SPECIFICATIONS FOR LCD MODULE

SPECIFICATIONS FOR
LCD MODULE
CUSTOMER
CUSTOMER PART NO.
AMPIRE PART NO.
APPROVED
AM320240L8TNQW-TB0H
BY
DATE
; Approved For Specifications
† Approved For Specifications & Sample
AMPIRE CO., LTD.
2F., No.88, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 221,
Taiwan (R.O.C.)台北縣汐止市新台五路一段 88 號 2 樓(東方科學園區 D 棟)
TEL:886-2-26967269 , FAX:886-2-26967196 or 26967270
APPROVED BY
Date : 2008/08/21
CHECKED BY
AMPIRE CO., LTD.
ORGANIZED BY
1
RECORD
OF
Revision Date Page
REVISION
Contents
Editor
2007/09/19
-
New Release
Emil
2007/10/05
6
Correction the Black-light specification.
Emil
2007/10/05
-
Issued the official part No.
Emil
2007/10/15
8,45 Correction the viewing angle and mechanical drawing.
Emil
Fix the driving interface to i80 series 16-bit.
Emil
12
Correction the T/P Pin out.
Emil
8
Correction view angle.
Emil
Correction the Definition of viewing angle.
Emil
Emil
2007/11/21
-
2007/12/06
2008/02/01
2008/06/23
8
Update the CIE chromaticity.
2008/8/21
3
Revise Features(with T/P and LED driver circuit)
Edward
Correction the overall dimension
Edward
11
Update the bare brightness of LED backlight.
Edward
13
Revise the definition of Pin3 and Pin4
Edward
14
Add the comment for PWM signal
Edward
15
Modify the block diagram with LED driver block
Edward
16
Correction Interface Protocol for 16bits
Edward
17
Correction the Pin12 to Pin28.
Edward
27-43 Update the Application Note
54
Date : 2008/08/21
Edward
Modify the Outline Dimension with new Ampire logo
Edward
AMPIRE CO., LTD.
2
1 Features
3.5 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display)
module. This module is composed of a 3.5” TFT-LCD panel, LCD controller,
Touch Panel, power driver circuit, LED driver circuit and backlight unit.
1.1 TFT Panel Feature :
(1) Construction: 3.5” a-Si color TFT-LCD, White LED Backlight and PCB.
(2) Resolution (pixel): 320(R.G.B) X240
(3) Number of the Colors : 262K colors ( R , G , B 6 bit digital each)
(4) LCD type : Transmissive Color TFT LCD ( normally White)
(5) Interface: 40 pin pitch 0.5 FFC
(6) Power Supply Voltage: 3.3V single power input. Built-in power supply
circuit.
1.2 LCD Controller Feature:
(1) MCU interface: 16 bit 80 series MCU interface.
(2) Display RAM size: 640x240x3x6 bits. Ex: 320x240 two frame buffer
with 262K colors.
(3) Arbitrary display memory starts position selection.
(4) 16 bit interface support 65K (R5 G6 B5) Color.
2 Physical specifications
Item
Display resolution(dot)
Active area
Screen size
Pixel size
Color configuration
Overall dimension
Weight
Backlight unit
Date : 2008/08/21
Specifications
960 (W) x 240(H)
70.08(W) x 52.56(H)
3.5(Diagonal)
73 (W) x 219 (H)
R.G.B stripe
77.8(W)x64.5(H) x 6.95(D)
T.B.D
LED
AMPIRE CO., LTD.
Unit
dot
mm
mm
um
mm
g
3
3 Electrical specification
3.1 Absolute max. ratings
3.1.1 Electrical Absolute max. ratings
Item
Symbol Condition
Power voltage
VDD
Input voltege
V in
B
VSS=0
B
Min.
Max.
Unit
-0.3
5.5
V
-0.3
VDD+0.3
V
Remark
Note 1
Note1: /CS,/WR,/RD,RS,DB0~DN17
3.1.2 Environmental Absolute max. ratings
OPERATING
STORAGE
Item
MIN
MAX
MIN
MAX
Temperature
-20
70
-30
80
Humidity
Note1
Note1
Corrosive Gas
Not Acceptable
Not Acceptable
Remark
Note2,3,4,5,6,7
Note1 : Ta <= 40℃ : 85% RH max
Ta > 40℃ : Absolute humidity must be lower than the humidity of
85%RH at 40℃
Note2 : For storage condition Ta at -30℃ < 48h , at 80℃ < 100h
For operating condition Ta at -20℃ < 100h
Note3 : Background color changes slightly depending on ambient
temperature. This phenomenon is reversible.
Note4 : The response time will be slower at low temperature.
Note5 : Only operation is guarantied at operating temperature. Contrast ,
response time, another display quality are evaluated at +25℃
Note6 :
z LED BL : When LCM is operated over 40℃ ambient temperature, the
I LED of the LED back-light should be follow :
B
B
Note7 : This is panel surface temperature, not ambient temperature.
Date : 2008/08/21
AMPIRE CO., LTD.
4
Note8 :
z LED BL: When LCM be operated over than 40℃, the life time of the
LED back-light will be reduced.
3.1.3 LED back-light Unit Absolute max. ratings
Item
Symbol
Ratings
Unit
Peak forward Current
IF
60
mA
Reverse Voltage
VR
15
V
Power Dissipation
Po
0.9
W
Remark
3.2 Electrical characteristics
3.2.1 DC Electrical characteristic of the LCD
Typical operting conditions (VSS=0V)
Symbol
Min.
Typ.
Item
Power supply
Input Voltage
for logic
Output Voltage for
Logic
H Level
Max.
Unit
VDD
3.0
3.3
5.0
V
V IH
2.0
-
5.5
V
B
B
Remark
Note 1
L Level
V IL
H Level
V OH
B
B
B
B
VSS
-
0.8
V
2.4
-
VDD
V
Note 2
L Level
Power Supply current
V OL
VSS
IDD
-
B
B
320
0.4
V
-
mA
Note 3
Note1: With 5V Tolerance Input, /CS, /WR,/RD,RS,DB0~DB17
Note2: DB0~DB17
Note3: fV =60Hz, Ta=25℃, Display pattern: All Black
Date : 2008/08/21
AMPIRE CO., LTD.
5
3.2.2 Electrical characteristic of LED Back-light
Paramenter
Symbol
Min.
Typ.
Max.
Unit
LED voltage
V AK
9.0
11.0
V
B
LED forward current
„
I LED =40,Ta=25℃
B
B
I LED
--
40
--
mA
Ta=25℃
I LED
--
30
--
mA
--
T.B.D.
-
Hr
Ta=60℃
I LED
=40mA,Ta=25℃
B
B
Lamp life time
B
Condiction
B
B
B
B
The constant current source is needed for white LED back-light driving.
When LCM is operated over 60℃ ambient temperature, the I LED of the LED
B
B
back-light should be adjusted to 15mA max(For one dice LED).
Date : 2008/08/21
AMPIRE CO., LTD.
6
3.3
Symbol
tcycle
PWHW
PWLW
tAS
tAH
tDSW
tHWR
tcsb-s
tcsb-h
AC Timing characteristic of the Graphic TFT LCD controller
Parameter
Enable cycle time
Enable high-level pulse width
Enable low-level pulse width
RS setup time
RS hold time
Write data setup time
Write data hold time
CSB setup time
CSB hold time
Date : 2008/08/21
Min
100
66
33
16
16
50
50
16
16
Typ
200
70
130
25
45
50
40
20
30
AMPIRE CO., LTD.
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
Remark
7
4 Optical specification
4.1 Optical characteristic:
Item
Response
Time
Rise+
Fall
Contrast ratio
Θx+
Viewing ΘxAngle
Θy+
ΘyBrightness
LED BL
Without TP
Brightness
LED BL
With TP
Symbol
Condition
T r+ T f
Typ.
Max.
Unit
Remark
Θ=0°
50
80
ms
Note 1,2,3,5
CR
At optimized
viewing angle
200
300
-
CR≧10
-
70
70
55
35
-
deg.
