User Guide for FEBFAN7688SJXA_CP14U306 Evaluation Board 306 W/12 V PC Application with 12 VSB Module Evaluation Board Featured Fairchild Product: FAN7688 Direct questions or comments about this evaluation board to: “Worldwide Direct Support” Fairchild Semiconductor.com © 2015 Fairchild Semiconductor Corporation 1 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 Table of Contents 1. Introduction ............................................................................................................................... 3 1.1. Features ............................................................................................................................ 3 2. Evaluation Board Specifications ............................................................................................... 4 3. Photograph ................................................................................................................................ 4 4. Printed Circuit Board (PCB) ..................................................................................................... 5 5. Schematic .................................................................................................................................. 6 6. Bill of Materials ........................................................................................................................ 7 7. Transformer and Winding Specifications ............................................................................... 12 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. Main Transformer (TX1) ............................................................................................... 12 Resonant Inductor (L4) .................................................................................................. 13 Pulse Transformer (TX2) ............................................................................................... 14 Current Transformer (TX4) ............................................................................................ 15 PFC Inductor (L3) .......................................................................................................... 16 12 V Standby Transformer (TX3) .................................................................................. 17 EMI Choke (L1, L2)....................................................................................................... 18 8. Test Conditions & Test Equipment......................................................................................... 19 8.1. Features .......................................................................................................................... 19 9. Performance of Evaluation Board ........................................................................................... 20 9.1. Current Harmonic Test: .................................................................................................. 20 9.2. AC Trim Up & Trim Down............................................................................................ 23 9.3. Efficiency ....................................................................................................................... 23 9.4. Output Transient Response ............................................................................................ 24 9.5. 