FAIRCHILD HUF76121D3

HUF76121D3, HUF76121D3S
Data Sheet
20A, 30V, 0.023 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
innovative UltraFET™ process.
This advanced process technology
achieves the lowest possible on-resistance per silicon area,
resulting in outstanding performance. This device is capable
of withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
January 2003
Features
• Logic Level Gate Drive
• 20A, 30V
• Ultra Low On-Resistance, rDS(ON) = 0.023Ω
• Temperature Compensating PSPICE® Model
• Temperature Compensating SABER© Model
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Formerly developmental type TA76121.
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
PACKAGE
BRAND
HUF76121D3
TO-251AA
76121D
HUF76121D3S
TO-252AA
76121D
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-252AA variant in tape and reel, e.g., HUF76121D3ST.
D
G
S
Packaging
JEDEC TO-251AA
DRAIN
(FLANGE)
©2003 Fairchild Semiconductor Corporation
SOURCE
DRAIN
GATE
JEDEC TO-252AA
DRAIN
(FLANGE)
GATE
SOURCE
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
30
V
Drain to Gate Voltage (R GS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
30
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±20
V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
20
20
20
Figure 4
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Figures 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
0.6
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to 150
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TA = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
30
-
-
V
VDS = 25V, VGS = 0V
-
-
1
µA
VDS = 25V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ID = 250µA, V GS = 0V (Figure 12)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 20A, VGS = 10V (Figure 9, 10)
-
0.017
0.023
Ω
ID = 20A, VGS = 5V (Figure 9)
-
0.021
0.030
Ω
ID = 20A, VGS = 4.5V (Figure 9)
-
0.023
0.033
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.66
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-251AA, TO-252AA
-
-
100
oC/W
VDD = 15V, ID ≅ 20A,
RL = 0.75Ω, VGS = 4.5V,
RGS = 11.0Ω
(Figures 15, 21, 22)
-
-
275
ns
-
18
-
ns
-
165
-
ns
td(OFF)
-
18
-
ns
tf
-
40
-
ns
tOFF
-
-
87
ns
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
©2003 Fairchild Semiconductor Corporation
tON
td(ON)
tr
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
Electrical Specifications
TA = 25oC, Unless Otherwise Specified (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
-
85
ns
-
6
-
ns
-
50
-
ns
td(OFF)
-
45
-
ns
tf
-
45
-
ns
tOFF
-
-
135
ns
-
24
30
nC
-
13
16
nC
-
1.0
1.2
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 15V, ID ≅ 20A,
RL = 0.75Ω, VGS = 10V,
RGS = 12.0Ω
(Figures 16, 21, 22)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
VDD = 15V,
ID ≅ 20A,
RL = 0.75Ω
Ig(REF) = 1.0mA
(Figures 14, 19, 20)
Gate to Source Gate Charge
Qgs
-
2.40
-
nC
Gate to Drain “Miller” Charge
Qgd
-
7.40
-
nC
-
850
-
pF
-
465
-
pF
-
100
-
pF
MIN
TYP
MAX
UNITS
ISD = 20A
-
-
1.25
V
trr
ISD = 20A, dISD/dt = 100A/µs
-
-
58
ns
QRR
ISD = 20A, dISD/dt = 100A/µs
-
-
70
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
TEST CONDITIONS
Typical Performance Curves
25
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
0.2
0
20
15
VGS = 10V
10
VGS = 4.5V
5
0
0
25
50
75
100
125
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
©2003 Fairchild Semiconductor Corporation
175
25
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
Typical Performance Curves
(Continued)
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
THERMAL IMPEDANCE
ZθJC, NORMALIZED
1
PDM
0.1
t1
t2
SINGLE PULSE
0.01
10-5
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
I DM, PEAK CURRENT (A)
TC = 25 oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I
175 - TC
= I25
150
VGS = 10V
100
VGS = 5V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10-5
10-4
10-3
10 -2
10 -1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
300
