PDFDownload - Fairchild Semiconductor

User Guide for
FEBFAN7688SJXA_CP14U306
Evaluation Board
306 W/12 V PC Application
with 12 VSB Module
Evaluation Board
Featured Fairchild Product:
FAN7688
Direct questions or comments
about this evaluation board to:
“Worldwide Direct Support”
Fairchild Semiconductor.com
© 2015 Fairchild Semiconductor Corporation
1
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Table of Contents
1. Introduction ............................................................................................................................... 3
1.1. Features ............................................................................................................................ 3
2. Evaluation Board Specifications ............................................................................................... 4
3. Photograph ................................................................................................................................ 4
4. Printed Circuit Board (PCB) ..................................................................................................... 5
5. Schematic .................................................................................................................................. 6
6. Bill of Materials ........................................................................................................................ 7
7. Transformer and Winding Specifications ............................................................................... 12
7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
Main Transformer (TX1) ............................................................................................... 12
Resonant Inductor (L4) .................................................................................................. 13
Pulse Transformer (TX2) ............................................................................................... 14
Current Transformer (TX4) ............................................................................................ 15
PFC Inductor (L3) .......................................................................................................... 16
12 V Standby Transformer (TX3) .................................................................................. 17
EMI Choke (L1, L2)....................................................................................................... 18
8. Test Conditions & Test Equipment......................................................................................... 19
8.1. Features .......................................................................................................................... 19
9. Performance of Evaluation Board ........................................................................................... 20
9.1. Current Harmonic Test: .................................................................................................. 20
9.2. AC Trim Up & Trim Down............................................................................................ 23
9.3. Efficiency ....................................................................................................................... 23
9.4. Output Transient Response ............................................................................................ 24
9.5. 390 V to 358 V && 358 V to 390 V at Loading............................................................ 25
9.6. 390 V to 358 V && 358 V to 390 V at Vrms ................................................................ 25
9.7. Hold up Time ................................................................................................................. 25
9.8. AC Cycle Drop ............................................................................................................... 26
9.9. AC Transient .................................................................................................................. 26
9.10. Surge & ESD .................................................................................................................. 27
9.11. EMI Conduction ............................................................................................................. 27
10. Revision History ..................................................................................................................... 28
© 2015 Fairchild Semiconductor Corporation
2
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
This user guide supports the 306 W evaluation board for the 80Plus Platinum solution
based on a Continuous Conduction Mode (CCM) PFC and LLC convertor using the
FAN6982 with the FAN7688. It should be used in conjunction with the FAN7688
datasheet as well as Fairchild’s application notes and technical support team. Please visit
Fairchild’s website at www.fairchildsemi.com.
1. Introduction
The LLC converter in this Evaluation Board (EVB) is controlled by the FAN7688; it’s a
16-pin controller and locates in secondary side. The FAN7688 includes PFM and PWM
controls to optimization efficiency for all loading, its combine advantage SR control
improves efficiency. It employs a current mode control technique based on charge
control; this provides a better control-to-output and line-to-output transfer function of the
power stage, simplifying the feedback loop design while allowing true input power limit
capability. The PFC is controlled by the FAN6982, based on Continuous Conduction
Mode (CCM), which employs leading edge modulation for average current control and
has a number of advanced features for better performance and reliability.
1.1.
Features
LLC:
 Secondary Side PFM Controller with Synchronous Rectifier Control
 Charge Current Control for better Transient Response and Simplified Feedback Loop
Design
 Adaptive Synchronous Rectification Control with Dual Edge Tracking
 Closed Loop Soft-Start
 Green Functions to Improve Light Load Efficiency
- Symmetric PWM Control at Light Load to Limit the Switching Frequency while
Reducing Switching Losses
- Disabling SR During Light Load Operation
 Complete Protection Functions with Auto-Restart
PFC:
 Continuous Conduction Mode and Average-Current-Mode Control
 Power-On Sequence Control
 Brownout Protection
 Fulfills Class-D Requirements of IEC 61000-3-2
 Universal AC Input Voltage
 Efficiency Optimization by External Output Voltage Adjustable Circuit
© 2015 Fairchild Semiconductor Corporation
3
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
2. Evaluation Board Specifications
All data for this table was measured at an ambient temperature of 25°C.