YL
I LED =40mA
,25℃
330
350
-
cd/m 2
YL
I LED =40mA,
25℃
235
250
-
cd/m 2
BB
BB
B
B
BB
B
B
BB
B
B
B
B
Min.
Note 1,2,4,5
P
P
Note1,2, 5,6
Note 7
P
Note 7
P
XR
0.57
0.61
0.65
YR
0.32
0.36
0.40
XG
0.31
0.35
0.39
Green chromaticity
YG
Θ=0°
0.54
0.58
0.62
Θ=0°
XB
0.10
0.14
0.20
Blue chromaticity
0.03
0.07
0.11
YB
XW
0.26
0.34
White chromaticity
YW
0.27
0.35
( ) For reference only. These data should be update according the prototype.
Note 1:
Red chromaticity
LED BL :Ambient temperature=25℃,and lamp current I LED =40mA.To be
measured in the dark room.
Note 2:To be measured on the center area of panel with a viewing cone of 1°by
Topcon luminance meter BM-7,after 10 minutes operation.
z
B
B
Note 3.Definition of response time:
The output signals of photo detector are measured when the input signals
are changed from “black“ to “white”(falling time) and from “white” to
“black”
(rising time),respectively. The response time is defined as the time interval
between the 10% and 90% of amplitudes. Refer to figure as below.
Date : 2008/08/21
AMPIRE CO., LTD.
8
Note 4.Definition of contrast ratio:
Contrast ratio is calculated with the following formula.
Contrast ratio(CR)=
Photo detector output when LCD is at ”White” state
Photo detector Output when LCD is at “Black” state
Note 5:White V i =V i50 +1.5V
B
B
B
B
Black V i =V i50 +2.0V
“±”means that the analog input signal swings in phase with V COM signal.
“ “ means that the analog input signal swings out of phase with V COM
signal.
B
B
B
B
B
B
B
B
V i50 : The analog input voltage when transmission is 50%.The 100%
Transmission is defined as the transmission of LCD panel when all the
Input terminals of module are electrically opened.
B
B
Note 6.Definition of viewing angle, Refer to figure as below.
Date : 2008/08/21
AMPIRE CO., LTD.
9
Note 7.Measured at the center area of the panel when all the input terminals of
LCD panel are electrically opened.
Ring light
Brightness gauge
BM-7 (Topcon)
LCD module
Metal halide lamp
Glass fiber
LIGHT:OFF, LIGHT:ON
LCD
Optical Detector
Brightness gauge
BM-7 (Topcon)
LED / CCFL
Date : 2008/08/21
LIGHT:ON, LIGHT:OFF
AMPIRE CO., LTD.
10
4.2 Optical characteristic of the LED Back-light
ITEM
MIN
TYP
MAX
UNIT
Condition
Bare Brightness
2800
--Cd/m2
I LED =40mA,Ta=25℃
AVG. X of 1931 C.I.E.
0.26
0.30
0.34
-I LED =40mA,Ta=25℃
AVG. Y of 1931 C.I.E.
0.27
0.31
0.35
-I LED =40mA,Ta=25℃
Brightness Uniformity
75
--%
I LED =40mA,Ta=25℃
( )For reference only. These data should be update according the prototype.
B
B
B
B
B
B
B
B
Note1 : Measurement after 10 minutes from LED BL operating.
Note2 : Measurement of the following 9 places on the display.
W
5/6W
1/2W
1/6W
Constant
Current
40mA
1
2
L
3
5/6L
A
4
5
6
1/2L
A
K
DC Current meter
7
8
9
1/6L
Note3: The Uniformity definition
(Min Brightness / Max Brightness) x 100%
Date : 2008/08/21
AMPIRE CO., LTD.
11
4.3 Touch Panel Electrical Specification
Parameter
Condition
Standard Value
X Axis
400 ~ 900 Ω
Y Axis
200 ~ 500 Ω
Insulating Resistance
DC 25 V
More than 10MΩ
Linearity
--
±1.5 %
Notes life by Pen
Note a
100,000 times(min)
Input life by finger
Note b
1,000,000 times (min)
Terminal Resistance
Note A.
Notes area for pen notes life test is 10 x 9 mm.
Size of word is 7.5 x 6.72
Shape of pen end: R0.8
Load: 250 g
Note B
By Silicon rubber tapping at same point
Shape of rubber end: R8
Load: 200g
Frequency: 5 Hz
Interface
No.
Symbol
1
X1
Touch Panel Right Signal in X Axis
2
Y1
Touch Panel Upper Signal in Y Axis
3
X2
Touch Panel Left Signal in X Axis
4
Y2
Touch Panel Low Signal in Y Axis
Date : 2008/08/21
Function
AMPIRE CO., LTD.
12
5 Interface specifications
Pin no
1
2
3
4
5
6
7
Symbol
DGND
PWM
NC
/RESET
RS
/CS506
I/O
Description
Remark
- GND
LED dimming control(with LED driver IC).
Must be floating.
Reset signal for TFT LCD controller.
Register and Data select for TFT LCD controller.
Chip select low active signal for TFT LCD controller.
80mode: /WR low active signal for TFT LCD controller.
8
/WR
I
68mode: E signal latch on rising edge.
80mode: /RD low active signal for TFT LCD controller.
9
/RD
I
68mode: R/W signal Hi: read, Lo: write.
10
DB0
I
11
DB1
I
12
DB2
I
13
DB3
I
14
DB4
I
15
DB5
I
16
DB6
I
17
DB7
I
18
DB8
I
Data bus.
19
DB9
I
20
DB10
I
21
DB11
I
22
DB12
I
23
DB13
I
24
DB14
I
25
DB15
I
26
DB16
I
27
DB17
I
28
262K/65K
I Hi=262 K Color Mode; Lo: 65 K Color Mode.
29
DGND
- GND
Serial clock for Touch panel controller/
30
SK/X1
I
Touch Panel Right Signal in X Axis.
Data Output for Touch panel controller/
31
DO/X2
I
Touch Panel Left Signal in X Axis.
Data In for Touch panel controller/
32
DI/Y1
I
Touch Panel Upper Signal in Y Axis.
Chip Select for Touch panel controller/
33
TPCS/Y2
I
Touch Panel Lower Signal in Y Axis.
34
IRQ
I Interrupt for Touch panel controller.
35-37
VDD
- Power supply for the logic (3.3V).
38-40
DGND
- GND.
29~34 : SK, DO, DI, CS, IRQ for Touch Panel controller TSC2046/
X1, X2, Y1, Y2 for Touch Panel (without TSC2046)
Date : 2008/08/21
I
I
I
AMPIRE CO., LTD.
13
NOTE :
Pin3: PWM signal input. It is for brightness control.
ITEM
SYMBOL MIN
TYP
MAX
UNIT
ADJ signal frequency
fPWM
100
--
1K
Hz
ADJ signal logic level High
VIH
2.0
--
3.3V
V
ADJ signal logic level Low
VIL
0
--
0.8
V
F=100~1K Hz
H
Duty=100%
Brightness=100%
L
H
Duty=75%
Brightness=75%
L
H
Duty=50%
Brightness=50%
L
H
Duty=25%
Brightness=25%
L
H
Duty=0%
Brightness=0%
L
Date : 2008/08/21
AMPIRE CO., LTD.
14
6 BLOCK DIAGRAM
G1
320 xRGBx240
G240
S960
S1
VCOM
Driving Circuit
DC/DC
Gate Driver Circuit
TFT Panel
R6
G6
B6
DCLK
VS
HS
DE
Power Supply Circuit
Output control
SRAM
640x240x6x6 bits
Power circuit
SRAM control
Input control
4
PLL
/CSLCD
SDI
SCK
/RESET
MCU
OSC
TFT LCD controller
LED
Driver
PWM
Touch Panel
TP controller
VDD
VSS
/RESET
/WR (E)
/RD(R/W)
/CS
RS
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB11
DB12
DB13
DB14
DB15
DB16
DB17
262K/65K
SK/X1
DO/X2
DI/Y1
TPCS/Y2
IRQ
FPC circuit
Date : 2008/08/21
AMPIRE CO., LTD.
