6
,(&
-('(&
-(,7$
(8523($1
352-(&7,21
,668('$7(
02
Fig 16. Package outline SOT402-1 (TSSOP14)
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
17 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
14. Soldering of SMD packages
This text provides a very brief insight into a complex technology. A more in-depth account
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow
soldering description”.
14.1 Introduction to soldering
Soldering is one of the most common methods through which packages are attached to
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both
the mechanical and the electrical connection. There is no single soldering method that is
ideal for all IC packages. Wave soldering is often preferred when through-hole and
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high
densities that come with increased miniaturization.
14.2 Wave and reflow soldering
Wave soldering is a joining technology in which the joints are made by solder coming from
a standing wave of liquid solder. The wave soldering process is suitable for the following:
• Through-hole components
• Leaded or leadless SMDs, which are glued to the surface of the printed circuit board
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless
packages which have solder lands underneath the body, cannot be wave soldered. Also,
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,
due to an increased probability of bridging.
The reflow soldering process involves applying solder paste to a board, followed by
component placement and exposure to a temperature profile. Leaded packages,
packages with solder balls, and leadless packages are all reflow solderable.
Key characteristics in both wave and reflow soldering are:
•
•
•
•
•
•
Board specifications, including the board finish, solder masks and vias
Package footprints, including solder thieves and orientation
The moisture sensitivity level of the packages
Package placement
Inspection and repair
Lead-free soldering versus SnPb soldering
14.3 Wave soldering
Key characteristics in wave soldering are:
• Process issues, such as application of adhesive and flux, clinching of leads, board
transport, the solder wave parameters, and the time during which components are
exposed to the wave
• Solder bath specifications, including temperature and impurities
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
18 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
14.4 Reflow soldering
Key characteristics in reflow soldering are:
• Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to
higher minimum peak temperatures (see Figure 17) than a SnPb process, thus
reducing the process window
• Solder paste printing issues including smearing, release, and adjusting the process
window for a mix of large and small components on one board
• Reflow temperature profile; this profile includes preheat, reflow (in which the board is
heated to the peak temperature) and cooling down. It is imperative that the peak
temperature is high enough for the solder to make reliable solder joints (a solder paste
characteristic). In addition, the peak temperature must be low enough that the
packages and/or boards are not damaged. The peak temperature of the package
depends on package thickness and volume and is classified in accordance with
Table 11 and 12
Table 11.
SnPb eutectic process (from J-STD-020D)
Package thickness (mm)
Package reflow temperature (C)
Volume (mm3)
< 350
 350
< 2.5
235
220
 2.5
220
220
Table 12.
Lead-free process (from J-STD-020D)
Package thickness (mm)
Package reflow temperature (C)
Volume (mm3)
< 350
350 to 2000
> 2000
< 1.6
260
260
260
1.6 to 2.5
260
250
245
> 2.5
250
245
245
Moisture sensitivity precautions, as indicated on the packing, must be respected at all
times.
Studies have shown that small packages reach higher temperatures during reflow
soldering, see Figure 17.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
19 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
temperature
maximum peak temperature
= MSL limit, damage level
minimum peak temperature
= minimum soldering temperature
peak
temperature
time
001aac844
MSL: Moisture Sensitivity Level
Fig 17. Temperature profiles for large and small components
For further information on temperature profiles, refer to Application Note AN10365
“Surface mount reflow soldering description”.
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
20 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
15. Soldering: PCB footprints
)RRWSULQWLQIRUPDWLRQIRUUHIORZVROGHULQJRI62SDFNDJH
627
+[
*[
3
+\
*\
%\
$\
&
'[
'
3
*HQHULFIRRWSULQWSDWWHUQ
5HIHUWRWKHSDFNDJHRXWOLQHGUDZLQJIRUDFWXDOOD\RXW
VROGHUODQG
RFFXSLHGDUHD
',0(16,216LQPP
3
3
$\
%\
&
'
'
*[
*\
+[
+\
VRWBIU
Fig 18. PCB footprint for SOT108-1 (SO14); reflow soldering
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
21 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
)RRWSULQWLQIRUPDWLRQIRUUHIORZVROGHULQJRI76623SDFNDJH
627
+[
*[
3
+\
%\
*\
$\
&
'[
'
3
*HQHULFIRRWSULQWSDWWHUQ
5HIHUWRWKHSDFNDJHRXWOLQHGUDZLQJIRUDFWXDOOD\RXW
VROGHUODQG
RFFXSLHGDUHD
',0(16,216LQPP
3
3
$\
%\
&
'
'
*[
*\
+[
+\
VRWBIU
Fig 19. PCB footprint for SOT402-1 (TSSOP14); reflow soldering
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
22 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
16. Abbreviations
Table 13.
