FAIRCHILD HUF75332S3ST

HUF75332P3
October 2013
Data Sheet
Features
N-Channel UltraFET Power MOSFET
55 V, 60 A, 19 mΩ
• 60A, 55V
These N-Channel power MOSFETs are manufactured
using the innovative UltraFET process. This advanced
process technology achieves the lowest possible onresistance per silicon area, resulting in outstanding
performance. This device is capable of withstanding high
energy in the avalanche mode and the diode exhibits very
low reverse recovery time and stored charge. It was
designed for use in applications where power efficiency is
important, such as switching regulators, switching
converters, motor drivers, relay drivers, low-voltage bus
switches, and power management in portable and batteryoperated products.
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Models
- SPICE and SABER Thermal Impedance Models
Available on the WEB at: www.fairchildsemi.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Formerly developmental type TA75332.
Symbol
Ordering Information
PART NUMBER
HUF75332P3
PACKAGE
TO-220AB
D
BRAND
75332P
G
S
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
For severe environments, see our Automotive HUFA series.
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0
HUF75332P3
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
UNITS
V
V
V
55
55
±20
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . Tpkg
60
Figure 4
Figure 6
145
0.97
-55 to 175
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ID = 250µA, VGS = 0V (Figure 11)
55
-
-
V
VDS = 50V, VGS = 0V
-
-
1
µA
VDS = 45V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 60A, VGS = 10V (Figure 9)
-
0.016
0.019
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.03
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220
-
-
62
oC/W
VDD = 30V, ID ≅ 60A,
RL = 0.50Ω, VGS = 10V,
RGS = 6.8Ω
-
-
130
ns
-
9
-
ns
tr
-
90
-
ns
td(OFF)
-
50
-
ns
tf
-
45
-
ns
tOFF
-
-
125
ns
VDD = 30V,
ID ≅ 60A,
RL = 0.50Ω
Ig(REF) = 1.0mA
-
70
85
nC
-
40
50
nC
-
2.5
3.0
nC
(Figure 13)
-
6
-
nC
-
15
-
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
tON
td(ON)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
Gate to Source Gate Charge
Qgs
Reverse Transfer Capacitance
Qgd
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0
HUF75332P3
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
-
1300
-
pF
-
480
-
pF
-
115
-
pF
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
MIN
TYP
MAX
UNITS
ISD = 60A
-
-
1.25
V
trr
ISD = 60A, dISD/dt = 100A/µs
-
-
75
ns
QRR
ISD = 60A, dISD/dt = 100A/µs
-
-
140
nC
VSD
Reverse Recovery Time
Reverse Recovered Charge
TEST CONDITIONS
Typical Performance Curves
80
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
60
40
20
0.2
0
0
0
25
50
75
100
125
25
175
150
50
TC , CASE TEMPERATURE (oC)
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
THERMAL IMPEDANCE
ZθJC, NORMALIZED
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0
HUF75332P3
Typical Performance Curves
(Continued)
IDM, PEAK CURRENT (A)
1000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
VGS = 10V
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
50
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
500
TJ = MAX RATED
TC = 25oC
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
500
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
oC
STARTING
TJTJ
= 25
STARTING
= 25oC
STARTING TJ = 150oC
VDSS(MAX) = 55V
10
0.001
1
1
10
100
200
0.01
0.1
1
tAV, TIME IN AVALANCHE (ms)
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
150
150
VGS = 20V
VGS = 10V
VGS = 7V
ID, DRAIN CURRENT (A)
120
90
VGS = 6V
60
VGS = 5V
30
0
1.5
3.0
4.5
6.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
©2005 Fairchild Semiconductor Corporation
25oC
120
-55oC
90
175oC
60
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
0
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
7.5
0
0
1.5
3.0
4.5
6.0
VGS, GATE TO SOURCE VOLTAGE (V)
7.5