15
7 Interface Protocol
7.1 16Bit-80/68- Write to Command Register
7.2 16Bit-80/68-Write to Display RAM
/CS
80
mode
68
mode
/RD
/WR
E
R/W
RS
DB[15:0]
Note1
Display
RAM
Write Enable
0x000C1
Note2
Send
Data1
Note3
Send
Data2
Note4
Note5
Send
DataN
Display RAM
Write Disable
0x00080
Note1: DB[15:0] send 0x000C1 to Enable the Display RAM write.
Note2: DB[15:0] represent the writing Data1 to Display RAM
Note3: DB[15:0] represent the writing Data2 to Display RAM
Note4: DB[15:0] represent the writing DataN to Display RAM
Note5: DB[15:0] send 0x00080 to Disable the Display RAM write.
Date : 2008/08/21
AMPIRE CO., LTD.
16
7.3 Data transfer order Setting
7.3.1 18 bit interface 262K color only (Pin28 65K/262K =High)
DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
7.3.2 16 bit interface 65K color (Pin28 65K/262K =Low)
15 14 13 12 11 10 9 8 7 6 5 4
DB
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B4
B3
2
P
P
data
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
0
B1
B0
2
1
0
B3
B2
B1
B0
2
X
1
0
R5
B1
R4
B0
P
nd
1
B2
3
7.3.3 16 bit interface 262K color (Pin28 65K/262K =High)
DB
15 14 13 12 11 10 9 8 7 6 5 4 3
1 st data
X X X X X X X X X X X X X
P
2
B3
B2
7.3.4 9 bit interface 262K color only (Pin28 65K/262K =High)
DB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 st data
X X X X X X X R5 R4 R3 R2 R1 R0 G5 G4 G3
nd
2 data
X X X X X X X G2 G1 G0 B5 B4 B3 B2 B1 B0
P
P
P
P
7.3.5 8 bit interface 65K color (Pin28 65K/262K =Low)
DB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 st data
X X X X X X X X R4 R3 R2 R1 R0 G5 G4 G3
2 nd data
X X X X X X X X G2 G1 G0 B4 B3 B2 B1 B0
P
P
P
P
7.3.6 8 bit interface 262K color (Pin28 65K/262K =High)
DB
15 14 13 12 11 10 9 8 7 6 5 4 3 2
1 st data
X X X X X X X X
2 nd data
X X X X X X X X R3 R2 R1 R0 G5 G4
3 rd data
X X X X X X X X G1 G0 B5 B4 B3 B2
P
P
P
P
P
P
Date : 2008/08/21
AMPIRE CO., LTD.
1
0
R5
G3
B1
R4
G2
B0
17
8 Register Depiction
Register
Address
(Hex)
00
Description
Register
Address
(Hex)
01
Description
Register
Address
(Hex)
02
Description
Register
Address
(Hex)
03
Description
Register
Address
(Hex)
04
Description
Register
Address
(Hex)
05
Description
Register
Address
(Hex)
06
Description
Register
Address
(Hex)
07
Description
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
MSB of X-axis start position
00
set the horizontals start position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
LSB of X-axis start position
00
set the horizontals start position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
MSB of X-axis end position
01
set the horizontals end position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
LSB of X-axis end position
3F
set the horizontals end position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
MSB of Y-axis start position
00
set the vertical start position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
LSB of Y-axis start position
00
Set the vertical start position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
MSB of Y-axis end position
00
set the vertical end position of display active region
Default
(Hex)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
LSB of Y-axis end position
EF
Set the vertical end position of display active region
To simplify the address control of display RAM access, the window area address
function
allows for writing data only within a window area of display RAM specified by
registers REG[00]~REG[07] .
After writing data to the display RAM, the Address counter will be increased within
setting window address-range which is specified by
Date : 2008/08/21
AMPIRE CO., LTD.
18
MIN X address (REG[0] & REG[1])
MAX X address (REG[2] & REG[3])
MIN Y address (REG[4] & REG[5])
MAX Y address (REG[6] & REG[7])
Therefore, data can be written consecutively without thinking the data address.
Register
Address
(Hex)
08
Default
DB7 DB6 DB5 DB4
(Hex)
01
X
X
X
X
DB3
DB2
X
X
DB1
DB0
Remark
_PanelXSize
H_Byte[1:0]
Description Set the panel X size
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1
(Hex)
(Hex)
09
40
_PanelXSize L_Byte[7:0]
Description Set the panel X size
DB0
Remark
The register REG[08] and REG[09] is use to calculate the RAM address. If you
want to use the TFT as Landscape mode (320x240), the REG[08] & RGE[09 must
set to 320. If you want to use the TFT as Portrait mode (240x320), the REG[08] &
RGE[09] must set to 240.
Date : 2008/08/21
AMPIRE CO., LTD.
19
Register
Address
(Hex)
Default
(Hex)
0A
00
DB7 DB6 DB5 DB4
X
X
X
X
DB3
X
DB2 DB1
DB0
[17:16] bits of
memory write start
address
Description Memory write start address
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
(Hex)
(Hex)
[15:8] bits of memory write start address
0B
00
Description Memory write start address
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
(Hex)
(Hex)
[7:0] bits of memory write start address
0C
00
Description Memory write start address
Register
Address
(Hex)
0x10
Default
(Hex)
DB7
DB6
DB5 DB4
Remark
DB3
DB2
Remark
Remark
DB1 DB0 Remark
BUS_SEL
Blanking P/S_SEL
CLK_SEL
0x0D Bit_SWAP OUT_TEST
"0x10_Clk_sel[1:0]" : The TFT controller built-in 40Mhz PLL clock. These bits
are for select the TFT panel dot clock frequency.
00 : 20Mhz 01: 10Mhz 02: 5 Mhz
"0x10_ps_sel[2]" : The TFT controller support parallel and serial RGB
interface. These bits are for select the output timing.
0 : serial Panel 1: Parallel panel
"0x10_blanking_tmp[3]"
0 : OFF (blanking) 1: ON ( normal operation)
Description
"0x10_bus_sel[5:4]" : It only for serial Panel
00=R , 01=G , 10=B
"0x10_out_test[6]" : Self test
0 : normal operation 1: for test (don’t use for normal operation)
When set the bit to “1” , the Rout=(Reg 2a[6:0]) Gout=(Reg 2b[6:0])
Bout=(Reg 2c[6:0])
"0x10_bit_swap[7]" : 0-normal
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7
DB6
DB5 DB4 DB3
DB2 DB1 DB0 Remark
(Hex)
(Hex)
X
X
EVEN
_ODD
0x11
00
" Even line of serial panel data out sequence or data bus order of parallel
panel
000: RGB
001: RBG
Description 010: GRB
011: GBR
100: BRG
101: BGR
Others: reserved
Date : 2008/08/21
AMPIRE CO., LTD.
20
Odd line of serial panel data out sequence
000: RGB
001: RBG
010: GRB
011: GBR
100: BRG
101: BGR
Others: reserved
Must Set to 0x05 for AM320240N1
Register
Address
(Hex)
0x12
Default
(Hex)
DB7
DB6
DB5
DB4 DB3 DB2
DB1
DB0
Remark
00
Hsync_stH_Byte[3:0]
For TFT output timing adjust:
Description Hsync start position H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x13
00
Hsync_stL_Byte[7:0]
For TFT output timing adjust:
Description Hsync start position L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x14
00
Hsync_pwH_Byte[3:0]
For TFT output timing adjust:
Description Hsync pulse width H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x15
10
Hsync_pwL_Byte[7:0]
For TFT output timing adjust:
Description Hsync pulse width L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x16
00
Hact_stH_Byte[3:0]
For TFT output timing adjust:
Description DE pulse start position H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x17
38
Hact_stL_Byte[7:0]
For TFT output timing adjust:
Description DE pulse start position L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Date : 2008/08/21
AMPIRE CO., LTD.
