User Guide for FEBFAN104WMX_T06U005A Evaluation Board Fairchild PSR Smart Phone Battery Charger Featured Fairchild Products: FAN104WMX Direct questions or comments about this evaluation board to: “Worldwide Direct Support” Fairchild Semiconductor.com © 2012 Fairchild Semiconductor Corporation FEBFAN104WMX_T06U005A • Rev. 1.0.0 Table of Contents 1. Introduction ............................................................................................................................... 3 1.1. Description ....................................................................................................................... 3 1.2. Features ............................................................................................................................ 3 2. Evaluation Board Specifications ............................................................................................... 4 3. Photographs............................................................................................................................... 5 4. Printed Circuit Board ................................................................................................................ 6 5. Schematic .................................................................................................................................. 7 6. Bill of Materials ........................................................................................................................ 8 7. Transformer and Winding Specifications ................................................................................. 9 8. Test Conditions & Test Equipment......................................................................................... 10 9. Performance of Evaluation Board ........................................................................................... 11 9.1. Input Current .................................................................................................................. 11 9.2. Input Wattage at No-Load Condition ............................................................................. 11 9.3. Startup Time ................................................................................................................... 12 9.4. DC Output Rising Time ................................................................................................. 13 9.5. Conversion Efficiency .................................................................................................... 15 9.6. Output Ripple & Noise ................................................................................................... 16 9.7. Dynamic Response ......................................................................................................... 17 9.8. Over-Power Protection ................................................................................................... 18 9.9. Hold-up Time ................................................................................................................. 19 9.10. Short-Circuit Protection ................................................................................................. 20 9.11. Brownout Test ................................................................................................................ 21 9.12. VDD Voltage Level ......................................................................................................... 21 9.13. Voltage Stress on MOSFET & Rectifier ........................................................................ 24 9.14. Constant-Voltage (CV) and Constant-Current (CC) Curves.......................................... 25 9.15. VS Over-Voltage Protection Test ................................................................................... 26 9.16. Over-Temperature Protection Test (OTP)...................................................................... 