FX-702 - Vectron International

FX-702
Low Jitter VCSO Frequency Translator
Previous Part Numbers FX-703, FX-730
FX-702
Description
The FX-702 is a low jitter precision frequency translator used to translate input frequencies such as 19.44, 38.88, 77.76 MHz, etc.
to a binary multiple frequency as high as 1 GHz. The FX-702’s superior jitter performance is achieved through the PLL’s integrated
VCSO. The FX-702 is housed in a hermetically sealed leadless surface mount package offered on tape and reel.
Features
Applications
• 5 x 7.5 x 2.5 mm Package
• Frequency Translation up to 1 GHz
• VCSO based PLL for Ultra-Low Jitter
• Low Power Consumption
• Differential LVPECL or LVDS Output
• Clock Bypass Mode
• CMOS Lock Detect
• -40°C/+85°C Temperature Range
• Complete Easy to Implement Solution
• Fully Compatible for Lead Free Assembly
• SONET/SDH
• 10GbE./10.3GbE
• Frequency Translation
• Clock Smoothing, Clock Switching
• FEC Scaling
• Medical Instrumentation
• Test and Measurement
• Military
Block Diagram
VCC
(10)
FIN
(12)
CFIN
(11)
MODE
(4)
÷1, ÷4
LD
(2)
LFN
(6)
Phase
Detector
& LD
Charge
Pump
Switch
External
Divider
÷1, ÷4, ÷8,
÷16, ÷32
CFLN
(7)
VCSO
FOUT
(8)
÷1, ÷2, ÷4,
÷8
CFOUT
(9)
BRCLK CBRCLK
(1)
(4)
GND
(3, 5, 13)
Figure 1. Functional block diagram
1 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
1
Rev: 03Sep2015
Performance Specifications
Table 1. Electrical Performance
Parameter
Symbol
Min
Frequency
Input Frequency
Output Frequency
FIN
FOUT
1
62.5
Capture Range (ordering option)1, 2, 3
APR
Typical
Maximum
Units
1000
1000
MHz
MHz
1, 2, 3
Supply
Voltage 2, 3
Current (No Load) 3,9
Standard Mode LVDS
Enhanced Mode LVDS
Standard Mode LVPECL
Enhanced Mode LVPECL
VCC
±20, ±32, ±50, or ±100
2.97
3.3
3.63
V
115
140
140
162
mA
mA
mA
mA
2.0
0
VCC
0.8
V
V
0.20
3.00
V
0.1*VCC
V
V
V
mV-pp
mV-pp
V
mV-pp
mA
ps
ps
%
fs-rms
fs-rms
ICC
ICC
ICC
ICC
LVCMOS Input 2, 3
Input High Voltage
Input Low Voltage
VIH
VIL
LVPECL Input
Peal-Peak Amplitude Swing 6, 7
Lock Detect Output
Output High Voltage
Logic Low Voltage
VOH
VOL
Outputs
Mid Level - LVPECL 2, 3
Single Ended Swing - LVPECL 2, 3
Differential Swing - LVPECL 2,3
Mid Level - LVDS 2, 3
Single Ended Swing - LVDS 2, 3
Current 5
Rise Time 4, 5
Fall Time 4, 5
Symmetry 2, 3
Jitter Generation - 622.08MHz output
(12kHz-20MHz BW) 5
(50kHz - 80MHz BW) 5
0.9*VCC
VCC-1.5
450
900
VCC-2.0
300
VCC-1.3
750
1500
VCC-1.8
450
160
160
45
50
VCC-1.1
1050
2100
VCC-1.6
600
20
400
400
55
ΦJ
ΦJ
210
120
500
400
TOP
0/70, -40/85
IOUT
tR
tF
SYM
Operating Temp (ordering option) 1, 3
ppm
°C
1. See Standard Frequencies and Ordering Information.
2. Parameters are tested with production test circuit below (Fig 2).
3. Parameters are tested at ambient temperature with test limits guard banded for specified operating temperature.
4. Measured from 20% to 80% of a full output swing (Fig 3).
5. Not tested in production, guaranteed by design, verified at qualification.
6. Minimum Input Low Voltage not to exceed 2.125 V. Minimum Input High Voltage not to go below 1.49 V.
7. AC coupling is recommended. There is an internal pull-up and pull-down resistor on all clock inputs (Fin, BRCLK).
8. Measured using a Wavecrest SIA3300. Best results are realized with a differential input.
9. Enhanced mode activates both 5-bit and 7-bit counters thereby drawing more current.
Figure 2. LVPECL Test Circuit
2 of 10
Figure 3. 10K LVPECL Waveform
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
2
Rev: 03Sep2015
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied
at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to
absolute maximum ratings for extended periods may adversely affect device reliability.