21
Register
Address
(Hex)
0x18
Default
(Hex)
DB7
DB6
DB5
DB4 DB3 DB2
DB1
DB0
Remark
01
Hact_pwH_Byte[3:0]
For TFT output timing adjust:
Description DE pulse width H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x19
40
Hact_pwL_Byte[7:0]
For TFT output timing adjust:
Description DE pulse width L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x1A
01
HtotalH_Byte[3:0]
For TFT output timing adjust:
Description Hsync total clocks H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x1B
B8
HtotalL_Byte[7:0]
For TFT output timing adjust:
Description Hsync total clocks H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x1C
00
Vsync_stH_Byte[3:0]
For TFT output timing adjust:
Description Vsync start position H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x1D
00
Vsync_stL_Byte[7:0]
For TFT output timing adjust:
Description Vsync start position L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x1E
00
Vsync_pwH_Byte[3:0]
For TFT output timing adjust:
Vsync pulse width H-Byte
Description
The default setting is suitable for AM320240N1. Don’t need to modify it.
Date : 2008/08/21
AMPIRE CO., LTD.
22
Register
Address
(Hex)
0x1F
Default
(Hex)
DB7
DB6
DB5
DB4 DB3 DB2
DB1
DB0
Remark
08
Vsync_pwL_Byte[7:0]
For TFT output timing adjust:
Description Vsync pulse width L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x20
00
Vact_stH_Byte[3:0]
For TFT output timing adjust:
Description Vertical DE pulse start position H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x21
12
Vact_stL_Byte[7:0]
For TFT output timing adjust:
Description Vertical DE pulse start position L-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x22
00
Vact_pwH_Byte[3:0]
For TFT output timing adjust:
Description Vertical Active width H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Address
(Hex)
0x23
Default
(Hex)
DB7
DB6
DB5
DB4 DB3 DB2
DB1
DB0
Remark
F0
Vact_pwL_Byte[7:0]
For TFT output timing adjust:
Description Vertical Active width H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x24
01
VtotalH_Byte[3:0]
For TFT output timing adjust:
Description Vertical total width H-Byte
The default setting is suitable for AM320240N1. Don’t need to modify it.
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x25
09
VtotalL_Byte[7:0]
For TFT output timing adjust:
Vertical total width L-Byte
Description The default setting is suitable for AM320240N1. Don’t need to modify it.
Date : 2008/08/21
AMPIRE CO., LTD.
23
Register
Address
(Hex)
Default
(Hex)
DB7
DB6
26
00
X
X
DB5 DB4
X
X
DB3
X
DB2
DB1
DB0
Remark
[17:16] bits of
memory read start
address
Description Memory read start address
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
[15:8] bits of memory write start address
27
00
Description Memory read start address
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
[7:0] bits of memory write start address
28
00
Description Memory read start address
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
[7:1] Reversed
29
00
Description [0] Load output timing related setting (H sync., V sync. and DE) to take effect
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x2A
00
X
TestPatternRout[6:0]
When " REG[0x10]_out_test[6]" : Self test =1 ;
Description
The Rout data equal to TestPatternRout[6:0]
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x2B
00
X
TestPatternGout[6:0]
When " REG[0x10]_out_test[6]" : Self test =1 ;
Description
The Gout data equal to TestPatternGout[6:0]
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Remark
(Hex)
(Hex)
0x2C
00
X
TestPatternBout[6:0]
When " REG[0x10]_out_test[6]" : Self test =1 ;
Description
The Bout data equal to TestPatternBout[6:0]
If you set the " REG[0x10]_out_test[6]" : Self test =1 , the TFT controller will skip
the connect of the display RAM. The Output port will send the
REG[2A] ,REG[2B],REG[2C] data.
Date : 2008/08/21
AMPIRE CO., LTD.
24
Register
Address
(Hex)
Default
DB7 DB6 DB5 DB4 DB3
(Hex)
DB2
DB1 DB0 Remark
Rising/falling
_rotate
edge[2]
[1:0]
[3] Output pin X_DCON level control ; TFT Power ON/OFF control
0: TFT POWER circuit OFF
1: TFT POWER circuit ON
Rising/falling edge[2] :
0: The RGB out put data are on the Rising edge of the DCLK.
Description 1: The RGB out put data are on the Falling edge of the DCLK.
_rotate [1:0]:
00 : rotate 0 degree
01 : rotate90 degree
10 : rotate 270 degree
11 : rotate 180 degree
Register
Default
Address
DB7 DB6 DB5 DB4 DB3
DB2
DB1 DB0
(Hex)
(Hex)
_H byte
30
00
X
X
X
X
X
H-Offset[3:0]
Description Set the Horizontal offset
Register
Default
Address
DB7 DB6 DB5 DB4 DB3
DB2
DB1 DB0
(Hex)
(Hex)
31
00
_L byte H-Offset[7:0]
Description Set the Horizontal offset
Register
Default
Address
DB7 DB6 DB5 DB4 DB3
DB2
DB1 DB0
(Hex)
(Hex)
32
00
X
X
X
X
X
_H byte V-Offset[3:0]
Description Set the Vertical offset
Register
Default
Address
DB7 DB6 DB5 DB4 DB3
DB2
DB1 DB0
(Hex)
(Hex)
33
00
_L byte V-Offset[7:0]
Description Set the Vertical offset
Register
Default
Address
DB7 DB6 DB5 DB4 DB3
DB2
DB1 DB0
(Hex)
(Hex)
[7:4] Reserved
_H byte H-def[3:0]
34
00
Description [3:0] MSB of image horizontal physical resolution in memory
Register
Default
Address
DB7 DB6 DB5 DB4 DB3
DB2
DB1 DB0
(Hex)
(Hex)
35
40
_L byte H-def[7:0]
Description [7:0] LSB of image horizontal physical resolution in memory
0x2D
00
Date : 2008/08/21
X
X
X
X
[3]
AMPIRE CO., LTD.
25
Remark
Remark
Remark
Remark
Remark
Remark
Register
Address
(Hex)
36
Default
(Hex)
DB7 DB6 DB5 DB4
DB3
DB2 DB1 DB0
Remark
_H byte
V-def[3:0]
[3:0] MSB of image vertical physical resolution in memory
01
[7:4] Reserved
Description
Register
Default
Address
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
(Hex)
(Hex)
37
E0
_L byte V-def[7:0]
Description [7:0] LSB of image vertical physical resolution in memory
Remark
The total RAM size is 640x240x18bit. The user can arrange the Horizontal ram
size by REG[34],REG[35] and the Vertical ram size by REG[36],REG[37].
EX: 320x480x18bit REG[34]=0x01 , REG[35]=0x40 , REG[36]=0x01 ,
REG[37]=0xE0
EX: 640x240x18bit. REG[34]=0x02 , REG[35]=0x80 , REG[36]=0x00 ,
REG[37]=0xF0
Date : 2008/08/21
AMPIRE CO., LTD.
26
9 Application Note:
/* Exported types ------------------------------------------------------------*/
typedef
unsigned char
uint8;
typedef
signed
int8;
typedef
unsigned short
uint16;
typedef
signed
int16;
typedef
unsigned long
uint32;
typedef
signed
int32;
char
short
int
/*****************************************************************/
/*
STEP1: Define MCU BUS type
*/
/*****************************************************************/
#define Mode80
//#define Mode68
// 8080 MCU /WR /RD
// 6800 MCU R/W E
/*****************************************************************/
/*
STEP2: Define BUS wide
*/
/*****************************************************************/
//#define C80_18B
/#define C80_16B
//#define C80_9B
//#define C80_8B
/*****************************************************************/
/*
STEP3: Define Landscap/Portrait
*/
/*****************************************************************/
#define Landscap
//#define Portrait
/*****************************************************************/
/*
STEP4: Define Resolution
*/
/*****************************************************************/
#ifdef Landscap
#define
Resolution_X 320
#define
Resolution_Y 240
#endif
#ifdef Portrait
#define
Resolution_X 240
#define
Resolution_Y 320
#endif
Date : 2008/08/21
AMPIRE CO., LTD.