26 9.17. Electromagnetic Interference (EMI) Tests ..................................................................... 27 9.18. Surge Test ....................................................................................................................... 29 9.19. Electrostatic Discharge Capability (ESD) Test .............................................................. 29 10. Revision History ..................................................................................................................... 30 © 2012 Fairchild Semiconductor Corporation 2 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 This user guide supports the evaluation kit for the FAN104WMX. It should be used in conjunction with the FAN104WMX datasheet as well as Fairchild’s application notes and technical support team. Please visit Fairchild’s website at www.fairchildsemi.com. 1. Introduction The FAN104WMX has several functions to achieve standby power consumption lower than 30 mW at 230 VAC. Proprietary Burst Mode with lower operation current under light-load conditions and a built-in HV startup circuit to reduce startup resistor power loss both improve performance. By using the FAN104WMX, a smart phone charger can be implemented with few external components and minimized cost. This document is an engineering report describing a 5 W power supply using the FAN104WMX. This power supply targets the smart phone battery charger market with a <30 mW solution and high efficiency. 1.1. Description This highly integrated PWM controller, FAN104WMX, provides several features to enhance the performance of low-power flyback converters. The proprietary topology enables simplified circuit design for battery-charger applications. The result is a lower-cost, smaller and lighter charger compared to a conventional design or a linear transformer. To minimize standby power consumption, a proprietary Green-Mode function provides offtime modulation to linearly decrease PWM frequency under light-load conditions. Green Mode assists the power supply in meeting power conservation requirements. 1.2. Features Achieves < 30 mW; Energy Star’s 5-Star Level Proprietary 500 V High-Voltage JFET Startup Reduces Startup Resistor Loss Low Operating Current in the Burst Mode: 600 µA Constant-Voltage (CV) and Constant-Current (CC) Control without Secondary-Side Feedback Circuitry Green Mode: PWM Frequency Linearly-Decreasing PWM Frequency at 85 kHz with Frequency Hopping to Solve EMI Problem Boundary-Conduction-Mode (BCM) Operation at Lower AC Input Voltage Cable Compensation in CV Mode VDD Under-Voltage Lockout (UVLO) Available Built-in Protections: Output Short-Circuit Protection Output Over-Voltage-Protection (VS OVP) with Latch Mode VDD Over-Voltage-Protection (VDD OVP) CS Pin Single-Fault Protection VS Pin Single-Fault Protection Over-Temperature-Protection (OTP) with Latch Mode © 2012 Fairchild Semiconductor Corporation 3 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 2. Evaluation Board Specifications All data for this table was measured at an ambient temperature of 25°C. Table 1. Summary of Features and Performance Description Symbol VIN. MIN 90 VAC Minimum Input Voltage Input Voltage VIN.MAX 264 VAC Maximum Input Voltage VIN.NOMINAL 110 VAC / 220 VAC Nominal Input Voltage Input Frequency fIN 60 Hz / 50 Hz Input Line Frequency VOUT.MIN 4.75 V Output Voltage VOUT.MAX 5.25 V CV: ± 3% Regulation VOUT.NOMINAL 5V CC: ± 3% Regulation Output Current IOUT.NOMINAL 1.2 A Output Power POUT.NOMINAL 6W Output Power POUT.MAX 6.3 W Ripple VRIPPLE < 150 mV Measured: < 95 mV Eff.MIN 74.85% Eff.NOMINAL 77.92% Meets DoE. Standard at Full Load (73.37%) TFAN104 < 41°C TMOSFET < 66°C TSD1 < 75°C TD2 < 32°C Ttransformer < 62°C Efficiency Temperature Transformer © 2012 Fairchild Semiconductor Corporation Core Value EPC-13 4 Comments At Full Load (Open-Frame) The core volume of the lowprofile