FIGURE 8. TRANSFER CHARACTERISTICS
HUF75332P3 Rev. C0
HUF75332P3
Typical Performance Curves
(Continued)
1.2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 60A
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2.5
2.0
1.5
1.0
1.0
0.8
0.6
0.5
-80
-40
0
40
80
120
160
-80
200
-40
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
40
80
120
160
200
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
2000
1.2
ID = 250µA
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
0
TJ, JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
1.1
1.0
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
1500
CISS
1000
COSS
500
CRSS
0.9
-80
-40
0
40
80
120
160
0
200
0
10
TJ , JUNCTION TEMPERATURE (oC)
20
30
40
50
60
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
10
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 60A
ID = 45A
ID = 30A
ID = 15A
2
VDD = 30V
0
0
10
20
30
40
50
60
Qg, GATE CHARGE (nC)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0
HUF75332P3
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
VGS = 10V
VGS
DUT
VGS = 2V
IG(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORM
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
©2005 Fairchild Semiconductor Corporation
10%
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
HUF75332P3 Rev. C0
HUF75332P3
PSPICE Electrical Model
.SUBCKT HUF75332 2 1 3 ;
rev 17 February 1999
CA 12 8 1.8e-9
CB 15 14 1.73e-9
CIN 6 8 1.19e-9
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DBREAK
+
RSLC2
5
51
ESLC
11
-
EBREAK 11 7 17 18 58.85
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
RLDRAIN
RSLC1
51
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
LDRAIN 2 5 1e-9
LGATE 1 9 1e-9
LSOURCE 3 7 1e-9
K1 LSOURCE LGATE 0.0085
+
50
-
EVTEMP
RGATE +
18 22
9
20
21
EBREAK
17
18
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RLSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 4.5e-3
RGATE 9 20 1.3
RLDRAIN 2 5 10
RLGATE 1 9 10
RLSOURCE 3 7 10
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 5.95e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
-
19
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),4.6))}
.MODEL DBODYMOD D (IS = 1.3e-12 RS = 3.0e-3 IKF = 20 XTI = 6 TRS1 = 2.7e-3 TRS2 = 7.0e-7 CJO = 1.7e-9 TT = 4.0e-8 M = 0.45 vj = 0.75)
.MODEL DBREAKMOD D (RS = 1.71e-2 IKF = 1.0e-5 TRS1 = -4.0e-4 TRS2 = -1.55e-5)
.MODEL DPLCAPMOD D (CJO = 1.8e-9 IS = 1e-30 N = 1 M = 0.9 vj = 1.45)
.MODEL MMEDMOD NMOS (VTO = 3.183 KP = 2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.3)
.MODEL MSTROMOD NMOS (VTO = 3.66 KP = 51.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.703 KP = 0.008 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 13)
.MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 4.5e-7)
.MODEL RDRAINMOD RES (TC1 = 1.16e-2 TC2 = 1.7e-5)
.MODEL RSLCMOD RES (TC1 = 3.96e-3 TC2 = 2.7e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-5)
.MODEL RVTHRESMOD RES (TC1 = -2.8e-3 TC2 = -1.0e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 5.0e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -8 VOFF= -3)
VON = -3 VOFF= -8)
VON = 0 VOFF= 0.5)
VON = 0.5 VOFF= 0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0
HUF75332P3
SABER Electrical Model
REV 17 February 1999
template huf75332 n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 1.3e-12, xti = 6, cjo = 1.7e-9, tt = 4.0e-8, m = 0.45, vj = 0.75)
d..model dbreakmod = ()
DPLCAP
d..model dplcapmod = (cjo = 1.8e-9, is = 1e-30, m = 0.9, vj = 1.45)
m..model mmedmod = (type=_n, vto = 3.183, kp = 2, is = 1e-30, tox = 1)
10
m..model mstrongmod = (type=_n, vto = 3.66, kp = 51.5, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.703, kp = 8.0e-3, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -8, voff = -3)
RSLC2
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -8)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0)
GATE
1
i.it n8 n17 = 1
21