Table 1.
Summary of Features and Performance
Description
Symbol
Value
Output Power
PO
306 W
Efficiency
Eff, η
Meet 80PLUS Platinum
Input Voltage
VAC
90~264 V
Input Frequency
PFC Output Voltage
Comments
47~63 Hz
VPFC
356 V / 392 V
Output Voltage
VOUT
12 V
100% Load = 300 W
12 V Standby Output
V12VSB
12 V
100% Load = 6 W
Brown-In / Out Voltage
VAC
85 V / 73 V
PFC Frequency
fSW
65 kHz
LLC Frequency
fLLC
39 k~150 kHz
EVB Size
L*W*H
145 mm*122 mm*48 mm
Does not include the
metal case
3. Photograph
AC Input
Standby
PFC
LLC
DC Ounput
Figure 1. Top View of Evaluation Board (EVB does not include the metal case)
© 2015 Fairchild Semiconductor Corporation
4
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
4. Printed Circuit Board (PCB)
Figure 2. Top Side of Evaluation Board
Figure 3. Bottom Side of Evaluation Board
© 2015 Fairchild Semiconductor Corporation
5
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
5. Schematic
Figure 4.
© 2015 Fairchild Semiconductor Corporation
Evaluation Board Schematic
6
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
6. Bill of Materials
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
1
JP
1
2
C13
1
47 pF
C0603 X7R ±10% 50 V
3
C42
1
100 pF
C0603 X7R ±10% 50 V
4
C38
1
470 pF
C0603 X7R ±10% 50 V
5
C51
1
680 pF
C0603 X7R ±10% 50 V
6
C21, C35, C46,
C50, C64, C65,
C66, C67, C73
9
1 nF
C0603 X7R ±10% 50 V
7
C24
1
2.2 nF
C0603 X7R ±10% 50 V
8
C40, C41
2
3.3 nF
C0603 X7R ±10% 50 V
9
C47
1
4.7 nF
C0603 X7R ±10% 50 V
10
C31, C52
2
47 nF
C0603 X7R ±10% 50 V
11
C33, C34
2
10 nF
C0603 X7R ±10% 50 V
12
C39
1
22 nF
C0603 X7R ±10% 50 V
13
C20, C36, C37
3
100 nF
C0603 X7R ±10% 50 V
14
C48
1
220 nF
C0603 X7R ±10% 50 V
15
C32, C49
2
470 nF
C0603 X7R ±10% 16 V
16
C57, C58, C59,
C60, C61, C62,
C63, C68, C69,
C70, C71, C72,
C74
13
1 μF
C0603 X7R ±10% 50 V
17
C8
1
1 μF
C0805 X7R ±10% 50 V
18
C23
1
10 μF
C0805 X7R ±10% 25 V
19
C43
1
22 μF
C0805 X7R ±10% 25 V
20
R11, R16, R21
3
0Ω
R0603 ±1%
21
R30, R31
2
2.2 Ω
R0603 ±1%
22
R10, R15, R20,
R58
4
10 Ω
R0603 ±1%
23
R26
1
17.4 Ω
R0603 ±1%
24
R25
1
42.2 Ω
R0603 ±1%
25
R8
1
51 Ω
R0805 ±1%
26
R69, R70, R71,
R72
4
100 Ω
R0603 ±1%
27
R19, R24, R112
3
220 Ω
R0603 ±1%
28
R107
1
330 Ω
R0603 ±1%
29
R41
1
1.24 KΩ
R0603 ±1%
30
R63
1
1.5 KΩ
R0603 ±1%
31
R90, R93
2
2 KΩ
R0603 ±1%
32
R111
1
2.2 KΩ
R0603 ±1%
33
R34
1
3 KΩ
R0603 ±1%
© 2015 Fairchild Semiconductor Corporation
Part No.