EPC-13 is 66% lower than the* conventional type of transformer core. The height of the low-profile EPC-13 core is 57% less than the * conventional type of transformer core. *EPCxxx, (refer to page 9) FEB-FAN104WMX_T06U005A • Rev. 1.0.0 3. Photographs Figure 1. Photograph (32.4x 26 mm2) Top-View Figure 2. Photograph (32.4 (H) x 26 mm2(W) ) Bottom-View Figure 3. Photograph (32.4 (L) x 21 mm2 (H)) Side-View © 2012 Fairchild Semiconductor Corporation 5 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 4. Printed Circuit Board Figure 4. Top-Side Figure 5. Bottom-Side © 2012 Fairchild Semiconductor Corporation 6 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 5. Schematic Figure 6. Evaluation Board Schematic © 2012 Fairchild Semiconductor Corporation 7 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 6. Bill of Materials Component Series Part Name Specification 02-3510005-10 DIP Res. 1 W-S 10 Ω ±5% TAPING 1 R1 02-5112731-00 SMD Res. 0603 127 kΩ ±1% REEL 1 R9 02-5123221-00 SMD Res. 0603 23.2 kΩ ±1% REEL 1 R6 02-5151121-00 SMD Res. 0603 51.1 kΩ ±1% REEL 1 R5 02-5210105-00 SMD Res. 0805 100 Ω ±5% REEL 1 R10 02-5210405-00 SMD Res. 0805 100 kΩ ±5% REEL 1 RHV Qty Part No. 02-5212005-00 SMD Res. 0805 12 Ω ±5% REEL 1 R13 02-5222105-00 SMD Res. 0805 220 Ω ±5% REEL 1 R8 02-5224A05-00 SMD Res. 0805 2.4 Ω ±5% REEL 1 R11 02-5227A05-00 SMD Res. 0805 2.7 Ω ±5% REEL 1 R12 02-5233205-00 SMD Res. 0805 3.3 kΩ ±5% REEL 2 R2, R3 02-5236011-00 SMD Res. 0805 3.6 kΩ ±1% REEL 1 R14 02-52910A5-00 SMD Res. 0805 91 Ω ±5% REEL 1 R4 02-5315405-00 SMD Res. 1206 150 kΩ ±5% REEL 1 R7 03-3218031-00 SMD NPO 0603 18 P 50 V ±10% REEL 1 C6 03-3310239-00 0805 X7R ±10% 102 P 50 V REEL 1 C7 03-3310439-00 0805 X7R ±10% 104 P 50 V REEL 1 C8 03-332201A-00 0805 X5R ±20% 22 µF 25 V No: GRM21BR61E226ME44 1 C4 03-3339339-00 0805 X7R ±10% 393 P 50 V REEL 1 C5 03-3447179-00 1206 X7R ±10% 471 P 1 kV REEL 1 C3 03-5068AC1-01 Electrolytic Cap. 6 µ8 400 V 105°C 8*16 RADIAL KM Unpackaged 2 C1, C2 03-7033101-01 OCVZ Cap. 330 µ 6.3 V 105°C OVZ331M0JTR-0606,6.3*5.9 mm 1 C9 04-1000328-00 SMD Inductor TRN0328(10 µH ±20%0805) No:LQM21FN100M80L, Supertrade 1 L0 04-1136102-00 DIP Inductor 1 mH ±10% EC36-102 K 1 L1 04-2000329-00 Transformer TRN0329 EPC13, Horizontal, Lm=1.3 mH 1 TX1 07-03070F1-00 SMD Diode MMSD3070 Fairchild Semiconductor 1 D2 07-0L41481-00 SMD Diode LL4148 1 A/100 V SOD80 1 D3 07-0400711-00 SMD Diode CGRM4007-HF 1 A/1000 V,SOD-123,COMCHIP 1 D1 07-110U450-11 SMD Schottky Diode SBR10U45SP5 10 A SBR, PowerDIR5 1 SD1 07-1MB6S0F-11 SMD Bridge Rectifier MB6S Fairchild Semiconductor 1 BD1 09-12N600F-00 MOSFET FQU2N60CTU Fairchild Semiconductor 1 Q1 11-EN104WF-11 SMD IC FAN104WMX Fairchild Semiconductor 1 U1 38-0000002-00 CANADA Silicone ES2482W 333 ml 42-J100432-10 USB JC0010 4411-02004L 0 Short Type 10*13 mm 1 CN1 L1, R1, C9 54-1020653-00 MCH0653 Heat-Shrinkable Tube 6ψ10 mm 3 70-PLM0185-03 PCB PLM0185(B) REV 3. For FAN104 5 W 1*5 Connected 1 © 2012 Fairchild Semiconductor Corporation 8 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 7. Transformer and Winding Specifications Core: EPC-13 (PC-40) Bobbin: 10 pins Figure 7. Transformer Specifications & Construction Table 2. Winding Specifications Pin (S F) No. Wire Turns 1→2 W1 2UEW 0.12φ*1 5→4 4 →NC W4 Fly+ → Fly- Table 3. 2 Layer-1: 48 Turns Layer-2: 47 Turns Layer-3: 23 + 23 Turns (Parallel) Layer-4: 14 + 14 Turns (Parallel) 2 Line Parallel 37 2UEW 0.18φ*1 16 2 TEX-E 0.45φ*1 10 2 Core Rounding Tape Core Shielding Notes 132 2 → NC W2 Isolation Tape Turns Cooper Sheet 3 1 2 Cooper shielding should be close with core Electrical Characteristics Item Pin Specification Remark Inductance 1-2 1.3 mH ±10% 1 kHz, 1 V © 2012 Fairchild Semiconductor Corporation 9 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 8. Test Conditions & Test Equipment Table 4. Test Conditions & Test Equipment Evaluation Board # Test Date Test