TJ = MAX RATED
TC = 25oC
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
500
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
BVDSS MAX = 30V
1
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
100
If R = 0
tAV = (L)(I AS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(I AS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
0.001
0.01
0.1
1
10
100
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
©2003 Fairchild Semiconductor Corporation
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
Typical Performance Curves
(Continued)
75
75
-55oC
VGS = 4.5V
25 oC
60
45
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
175oC
30
15
60
VGS = 4V
45
30
VGS = 3.5V
15
VGS = 3V
= 10V = 80µs
PULSEVGS
DURATION
DUTY V
CYCLE
= 0.5% MAX
GS = 5V
VDD = 15V
0
0
2
1
3
4
VGS, GATE TO SOURCE VOLTAGE (V)
0
0
5
FIGURE 7. TRANSFER CHARACTERISTICS
1.6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 20A
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
rDS(ON), ON-STATE RESISTANCE (mΩ)
5
FIGURE 8. SATURATION CHARACTERISTICS
35
30
ID = 10A
25
ID = 1A
20
PULSE DURATION = 250µs, VGS = 10V, I D = 20A
1.4
1.2
1.0
0.8
0.6
15
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
-80
10
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. SOURCE TO DRAIN ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
VGS = VDS, ID = 250µA
1.0
0.8
0.6
NORMALIZED DRAIN TO SOURCE
BREAKOWN VOLTAGE
1.2
NORMALIZED GATE
THRESHOLD VOLTAGE
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID = 250µA
1.1
1.0
1.0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
©2003 Fairchild Semiconductor Corporation
-80
-40
0
40
80
0.12k
0.16k
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
Typical Performance Curves
(Continued)
10
VGS = 0V, f = 1MHz
CISS = C GS + C GD
CRSS = CGD
COSS ≈ CDS + CGD
900
VGS , GATE TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
1200
CISS
600
COSS
300
CRSS
VDD = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 20A
ID = 10A
ID = 1A
2
0
0
0
5
10
15
20
25
0
30
5
VDS , DRAIN TO SOURCE VOLTAGE (V)
10
15
Qg, GATE CHARGE (nC)
20
25
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
400
200
tr
VGS = 10V, VDD = 15V, I D = 20A, RL = 0.75Ω
300
200
tf
100
td(OFF)
td(OFF)
150
SWITCHING TIME (ns)
SWITCHING TIME (ns)
VGS = 4.5V, VDD = 15V, ID = 20A, RL = 0.75Ω
tf
100
tr
50
td(ON)
td(ON)
0
0
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
0
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
©2003 Fairchild Semiconductor Corporation
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
IgREF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
-
VDD
10%
0
10%
DUT
RGS
VGS
90%
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
©2003 Fairchild Semiconductor Corporation
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORM
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
PSPICE Electrical Model
.SUBCKT HUF76121D 2 1 3 ;
rev May 1998
CA 12 8 1.3e-9
CB 15 14 1.25e-9
CIN 6 8 7.5e-10
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EVTHRES
+ 19 8
+
LGATE
GATE
1
11
+
50
RDRAIN
6
8
ESG
LDRAIN 2 5 1e-9
LGATE 1 9 2.4e-9
LSOURCE 3 7 3.14e-9
EVTEMP
RGATE + 18 22
9
20
21
EBREAK
17
18
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.6e-3
RGATE 9 20 4
RLDRAIN 2 5 10
RLGATE 1 9 24
RLSOURCE 3 7 31.4
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 12.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
ESLC
-
EBREAK 11 7 17 18 33.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
DBREAK
+
RSLC2
5
51
IT 8 17 1
RLDRAIN
RSLC1
51
S2A
13
8
14
13
S1B
17
18
RVTEMP
S2B
13
CA
RBREAK
15
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*155),4))}
.MODEL DBODYMOD D (IS = 3.5e-13 RS = 8.7e-3 TRS1 = 2.2e-3 TRS2 = 2e-6 CJO = 1.34e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0.95 IKF = 3.7)
.MODEL DBREAKMOD D (RS = 1.3e-1 TRS1 = 2e-3 TRS2 = -2e-5)
.MODEL DPLCAPMOD D (CJO = 7.7e-10 IS = 1e-30 N = 10 M = 0.63)