27
/*****************************************************************/
/*
STEP5: TFT timing
*/
/*****************************************************************/
#define Rising
0<<2
#define Falling
// Don't need to change
1<<2
#define LCD_DCLK
// Don't need to change
8
// Select DCLK Frequency MHz
// (can be 5,6,7,8,10,12,15)
#define LCD_DCLK_Latch
Rising
// Rising: for Rising Edge
// Falling: for Rising Edge
#define H_Sync_Pluse_Wide
10
// Hsync Pluse Wide
#define H_Sync_to_DE
68
// DE horizontal start position
#define H_Sync_total
408
// Horizontal total
#define V_Sync_Pluse_Wide
8
// Vsync Pluse Wide
#define V_Sync_to_DE
18
// DE vertical start position
#define V_Sync_total
262
// Vertical total
//*************************************************************//
/**************Don't need to change the bellow macro**************/
#if LCD_DCLK== 5
#define R41
1
#define R42
1
#define R10_B10 2
#endif
#if LCD_DCLK== 6
#define R41
3
#define R42
4
#define R10_B10 2
#endif
#if LCD_DCLK== 7
#define R41
4
#define R42
3
#define R10_B10 1
#endif
Date : 2008/08/21
AMPIRE CO., LTD.
28
#if LCD_DCLK== 8
#define R41
12
#define R42
10
#define R10_B10 1
#endif
#if LCD_DCLK== 10
#define R41
1
#define R42
1
#define R10_B10 1
#endif
#if LCD_DCLK== 12
#define R41
5
#define R42
6
#define R10_B10 1
#endif
#if LCD_DCLK== 15
#define R41
2
#define R42
3
#define R10_B10 1
#endif
#define _DisplayRAM_WriteEnable_ 0xc1
#define _DisplayRAM_WriteDisable_ 0x80
typedef struct
{
uint8 REG_Index;
uint8 REG_Value;
}FSA506_REG_Setting;
#ifdef Landscap
Date : 2008/08/21
AMPIRE CO., LTD.
29
static FSA506_REG_Setting FSA506_A[] =
{
{0x40,0x12},
{0x41,R41},
{0x42,R42},
{0x08,(uint8)(Resolution_X>>8)},
{0x09,(uint8)(Resolution_X)},
{0x0a,0x00},
{0x0b,0x00},
{0x0c,0x00},
{0x10,0x0C|R10_B10},
//{0x10,0x0C|0x02},
{0x11,0x05},
{0x12,0x00},
{0x13,0x00},
{0x14,(uint8)(H_Sync_Pluse_Wide>>8)},
{0x15,(uint8)(H_Sync_Pluse_Wide)},
{0x16,(uint8)(H_Sync_to_DE>>8)},
{0x17,(uint8)(H_Sync_to_DE)},
{0x18,(uint8)(Resolution_X>>8)},
{0x19,(uint8)(Resolution_X)},
{0x1a,(uint8)(H_Sync_total>>8)},
{0x1b,(uint8)(H_Sync_total)},
{0x1c,0x00},
{0x1d,0x00},
{0x1e,(uint8)(V_Sync_Pluse_Wide>>8)},
{0x1f,(uint8)(V_Sync_Pluse_Wide)},
{0x20,(uint8)(V_Sync_to_DE>>8)},
{0x21,(uint8)(V_Sync_to_DE)},
{0x22,(uint8)(Resolution_Y>>8)},
{0x23,(uint8)(Resolution_Y)},
{0x24,(uint8)(V_Sync_total>>8)},
{0x25,(uint8)(V_Sync_total)},
{0x26,0x00},
{0x27,0x00},
{0x28,0x00},
{0x29,0x01},
Date : 2008/08/21
AMPIRE CO., LTD.
30
{0x2d,LCD_DCLK_Latch|0x08},
// [7:4] Reserved
// [3] Output pin X_DCON level control
// [2] Output clock inversion
0: Normal 1: Inverse
// [1:0] Image rotate
//
00: 0° 01: 90° 10: 270° 11: 180°
{0x30,0x00},
{0x31,0x00},
{0x32,0x00},
{0x33,0x00},
{0x34,(uint8)(Resolution_X>>8)},
{0x35,(uint8)(Resolution_X)},
{0x36,(uint8)((2*Resolution_Y)>>8)},
{0x37,(uint8)(2*Resolution_Y)},
};
#endif
#ifdef Portrait
static FSA506_REG_Setting FSA506_A[] =
{
{0x40,0x12},
{0x41,R41},
{0x42,R42},
{0x08,(uint8)(Resolution_X>>8)},
{0x09,(uint8)(Resolution_X)},
{0x0a,0x00},
{0x0b,0x00},
{0x0c,0x00},
{0x10,0x0C|R10_B10},
//{0x10,0x0C|0x02},
{0x11,0x05},
{0x12,0x00},
{0x13,0x00},
{0x14,(uint8)(H_Sync_Pluse_Wide>>8)},
{0x15,(uint8)(H_Sync_Pluse_Wide)},
{0x16,(uint8)(H_Sync_to_DE>>8)},
{0x17,(uint8)(H_Sync_to_DE)},
Date : 2008/08/21
AMPIRE CO., LTD.
31
{0x18,(uint8)(Resolution_Y>>8)},
{0x19,(uint8)(Resolution_Y)},
{0x1a,(uint8)(H_Sync_total>>8)},
{0x1b,(uint8)(H_Sync_total)},
{0x1c,0x00},
{0x1d,0x00},
{0x1e,(uint8)(V_Sync_Pluse_Wide>>8)},
{0x1f,(uint8)(V_Sync_Pluse_Wide)},
{0x20,(uint8)(V_Sync_to_DE>>8)},
{0x21,(uint8)(V_Sync_to_DE)},
{0x22,(uint8)(Resolution_X>>8)},
{0x23,(uint8)(Resolution_X)},
{0x24,(uint8)(V_Sync_total>>8)},
{0x25,(uint8)(V_Sync_total)},
{0x26,0x00},
{0x27,0x00},
{0x28,0x00},
{0x29,0x01},
{0x2d,LCD_DCLK_Latch|0x08|0x01},
// [7:4] Reserved
// [3] Output pin X_DCON level control
// [2] Output clock inversion
0: Normal 1: Inverse
// [1:0] Image rotate
//
00: 0° 01: 90° 10: 270° 11: 180°
{0x30,0x00},
{0x31,0x00},
{0x32,0x00},
{0x33,0x00},
{0x34,(uint8)(Resolution_X>>8)},
{0x35,(uint8)(Resolution_X)},
{0x36,(uint8)((2*Resolution_Y)>>8)},
{0x37,(uint8)(2*Resolution_Y)},
};
#define
NOP()
__asm{NOP}
#endif
Date : 2008/08/21
AMPIRE CO., LTD.
32
/**************Don't need to change the above macro**************/
void AMP506_80Mode_Command_SendAddress(uint8 Addr);
void AMP506_80Mode_Command_SendData(uint8 Data);
void AMP506_80Mode_16Bit_Memory_SendData(uint16 Dat16bit);
void AMP506_Command_Write(uint8 CMD_Address,uint8 CMD_Value);
void Initial_AMP506(void) ;
void AMP506_WindowSet(uint16 S_X,uint16 S_Y,uint16 E_X,uint16 E_Y) ;
void FD506_DisplayRAM_WriteEnable(void);
void FD506_DisplayRAM_WriteDisable(void);
void GUI_RectangleFill(uint32 x0, uint32 y0, uint32 x1, uint32 y1, uint16 color);
void Full_LCD(uint16 Dat16bit);
/**************FSA506 Write Registr Address function *************************/
void AMP506_80Mode_Command_SendAddress(uint8 Addr)
{
#ifdef Mode68
uint16 i;
CLR_nWRL;
CLR_RS;
CLR_CS1;
CLR_nRD;
DB16OUT(Addr);
NOP();NOP();
SET_nWRL;
//Enable
NOP();NOP();NOP(); NOP();NOP();//NOP(); NOP();NOP();NOP();
CLR_nWRL;
//Enable
SET_RS;
SET_CS1;
#endif
#ifdef Mode80
SET_nRD;
//SET_RW
CLR_RS;
DB16OUT(Addr); NOP();
CLR_CS1;
CLR_nWRL;
Date : 2008/08/21
//CLR_E
AMPIRE CO., LTD.
