SPECIFICATIONS FOR LCD MODULE CUSTOMER CUSTOMER PART NO. AMPIRE PART NO. APPROVED AM320240L8TNQW-TB0H BY DATE ; Approved For Specifications Approved For Specifications & Sample AMPIRE CO., LTD. 2F., No.88, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 221, Taiwan (R.O.C.)台北縣汐止市新台五路一段 88 號 2 樓(東方科學園區 D 棟) TEL:886-2-26967269 , FAX:886-2-26967196 or 26967270 APPROVED BY Date : 2008/08/21 CHECKED BY AMPIRE CO., LTD. ORGANIZED BY 1 RECORD OF Revision Date Page REVISION Contents Editor 2007/09/19 - New Release Emil 2007/10/05 6 Correction the Black-light specification. Emil 2007/10/05 - Issued the official part No. Emil 2007/10/15 8,45 Correction the viewing angle and mechanical drawing. Emil Fix the driving interface to i80 series 16-bit. Emil 12 Correction the T/P Pin out. Emil 8 Correction view angle. Emil Correction the Definition of viewing angle. Emil Emil 2007/11/21 - 2007/12/06 2008/02/01 2008/06/23 8 Update the CIE chromaticity. 2008/8/21 3 Revise Features(with T/P and LED driver circuit) Edward Correction the overall dimension Edward 11 Update the bare brightness of LED backlight. Edward 13 Revise the definition of Pin3 and Pin4 Edward 14 Add the comment for PWM signal Edward 15 Modify the block diagram with LED driver block Edward 16 Correction Interface Protocol for 16bits Edward 17 Correction the Pin12 to Pin28. Edward 27-43 Update the Application Note 54 Date : 2008/08/21 Edward Modify the Outline Dimension with new Ampire logo Edward AMPIRE CO., LTD. 2 1 Features 3.5 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 3.5” TFT-LCD panel, LCD controller, Touch Panel, power driver circuit, LED driver circuit and backlight unit. 1.1 TFT Panel Feature : (1) Construction: 3.5” a-Si color TFT-LCD, White LED Backlight and PCB. (2) Resolution (pixel): 320(R.G.B) X240 (3) Number of the Colors : 262K colors ( R , G , B 6 bit digital each) (4) LCD type : Transmissive Color TFT LCD ( normally White) (5) Interface: 40 pin pitch 0.5 FFC (6) Power Supply Voltage: 3.3V single power input. Built-in power supply circuit. 1.2 LCD Controller Feature: (1) MCU interface: 16 bit 80 series MCU interface. (2) Display RAM size: 640x240x3x6 bits. Ex: 320x240 two frame buffer with 262K colors. (3) Arbitrary display memory starts position selection. (4) 16 bit interface support 65K (R5 G6 B5) Color. 2 Physical specifications Item Display resolution(dot) Active area Screen size Pixel size Color configuration Overall dimension Weight Backlight unit Date : 2008/08/21 Specifications 960 (W) x 240(H) 70.08(W) x 52.56(H) 3.5(Diagonal) 73 (W) x 219 (H) R.G.B stripe 77.8(W)x64.5(H) x 6.95(D) T.B.D LED AMPIRE CO., LTD. Unit dot mm mm um mm g 3 3 Electrical specification 3.1 Absolute max. ratings 3.1.1 Electrical Absolute max. ratings Item Symbol Condition Power voltage VDD Input voltege V in B VSS=0 B Min. Max. Unit -0.3 5.5 V -0.3 VDD+0.3 V Remark Note 1 Note1: /CS,/WR,/RD,RS,DB0~DN17 3.1.2 Environmental Absolute max. ratings OPERATING STORAGE Item MIN MAX MIN MAX Temperature -20 70 -30 80 Humidity Note1 Note1 Corrosive Gas Not Acceptable Not Acceptable Remark Note2,3,4,5,6,7 Note1 : Ta <= 40℃ : 85% RH max Ta > 40℃ : Absolute humidity must be lower than the humidity of 85%RH at 40℃ Note2 : For storage condition Ta at -30℃ < 48h , at 80℃ < 100h For operating condition Ta at -20℃ < 100h Note3 : Background color changes slightly depending on ambient temperature. This phenomenon is reversible. Note4 : The response time will be slower at low temperature. Note5 : Only operation is guarantied at operating temperature. Contrast , response time, another display quality are evaluated at +25℃ Note6 : z LED BL : When LCM is operated over 40℃ ambient temperature, the I LED of the LED back-light should be follow : B B Note7 : This is panel surface temperature, not ambient temperature. Date : 2008/08/21 AMPIRE CO., LTD. 4 Note8 : z LED BL: When LCM be operated over than 40℃, the life time of the LED back-light will be reduced. 