Table 2. Absolute Maximum Ratings
Symbol
Ratings
Unit
Power Supply
Parameter
VCC
0 to 6
V
Input Current
IIN
100
mA
Output Current
IOUT
25
mA
Storage Temperature
TSTR
-55 to 125
°C
TPEAK/tP
260 / 40
°C/s
Soldering Temperature/Duration
Reliability
The FX-702 is capable of meeting the following qualification tests:
Table 3. Environmental Compliance
Parameter
Conditions
Mechanical Shock
MIL-STD-883, Method 2002
Mechanical Vibration
MIL-STD-883, Method 2007
Solderability
MIL-STD-883, Method 2003
Gross and Fine Leak
MIL-STD-883, Method 1014
Resistance to Solvents
MIL-STD-883, Method 2016
Moisture Sensitivity Level Rating
MSL 1
Handling Precautions
Although ESD protection circuitry has been designed into the FX-702, proper precautions should be taken when handling and
mounting. VI employs a Human Body Model (HBM) and a Charged Device Model (CDM) for ESD susceptibility testing and design
protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model.
Table 4. Predicted ESD R$atings
Model
Class
Minimum
Conditions
Human Body Model
2
2000 V
MIL-STD 883, Method 3015
Charged Device Model
C5
1000 V
JEDEC, JESD22-C101
Machine Model
M3
200 V
ESD STM5.2-1999
3 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
3
Rev: 03Sep2015
Table 5. Reflow Profile (IPC/JEDEC J-STD-020C)
Parameter
Symbol
Value
tS
60 s Min, 180 s Max
PreHeat Time
RUP
3 °C/s Max
tL
60 s Min, 150 s Max
tAMB-P
480 s Max
tP
20 s Min, 40 s Max
RDN
6 °C/s Max
Ramp Up
Time Above 217 °C
Time To Peak Temperature
Time At 260 °C
Ramp Down
The device has been qualified to meet the JEDEC
standard for Pb-Free assembly. The temperatures
and time intervals listed are based on the PbFree small body requirements. The temperatures
refer to the topside of the package, measured on
the package body surface. The FX-702 device is
hermetically sealed so an aqueous wash is not an
issue.
Figure 4. Suggested IR Profile
Table 6. Tape and Reel Information
Tape Dimensions (mm)
Reel Dimensions (mm)
W
F
Do
Po
P1
A
B
C
D
N
W1
W2
#/Reel
16
7.5
1.5
4
8
178
1.5
13
20.2
50
16.4
22.4
200
Figure 5. Tape and Reel
4 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
4
Rev: 03Sep2015
FX702 YWW
CCC-CCCC
XX-XX
Y = YEAR
WW = WEEK
C = OPTION CODES
XX = FREQUENCY CODES
(SEE ORDERING INFO)
Figure 6. Outline Diagram & Suggested Pad Layout
Table 7. Pin Functions
Pad #
Symbol
I/O
Level
1
BRCLK
I
NC or LVPECL,
LVDS
2
LD1
O
CMOS
Lock Detect
Logic 0 = FX Locked
Logic 1 = No Input
Output transitioning = Out of Lock
3
GND
GND
Supply
Case and electrical ground
4
MODE
I
CMOS
FX Operating Mode
Logic 0 = Standard PLL (Normal Setting)
Logic 1 = FIN coupled to FOUT
5
GND
GND
Supply
Case and electrical ground
6
LFN
Analog
Loop Filter Node
7
CLFN
Analog
Complementary Loop Filter Node
8
FOUT
O
LVPECL or
LVDS
Frequency Output
9
CFOUT
O
LVPECL or
LVDS
Complementary Frequency Output
10
VCC
I
Supply
Power Supply Voltage (+3.3V ±5%)
11
CFIN
I
LVPECL
Complemetary Input Frequency
For CMOS inouts, AC-couple unused input to ground or negative supply
12
FIN4,5
I
CMOS or
LVPECL
13
GND
GND
Supply
14
CBRCLK
I
NC or LVPECL,
LVDS
1.
2.
3.
4.
5.
5 of 10
2
4,5
3,4
Function
NC or
For External divider application = PD Feedback Frequency
Input Frequency
Case and electrical ground
NC or
For External divider applications = Comp. PD Feedback Frequency
It is recommended that the Lock Detect circuit shown in Figure 7 be used for smoothing the FX-702 lock detect signal. The circuit
takes the lock detect output and performs a peak follower. When out of lock, the output is VCC - 1V. Under locked conditions, it is ground.
Do not leave the MODE pin floating, it should be set to logic 0 or ground for normal operation.
BRCLK and CBRCLK should be left floating if not used.