33
NOP();NOP();NOP();
SET_nWRL;
//SER_E
// Low to High Latch Data to AMP506 Buffer
SET_RS;
SET_CS1;
#endif
}
/**************FSA506 Write Command Data function *************************/
void AMP506_80Mode_Command_SendData(uint8 Data)
{
#ifdef Mode68
uint16 i;
CLR_nWRL;
//E
SET_RS;
CLR_CS1;
CLR_nRD;
//W/R
DB16OUT(Data);
NOP();NOP();
SET_nWRL;
NOP();NOP();NOP();NOP();NOP();//NOP();NOP();NOP();
CLR_nWRL;
//E nable
SET_RS;
SET_CS1;
#endif
#ifdef Mode80
SET_nRD;
SET_RS;
DB16OUT(Data); NOP(); // NOP()
CLR_CS1;
CLR_nWRL;
NOP();NOP();NOP();
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_RS;
SET_CS1;
#endif
Date : 2008/08/21
AMPIRE CO., LTD.
34
}
/**************FSA506 Write Data function *************************/
void AMP506_80Mode_16Bit_Memory_SendData(uint16 Dat16bit)
{
#ifdef Mode80
#ifdef C80_16B
SET_nRD;
SET_RS;
DB16OUT(Dat16bit);NOP();
CLR_CS1;
CLR_nWRL;
NOP(); NOP(); NOP();
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
#ifdef C80_8B
DB16OUT(Dat16bit>>8);NOP();NOP();
SET_nRD;
SET_RS;
CLR_CS1;
CLR_nWRL;
NOP(); NOP(); NOP();
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
//Delay_uS(1);
DB16OUT(Dat16bit);NOP(); NOP();
SET_nRD;
SET_RS;
CLR_CS1;
CLR_nWRL;
Date : 2008/08/21
AMPIRE CO., LTD.
35
NOP(); NOP(); NOP();
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
//Delay_uS(1);
#ifdef C80_18B
uint32 k=0;
uint16 R_temp,G_temp,B_temp;
R_temp=((0xf800&Dat16bit)>>11);
G_temp=((0x07e0&Dat16bit)>>5);
B_temp=((0x001f&Dat16bit));
k|=((R_temp<<1)<<12); //+G_temp+B_temp;
k|=(G_temp<<6);
k|=(B_temp<<1);
FIO1MASK=0xFFE0FFFF;
FIO1PIN=k;
// FIOMASK 只可寫 P1.20~P1.16
// 將 Address A20~A16 寫入 P1.20~P1.16
FIO1MASK=0x00;
SET_nRD;
SET_RS;
DB16OUT(k);NOP();
CLR_CS1;
CLR_nWRL;
NOP(); NOP(); NOP();
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
Date : 2008/08/21
AMPIRE CO., LTD.
36
#ifdef C80_9B
uint32 k=0;
uint16 R_temp,G_temp,B_temp;
R_temp=((0xf800&Dat16bit)>>11);
G_temp=((0x07e0&Dat16bit)>>5);
B_temp=((0x001f&Dat16bit));
k|=((R_temp<<1)<<12); //+G_temp+B_temp;
k|=(G_temp<<6);
k|=(B_temp<<1);
SET_nRD;
SET_RS;
CLR_CS1;
CLR_nWRL;
DB16OUT(((k&0x3FE00)>>9));
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
DB16OUT((k&0x1FF)); NOP();
SET_CS1;
// Delay_uS(1);
SET_nRD;
SET_RS;
CLR_CS1;
CLR_nWRL;
NOP(); NOP(); NOP();
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
#endif
Date : 2008/08/21
AMPIRE CO., LTD.
37
#ifdef Mode68
#ifdef C80_16B
uint16 i;
NOP();NOP();
CLR_nWRL;
//E=0
SET_RS;
CLR_CS1;
CLR_nRD;
// W/R=0
DB16OUT(Dat16bit);
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP();
CLR_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
#ifdef C80_8B
uint16 i;
//for (i=0;i<16;i++);
NOP();NOP();
CLR_nWRL;
//E=0
SET_RS;
CLR_CS1;
CLR_nRD;
// W/R=0
DB16OUT(Dat16bit>>8);
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP();
CLR_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
CLR_nWRL;
//E=0
SET_RS;
CLR_CS1;
CLR_nRD;
// W/R=0
Date : 2008/08/21
AMPIRE CO., LTD.
38
DB16OUT(Dat16bit);
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP();
CLR_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
//Delay_uS(1);
#ifdef C80_18B
uint32 k=0;
uint16 R_temp,G_temp,B_temp;
uint16 i;
NOP();NOP();
R_temp=((0xf800&Dat16bit)>>11);
G_temp=((0x07e0&Dat16bit)>>5);
B_temp=((0x001f&Dat16bit));
k|=((R_temp<<1)<<12); //+G_temp+B_temp;
k|=(G_temp<<6);
k|=(B_temp<<1);
FIO1MASK=0xFFE0FFFF;
FIO1PIN=k;
// FIOMASK 只可寫 P1.20~P1.16
// 將 Address A20~A16 寫入 P1.20~P1.16
FIO1MASK=0x00;
CLR_nWRL;
//E=0
SET_RS;
CLR_CS1;
CLR_nRD;
// W/R=0
DB16OUT(k);
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
NOP();NOP();NOP();NOP();NOP();//NOP();NOP();NOP();
CLR_nWRL;
Date : 2008/08/21
// Low to High Latch Data to AMP506 Buffer
AMPIRE CO., LTD.
39
SET_CS1;
#endif
#ifdef C80_9B
uint32 k=0;
uint16 R_temp,G_temp,B_temp;
uint16 i;
//for (i=0;i<16;i++);
NOP();NOP();
R_temp=((0xf800&Dat16bit)>>11);
G_temp=((0x07e0&Dat16bit)>>5);
B_temp=((0x001f&Dat16bit));
k|=((R_temp<<1)<<12); //+G_temp+B_temp;
k|=(G_temp<<6);
k|=(B_temp<<1);
CLR_nWRL;
//E=0
SET_RS;
CLR_CS1;
CLR_nRD;
// W/R=0
DB16OUT(((k&0x3FE00)>>9));
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP();
CLR_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
// Delay_uS(1);
CLR_nWRL;
//E=0
SET_RS;
CLR_CS1;
CLR_nRD;
// W/R=0
DB16OUT((k&0x1FF));
Date : 2008/08/21
AMPIRE CO., LTD.
40
SET_nWRL;
// Low to High Latch Data to AMP506 Buffer
NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP();
CLR_nWRL;
// Low to High Latch Data to AMP506 Buffer
SET_CS1;
#endif
#endif
}
/**************FSA506 Write Command function *************************/
void AMP506_Command_Write(uint8 CMD_Address,uint8 CMD_Value)
{
AMP506_80Mode_Command_SendAddress(CMD_Address);
AMP506_80Mode_Command_SendData(CMD_Value);
}
/**************FSA506 Initial function *************************/
void Initial_AMP506(void)
{
//
uint8 i;
for(i=0;i < (sizeof(FSA506_A) / sizeof (FSA506_A[0]));i++)
{
AMP506_Command_Write(FSA506_A[i].REG_Index , FSA506_A[i].REG_Value);
}
}
/**************FSA506 Set Start & End area function *************************/
void AMP506_WindowSet(uint16 S_X,uint16 S_Y,uint16 E_X,uint16 E_Y)
{
Date : 2008/08/21
AMPIRE CO., LTD.
41
AMP506_80Mode_Command_SendAddress(0x00);
AMP506_80Mode_Command_SendData((S_X)>>8);
AMP506_80Mode_Command_SendData(S_X);
AMP506_80Mode_Command_SendData((E_X-1)>>8);
AMP506_80Mode_Command_SendData(E_X-1);
AMP506_80Mode_Command_SendData(S_Y>>8);
AMP506_80Mode_Command_SendData(S_Y);
AMP506_80Mode_Command_SendData((E_Y-1)>>8);
AMP506_80Mode_Command_SendData(E_Y-1);
}
//****************************************************************************
//
Enable Display RAM Write
//****************************************************************************
void FD506_DisplayRAM_WriteEnable(void)
{
AMP506_80Mode_Command_SendAddress(_DisplayRAM_WriteEnable_);
}
//****************************************************************************
//
Disable Display RAM Write
//****************************************************************************
void FD506_DisplayRAM_WriteDisable(void)
{
AMP506_80Mode_Command_SendAddress(_DisplayRAM_WriteDisable_);
}
/**************FSA506 Set Start & End area function *************************/
void GUI_RectangleFill(uint32 x0, uint32 y0, uint32 x1, uint32 y1, uint16 color)
{
uint32 k,l;
Date : 2008/08/21
AMPIRE CO., LTD.