Temperature Test Equipment © 2012 Fairchild Semiconductor Corporation FEBFAN104WMX_TU06005A 2012-08-15 25°C AC Power Source: 6801 by EXTECH ELECTRONICS Power Analyzer: WT210 by YOKOGAWA Electronic Load: 63030 by CHROMA Automatic Power Tester: 6312A & 63102A by CHROMA Multi Meter: BM817a by BRYMEN Oscilloscope: 24MXs-B by LeCroy EMI Test Receiver: ESCS30 by ROHDE & SCHWARZ Thermometer: Therma CAM SC640 by FLIR SYSTEMS 10 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9. Performance of Evaluation Board 9.1. Input Current Test Conditions Measure the AC input current at maximum loading. Table 5. 9.2. Test Results Input Voltage Input Current 90 VAC / 60 Hz 122.2 mA 264 VAC / 50 Hz 61.1 mA Input Wattage at No-Load Condition Test Conditions Measure the input wattage and output voltage at no load. Table 6. Test Results Input Voltage Input wattage Output Voltage 90 VAC / 60 Hz 25.1 mW 5.15 V 115 VAC / 60 Hz 25.4 mW 5.19 V 230 VAC / 50 Hz 26.7 mW 5.11 V 264 VAC / 50 Hz 28.6 mW 5.13 V Specification < 30 mW Measured Waveforms Figure 8. 90 VAC / 60 Hz, C2 [VGS] at No Load © 2012 Fairchild Semiconductor Corporation 11 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 Measured Waveforms Figure 9. 264 VAC / 50 Hz, C2 [VGS] at No Load 9.3. Startup Time Test Conditions Set the output at maximum loading. Measure the time interval between the AC line on condition and a stable output condition. Table 7. Test Results Input Voltage Startup Time 90 VAC / 60 Hz 150 ms 264 VAC / 50 Hz 73 ms Specification <3s Measured Waveforms Figure 10. 90 VAC / 60 Hz, C1 [VO], C4 [VAC] at Maximum Load © 2012 Fairchild Semiconductor Corporation 12 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 Figure 11. 264 VAC / 50 Hz, C1 [VO], C4 [VAC] at Maximum Load 9.4. DC Output Rising Time Test Conditions Set the output at maximum load and no load. Measure the time interval between 10% and 90% output during startup. Table 8. Test Results Input Voltage No Load Maximum Load 90 VAC / 60 Hz 2.88 ms 3.50 ms 264 VAC / 50 Hz 2.64 ms 3.59 ms Specification < 20 ms Measured Waveforms Figure 12. 90 VAC / 60 Hz, C1 [VO], C2 [VGS] at No Load © 2012 Fairchild Semiconductor Corporation 13 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 Figure 13. 90 VAC / 60 Hz, C1 [VO], C2 [VGS] at Maximum Load Figure 14. 264 VAC / 50 Hz, C1 [VO], C2 [VGS] at No Load Figure 15. 264 VAC / 50 Hz, C1 [VO], C2 [VGS] at Maximum Load © 2012 Fairchild Semiconductor Corporation 14 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.5. Conversion Efficiency Test Conditions Measure the input power and output power at maximum loading. Table 9. Test Results Input Voltage Input Power Output Power Efficiency 90 VAC / 60 Hz 6.428 W 5.02 W 78.09% 115 VAC / 60 Hz 6.454 W 5.10 W 79.02% 230 VAC / 50 Hz 6.620 W 5.09 W 76.97% 264 VAC / 50 Hz 6.585 W 5.11 W 77.60% Specification > 73.37% Table 10. Average Efficiency Test Results Input Voltage Efficiency 25% Load 50% Load 75% Load 100% Load Avg. 115 VAC / 60 Hz 75.40% 79.50% 78.69% 79.02% 78.15% 230 VAC / 50 Hz 70.00% 76.44% 76.08% 76.87% 74.85% Specification > 73.37% Figure 16. Average Efficiency Test Results © 2012 Fairchild Semiconductor Corporation 15 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.6. Output Ripple & Noise Test Condition Ripple and noise are measured by using a 20 MHz bandwidth-limited oscilloscope with a 10 µF capacitor paralleled with a high-frequency 0.1 µF capacitor across each output. Table 11. Test Results Input Voltage Output Ripple at No Load Output Ripple at Maximum Load 90 VAC / 60 Hz 18.6 mV 81.4 mV 115 VAC / 60 Hz 21.2 mV 83.2 mV 230 VAC / 50 Hz 26.7 mV 90.3 mV 264 VAC / 50 Hz 27.2 mV 95.0 mV Specification < 150 mV Measured Waveforms Figure 17. 90 VAC / 60 Hz, C1 [VO] at Maximum Load Figure 18. 