390 V to 358 V && 358 V to 390 V at Loading............................................................ 25 9.6. 390 V to 358 V && 358 V to 390 V at Vrms ................................................................ 25 9.7. Hold up Time ................................................................................................................. 25 9.8. AC Cycle Drop ............................................................................................................... 26 9.9. AC Transient .................................................................................................................. 26 9.10. Surge & ESD .................................................................................................................. 27 9.11. EMI Conduction ............................................................................................................. 27 10. Revision History ..................................................................................................................... 28 © 2015 Fairchild Semiconductor Corporation 2 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 This user guide supports the 306 W evaluation board for the 80Plus Platinum solution based on a Continuous Conduction Mode (CCM) PFC and LLC convertor using the FAN6982 with the FAN7688. It should be used in conjunction with the FAN7688 datasheet as well as Fairchild’s application notes and technical support team. Please visit Fairchild’s website at www.fairchildsemi.com. 1. Introduction The LLC converter in this Evaluation Board (EVB) is controlled by the FAN7688; it’s a 16-pin controller and locates in secondary side. The FAN7688 includes PFM and PWM controls to optimization efficiency for all loading, its combine advantage SR control improves efficiency. It employs a current mode control technique based on charge control; this provides a better control-to-output and line-to-output transfer function of the power stage, simplifying the feedback loop design while allowing true input power limit capability. The PFC is controlled by the FAN6982, based on Continuous Conduction Mode (CCM), which employs leading edge modulation for average current control and has a number of advanced features for better performance and reliability. 1.1. Features LLC: Secondary Side PFM Controller with Synchronous Rectifier Control Charge Current Control for better Transient Response and Simplified Feedback Loop Design Adaptive Synchronous Rectification Control with Dual Edge Tracking Closed Loop Soft-Start Green Functions to Improve Light Load Efficiency - Symmetric PWM Control at Light Load to Limit the Switching Frequency while Reducing Switching Losses - Disabling SR During Light Load Operation Complete Protection Functions with Auto-Restart PFC: Continuous Conduction Mode and Average-Current-Mode Control Power-On Sequence Control Brownout Protection Fulfills Class-D Requirements of IEC 61000-3-2 Universal AC Input Voltage Efficiency Optimization by External Output Voltage Adjustable Circuit © 2015 Fairchild Semiconductor Corporation 3 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 2. Evaluation Board Specifications All data for this table was measured at an ambient temperature of 25°C. Table 1. Summary of Features and Performance Description Symbol Value Output Power PO 306 W Efficiency Eff, η Meet 80PLUS