PCA9542A
Product data sheet
Abbreviations
Acronym
Description
CDM
Charged-Device Model
ESD
ElectroStatic Discharge
HBM
Human Body Model
I/O
Input/Output
I2C-bus
Inter-Integrated Circuit bus
LSB
Least Significant Bit
POR
Power-On Reset
SMBus
System Management Bus
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
23 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
17. Revision history
Table 14.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
PCA9542A v.5.1
20150715
Product data sheet
-
PCA9542A v.5
Modifications:
PCA9542A v.5
Modifications:
•
Table 14 “Revision history”, corrected phrase “for at least 5 ms” to “for at least 5 s” for Table 8
and Table 9 modifications
20140407
•
•
•
Product data sheet
-
PCA9542A v.4
Section 2 “Features and benefits”, 16th bullet item: deleted phrase “200 V MM per JESD22-A115”
Table 1 “Ordering information”: added column “Topside marking” (moved from Table 2)
Table 2 “Ordering options”:
– deleted column “Topside mark” (moved to Table 1)
– added columns “Orderable part number”, “Package”, “Packing method”, and “Minimum order
quantity”
•
•
•
•
•
•
•
Figure 5 “Control register” updated: added notation ‘writable, but always read 0’
Section 6.2.1 “Control register definition”: added second paragraph
Section 6.3 “Interrupt handling”, “Remark” paragraph (following Table 5): added second sentence
Section 6.4 “Power-on reset”: first paragraph, third sentence: corrected from “VDD must be
lowered below 0.2 V to reset the device” to “VDD must be lowered below 0.2 V for at least 5 s in
order to reset the device”
Table 6 “Limiting values”: added limiting values for “Tj(max)”
Added Section 10 “Thermal characteristics”
Table 8 “Static characteristics at VDD = 2.3 V to 3.6 V”,
– Table note [2]: inserted phrase “for at least 5 s”
– sub-section “Select inputs A0, A1, A2, INT0, INT1”: Max value for VIH corrected
from “VDD + 0.5 V” to “6 V”
•
Table 9 “Static characteristics at VDD = 4.5 V to 5.5 V”,
– Table note [2]: inserted phrase “for at least 5 s”
– sub-section “Select inputs A0, A1, A2, INT0, INT1”: Max value for VIH corrected
from “VDD + 0.5 V” to “6 V”
•
Added Section 15 “Soldering: PCB footprints”
PCA9542A v.4
20090615
Product data sheet
-
PCA9542A v.3
PCA9542A v.3
20081124
Product data sheet
-
PCA9542A v.2
PCA9542A v.2
(9397 750 13955)
20040929
Product data sheet
-
PCA9542A v.1
PCA9542A v.1
(9397 750 13307)
20040727
Objective data sheet
-
-
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
24 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
18. Legal information
18.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
18.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
18.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
PCA9542A
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
25 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
18.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP Semiconductors N.V.
19. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
PCA9542A
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5.1 — 15 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
26 of 27
PCA9542A
NXP Semiconductors
2-channel I2C-bus multiplexer and interrupt logic
20. Contents
1
2
3
3.1
4
5
5.1
5.2
6
6.1
6.2
6.2.1
6.3
6.4
6.5
7
7.1
7.2
7.3
7.4
7.5
8
9
10
11
12
13
14
14.1
14.2
14.3
14.4
15
16
17
18
18.1
18.2
18.3
18.4
19
20
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional description . . . . . . . . . . . . . . . . . . . 5
Device addressing . . . . . . . . . . . . . . . . . . . . . . 5
Control register . . . . . . . . . . . . . . . . . . . . . . . . . 5
Control register definition . . . . . . . . . . . . . . . . . 5
Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . 6
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 6
Voltage translation . . . . . . . . . . . . . . . . . . . . . . 7
Characteristics of the I2C-bus . . . . . . . . . . . . . 8
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
START and STOP conditions . . . . . . . . . . . . . . 8
System configuration . . . . . . . . . . . . . . . . . . . . 8
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Bus transactions . . . . . . . . . . . . . . . . . . . . . . . 10
Application design-in information . . . . . . . . . 10
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal characteristics . . . . . . . . . . . . . . . . . 11
Static characteristics. . . . . . . . . . . . . . . . . . . . 12
Dynamic characteristics . . . . . . . . . . . . . . . . . 14
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16
Soldering of SMD packages . . . . . . . . . . . . . . 18
Introduction to soldering . . . . . . . . . . . . . . . . . 18
Wave and reflow soldering . . . . . . . . . . . . . . . 18
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 18
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 19
Soldering: PCB footprints. . . . . . . . . . . . . . . . 21
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 24
Legal information. . . . . . . . . . . . . . . . . . . . . . . 25
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 25
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Contact information. . . . . . . . . . . . . . . . . . . . . 26
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP Semiconductors N.V. 2015.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 15 July 2015
Document identifier: PCA9542A