264 VAC / 50 Hz, C1 [VO] at Maximum Load © 2012 Fairchild Semiconductor Corporation 16 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.7. Dynamic Response Test Conditions Dynamic loading (0 %~50 %) of the full load, 5 ms duty cycle, 2.5 A/µs rise/fall time. Table 12. Test Results Input Voltage Overshoot Undershoot 90 VAC / 60 Hz 5.218 V 4.034 V 264 VAC / 50 Hz 5.206 V 4.028 V Measured Waveforms Figure 19. 90 VAC / 60 Hz, C1 [VO] at Dynamic Response Figure 20. 264 VAC / 50 Hz, C1 [VO] at Dynamic Response © 2012 Fairchild Semiconductor Corporation 17 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.8. Over-Power Protection Test Conditions Increase the output loading gradually. Measure the output power. Table 13. Test Results © 2012 Fairchild Semiconductor Corporation Input Voltage Output Power 90 VAC / 60 Hz 5.82 W 115 VAC / 60 Hz 5.85 W 230 VAC / 50 Hz 5.92 W 264 VAC / 50 Hz 5.94 W 18 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.9. Hold-up Time Test Conditions Set the output at maximum loading. Measure the time interval between AC line off condition and the output voltage falling to the lower limit of rated value. The AC waveform should be off at zero degrees. Table 14. Test Results Input Voltage Hold-up Time 90 VAC / 60 Hz 10.9 ms 264 VAC / 50 Hz 133 ms Measured Waveforms Figure 21. 90 VAC / 60 Hz, C1 [VO], C4 [VAC] at Maximum Load Figure 22. 264 VAC / 50 Hz, C1 [VO], C4 [VAC] at Maximum Load © 2012 Fairchild Semiconductor Corporation 19 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.10. Short-Circuit Protection Test Conditions Short the output of the power supply. The power supply should enter Hiccup Mode protection. Input power should be less than 2 W. Table 15. Test Results Input Voltage Input Power at Maximum Input Power at Minimum Specification Load Load 90 VAC / 60 Hz 0.361 W 0.372 W 264 VAC / 50 Hz 0.969 W 0.991 W <2 W Measured Waveforms Figure 23. 264 VAC / 50 Hz, C1 [VO], C2 [VGS], C3 [VDD] at No Load Output Short Figure 24. 264 VAC / 50 Hz, C1 [VO], C2 [VGS], C3 [VDD] at Maximum Load Output Short © 2012 Fairchild Semiconductor Corporation 20 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.11. Brownout Test Test Conditions Input Voltage Input Wattage Output Voltage 90 VAC / 60 Hz 6.832 W 5.164 V 85 VAC / 60 Hz 6.841 W 5.160 V 80 VAC / 60 Hz 6.860 W 5.154 V 75 VAC / 60 Hz 6.903 W 5.140 V 70 VAC / 60 Hz 6.97 W 5.124 V 65 VAC / 60 Hz 7.08 W 5.096 V 63 VAC / 60 Hz Brownout Brownout Recovery Voltage Input Power Output Voltage 64 VAC / 60 Hz 7.12 W 5.09 V Table 16. Test Results 9.12. VDD Voltage Level Table 17. Test Results VDD Level at VDD Level at No Load Max. Load Input VDD Level at OPP Max. VDD Level at Specification Output Short 90 VAC / 60 Hz 7.5 V 11.4 V 11.9 V 16.4 V 264 VAC / 50 Hz 7.4 V 11.8 V 12.1 V 16.4 V < 24 V Measured Waveforms Figure 25. 90 VAC / 60 Hz, C1 [VO], C2 [VGS], C3 [VDD] at No Load © 2012 Fairchild Semiconductor Corporation 21 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 Figure 26. 264 VAC / 50 Hz, C1 [VO], C2 [VGS], C3 [VDD] at No Load Figure 27. 90 VAC / 60 Hz, C1 [VO], C2 [VGS], C3 [VDD] at Maximum Load Figure 28. 264 VAC / 50 Hz, C1 [VO], C2 [VGS], C3 [VDD] at Maximum Load © 2012 Fairchild Semiconductor Corporation 22 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 Figure 29. 90 VAC /60 Hz, C1 [VO], C2 [VGS], C3 [VDD] at Output Short Figure 30. 264 VAC / 50 Hz, C1 [VO], C2 [VGS], C3 [VDD] at Output Short © 2012 Fairchild Semiconductor Corporation 23 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.13. Voltage Stress on MOSFET & Rectifier Test Conditions Measure the voltage stress on the MOSFET and the secondary rectifier under the below specified conditions. Table 18. Test Results Stress On Stress On Rating Rating Output Rectifier MOSFET Input Voltage 90 VAC / 60 Hz at Maximum Load 295 V 19.7 V 90 VAC / 60 Hz at Maximum Load, Startup 296 V 19.7 V 90 VAC / 60 Hz at Maximum Load, Output Short 302 V 20.4 V 600V 264 VAC / 50 Hz at Maximum Load 554 V 264 VAC / 50 Hz at Maximum Load, Startup 554 V 42.4 V 42.4 V 264 VAC / 50 Hz at Maximum Load, Output Short 564 V 45 V 264 VAC / 50 Hz at Maximum Load, Turn Off 564 V 45 V 45 V Measured Waveforms Figure 31. 