.MODEL MMEDMOD NMOS (VTO = 1.9 KP = 3.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4)
.MODEL MSTROMOD NMOS (VTO = 2.23 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.64 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = 0)
.MODEL RDRAINMOD RES (TC1 = 2e-2 TC2 = 2.4e-5)
.MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 8e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -1.9e-3 TC2 = -5.5e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.2e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5.5 VOFF= -3)
VON = -3 VOFF= -5.5)
VON = -1 VOFF= 1.8)
VON = 1.8 VOFF= -1)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2003 Fairchild Semiconductor Corporation
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
SABER Electrical Model
REV May 1998
template huf76121d n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 3.5e-13, xti = 4.3, cjo = 1.34e-9, tt = 2.8e-8, n = 0.95, m = 0.4)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 7.7e-10, is = 1e-30, n = 10, m = 0.63)
m..model mmedmod = (type=_n, vto = 1.9, kp = 3.5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.23, kp = 55, is = 1e-30, tox = 1)
DPLCAP
m..model mweakmod = (type=_n, vto = 1.64, kp = 0.1, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -3)
10
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5.5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1, voff = 1.8)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 1.8, voff = -1)
LDRAIN
5
DRAIN
2
RSLC1
51
RLDRAIN
RDBREAK
RSLC2
c.ca n12 n8 = 1.3e-9
c.cb n15 n14 = 1.25e-9
c.cin n6 n8 = 7.5e-10
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.4e-9
l.lsource n3 n7 = 3.14e-9
EVTEMP
RGATE + 18 22
9
20
71
11
16
MWEAK
DBODY
6
EBREAK
+
17
18
MMED
MSTRO
RLGATE
CIN
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 0
res.rdbody n71 n5 = 8.7e-3, tc1 = 2.2e-3, tc2 = 2e-6
res.rdbreak n72 n5 = 1.3e-1, tc1 = 2e-3, tc2 = -2e-5
res.rdrain n50 n16 = 2.6e-3, tc1 = 2e-2, tc2 = 2.4e-5
res.rgate n9 n20 = 4
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 24
res.rlsource n3 n7 = 31.4
res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 12.5e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.2e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -5.5e-6
21
RDBODY
DBREAK
50
-
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
72
ISCL
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 33.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/155))** 4))
}
}
©2003 Fairchild Semiconductor Corporation
HUF76121D3, HUF76121D3S Rev. B1
HUF76121D3, HUF76121D3S
SPICE Thermal Model
th
JUNCTION
REV May 1998
HUF76121D
CTHERM1 th 6 1.1e-3
CTHERM2 6 5 2.5e-3
CTHERM3 5 4 3.2e-3
CTHERM4 4 3 8.5e-3
CTHERM5 3 2 4.0e-2
CTHERM6 2 tl 2.2
RTHERM1
RTHERM1 th 6 1.8e-3
RTHERM2 6 5 1.5e-2
RTHERM3 5 4 2.4e-1
RTHERM4 4 3 4.5e-1
RTHERM5 3 2 3.4e-1
RTHERM6 2 tl 7.0e-2
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF76121D
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 1.1e-3
ctherm.ctherm2 6 5 = 2.5e-3
ctherm.ctherm3 5 4 = 3.2e-3
ctherm.ctherm4 4 3 = 8.5e-3
ctherm.ctherm5 3 2 = 4.0e-2
ctherm.ctherm6 2 tl = 2.2
rtherm.rtherm1 th 6 = 1.8e-3
rtherm.rtherm2 6 5 = 1.5e-2
rtherm.rtherm3 5 4 = 2.4e-1
rtherm.rtherm4 4 3 = 4.5e-1
rtherm.rtherm5 3 2 = 3.4e-1
rtherm.rtherm6 2 tl = 7.0e-2
}
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2003 Fairchild Semiconductor Corporation
CASE
HUF76121D3, HUF76121D3S Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx™
FACT™
ActiveArray™
FACT Quiet Series™
Bottomless™
FAST®
CoolFET™
FASTr™
CROSSVOLT™ FRFET™
DOME™
GlobalOptoisolator™
EcoSPARK™
GTO™
E2CMOS™
HiSeC™
I2C™
EnSigna™
Across the board. Around the world.™
The Power Franchise™
Programmable Active Droop™
ImpliedDisconnect™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench®
QFET™
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic®
TruTranslation™
UHC™
UltraFET®
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In
Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I2