Platinum Input Voltage VAC 90~264 V Input Frequency PFC Output Voltage Comments 47~63 Hz VPFC 356 V / 392 V Output Voltage VOUT 12 V 100% Load = 300 W 12 V Standby Output V12VSB 12 V 100% Load = 6 W Brown-In / Out Voltage VAC 85 V / 73 V PFC Frequency fSW 65 kHz LLC Frequency fLLC 39 k~150 kHz EVB Size L*W*H 145 mm*122 mm*48 mm Does not include the metal case 3. Photograph AC Input Standby PFC LLC DC Ounput Figure 1. Top View of Evaluation Board (EVB does not include the metal case) © 2015 Fairchild Semiconductor Corporation 4 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 4. Printed Circuit Board (PCB) Figure 2. Top Side of Evaluation Board Figure 3. Bottom Side of Evaluation Board © 2015 Fairchild Semiconductor Corporation 5 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 5. Schematic Figure 4. © 2015 Fairchild Semiconductor Corporation Evaluation Board Schematic 6 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 6. Bill of Materials FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3) Item Reference Qty. 1 JP 1 2 C13 1 47 pF C0603 X7R ±10% 50 V 3 C42 1 100 pF C0603 X7R ±10% 50 V 4 C38 1 470 pF C0603 X7R ±10% 50 V 5 C51 1 680 pF C0603 X7R ±10% 50 V 6 C21, C35, C46, C50, C64, C65, C66, C67, C73 9 1 nF C0603 X7R ±10% 50 V 7 C24 1 2.2 nF C0603 X7R ±10% 50 V 8 C40, C41 2 3.3 nF C0603 X7R ±10% 50 V 9 C47 1 4.7 nF C0603 X7R ±10% 50 V 10 C31, C52 2 47 nF C0603 X7R ±10% 50 V 11 C33, C34 2 10 nF C0603 X7R ±10% 50 V 12 C39 1 22 nF C0603 X7R ±10% 50 V 13 C20, C36, C37 3 100 nF C0603 X7R ±10% 50 V 14 C48 1 220 nF C0603 X7R ±10% 50 V 15 C32, C49 2 470 nF C0603 X7R ±10% 16 V 16 C57, C58, C59, C60, C61, C62, C63, C68, C69, C70, C71, C72, C74 13 1 μF C0603 X7R ±10% 50 V 17 C8 1 1 μF C0805 X7R ±10% 50 V 18 C23 1 10 μF C0805 X7R ±10% 25 V 19 C43 1 22 μF C0805 X7R ±10% 25 V 20 R11, R16, R21 3 0Ω R0603 ±1% 21 R30, R31 2 2.2 Ω R0603 ±1% 22 R10, R15, R20, R58 4 10 Ω R0603 ±1% 23 R26 1 17.4 Ω R0603 ±1% 24 R25 1 42.2 Ω R0603 ±1% 25 R8 1 51 Ω R0805 ±1% 26 R69, R70, R71, R72 4 100 Ω R0603 ±1% 27 R19, R24, R112 3 220 Ω R0603 ±1% 28 R107 1 330 Ω R0603 ±1% 29 R41 1 1.24 KΩ R0603 ±1% 30 R63 1 1.5 KΩ R0603 ±1% 31 R90, R93 2 2 KΩ R0603 ±1% 32 R111 1 2.2 KΩ R0603 ±1% 33 R34 1 3 KΩ R0603 ±1% © 2015 Fairchild Semiconductor Corporation Part No. Value Description Manufacturer JUMPER WIRE 0.6ψ 7 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3) Item Reference Qty. 34 R64 1 35 R60, R105 36 R95, R96 37 Value Description 3.3 KΩ R0603 ±1% 2 4.7 KΩ R0603 ±1% 2 4.99 KΩ R0603 ±1% R40 1 5.1 KΩ R0603 ±1% 38 R55 1 6.98 KΩ R0603 ±1% 39 R92, R94 2 8.25 KΩ R0603 ±1% 40 R38, R65, R87, R108, R117, R118 6 10 KΩ R0603 ±1% 41 R89 1 12 KΩ R0603 ±1% 42 R120 1 12.4 KΩ R0603 ±1% 43 R115 1 13.3 KΩ R0603 ±1% 44 R88, R106, R114 3 15 KΩ R0603 ±1% 45 R12, R17, R22, R32, R33, R39, R54, R57, R102, R104, R110 11 20 KΩ R0603 ±1% 46 R68, R101 2 24.9 KΩ R0603 ±1% 47 R59, R119 2 27 KΩ R0603 ±1% 48 R52 1 27.4 KΩ R0603 ±1% 49 R51 1 36 KΩ R0603 ±1% 50 R37 1 38.3 KΩ R0603 ±1% 51 R44 1 43.2 KΩ R0603 ±1% 52 R103 1 47 KΩ R0603 ±1% 53 R66 1 51 KΩ R0603 ±1% 54 R129 1 73.2 KΩ R0603 ±1% 55 R122, R126 2 75 KΩ R0603 ±1% 56 R125 1 91 KΩ R0603 ±1% 57 R99 1 147 KΩ R0603 ±1% 58 R67, R97, R98, R127 4 200 KΩ R0603 ±1% 59 R56 1 357 KΩ R0603 ±1% 60 R130 (Parallel with R55) 1 1 MΩ R0603 ±5% 61 R113, R116, R121, R128 4 4.3 MΩ R0603 ±5% 62 R47 1 0Ω R0805 ±1% 63 