264 VAC / 50 Hz, C3 [VDS], C4 [VDIODE] at Maximum Load © 2012 Fairchild Semiconductor Corporation 24 Figure 32. 264 VAC/50 Hz, C3 [VDS], C4 [VDIODE] at Output Short FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.14. Constant-Voltage (CV) and Constant-Current (CC) Curves Figure 33. Constant – Voltage (CV) Curves Figure 34. Constant – Current (CC) Curves © 2012 Fairchild Semiconductor Corporation 25 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.15. VS Over-Voltage Protection Test Test Conditions Measure the maximum output voltage when the auxiliary feedback signal is disabled (Vs pin low-side resistor opened). Table 19. Test Results Input Voltage Maximum Output at No Load Maximum Output at Maximum Load 90 VAC / 60 Hz 6.8 V 0V 264 VAC / 50 Hz 6.8 V 0V 9.16. Over-Temperature Protection Test (OTP) Test Conditions Measure the output voltage and the MOSFET gate voltage when the IC temperature increases above 140°C. Measured Waveforms Figure 35. 90 VAC / 6 0Hz, C1 [VO], C2 [VGS], C3 [VDD] at Maximum Load Figure 36. 264 VAC / 50 Hz, C1 [VO], C2 [VGS], C3 [VDD] at Maximum Load © 2012 Fairchild Semiconductor Corporation 26 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.17. Electromagnetic Interference (EMI) Tests Att dBµV 1 100 10 dB RBW MT PREAMP 9 kHz 10 ms OFF MHz Marker 1 [T1 ] 36.30 dBµV 150.000000000 kHz 10 MHz 90 1 PK MAXH 2 AV MAXH 80 TDF 70 EN55022Q 60 PRN EN55022A 50 6DB 1 40 30 20 10 0 150 Comment: Date: kHz 2-230N 25.JUL.2012 30 MHz 15:15:03 Figure 37. Line at 115 VAC Att dBµV 1 100 10 dB RBW MT PREAMP 9 kHz 10 ms OFF MHz Marker 1 [T1 ] 35.83 dBµV 150.000000000 kHz 10 MHz 90 1 PK MAXH 2 AV MAXH 80 TDF 70 EN55022Q 60 PRN EN55022A 50 6DB 1 40 30 20 10 0 150 Comment: Date: kHz 2-230N 25.JUL.2012 30 MHz 15:17:02 Figure 38. Neutral at 115 VAC © 2012 Fairchild Semiconductor Corporation 27 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 Att dBµV 1 100 10 dB RBW MT PREAMP 9 kHz 10 ms OFF MHz Marker 1 [T1 ] 35.44 dBµV 150.000000000 kHz 10 MHz 90 1 PK MAXH 80 2 AV MAXH TDF 70 EN55022Q 60 PRN EN55022A 50 6DB 1 40 30 20 10 0 150 Comment: Date: kHz 2-230N 25.JUL.2012 30 MHz 15:21:17 Figure 39. Line at 230 VAC Att dBµV 1 100 10 dB RBW MT PREAMP 9 kHz 10 ms OFF MHz Marker 1 [T1 ] 36.36 dBµV 150.000000000 kHz 10 MHz 90 1 PK MAXH 2 AV MAXH 80 TDF 70 EN55022Q 60 PRN EN55022A 50 6DB 1 40 30 20 10 0 150 Comment: Date: kHz 2-230N 25.JUL.2012 30 MHz 15:19:09 Figure 40. Neutral at 230 VAC © 2012 Fairchild Semiconductor Corporation 28 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 9.18. Surge Test Table 20. Test Results Mode Polarity Phase ± 0° ± 90° L-N Voltage Condition PASS PASS 2.2 kV ± 180° PASS ± 270° PASS ± 0° PASS ± 90° L-PE PASS 4.4 kV ± 180∘ PASS ± 270° PASS ± 0° PASS ± 90° N-PE PASS 4.4 kV ± 180° PASS ± 270° PASS 9.19. Electrostatic Discharge Capability (ESD) Test Table 21. Test Results Mode Polarity Voltage Condition Air ± 16.5 kV PASS Contact ± 8.8 kV PASS © 2012 Fairchild Semiconductor Corporation 29 FEB-FAN104WMX_T06U005A • Rev. 1.0.0 10. Revision History Rev. Date Description 1.0.0 October 2012 Initial Release WARNING AND DISCLAIMER Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users’ Guide. Contact an authorized Fairchild representative with any questions. This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User’s Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild’s published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild’s standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. EXPORT COMPLIANCE STATEMENT These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited. U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed. © 2012 Fairchild Semiconductor Corporation 30 FEB-FAN104WMX_T06U005A • Rev. 1.0.0