DBODY
EBREAK
+
17
18
MSTRO
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 4.5e-7
res.rdbody n71 n5 = 3.0e-3, tc1 = 2.7e-3, tc2 = 7.0e-7
res.rdbreak n72 n5 = 1.71e-2, tc1 = -4.0e-4, tc2 = -1.55e-5
res.rdrain n50 n16 = 4.5e-3, tc1 = 1.16e-2, tc2 = 1.7e-5
res.rgate n9 n20 = 1.3
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 10
res.rlsource n3 n7 = 10
res.rslc1 n5 n51 = 1e-6, tc1 = 3.96e-3, tc2 = 2.7e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 5.95e-3, tc1 = 1e-3, tc2 = 1e-5
res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 5.0e-7
res.rvthres n22 n8 = 1, tc1 = -2.8e-3, tc2 = -1.0e-5
MWEAK
MMED
CIN
71
11
16
6
RLGATE
RDBODY
DBREAK
RDRAIN
EVTEMP
RGATE + 18 22
9
20
l.ldrain n2 n5 = 1.0e-9
l.lgate n1 n9 = 1.0e-9
l.lsource n3 n7 = 1.0e-9
k.kl i (l.lgate) i (l.lsource) = l (l.lgate), l (l.lsource), 0.0085
72
ISCL
EVTHRES
+ 19 8
+
LGATE
RLDRAIN
RDBREAK
50
6
8
ESG
DRAIN
2
RSLC1
51
-
c.ca n12 n8 = 1.8e-9
c.cb n15 n14 = 1.73e-9
c.cin n6 n8 = 1.19e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
LDRAIN
5
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 58.85
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 4.6))
}
}
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0
HUF75332P3
SPICE Thermal Model
th
JUNCTION
REV 11February 1999
HUF75332
CTHERM1 th 6 4.00e-3
CTHERM2 6 5 7.00e-3
CTHERM3 5 4 7.50e-3
CTHERM4 4 3 8.00e-3
CTHERM5 3 2 1.85e-2
CTHERM6 2 tl 12.55
RTHERM1
RTHERM1 th 6 7.09e-3
RTHERM2 6 5 1.77e-2
RTHERM3 5 4 4.97e-2
RTHERM4 4 3 2.79e-1
RTHERM5 3 2 4.21e-1
RTHERM6 2 tl 5.58e-2
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF75332
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 4.00e-3
ctherm.ctherm2 6 5 = 7.00e-3
ctherm.ctherm3 5 4 = 7.50e-3
ctherm.ctherm4 4 3 = 8.00e-3
ctherm.ctherm5 3 2 = 1.85e-2
ctherm.ctherm6 2 tl = 12.55
rtherm.rtherm1 th 6 = 7.09e-3
rtherm.rtherm2 6 5 = 1.77e-2
rtherm.rtherm3 5 4 = 4.97e-2
rtherm.rtherm4 4 3 = 2.79e-1
rtherm.rtherm5 3 2 = 4.21e-1
rtherm.rtherm6 2 tl = 5.58e-2
}
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2005 Fairchild Semiconductor Corporation
CASE
HUF75332P3 Rev. C0
HUF75332P3
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
Sync-Lock™
F-PFS™
AccuPower™
®
FRFET®
AX-CAP®*
®*
®
SM
BitSiC™
Global Power Resource
PowerTrench
GreenBridge™
PowerXS™
Build it Now™
TinyBoost®
Green FPS™
Programmable Active Droop™
CorePLUS™
TinyBuck®
®
Green FPS™ e-Series™
QFET
CorePOWER™
TinyCalc™
QS™
Gmax™
CROSSVOLT™
TinyLogic®
GTO™
Quiet Series™
CTL™
TINYOPTO™
IntelliMAX™
RapidConfigure™
Current Transfer Logic™
TinyPower™
ISOPLANAR™
DEUXPEED®
™
TinyPWM™
Dual Cool™
Marking Small Speakers Sound Louder
TinyWire™
EcoSPARK®
Saving our world, 1mW/W/kW at a time™
and Better™
TranSiC™
EfficentMax™
SignalWise™
MegaBuck™
TriFault Detect™
ESBC™
SmartMax™
MICROCOUPLER™
TRUECURRENT®*
SMART START™
MicroFET™
®
SerDes™
Solutions for Your Success™
MicroPak™
SPM®
MicroPak2™
Fairchild®
STEALTH™
MillerDrive™
Fairchild Semiconductor®
UHC®
SuperFET®
MotionMax™
FACT Quiet Series™
®
Ultra FRFET™
SuperSOT™-3
mWSaver
FACT®
UniFET™
SuperSOT™-6
OptoHiT™
FAST®
VCX™
SuperSOT™-8
OPTOLOGIC®
FastvCore™
VisualMax™
OPTOPLANAR®
SupreMOS®
FETBench™
VoltagePlus™
SyncFET™
FPS™
XS™
tm
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2.
A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative / In Design
Datasheet contains the design specifications for product development. Specifications
may change in any manner without notice.
Preliminary
First Production
Datasheet contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconductor reserves the right to make changes at any time without
notice to improve design.
No Identification Needed
Full Production
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve the design.
Obsolete
Not In Production
Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
Rev. I66
©2005 Fairchild Semiconductor Corporation
HUF75332P3 Rev. C0