Value
Description
Manufacturer
JUMPER WIRE 0.6ψ
7
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
34
R64
1
35
R60, R105
36
R95, R96
37
Value
Description
3.3 KΩ
R0603 ±1%
2
4.7 KΩ
R0603 ±1%
2
4.99 KΩ
R0603 ±1%
R40
1
5.1 KΩ
R0603 ±1%
38
R55
1
6.98 KΩ
R0603 ±1%
39
R92, R94
2
8.25 KΩ
R0603 ±1%
40
R38, R65, R87,
R108, R117,
R118
6
10 KΩ
R0603 ±1%
41
R89
1
12 KΩ
R0603 ±1%
42
R120
1
12.4 KΩ
R0603 ±1%
43
R115
1
13.3 KΩ
R0603 ±1%
44
R88, R106, R114
3
15 KΩ
R0603 ±1%
45
R12, R17, R22,
R32, R33, R39,
R54, R57, R102,
R104, R110
11
20 KΩ
R0603 ±1%
46
R68, R101
2
24.9 KΩ
R0603 ±1%
47
R59, R119
2
27 KΩ
R0603 ±1%
48
R52
1
27.4 KΩ
R0603 ±1%
49
R51
1
36 KΩ
R0603 ±1%
50
R37
1
38.3 KΩ
R0603 ±1%
51
R44
1
43.2 KΩ
R0603 ±1%
52
R103
1
47 KΩ
R0603 ±1%
53
R66
1
51 KΩ
R0603 ±1%
54
R129
1
73.2 KΩ
R0603 ±1%
55
R122, R126
2
75 KΩ
R0603 ±1%
56
R125
1
91 KΩ
R0603 ±1%
57
R99
1
147 KΩ
R0603 ±1%
58
R67, R97, R98,
R127
4
200 KΩ
R0603 ±1%
59
R56
1
357 KΩ
R0603 ±1%
60
R130 (Parallel
with R55)
1
1 MΩ
R0603 ±5%
61
R113, R116,
R121, R128
4
4.3 MΩ
R0603 ±5%
62
R47
1
0Ω
R0805 ±1%
63
R61
1
10 KΩ
R0805 ±1%
64
R50
1
200 KΩ
R0805 ±1%
65
R49
1
3 KΩ
R1206 ±1%
66
R45, R46
2
100 KΩ
R1206 ±1%
67
R1, R2
2
470 KΩ
R1206 ±1%
© 2015 Fairchild Semiconductor Corporation
Part No.
8
Manufacturer
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
68
R13, R14
69
Part No.
Value
Description
2
499 KΩ
R1206 ±1%
R3, R4, R123,
R124
4
1 MΩ
R1206 ±5%
70
R5, R6
2
3 MΩ
R1206 ±5%
71
R9A, R9B
2
0.15 Ω
R2512 ±1% 2 W
72
R100
1
10 KΩ
VR
73
C1
1
0.68 μF
X2 Capacitor 275 V ±10%
(11.5*19.5*17.5 mm
Pitch=15 mm)
74
C2
1
0.47 μF
X2 Capacitor 275 V ±10%
(18*8.5*16.5 mm,
Pitch=15 mm)
75
C53, C54
2
2.2 pF
Y1 Capacitor 250 V ±20%
76
C3, C4
2
0.22 pF
Y1 Capacitor 250 V ±20%
77
C9
1
4.7 pF
Y1 Capacitor 250 V ±20%
(19x8x10 mm)
78
C10
1
0.1 μF
MP3S Capacitor DC630V
FUH BANG
79
C25
1
22 μF
Electrolytic Capacitor 50 V
105°C 5*11 mm LHK
HONJU
80
C29
1
220 μF
Electrolytic Capacitor 16 V
105°C 6.3*11 mm GF
SAMXON
81
C7
1
270 μF
Electrolytic Capacitor
450 V 105°C 25*45 mm LP
SAMXON
82
C27
1
470 μF
Solid Capacitor 16 V
8*11.5 mm ULR
HE SHEN TANG
83
C28
1
1000 μF
Electrolytic Capacitor 16 V
105°C 8*18 mm
84
C17, C18, C19
3
2200 μF
Electrolytic Capacitor 16 V
105°C 10*25 mm
85
C16
1
470 μF
Solid Capacitor 16 V
10*11.5 mm PSF
HE SHEN TANG
86
C5
1
TF105K2Y159L270D9R
1 μF
MTF Capacitor 450 V
±10%
KENJET
TECHNOLOGY
87
BD1
1
DFB2560
Bridge 25 A/600 V
TS-6P
Fairchild
88
D1
1
ISL9R860P2
Diode 8 A/600 V TO-220
Fairchild
89
D10
1
UF4007