FIN, CFIN, BRCLK, and CBRCLK have internal pull-up/pull-down resistors and it is recommended to AC couple these inputs.
Best jitter is realized with a differential input.
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
5
Rev: 03Sep2015
Figure 7. Typical FX-702 Application Diagram Consult with Vectron Application Engineering for recommended Loop Filter design. The lock detect
has a low current output drive with narrow pulses occuring at the phase detector edge rate even
under locked conditions. Figure 7 shows one method to buffer and filter the LD output.
Figure 8. LVDS Input, LVDS Output
The inputs, Fin and CFin, are biased with 13 kΩ pull up and pull down resistors which sets the
mid supply bias on the input differential amplifier. In most applications, the input should be ACcoupled. For best signal integrity, the shown terminatiosn should be used.
6 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
6
Rev: 03Sep2015
Figure 9. 50 Ohm Impedance Matching. LVPECL Input, LVPECL Output
Figure 10. Alternate LVPECL Termination Scheme, Short PC Trace
7 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
7
Rev: 03Sep2015
Table 8. Standard Frequencies (MHz)
8 of 10
18.7500000
EE 39.0625000
HH 73.7280000
K8 172.500000
NU 600.000000
PR 779.568600
T8 19.2000000
DD 39.3216000
HD 74.1250000
K1 173.370748
ND 614.400000
RG 780.881000
TD 19.3926580
DX 39.8437500
HJ 74.1758000
KA 173.437500
NP 622.080000
P2 781.250000
T9 19.4400000
D6 40.0000000
JF 74.2500000
K7 176.838175
NA 624.693800
PD 796.875000
TB 19.5312500
DZ 40.2830630
KK 75.0000000
KH 182.016000
N8 624.704800
P6 800.000000
TK 19.6608000
DB 40.9600000
J1 76.8000000
K4 182.857142
NM 625.000000
P3 805.664100
TA 19.6989680
DK 41.0888870
KM 77.7600000
K2 184.000000
NG 627.329600
P7 809.063500
TE 19.7190000
DH 41.6571440
KP 78.0000000
LH 184.320000
NH 629.987800
PA 819.200000
TH 19.9218750
ED 41.6600000
LM 78.1250000
K3 187.500000
N5 637.500000
PG 821.777300
TF 20.0000000
E2 41.8329130
KT 78.6432000
K5 195.000000
N7 640.000000
PN 850.000000
TJ 20.1416000
E3 42.0000000
JB 79.6875000
KG 200.000000
NE 644.531250
P4 983.400000
TU 20.4800000
E4 42.0101690
KV 80.0000000
K9 200.192000
N6 645.120000
RJ 1,000.0000
TM 20.5444340
EF 42.5000000
JC 80.5664130
KJ 201.416020
N1 647.239400
PE 20.7135000
E1 42.6600000
JZ 82.1777380
KL 212.500000
NF 647.250800
PK 20.8285720
EG 44.2095440
KX 82.9440000
K6 219.429571
NL 649.970300
PF 20.8286000
EB 44.4343000
LF 83.3142880
KN 240.000000
NR 657.421875
PB 20.9165460
EH 44.6218000
JW 83.6658250
KR 243.000000
NC 665.625600
PC 21.0050840
EJ 44.7360000
J3 84.0203380
KU 245.760000
N9 666.514286
P5 22.0000000
E9 44.9280000
JE 86.6853740
LJ 250.000000
NT 669.128100
R2 22.1047720
EK 45.1584000
JG 88.4190880
KW 252.571428
NJ 669.326582
R3 22.2171000
E5 45.8240000
JM 95.7000000
LK 256.000000
NK 669.642900
R1 22.5792000
E8 46.0379460
LG 97.5000000
KE 262.144000
NB 670.838600
R7 24.0000000
EC 46.7200000
JK 100.000000
L8 292.571429
NN 672.000000
RT 24.5760000
E6 46.8750000
JY 105.000000
L6 300.000000
PT 672.156250
TX 24.7040000
E7 48.0000000
JV 106.250000
L9 307.200000
RX 672.162712
R5 25.0000000
F7 49.1520000
J7 108.000000
LA 311.040000
P1 673.456600
RA 25.1658000
F8 49.4080000
J2 110.000000
L1 312.500000
PU 684.255400
R9 25.6000000
F6 50.0000000
JD 112.000000
L2 318.750000
PV 687.700000
TV 25.9200000
F2 50.0480000
KD 114.000000
L3 320.000000
PP 690.569196
R4 26.0000000
F3 51.2000000
LL 120.000000
LC 322.265650
PW 693.468750
RV 27.0000000
F4 51.8400000
J4 122.880000
LB 328.710950
PX 693.482991
R6 27.6480000
FB 52.0000000
JP 124.416000
L7 333.257150
PY 693.750000
R8 28.7040000
F1 53.3300000
JU 125.000000