R61 1 10 KΩ R0805 ±1% 64 R50 1 200 KΩ R0805 ±1% 65 R49 1 3 KΩ R1206 ±1% 66 R45, R46 2 100 KΩ R1206 ±1% 67 R1, R2 2 470 KΩ R1206 ±1% © 2015 Fairchild Semiconductor Corporation Part No. 8 Manufacturer FEBFAN7688SJXA_CP14U306 • Rev. 1.1 FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3) Item Reference Qty. 68 R13, R14 69 Part No. Value Description 2 499 KΩ R1206 ±1% R3, R4, R123, R124 4 1 MΩ R1206 ±5% 70 R5, R6 2 3 MΩ R1206 ±5% 71 R9A, R9B 2 0.15 Ω R2512 ±1% 2 W 72 R100 1 10 KΩ VR 73 C1 1 0.68 μF X2 Capacitor 275 V ±10% (11.5*19.5*17.5 mm Pitch=15 mm) 74 C2 1 0.47 μF X2 Capacitor 275 V ±10% (18*8.5*16.5 mm, Pitch=15 mm) 75 C53, C54 2 2.2 pF Y1 Capacitor 250 V ±20% 76 C3, C4 2 0.22 pF Y1 Capacitor 250 V ±20% 77 C9 1 4.7 pF Y1 Capacitor 250 V ±20% (19x8x10 mm) 78 C10 1 0.1 μF MP3S Capacitor DC630V FUH BANG 79 C25 1 22 μF Electrolytic Capacitor 50 V 105°C 5*11 mm LHK HONJU 80 C29 1 220 μF Electrolytic Capacitor 16 V 105°C 6.3*11 mm GF SAMXON 81 C7 1 270 μF Electrolytic Capacitor 450 V 105°C 25*45 mm LP SAMXON 82 C27 1 470 μF Solid Capacitor 16 V 8*11.5 mm ULR HE SHEN TANG 83 C28 1 1000 μF Electrolytic Capacitor 16 V 105°C 8*18 mm 84 C17, C18, C19 3 2200 μF Electrolytic Capacitor 16 V 105°C 10*25 mm 85 C16 1 470 μF Solid Capacitor 16 V 10*11.5 mm PSF HE SHEN TANG 86 C5 1 TF105K2Y159L270D9R 1 μF MTF Capacitor 450 V ±10% KENJET TECHNOLOGY 87 BD1 1 DFB2560 Bridge 25 A/600 V TS-6P Fairchild 88 D1 1 ISL9R860P2 Diode 8 A/600 V TO-220 Fairchild 89 D10 1 UF4007 Diode 1 A/1000 V DO-41 Fairchild 90 D12 1 1N4935 Diode 1 A/200 V DO-41 Fairchild 91 D14 1 EGP30D Diode 3 A/200 V Fairchild 92 D19, D20, D21, D22 4 1N4148WS Diode SOD-32F Fairchild 93 D2 1 S3J Diode 3 A/600 V SMC Fairchild 94 D3, D4, D5, D11, D15, D16, D17, D18 8 LL4148 Diode 200 mA/100 V SOD80 Fairchild CD12-E2GA222MYASA MP3S104J0630DB1151H © 2015 Fairchild Semiconductor Corporation 9 Manufacturer UNIVERSE CONDENSER FEBFAN7688SJXA_CP14U306 • Rev. 1.1 FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3) Item Reference Qty. Part No. 95 D9 1 P6KE200A 96 Q1, Q6, Q7 3 FCP170N60 97 Q13, Q14, Q27, Q28, Q29 5 98 Q15, Q17, Q19, Q21, Q25 99 Value Description Manufacturer TVS Fairchild MOS 22 A/ 600 V TO-220 Fairchild 2N7002 SOT-23 Fairchild 5 MMBT2222A SOT-23 Fairchild Q24 1 NDS0605 -0.18 A/ -60 V SOT-23 Fairchild 100 Q3, Q4, Q5, Q12, Q16, Q18, Q20, Q22, Q23, Q26 10 MMBT2907A SOT-23 Fairchild 101 Q8, Q9 2 FDMS8320L 100 A /40 V, Power56 Fairchild 102 U1 1 FAN6982MY IC SO-14L Fairchild 103 U2 1 FAN7688SJX IC Fairchild 104 U3 1 FSL137MRIN MDIP 8L Fairchild 105 U4, U6 2 FODM121C MFP 4L Fairchild 106 U5 1 KA431LZTA TO-92R Fairchild 107 U8, U9, U10 3 LM358M SO-8L Fairchild 108 L1, L2 2 SN20128A EMI Choke FORMOSA SHING GA 109 L3 1 Inductor QP2920H 420 μH YUJING 110 L4 1 111 L5 1 112 TX1 1 FPQ032014175V-PF 113 TX2 1 114 TX3 115 116 Inductor EQ20 120 μH SUMIDA Inductor 0.75 μH SHOWWELL Transformer PQ3230 (PC44) SHOWWELL 750342754 Transformer EE13 Würth Elektronik 1 078Q561 Transformer EQ20 SUMIDA TX4 1 750342753 Transformer EE8.3 Würth Elektronik L6 1 117 TR 1 118 FAN 1 Connect WAFER (2530HHS) 2P 2.5 mm 180° 119 F1 1 FUSE GLASS 7 A/250 V QUICK 5*20 mm 120 MOV1 1 TVR10471KSY Varistor ATOM MOV 121 NTC1 1 SCK132R56MYS NTC 13ψ SCK2R56 122 HS1 1 MCH0146 123 HS2, HS3 2 Heat Sink 2 Power Cable 1007#16AWG +3.2ψ HOOK 2 Test Pin 124 125 12VSB, GND 102Q553 TRN-00199 TTC104 © 2015 Fairchild Semiconductor Corporation 100 KΩ NTC 5ψ Heat Sink 10 YIYI FEBFAN7688SJXA_CP14U306 • Rev. 1.1 FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3) Item Reference Qty. Part No. Value Description 126 1 Heat Shrinkable Tubing 3*15 mm 127 1 Heat Shrinkable Tubing 6*20 mm 128 3 MCH0040 Bead Core C8B 3.5*3.2*1.0 129 4 Bushing TO220 602M 130 4 Silicone Sheet TO-220 131 2 Screws 3ψ12 mm 132 6 Nut 3ψ 133 4 Copper Tube M3 6.5*6 mm 134 1 CANADA Silicone ES2482W 333 ml 135 2 Heat Shrinkable Tubing 3*7.5 mm (for YS-201M) 2 Surge Absorber YS-201M 136 SPG1, SPG2 © 2015 Fairchild Semiconductor Corporation 11 Manufacturer FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7. Transformer and Winding Specifications 7.1. Main Transformer (TX1) Core: PQ3230 (PC44) Bobbin: 12 Pins 5 10 N2 N1 9 4 N3 N4 11, 12 3 Figure 5. Transformer Specifications of TX1 Table 2. Winding Specifications No. Winding Pin (S → F) Wire Turns Winding Method 1 N1 5→4 0.7φ×1 20 Solenoid Winding 2 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 3 N2 4 5 N3 Copper foil 0.3 mm (3T), W=15 mm Copper Foil to Pin, 0.7φ*2 10 → 9 9 → 11, 12 N2, N3 are the same copper foil 3 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 6 N4 4→3 0.7φ×1 7 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 8 0.8T Open loop shielding to PIN2 9 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 10 1.2T Close loop shielding on outside to PIN2 11 Insulation: Polyester Tape t = 0.025 mm, 3-Layer Table 3. 3 20 Solenoid Winding Electrical Characteristics Inductance © 2015 Fairchild Semiconductor Corporation 12 Pins Specifications 3-5 1.75 mH ±5% FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7.2. Resonant Inductor (L4) Core: EQ20 (TP5) Bobbin: 10 Pins 5 Cut off 6 7 8 9 10 5 4 3 2 1 N1 1 Top View Figure 6. Transformer Specifications of L4 Table 4. Winding Specifications No. Winding Pin (S → F) Wire Turns Winding Method 1 N1 1→5 0.1φ×40 24 Solenoid Winding Table 5. Electrical Characteristics Inductance © 2015 Fairchild Semiconductor Corporation 13 Pins Specifications 1-5 120 μH ±5% FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7.3. Pulse Transformer (TX2) Core: EE13 (3C90) Bobbin: 10 Pins 3 9 Cut off N2 N1 6 7 8 9 10 5 4 3 2 1 10 5 7 N3 Top View 6 Figure 7. Transformer Specifications of TX2 Table 6. Winding Specifications No. Winding Pin (S → F) Wire Turns Winding Method 1 N1 3→5 0.2φ×1 15 Solenoid Winding 18 Solenoid Winding Transformer Triple Wire 18 Solenoid Winding 2 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 3 4 N2 Table 7. 0.15φ×1 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 5 6 9 → 10 N2 7→6 0.2φ×1 Insulation: Polyester Tape t = 0.025 mm, 3-Layer Electrical Characteristics Pins 3–5 Inductance © 2015 Fairchild Semiconductor Corporation 14 Specifications >200 μH FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7.4. Current Transformer (TX4) Core: EE8.3 (3C90) Bobbin: 4 Pins 2 4 Cut off N2 N1 3 4 2 1 1 3 Top View Figure 8. Transformer Specifications of TX4 Table 8. Winding Specifications No. Winding Pin (S → F) Wire Turns Winding Method 1 N1 4→3 0.1φ×50 0.75 Solenoid Winding 80 Solenoid Winding 2 Insulation: Polyester Tape t = 0.025 mm, 3-Layer 3 4 Table 9. N2 2→1 0.15φ×1 Insulation: Polyester Tape t = 0.025 mm, 3-Layer Electrical Characteristics Pins 1–2 Inductance © 2015 Fairchild Semiconductor