Diode 1 A/1000 V DO-41
Fairchild
90
D12
1
1N4935
Diode 1 A/200 V DO-41
Fairchild
91
D14
1
EGP30D
Diode 3 A/200 V
Fairchild
92
D19, D20, D21,
D22
4
1N4148WS
Diode SOD-32F
Fairchild
93
D2
1
S3J
Diode 3 A/600 V SMC
Fairchild
94
D3, D4, D5, D11,
D15, D16, D17,
D18
8
LL4148
Diode 200 mA/100 V
SOD80
Fairchild
CD12-E2GA222MYASA
MP3S104J0630DB1151H
© 2015 Fairchild Semiconductor Corporation
9
Manufacturer
UNIVERSE
CONDENSER
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
95
D9
1
P6KE200A
96
Q1, Q6, Q7
3
FCP170N60
97
Q13, Q14, Q27,
Q28, Q29
5
98
Q15, Q17, Q19,
Q21, Q25
99
Value
Description
Manufacturer
TVS
Fairchild
MOS 22 A/ 600 V TO-220
Fairchild
2N7002
SOT-23
Fairchild
5
MMBT2222A
SOT-23
Fairchild
Q24
1
NDS0605
-0.18 A/ -60 V SOT-23
Fairchild
100
Q3, Q4, Q5, Q12,
Q16, Q18, Q20,
Q22, Q23, Q26
10
MMBT2907A
SOT-23
Fairchild
101
Q8, Q9
2
FDMS8320L
100 A /40 V, Power56
Fairchild
102
U1
1
FAN6982MY
IC SO-14L
Fairchild
103
U2
1
FAN7688SJX
IC
Fairchild
104
U3
1
FSL137MRIN
MDIP 8L
Fairchild
105
U4, U6
2
FODM121C
MFP 4L
Fairchild
106
U5
1
KA431LZTA
TO-92R
Fairchild
107
U8, U9, U10
3
LM358M
SO-8L
Fairchild
108
L1, L2
2
SN20128A
EMI Choke
FORMOSA
SHING GA
109
L3
1
Inductor QP2920H 420 μH
YUJING
110
L4
1
111
L5
1
112
TX1
1
FPQ032014175V-PF
113
TX2
1
114
TX3
115
116
Inductor EQ20 120 μH
SUMIDA
Inductor 0.75 μH
SHOWWELL
Transformer
PQ3230 (PC44)
SHOWWELL
750342754
Transformer EE13
Würth Elektronik
1
078Q561
Transformer EQ20
SUMIDA
TX4
1
750342753
Transformer EE8.3
Würth Elektronik
L6
1
117
TR
1
118
FAN
1
Connect WAFER
(2530HHS) 2P 2.5 mm
180°
119
F1
1
FUSE GLASS 7 A/250 V
QUICK 5*20 mm
120
MOV1
1
TVR10471KSY
Varistor ATOM MOV
121
NTC1
1
SCK132R56MYS
NTC 13ψ SCK2R56
122
HS1
1
MCH0146
123
HS2, HS3
2
Heat Sink
2
Power Cable
1007#16AWG +3.2ψ
HOOK
2
Test Pin
124
125
12VSB, GND
102Q553
TRN-00199
TTC104
© 2015 Fairchild Semiconductor Corporation
100 KΩ
NTC 5ψ
Heat Sink
10
YIYI
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
Value
Description
126
1
Heat Shrinkable Tubing
3*15 mm
127
1
Heat Shrinkable Tubing
6*20 mm
128
3
MCH0040 Bead Core C8B
3.5*3.2*1.0
129
4
Bushing TO220 602M
130
4
Silicone Sheet TO-220
131
2
Screws 3ψ12 mm
132
6
Nut 3ψ
133
4
Copper Tube M3
6.5*6 mm
134
1
CANADA Silicone
ES2482W 333 ml
135
2
Heat Shrinkable Tubing
3*7.5 mm (for YS-201M)
2
Surge Absorber
YS-201M
136
SPG1, SPG2
© 2015 Fairchild Semiconductor Corporation
11
Manufacturer
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7. Transformer and Winding Specifications
7.1.