L4 333.625806
VX
696.390625
RW 29.4912000
F5 54.7460000
JL 130.000000
LD 334.663300
RB 696.421478
V1 29.5000000
F9 55.0000000
JX 131.072000
LN
336.081350
RC 696.421875
TY 30.0000000
HE 60.0000000
JR 139.264000
L5 353.676350
RD 704.380600
TG 30.7200000
H1 61.3800000
KY 150.000000
M8 368.640000
RY 707.352700
TC 30.8800000
HF 61.4400000
J5 150.144000
M6 375.000000
RF 707.500000
V2 31.2500000
H8 62.2080000
J8 153.600000
MA 382.800000
RU 710.948600
T2 32.0000000
H2 62.5000000
J9 155.520000
M2 400.000000
RR 712.520000
TW 32.7680000
H3 62.9145000
LE 156.250000
M3 409.600000
RE 716.573200
T1 33.0000000
H7 63.3600000
JJ 159.375000
M7 491.520000
PM 718.750000
T5 33.3330000
HC 63.8976000
JN 160.000000
M1 500.000000
RK 719.734400
T3 34.3680000
H6 64.0000000
JT 161.132813
M4 505.000000
V3 737.280000
TL 34.5600000
HB 64.1520000
JH 164.355475
M9 531.000000
PH 739.200000
TT 36.8640000
HG 65.5360000
J6 166.628572
M5 531.250000
P8 742.500000
V4 37.0560000
H4 66.0000000
JA 166.812903
NY
568.928600
PJ 748.070900
T6 37.1250000
H9 70.0000000
KB 167.331646
N2 569.196400
P9 750.000000
T7 37.5000000
HK 70.6560000
KC 168.040678
N3 588.000000
RH 768.000000
TN 38.8800000
H5 71.6100000
KF 170.000000
N4 595.056000
PL 777.600000
T4 Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
8
Rev: 03Sep2015
Ordering Information
FX- 702 - E C E - H M M M - XX - XX
Product Family
FX: Frequency Translator
Output Frequency
(See Above)
Input Frequency
(See Above)
Package
702: 5.0 x 7.5 x 2.0 mm3
Factory Use
Input
E: 3.3 Vdc ±10%
Output
C: LVPECL
D: LVDS
Mode3
M: Standard
X: Enhanced
Operating Temperature
E: -40 to 85 °C
T: 0 to 70 °C
Feedback Divider
L: Disabled (external required)
M: Factory Set
Absolute Pull Range
E: ± 20 ppm
H: ± 32 ppm
K: ± 50 ppm
S: ± 100 ppm
1. Not all combinations are possible. Please consult with your Vectron representative for application assistance. Other frequencies available upon request.
2. When ordering the FX-702 with the external divider option, the prescaler is set to 1. The Feedback Divider = FOUT/FIN.
3. Vectron will determine and recommend a specific part number based upon the application. The Enhanced Mode version of the FX-702 activates additional
internal dividers.
Example: FX-702-ECE-KMMM-M3-M3 (156.25 MHz Jitter Attenuator)
Example: FX-702-EDT-SLMM-F7-L4 (25 MHz to 125 MHz Frequency Translator with external divide-by-5)
Example: FX-702-ECE-SMXM-C4-L4 (10 MHz to 125 MHz Frequency Translator; Enhanced Mode)
9 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
9
Rev: 03Sep2015
Revision History
Date
Approved
Description
03Sep2015
MK, TM
02Mar2014
MK
Update of Lasermarking image
Vectron Logo changed, Vectron Address Shanghai changed
07May2013
BW
Updated current specification, mid levels, added application diagrams, and revised ordering information to include Enhanced Mode.
15Feb2013
BW
Updated the outline diagram shown in Figure 5.
06Oct2010
BW
Updated frequency code table.
01Jun2010
BW
Added ±20ppm APR ordering option.
12Mar2010
BW
Added the “LN”frequency code to Table 8.
For Additional Information, Please Contact
USA:
Vectron International
267 Lowell Road, Suite 102
Hudson, NH 03051
Tel: 1.888.328.7661
Fax: 1.888.329.8328
Europe:
Vectron International
Potsdamer Strasse, D-14513
Teltow, Germany
Tel: +49 (0) 3328.4784.17
Fax: +49 (0) 3328.4784.30
Asia:
Vectron International
68 Yin Cheng Road (C), 22nd Floor
One LuJiaZui
Pudong, Shanghai, 200120 China
Tel: +86.21.6194.6886
Fax: +86.21.6194..6699
Disclaimer
Vectron International reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.
10 of 10
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
10
Rev: 03Sep2015