Corporation 15 Specifications > 4 mH FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7.5. PFC Inductor (L3) Core: QP2920H (3C94) Bobbin: 4 Pins Bottom View 1 N1 3 Figure 9. Transformer Specifications of L3 Table 10. Winding Specifications No. Winding Pin (S → F) Wire Turns Winding Method 1 N1 1→3 0.1φ×50 40 Solenoid Winding 2 Insulation: Polyester Tape t = 0.025 mm, 3-Layer Table 11. Electrical Characteristics Inductance © 2015 Fairchild Semiconductor Corporation 16 Pins Specifications 1–2 420 μH ± 5% FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7.6. 12 V Standby Transformer (TX3) Core: EQ20 (TP5) Bobbin: 10 Pins 10 6 N1 Cut off N2 8 6 7 8 9 10 5 4 3 2 1 N3 7 5 9 2 N5 N4 Bottom View 4 1 Figure 10. Transformer Specifications of TX3 Table 12. Winding Specifications No. Winding Pin (S → F) Wire Turns Winding Method 1 N1 10 → 8 0.2φ×1 49 Solenoid Winding 11 Solenoid Winding Transformer Triple Wire 22 Solenoid Winding 15 Solenoid Winding 16 Solenoid Winding 2 Insulation: Polyester Tape t = 0.025 mm, 2-Layer 3 4 N2 N2 8→9 0.2φ×1 Insulation: Polyester Tape t = 0.025 mm, 2-Layer 7 8 0.25φ×2 Insulation: Polyester Tape t = 0.025 mm, 2-Layer 5 6 6→7 N2 2→1 0.15φ×1 Insulation: Polyester Tape t = 0.025 mm, 2-Layer 9 N2 5→4 0.2φ×1 10 Insulation: Polyester Tape t = 0.025 mm, 2-Layer 11 1.2T Close loop shielding on outside to PIN1 12 Insulation: Polyester Tape t = 0.025 mm, 3-Layer Table 13. Electrical Characteristics Pins 10 – 9 Inductance © 2015 Fairchild Semiconductor Corporation 17 Specifications 820 μH ± 5% FEBFAN7688SJXA_CP14U306 • Rev. 1.1 7.7. EMI Choke (L1, L2) Figure 11. © 2015 Fairchild Semiconductor Corporation Transformer Specifications of L1 and L2 18 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 8. Test Conditions & Test Equipment 8.1. Features Table 14. Test Conditions & Test Equipment Test Mode FEBFAN7688SJXA_CP14U306 Test Date May 29, 2015 Test Temperature Ambient 25ºC AC Source: EXTECH 6800 AC/DC Electronic Load: Chroma 63030 Power Meter: Chroma 6630 Oscilloscope: Lecroy 24MXs-B Test Equipment 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Test Items Current Harmonic AC Trim up & Trim down Efficiency Output Transient Response 392 V to 354 V && 354 V to 392 V @Loading 392 V to 354 V && 354 V to 392 V @Vrms Hold-up time AC Cycle Drop AC Transient SURGE & ESD EMI 306 W (Loading shown in Amps) Test Loading © 2015 Fairchild Semiconductor Corporation 19 Loading 12V1 12V2 12Vsb 100% 12.5 12.5 0.5 50% 6.25 6.25 0.25 20% 2.5 2.5 0.1 Min. 1.25 1.25 0.05 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 9. Performance of Evaluation Board 9.1. Current Harmonic Test: Test Condition: Measure input current power factor (PF) and total harmonic distortion (THD, IEC610003-2, Class D) at various line and output loading. A PF less than 0.95 in 230 V/50 Hz can cause a fast response of PFC voltage loop in some test requirement; it can be fine tuned to meet PF > 0.95 when it is needed. Test Results: Input Voltage 100 V/50 Hz 230 V/50 Hz Condition PF THD (%) Class D Input 75 W 0.983 14.170 Pass Mid. Load 0.980 13.390 Pass 100% Load 0.992 8.310 Pass Input 75 W 0.879 17.330 Pass Mid. Load 0.939 16.410 Pass 100% Load 0.976 11.560 Pass Figure 12. Figure 13. © 2015 Fairchild Semiconductor Corporation Input Current Waveform and THD Test Result in 115 VAC 75 W Load, 100 V/50 Hz Input