Main Transformer (TX1)


Core: PQ3230 (PC44)
Bobbin: 12 Pins
5
10
N2
N1
9
4
N3
N4
11, 12
3
Figure 5. Transformer Specifications of TX1
Table 2.
Winding Specifications
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
5→4
0.7φ×1
20
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
3
N2
4
5
N3
Copper foil
0.3 mm (3T),
W=15 mm
Copper Foil to
Pin, 0.7φ*2
10 → 9
9 → 11, 12
N2, N3 are the same
copper foil
3
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
6
N4
4→3
0.7φ×1
7
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
8
0.8T Open loop shielding to PIN2
9
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
10
1.2T Close loop shielding on outside to PIN2
11
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Table 3.
3
20
Solenoid Winding
Electrical Characteristics
Inductance
© 2015 Fairchild Semiconductor Corporation
12
Pins
Specifications
3-5
1.75 mH ±5%
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7.2.
Resonant Inductor (L4)


Core: EQ20 (TP5)
Bobbin: 10 Pins
5
Cut off
6
7
8
9
10
5
4
3
2
1
N1
1
Top View
Figure 6. Transformer Specifications of L4
Table 4.
Winding Specifications
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
1→5
0.1φ×40
24
Solenoid Winding
Table 5.
Electrical Characteristics
Inductance
© 2015 Fairchild Semiconductor Corporation
13
Pins
Specifications
1-5
120 μH ±5%
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7.3.
Pulse Transformer (TX2)


Core: EE13 (3C90)
Bobbin: 10 Pins
3
9
Cut off
N2
N1
6
7
8
9
10
5
4
3
2
1
10
5
7
N3
Top View
6
Figure 7. Transformer Specifications of TX2
Table 6.
Winding Specifications
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
3→5
0.2φ×1
15
Solenoid Winding
18
Solenoid Winding
Transformer Triple
Wire
18
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
3
4
N2
Table 7.
0.15φ×1
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
5
6
9 → 10
N2
7→6
0.2φ×1
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Electrical Characteristics
Pins
3–5
Inductance
© 2015 Fairchild Semiconductor Corporation
14
Specifications
>200 μH
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7.4.
Current Transformer (TX4)


Core: EE8.3 (3C90)
Bobbin: 4 Pins
2
4
Cut off
N2
N1
3
4
2
1
1
3
Top View
Figure 8. Transformer Specifications of TX4
Table 8.
Winding Specifications
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
4→3
0.1φ×50
0.75
Solenoid Winding
80
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
3
4
Table 9.
N2
2→1
0.15φ×1
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Electrical Characteristics
Pins
1–2
Inductance
© 2015 Fairchild Semiconductor Corporation
15
Specifications
> 4 mH
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7.5.
PFC Inductor (L3)


Core: QP2920H (3C94)
Bobbin: 4 Pins
Bottom View
1
N1
3
Figure 9. Transformer Specifications of L3
Table 10. Winding Specifications
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
1→3
0.1φ×50
40
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Table 11. Electrical Characteristics
Inductance
© 2015 Fairchild Semiconductor Corporation
16
Pins
Specifications
1–2
420 μH ± 5%
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7.6.