42
AMP506_WindowSet(x0,y0,x1,y1);
FD506_DisplayRAM_WriteEnable();
for(k=y0;k<y1;k++)
{
for(l=x0;l<x1;l++)
{
AMP506_80Mode_16Bit_Memory_SendData(color);
}
}
FD506_DisplayRAM_WriteDisable();
}
/**************Full Display function *************************/
void Full_LCD(uint16 Dat16bit)
{
GUI_RectangleFill(0,0,Resolution_X,Resolution_Y,Dat16bit);
}
void main(void)
{
Initial_AMP506();
Full_LCD(0xf800);
Full_LCD(0x07e0);
Full_LCD(0x001f);
}
Date : 2008/08/21
AMPIRE CO., LTD.
43
The TFT LCD controller default value is for AM320240N1 already. So we can start
to write our data in a few steps:
Target: To write a 640x240 data to Display RAM and scroll the display data by
change the Horizontal offset register.
9.1 Step 1: Make sure the interface Protocol.
9.2 Step 2: Define the Horizontal ram seize = 640 and Vertical ram size =240
640x240x18bit. REG[34]=0x02 , REG[35]=0x80 , REG[36]=0x00 ,
REG[37]=0xF0
9.3 Step 3: Define the Panel X Size = 320
REG[8]=0x01 , REG[9]=0x40
9.4 Step4: Define the Write window. Start=(0,0) End=(619,239)
REG[0]=0x00 , REG[1]=0x00 , REG[2]=0x02 , REG[3]=0x6B , // Start X , End
X
REG[4]=0x00 , REG[5]=0x00 , REG[6]=0x00 , REG[7]=0xEF , // Star Y ,End Y
Date : 2008/08/21
AMPIRE CO., LTD.
44
9.5 Step5: Write the 640x240x18 bit data consecutively
9.6 Step6: The display will show the following image.
9.7 Step7: Change the Horizontal offset to switch or scroll the
display data.
Set the Horizontal offset = 160 , REG[30]=00 REG[31]=A0 . You will see
Date : 2008/08/21
AMPIRE CO., LTD.
45
9.8 Step8: Change the Horizontal offset to switch or scroll the
display data.
Set the Horizontal offset = 320 , REG[30]=01 REG[31]=40 . You will see
DISPLAYED COLOR AND INPUT DATA
Color &
Gray
Scale
Basic
Color
Red
Green
Blue
Black
Red(0)
Green(0)
Blue(0)
Cyan
Magenta
Yellow
White
Black
Red(62)
Red(61)
:
Red(31)
:
Red(1)
Red(0)
Black
Green(62)
Green(61)
:
Green(31)
:
Green(1)
Green(0)
Black
Blue(62)
Blue(61)
:
Blue(31)
:
Blue(1)
Blue(0)
DATA SIGNAL
R5
0
1
0
0
0
1
1
1
0
0
0
:
0
:
1
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
R4
0
1
0
0
0
1
1
1
0
0
0
:
1
:
1
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
Date : 2008/08/21
R3
0
1
0
0
0
1
1
1
0
0
0
:
1
:
1
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
R2
0
1
0
0
0
1
1
1
0
0
0
:
1
:
1
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
R1
0
1
0
0
0
1
1
1
0
0
1
:
1
:
1
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
R0
0
1
0
0
0
1
1
1
0
1
0
:
1
:
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
G5
0
0
1
0
1
0
1
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
1
1
0
0
0
:
0
:
0
0
G4
0
0
1
0
1
0
1
1
0
0
0
:
0
:
0
0
0
0
0
:
1
:
1
1
0
0
0
:
0
:
0
0
G3
0
0
1
0
1
0
1
1
0
0
0
:
0
:
0
0
0
0
0
:
1
:
1
1
0
0
0
:
0
:
0
0
G2
0
0
1
0
1
0
1
1
0
0
0
:
0
:
0
0
0
0
0
:
1
:
1
1
0
0
0
:
0
:
0
0
AMPIRE CO., LTD.
G1
0
0
1
0
1
0
1
1
0
0
0
:
0
:
0
0
0
0
1
:
1
:
1
1
0
0
0
:
0
:
0
0
G0
0
0
1
0
1
0
1
1
0
0
0
:
0
:
0
0
0
1
0
:
0
:
0
1
0
0
0
:
0
:
0
0
B5
0
0
0
1
1
1
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
0
0
0
:
0
:
1
1
B4
0
0
0
1
1
1
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
0
0
0
:
1
:
1
1
B3
0
0
0
1
1
1
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
0
0
0
:
1
:
1
1
B2
0
0
0
1
1
1
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
0
0
0
:
1
:
1
1
B1
0
0
0
1
1
1
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
0
0
1
:
1
:
1
1
46
B0
0
0
0
1
1
1
0
1
0
0
0
:
0
:
0
0
0
0
0
:
0
:
0
0
0
1
0
:
1
:
0
1
10 QUALITY AND RELIABILITY
10.1 TEST CONDITIONS
Tests should be conducted under the following conditions :
Ambient temperature : 25 ± 5°C
Humidity
: 60 ± 25% RH.
10.2 SAMPLING PLAN
Sampling method shall be in accordance with MIL-STD-105E , level II,
normal single sampling plan .
10.3 ACCEPTABLE QUALITY LEVEL
A major defect is defined as one that could cause failure to or materially
reduce the usability of the unit for its intended purpose. A minor defect is one that
does not materially reduce the usability of the unit for its intended purpose or is an
infringement from established standards and has no significant bearing on its
effective use or operation.
10.4 APPEARANCE
An appearance test should be conducted by human sight at
approximately 30 cm distance from the LCD module under flourescent light. The
inspection area of LCD panel shall be within the range of following limits.
Date : 2008/08/21
AMPIRE CO., LTD.
47
10.5 INSPECTION QUALITY CRITERIA
No.
Item
1
Non display
2
Irregular
operation
Criterion for defects
Defect type
No non display is allowed
Major
No irregular operation is allowed
Major
3
Short
No short are allowed
Major
4
Open
Any segments or common patterns that don’t activate
are rejectable.
Major
5
6
7
8
Black/White
spot (I)
Black/White
line (I)
Black/White
sport (II)
Black/White
line (II)
9
Back Light
10
Display pattern
Size D (mm)
D < 0.15
0.15 < D < 0.20
0.20 < D < 0.30
0.30 < D
U
U
U
U
U
Length(mm)
10 < L
5.0 < L < 10
1.0 < L < 5.0
L < 1.0
U
U
U
U
U
U
Acceptable number
Ignore
3
2
0
U
0.03 < W
0.04 < W
0.06 < W
0.07 < W
<
<
<
<
U
U
U
U
U
U
U
U
0.04
0.06
0.07
0.09
Size D (mm)
D < 0.30
0.30 < D < 0.50
0.50 < D < 1.20
1.20 < D
U
U
U
U
Length (mm)
20 < L
10 < L < 20
5.0 < L < 10
L < 5.0
U
U
U
U
U
U
Acceptable number
Ignore
5
3
0
U
U
Acceptable number
5
3
2
1
Width (mm)
0.05 < W < 0.07
0.07 < W < 0.09
0.09 < W < 0.10
0.10 < W < 0.15
U
U
U
U
U
U
U
U
Acceptable number
5
3
2
1
1. No Lighting is rejectable
2. Flickering and abnormal lighting are rejectable
Unit:mm
A+B
≤ 0.30 0 < C
2
Minor
Minor
Minor
Minor
Major
Minor
D+E
F+G
≤ 0.25
≤ 0.25
2
2
Note: 1. Acceptable up to 3 damages
2. NG if there’re to two or more pinholes per dot
Date : 2008/08/21
AMPIRE CO., LTD.