Current Waveform and THD Test Result in 115 VAC, Mid. Load 20 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 Figure 14. Input Current Waveform and THD Test Result in 115 VAC, 100% Load Figure 15. Input Current Waveform and THD Test Result in 230 VAC, 75 W Load, 230 V/50 Hz © 2015 Fairchild Semiconductor Corporation 21 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 Figure 16. Input Current Waveform and THD Test Result in 230 VAC, Mid. Load Figure 17. Input Current Waveform and THD Test Result in 230 VAC, 100% Load © 2015 Fairchild Semiconductor Corporation 22 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 9.2. AC Trim Up & Trim Down Test Condition: Switch the input voltage from 90 V to 264 V or from 264 V to 90 V. The output voltages should be normal and the output of PFC bus should be less than 450 V. Test Results: 90 V264 V 264 V 90 V 50% Load 50% Load Pass Pass Ch1:12Vo, Ch2: Iin, Ch3: VAC, Ch4:Vbulk 90 V264 V Figure 18. 9.3. 264 V90 V Test Waveform of AC Trim Up & Trim Down Efficiency Test Condition: Measure input current Power Factor (PF) and Total Harmonic Distortion (THD, Class D) at various line and output loading. Test Results: Input Watts (W) 12V1 12V2 When VIN= 115 V, at 100% Load 344.00 152.31 When VIN= 115 V, at 50% Load 167.30 When VIN= 115 V, at 20% Load Output Watts (W) Efficiency Standard 12Vsb 12V FAN 152.28 6.00 ON 90.28% > 89% 76.37 76.39 3.01 OFF 93.10% > 92% 69.00 30.63 30.67 1.21 OFF 90.59% > 90% When VIN= 230 V, at 100% Load 336.80 152.31 152.31 6.00 ON 92.22% > 91% When VIN= 230 V, at 50% Load 165.30 76.37 76.39 3.01 OFF 94.23% > 94% When VIN= 230 V, at 20% Load 68.50 30.63 30.66 1.21 OFF 91.24% > 90% © 2015 Fairchild Semiconductor Corporation 23 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 9.4. Output Transient Response Test Condition: Figure 19 summarizes the expected output transient step sizes for each output. Input =115 VAC; IO= 0~7.2 A or IO= 4.8~12 A. The transient load slew rate is = 1.0 A/µS. Test Result: VIN=115 V 0~7.2 A (mV) 4.8~12 A (mV) 12V1 448 462 12V2 452 465 12V1, 0~7.2 A 12V1, 4.8~12 A 12V2, 0~7.2 A 12V2, 4.8~12 A Figure 19. © 2015 Fairchild Semiconductor Corporation Test Waveform of Output Transient Response 24 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 9.5. 390 V to 358 V && 358 V to 390 V at Loading Test Condition: Load: 100% load, during the loading-point to change, the PFC bulk voltage steps up to 390 V from 358 V or steps down to 358 V from 390 V. Test Results: 9.6. Input Voltage Loading (A) Loading (%) 115 V / 60 Hz 390 V to 358 V 15.37 61.5 230 V / 60 Hz 390 V to 358 V 16.09 64.4 115 V / 60 Hz 358 V to 390 V 17.9 71.6 230 V / 60 Hz 358 V to 390 V 18.7 74.8 390 V to 358 V && 358 V to 390 V at Vrms Test Condition: Load: 100%. Load, during the AC input to change, the PFC bulk voltage steps up to 390 V from 358 V or steps down to 358 V from 390 V. Test Results: 9.7. Loading & Bulk Voltage Input Voltage Loading = 100% 390 V to 358 V 235 V Loading = 100% 358 V to 390 V 253 V Hold up Time Test Condition: After AC power off, the output voltages should stay at nominal value for at least 17 ms. Test Results: Hold up Time 90 V/60 Hz 100% Load 50% Load 264 V/50 Hz 20% Load 100% Load 50% Load 20% Load 17.09 ms 23.56 ms 66.51 ms 17.61 ms 68.59 ms 134.68 ms Vbulk 395 V Vbulk 352 V Vbulk 352 V Vbulk 395 V Vbulk 395 V Vbulk 