12 V Standby Transformer (TX3)


Core: EQ20 (TP5)
Bobbin: 10 Pins
10
6
N1
Cut off
N2
8
6
7
8
9
10
5
4
3
2
1
N3
7
5
9
2
N5
N4
Bottom View
4
1
Figure 10. Transformer Specifications of TX3
Table 12. Winding Specifications
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
10 → 8
0.2φ×1
49
Solenoid Winding
11
Solenoid Winding
Transformer Triple
Wire
22
Solenoid Winding
15
Solenoid Winding
16
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
3
4
N2
N2
8→9
0.2φ×1
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
7
8
0.25φ×2
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
5
6
6→7
N2
2→1
0.15φ×1
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
9
N2
5→4
0.2φ×1
10
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
11
1.2T Close loop shielding on outside to PIN1
12
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Table 13. Electrical Characteristics
Pins
10 – 9
Inductance
© 2015 Fairchild Semiconductor Corporation
17
Specifications
820 μH ± 5%
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
7.7.
EMI Choke (L1, L2)
Figure 11.
© 2015 Fairchild Semiconductor Corporation
Transformer Specifications of L1 and L2
18
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
8. Test Conditions & Test Equipment
8.1.
Features
Table 14. Test Conditions & Test Equipment
Test Mode
FEBFAN7688SJXA_CP14U306
Test Date
May 29, 2015
Test Temperature
Ambient 25ºC
AC Source: EXTECH 6800
AC/DC Electronic Load: Chroma 63030
Power Meter: Chroma 6630
Oscilloscope: Lecroy 24MXs-B
Test Equipment
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Test Items
Current Harmonic
AC Trim up & Trim down
Efficiency
Output Transient Response
392 V to 354 V && 354 V to 392 V @Loading
392 V to 354 V && 354 V to 392 V @Vrms
Hold-up time
AC Cycle Drop
AC Transient
SURGE & ESD
EMI
306 W (Loading shown in Amps)
Test Loading
© 2015 Fairchild Semiconductor Corporation
19
Loading
12V1
12V2
12Vsb
100%
12.5
12.5
0.5
50%
6.25
6.25
0.25
20%
2.5
2.5
0.1
Min.
1.25
1.25
0.05
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
9. Performance of Evaluation Board
9.1.
Current Harmonic Test:
Test Condition:
Measure input current power factor (PF) and total harmonic distortion (THD, IEC610003-2, Class D) at various line and output loading.
A PF less than 0.95 in 230 V/50 Hz can cause a fast response of PFC voltage loop in
some test requirement; it can be fine tuned to meet PF > 0.95 when it is needed.
Test Results:
Input Voltage
100 V/50 Hz
230 V/50 Hz
Condition
PF
THD (%)
Class D
Input 75 W
0.983
14.170
Pass
Mid. Load
0.980
13.390
Pass
100% Load
0.992
8.310
Pass
Input 75 W
0.879
17.330
Pass
Mid. Load
0.939
16.410
Pass
100% Load
0.976
11.560
Pass
Figure 12.
Figure 13.
© 2015 Fairchild Semiconductor Corporation
Input Current Waveform and THD Test Result in 115 VAC
75 W Load, 100 V/50 Hz
Input Current Waveform and THD Test Result in 115 VAC, Mid. Load
20
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Figure 14.
Input Current Waveform and THD Test Result in 115 VAC, 100% Load
Figure 15.
Input Current Waveform and THD Test Result in 230 VAC, 75 W Load,
230 V/50 Hz
© 2015 Fairchild Semiconductor Corporation
21
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Figure 16.
Input Current Waveform and THD Test Result in 230 VAC, Mid. Load
Figure 17.
Input Current Waveform and THD Test Result in 230 VAC, 100% Load
© 2015 Fairchild Semiconductor Corporation
22
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
9.2.
AC Trim Up & Trim Down
Test Condition:
Switch the input voltage from 90 V to 264 V or from 264 V to 90 V. The output voltages
should be normal and the output of PFC bus should be less than 450 V.
Test Results:
90 V264 V
264 V 90 V
50% Load
50% Load
Pass
Pass
Ch1:12Vo, Ch2: Iin, Ch3: VAC, Ch4:Vbulk
90 V264 V
Figure 18.
9.3.