48
Blemish &
Foreign matters
11
Size D (mm)
D < 0.15
0.15 < D < 0.20
0.20 < D < 0.30
0.30 < D
U
Size:
A+ B
D=
2
Scratch on
Polarizer
12
U
U
U
U
Width (mm)
W < 0.0
U
U
3
0.03<W < 0.05
U
U
0.05<W < 0.08
U
Acceptable number
Ignore
3
2
0
U
U
Length (mm)
Ignore
L < 2.0
L > 2.0
L > 1.0
L < 1.0
Note (1)
U
U
U
U
Acceptable number
Ignore
Ignore
1
1
Ignore
Note(1)
Minor
Minor
0.08<W
Note(1) Regard as a blemish
Bubble in
13 polarizer
Size D (mm)
D < 0.20
0.20 < D < 0.50
0.50 < D < 0.80
0.80 < D
U
U
U
U
U
U
Acceptable number
Ignore
3
2
0
Minor
Stains on
14 LCD panel
surface
Stains that cannot be removed even when wiped lightly
with a soft cloth or similar cleaning too are rejectable.
Minor
15
Rust which is visible in the bezel is rejectable.
Minor
Defect of
land surface
16 contact (poor
soldering)
Evident crevices which is visible are rejectable.
Minor
Parts
17 mounting
1. Failure to mount parts
2. Parts not in the specifications are mounted
3. Polarity, for example, is reversed
Parts
18 alignment
1. LSI, IC lead width is more than 50% beyond pad
outline.
2. Chip component is off center and more than 50% of
the leads is off the pad outline.
Major
Major
Major
Minor
Rust in Bezel
Conductive
foreign matter
19 (Solder ball,
Solder chips)
Faulty PCB
20 correction
1. 0.45<φ
,N≧1
2. 0.30<φ < 0.45 ,N≧1
φ:Average diameter of solder ball (unit: mm)
3. 0.50<L
,N≧1
L: Average length of solder chip (unit: mm)
1. Due to PCB copper foil pattern burnout, the pattern is
connected, using a jumper wire for repair; 2 or more
places are corrected per PCB.
2. Short circuited part is cut, and no resist coating has
been performed.
Date : 2008/08/21
U
U
AMPIRE CO., LTD.
Minor
Major
Minor
Minor
Minor
Minor
49
The TFT panel may have bright dot or Dark dot.
The acceptable number defection:
21
Defect Dot
Bright
dot
Dark dot Total dot
2
3
4
Distance
between
Dark-- dark
L≧5 mm
Minor
11 Reliability test items :
Test Item
Test Conditions
High Temperature Operation
70±3°C , t=96 hrs
Low Temperature Operation
-20±3°C , t=96 hrs
High Temperature Storage
80±3°C , t=96 hrs
1,2
Low Temperature Storage
-30±3°C , t=96 hrs
1,2
40°C , Humidity 90%, 96 hrs
1,2
Humidity Test
Note
-30°C ~ 25°C ~ 80°C
1,2
30 min.
5 min. 30 min. ( 1 cycle )
Total 5 cycle
Sweep frequency:10~55~10 Hz/1min
Amplitude : 0.75mm
Vibration Test (Packing)
2
Test direction : X.Y.Z/3 axis
Duration : 30min/each axis
150pF 330 ohm ±8kV, 10times air discharge
Static Electricity
150pF 330 ohm ±4kV, 10times contact discharge
Note 1 : Condensation of water is not permitted on the module.
Note 2 : The module should be inspected after 1 hour storage in normal
conditions
(15-35°C , 45-65%RH).
Definitions of life end point :
z
Current drain should be smaller than the specific value.
z
Function of the module should be maintained.
z
Appearance and display quality should not have degraded noticeably.
z
Contrast ratio should be greater than 50% of the initial value.
Thermal Shock Test
Date : 2008/08/21
AMPIRE CO., LTD.
50
12 USE PRECAUTIONS
12.1 Handling precautions
1) The polarizing plate may break easily so be careful when handling it. Do not
touch, press or rub it with a hard-material tool like tweezers.
2) Do not touch the polarizing plate surface with bare hands so as not to make it
dirty. If the surface or other related part of the polarizing plate is dirty, soak a
soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use
chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do
so may bring chemical reaction phenomena and deteriorations.
3) Remove any spit or water immediately. If it is left for hours, the suffered part
may deform or decolorize.
4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if
LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water
immediately.
12.2 Installing precautions
1) The PCB has many ICs that may be damaged easily by static electricity. To
prevent breaking by static electricity from the human body and clothing, earth
the human body properly using the high resistance and discharge static
electricity during the operation. In this case, however, the resistance value
should be approx. 1MΩ and the resistance should be placed near the human
body rather than the ground surface. When the indoor space is dry, static
electricity may occur easily so be careful. We recommend the indoor space
should be kept with humidity of 60% or more. When a soldering iron or other
similar tool is used for assembly, be sure to earth it.
2) When installing the module and ICs, do not bend or twist them. Failure to do
so may crack LC element and cause circuit failure.
3) To protect LC element, especially polarizing plate, use a transparent protective
plate (e.g., acrylic plate, glass etc) for the product case.
4) Do not use an adhesive like a both-side adhesive tape to make LCD surface
(polarizing plate) and product case stick together. Failure to do so may cause
the polarizing plate to peel off.
12.3 Storage precautions
1) Avoid a high temperature and humidity area. Keep the temperature between
0°C and 35°C and also the humidity under 60%.
2) Choose the dark spaces where the product is not exposed to direct sunlight or
fluorescent light.
3) Store the products as they are put in the boxes provided from us or in the
same conditions as we recommend.
Date : 2008/08/21
AMPIRE CO., LTD.
51
12.4 Operating precautions
1) Do not boost the applied drive voltage abnormally. Failure to do so may break
ICs. When applying power voltage, check the electrical features beforehand
and be careful. Always turn off the power to the LC module controller before
removing or inserting the LC module input connector. If the input connector is
removed or inserted while the power is turned on, the LC module internal
circuit may break.
2) The display response may be late if the operating temperature is under the
normal standard, and the display may be out of order if it is above the normal
standard. But this is not a failure; this will be restored if it is within the normal
standard.
3) The LCD contrast varies depending on the visual angle, ambient temperature,
power voltage etc. Obtain the optimum contrast by adjusting the LC dive
voltage.
4) When carrying out the test, do not take the module out of the low-temperature
space suddenly. Failure to do so will cause the module condensing, leading to
malfunctions.
5) Make certain that each signal noise level is within the standard (L level:
0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned
properly. If it is beyond the standard, the module may often malfunction. In
addition, always connect the module when making noise level measurements.
6) The CMOS ICs are incorporated in the module and the pull-up and pull-down
function is not adopted for the input so avoid putting the input signal open
while the power is ON.
7) The characteristic of the semiconductor element changes when it is exposed
to light emissions, therefore ICs on the LCD may malfunction if they receive
light emissions. To prevent these malfunctions, design and assemble ICs so
that they are shielded from light emissions.
8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk
occurs when the regularized display is maintained. Also, crosstalk is affected
by the LC drive voltage. Design the contents of the display, considering
crosstalk.
Date : 2008/08/21
AMPIRE CO., LTD.
52
12.5 Other
1) Do not disassemble or take the LC module into pieces. The LC modules once
disassembled or taken into pieces are not the guarantee articles.
2) The residual image may exist if the same display pattern is shown for hours.
This residual image, however, disappears when another display pattern is
shown or the drive is interrupted and left for a while. But this is not a problem
on reliability.
3) AMIPRE will provide one year warrantee for all products and three months
warrantee for all repairing products.
Date : 2008/08/21
AMPIRE CO., LTD.
53
晶采 光 電 科技
13 OUTLINE DIMENSION
13.1 OUTLINE DIMENSION
Date : 2008/08/21
AMPIRE CO., LTD.
54