395 V Ch2: VAC, Ch3:12Vo, Ch4:Vbulk 90 V / 60 Hz, 100% Load Figure 20. © 2015 Fairchild Semiconductor Corporation 264 V / 50 Hz, 100% Load Test Waveform of Hold up Time 25 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 9.8. AC Cycle Drop Test Condition: After AC input drop 0.5 cycle, check system to ensure that no damage occurred and behavior is correct. If the AC drop time increases to 1 cycle, the Vbulk will drop too much to make the 12 V VO also drop. So, it’s also about min. frequency of controller. Test Results: 115 V0 V115 V 230 V0 V230 V 100% Load 100% Load Pass Pass Ch1: 12Vo, Ch2: Iin, Ch3: VAC, Ch4: Vbulk 115 V0 V115 V, Max. Load Figure 21. 9.9. 230 V0 V230 V, Max. Load Test Waveform of AC Cycle Drop AC Transient Test Condition: AC Transient in 115 V80 V115 V and 230 V160 V230 V conditions, check system to ensure that no damage occurred and behavior is correct. Test Results: 115 V80 V115 V 230 V160 V230 V 100% Load 100% Load Pass Pass Ch1: 12VO, Ch2: Iin, Ch3: VAC, Ch4: Vbulk 115 V80V115 V, Max. Load Figure 22. © 2015 Fairchild Semiconductor Corporation 230 V160 V230 V, Max. Load Test Waveform of AC Transient 26 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 9.10. Surge & ESD L-PE ±3k V N-PE ±3k V L-N ±1k V AIR ±16k V Contact ±8k V Pass Pass Pass Pass Pass 9.11. EMI Conduction Test Condition: EMI conduction test in 100% Load. Test Results: Att dBµV 1 100 10 dB RBW 9 MT 10 PREAMP OFF kHz ms Att MHz 10 dBµV MHz 1 100 90 10 dB RBW 9 MT 10 PREAMP OFF kHz ms MHz 10 MHz 90 1 PK 1 PK CLRWR CLRWR 80 2 AV 80 2 AV CLRWR TDF 70 CLRWR TDF 70 EN55022Q EN55022Q 60 60 PRN EN55022A PRN EN55022A 50 50 6DB 6DB 40 40 30 30 20 20 10 10 0 150 Date: 0 kHz 17.MAR.2015 30 MHz 150 16:35:11 kHz Date: 17.MAR.2015 115 V / 60 Hz CONDUCTION-L Att dBµV 1 100 10 dB MHz RBW 9 MT 10 PREAMP OFF ms Att dBµV MHz 1 100 10 dB MHz RBW 9 MT 10 PREAMP OFF kHz ms 10 MHz 90 1 PK 1 PK CLRWR 80 80 2 AV 2 AV CLRWR 16:32:05 kHz 10 MHz 115 V / 60 Hz CONDUCTION-N 90 CLRWR 30 TDF 70 CLRWR TDF 70 EN55022Q EN55022Q 60 60 PRN EN55022A PRN EN55022A 50 50 6DB 6DB 40 40 30 30 20 20 10 10 0 0 150 Date: kHz 17.MAR.2015 30 150 MHz Date: 16:37:27 kHz 30 17.MAR.2015 MHz 16:39:31 230 V / 50 Hz CONDUCTION-L 230 V / 50 Hz CONDUCTION-N Figure 23. Test Waveform of EMI Figure 24 shows, this EVB is design and test with the metal case. If the user wants to perform an EMI conduction test, connect power earth (PE) to secondary ground point and flowing point of Y-cap C9. PE Figure 24. © 2015 Fairchild Semiconductor Corporation Setting of EMI Test 27 FEBFAN7688SJXA_CP14U306 • Rev. 1.1 10. Revision History Rev. Date Description 1.0.0 May 2015 Initial release 1.1 September 2015 Correct Output power, page 4 306 kW to 306 W WARNING AND DISCLAIMER Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users’ Guide. Contact an authorized Fairchild representative with any questions. This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User’s Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild’s published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild’s standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. EXPORT COMPLIANCE STATEMENT These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited. U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed. © 2015 Fairchild Semiconductor Corporation 28 FEBFAN7688SJXA_CP14U306 • Rev. 1.1