264 V90 V
Test Waveform of AC Trim Up & Trim Down
Efficiency
Test Condition:
Measure input current Power Factor (PF) and Total Harmonic Distortion (THD, Class D)
at various line and output loading.
Test Results:
Input
Watts
(W)
12V1
12V2
When VIN= 115 V,
at 100% Load
344.00
152.31
When VIN= 115 V,
at 50% Load
167.30
When VIN= 115 V,
at 20% Load
Output Watts (W)
Efficiency
Standard
12Vsb
12V
FAN
152.28
6.00
ON
90.28%
> 89%
76.37
76.39
3.01
OFF
93.10%
> 92%
69.00
30.63
30.67
1.21
OFF
90.59%
> 90%
When VIN= 230 V,
at 100% Load
336.80
152.31
152.31
6.00
ON
92.22%
> 91%
When VIN= 230 V,
at 50% Load
165.30
76.37
76.39
3.01
OFF
94.23%
> 94%
When VIN= 230 V,
at 20% Load
68.50
30.63
30.66
1.21
OFF
91.24%
> 90%
© 2015 Fairchild Semiconductor Corporation
23
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
9.4.
Output Transient Response
Test Condition:
Figure 19 summarizes the expected output transient step sizes for each output. Input
=115 VAC; IO= 0~7.2 A or IO= 4.8~12 A. The transient load slew rate is = 1.0 A/µS.
Test Result:
VIN=115 V
0~7.2 A (mV)
4.8~12 A (mV)
12V1
448
462
12V2
452
465
12V1, 0~7.2 A
12V1, 4.8~12 A
12V2, 0~7.2 A
12V2, 4.8~12 A
Figure 19.
© 2015 Fairchild Semiconductor Corporation
Test Waveform of Output Transient Response
24
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
9.5.
390 V to 358 V && 358 V to 390 V at Loading
Test Condition:
Load: 100% load, during the loading-point to change, the PFC bulk voltage steps up to
390 V from 358 V or steps down to 358 V from 390 V.
Test Results:
9.6.
Input Voltage
Loading (A)
Loading (%)
115 V / 60 Hz 390 V to 358 V
15.37
61.5
230 V / 60 Hz 390 V to 358 V
16.09
64.4
115 V / 60 Hz 358 V to 390 V
17.9
71.6
230 V / 60 Hz 358 V to 390 V
18.7
74.8
390 V to 358 V && 358 V to 390 V at Vrms
Test Condition:
Load: 100%. Load, during the AC input to change, the PFC bulk voltage steps up to
390 V from 358 V or steps down to 358 V from 390 V.
Test Results:
9.7.
Loading & Bulk Voltage
Input Voltage
Loading = 100% 390 V to 358 V
235 V
Loading = 100% 358 V to 390 V
253 V
Hold up Time
Test Condition:
After AC power off, the output voltages should stay at nominal value for at least 17 ms.
Test Results:
Hold up Time
90 V/60 Hz
100% Load
50% Load
264 V/50 Hz
20% Load
100% Load
50% Load
20% Load
17.09 ms
23.56 ms
66.51 ms
17.61 ms
68.59 ms
134.68 ms
Vbulk 395 V
Vbulk 352 V
Vbulk 352 V
Vbulk 395 V
Vbulk 395 V
Vbulk 395 V
Ch2: VAC, Ch3:12Vo, Ch4:Vbulk
90 V / 60 Hz, 100% Load
Figure 20.
© 2015 Fairchild Semiconductor Corporation
264 V / 50 Hz, 100% Load
Test Waveform of Hold up Time
25
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
9.8.
AC Cycle Drop
Test Condition:
After AC input drop 0.5 cycle, check system to ensure that no damage occurred and
behavior is correct. If the AC drop time increases to 1 cycle, the Vbulk will drop too
much to make the 12 V VO also drop. So, it’s also about min. frequency of controller.
Test Results:
115 V0 V115 V
230 V0 V230 V
100% Load
100% Load
Pass
Pass
Ch1: 12Vo, Ch2: Iin, Ch3: VAC, Ch4: Vbulk
115 V0 V115 V, Max. Load
Figure 21.
9.9.
230 V0 V230 V, Max. Load
Test Waveform of AC Cycle Drop
AC Transient
Test Condition:
AC Transient in 115 V80 V115 V and 230 V160 V230 V conditions, check
system to ensure that no damage occurred and behavior is correct.
Test Results:
115 V80 V115 V
230 V160 V230 V
100% Load
100% Load
Pass
Pass
Ch1: 12VO, Ch2: Iin, Ch3: VAC, Ch4: Vbulk
115 V80V115 V, Max. Load
Figure 22.
© 2015 Fairchild Semiconductor Corporation
230 V160 V230 V, Max. Load
Test Waveform of AC Transient
26
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
9.10. Surge & ESD
L-PE ±3k V
N-PE ±3k V
L-N ±1k V
AIR ±16k V
Contact ±8k V
Pass
Pass
Pass
Pass
Pass
9.11. EMI Conduction
Test Condition:
EMI conduction test in 100% Load.
Test Results:
Att
dBµV
1
100
10
dB
RBW
9
MT
10
PREAMP
OFF
kHz
ms
Att
MHz
10
dBµV
MHz
1
100
90
10
dB
RBW
9
MT
10
PREAMP
OFF
kHz
ms
MHz
10
MHz
90
1 PK
1 PK
CLRWR
CLRWR
80
2 AV
80
2 AV
CLRWR
TDF
70
CLRWR
TDF
70
EN55022Q
EN55022Q
60
60
PRN
EN55022A
PRN
EN55022A
50
50
6DB
6DB
40
40
30
30
20
20
10
10
0
150
Date:
0
kHz
17.MAR.2015
30
MHz
150
16:35:11
kHz
Date:
17.MAR.2015
115 V / 60 Hz CONDUCTION-L
Att
dBµV
1
100
10
dB
MHz
RBW
9
MT
10
PREAMP
OFF
ms
Att
dBµV
MHz
1
100
10
dB
MHz
RBW
9
MT
10
PREAMP
OFF
kHz
ms
10
MHz
90
1 PK
1 PK
CLRWR
80
80
2 AV
2 AV
CLRWR
16:32:05
kHz
10
MHz
115 V / 60 Hz CONDUCTION-N
90
CLRWR
30
TDF
70
CLRWR
TDF
70
EN55022Q
EN55022Q
60
60
PRN
EN55022A
PRN
EN55022A
50
50
6DB
6DB
40
40
30
30
20
20
10
10
0
0
150
Date:
kHz
17.MAR.2015
30
150
MHz
Date:
16:37:27
kHz
30
17.MAR.2015
MHz
16:39:31
230 V / 50 Hz CONDUCTION-L
230 V / 50 Hz CONDUCTION-N
Figure 23. Test Waveform of EMI
Figure 24 shows, this EVB is design and test with the metal case. If the user wants to
perform an EMI conduction test, connect power earth (PE) to secondary ground point and
flowing point of Y-cap C9.
PE
Figure 24.
© 2015 Fairchild Semiconductor Corporation
Setting of EMI Test
27
FEBFAN7688SJXA_CP14U306 • Rev. 1.1
10. Revision History
Rev.
Date
Description
1.0.0
May 2015
Initial release
1.1
September 2015
Correct Output power, page 4 306 kW to 306 W
WARNING AND DISCLAIMER
Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users’ Guide. Contact an
authorized Fairchild representative with any questions.
This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The
Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User’s Guide constitute a sales contract or create any kind
of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild’s published
specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to
any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no
contract exists, Fairchild’s standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO
IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR
USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR
THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a)
are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website,
www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing
counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation,
substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to
protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts
either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy
either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for
handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized
Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty
coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our
customers to do their part in stopping this practice by buying direct or from authorized distributors.
EXPORT COMPLIANCE STATEMENT
These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the
ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.
U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be
responsible to ensure the appropriate U.S. export regulations are followed.
© 2015 Fairchild Semiconductor Corporation
28
FEBFAN7688SJXA_CP14U306 • Rev. 1.1