3.1.3 LED back-light Unit Absolute max. ratings Item Symbol Ratings Unit Peak forward Current IF 60 mA Reverse Voltage VR 15 V Power Dissipation Po 0.9 W Remark 3.2 Electrical characteristics 3.2.1 DC Electrical characteristic of the LCD Typical operting conditions (VSS=0V) Symbol Min. Typ. Item Power supply Input Voltage for logic Output Voltage for Logic H Level Max. Unit VDD 3.0 3.3 5.0 V V IH 2.0 - 5.5 V B B Remark Note 1 L Level V IL H Level V OH B B B B VSS - 0.8 V 2.4 - VDD V Note 2 L Level Power Supply current V OL VSS IDD - B B 320 0.4 V - mA Note 3 Note1: With 5V Tolerance Input, /CS, /WR,/RD,RS,DB0~DB17 Note2: DB0~DB17 Note3: fV =60Hz, Ta=25℃, Display pattern: All Black Date : 2008/08/21 AMPIRE CO., LTD. 5 3.2.2 Electrical characteristic of LED Back-light Paramenter Symbol Min. Typ. Max. Unit LED voltage V AK 9.0 11.0 V B LED forward current I LED =40,Ta=25℃ B B I LED -- 40 -- mA Ta=25℃ I LED -- 30 -- mA -- T.B.D. - Hr Ta=60℃ I LED =40mA,Ta=25℃ B B Lamp life time B Condiction B B B B The constant current source is needed for white LED back-light driving. When LCM is operated over 60℃ ambient temperature, the I LED of the LED B B back-light should be adjusted to 15mA max(For one dice LED). Date : 2008/08/21 AMPIRE CO., LTD. 6 3.3 Symbol tcycle PWHW PWLW tAS tAH tDSW tHWR tcsb-s tcsb-h AC Timing characteristic of the Graphic TFT LCD controller Parameter Enable cycle time Enable high-level pulse width Enable low-level pulse width RS setup time RS hold time Write data setup time Write data hold time CSB setup time CSB hold time Date : 2008/08/21 Min 100 66 33 16 16 50 50 16 16 Typ 200 70 130 25 45 50 40 20 30 AMPIRE CO., LTD. Max Unit ns ns ns ns ns ns ns ns ns Remark 7 4 Optical specification 4.1 Optical characteristic: Item Response Time Rise+ Fall Contrast ratio Θx+ Viewing ΘxAngle Θy+ ΘyBrightness LED BL Without TP Brightness LED BL With TP Symbol Condition T r+ T f Typ. Max. Unit Remark Θ=0° 50 80 ms Note 1,2,3,5 CR At optimized viewing angle 200 300 - CR≧10 - 70 70 55 35 - deg. YL I LED =40mA ,25℃ 330 350 - cd/m 2 YL I LED =40mA, 25℃ 235 250 - cd/m 2 BB BB B B BB B B BB B B B B Min. Note 1,2,4,5 P P Note1,2, 5,6 Note 7 P Note 7 P XR 0.57 0.61 0.65 YR 0.32 0.36 0.40 XG 0.31 0.35 0.39 Green chromaticity YG Θ=0° 0.54 0.58 0.62 Θ=0° XB 0.10 0.14 0.20 Blue chromaticity 0.03 0.07 0.11 YB XW 0.26 0.34 White chromaticity YW 0.27 0.35 ( ) For reference only. These data should be update according the prototype. Note 1: Red chromaticity LED BL :Ambient temperature=25℃,and lamp current I LED =40mA.To be measured in the dark room. Note 2:To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-7,after 10 minutes operation. z B B Note 3.Definition of response time: The output signals of photo detector are measured when the input signals are changed from “black“ to “white”(falling time) and from “white” to “black” (rising time),respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below. Date : 2008/08/21 AMPIRE CO., LTD. 8 Note 4.Definition of contrast ratio: Contrast ratio is calculated with the following formula. Contrast ratio(CR)= Photo detector output when LCD is at ”White” state Photo detector Output when LCD is at “Black” state Note 5:White V i =V i50 +1.5V B B B B Black V i =V i50 +2.0V “±”means that the analog input signal swings in phase with V COM signal. “ “ means that the analog input signal swings out of phase with V COM signal. B B B B B B B B V i50 : The analog input voltage when transmission is 50%.The 100% Transmission is defined as the transmission of LCD panel when all the Input terminals of module are electrically opened. B B Note 6.Definition of viewing angle, Refer to figure as below. Date : 2008/08/21 AMPIRE CO., LTD. 9 Note 7.Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened. Ring light Brightness gauge BM-7 (Topcon) LCD module Metal halide lamp Glass fiber LIGHT:OFF, LIGHT:ON LCD Optical Detector Brightness gauge BM-7 (Topcon) LED / CCFL Date : 2008/08/21 LIGHT:ON, LIGHT:OFF AMPIRE CO., LTD. 10 4.2 Optical characteristic of the LED Back-light ITEM MIN TYP MAX UNIT Condition Bare Brightness 2800 --Cd/m2 I LED =40mA,Ta=25℃ AVG. X of 1931 C.I.E. 0.26 0.30 0.34 -I LED =40mA,Ta=25℃ AVG. Y of 1931 C.I.E. 0.27 0.31 0.35 -I LED =40mA,Ta=25℃ Brightness Uniformity 75 --% I LED =40mA,Ta=25℃ ( )For reference only. These data should be update according the prototype. B B B B B B B B Note1 : Measurement after 10 minutes from LED BL operating. Note2 : Measurement of the following 9 places on the display. W 5/6W 1/2W 1/6W Constant Current 40mA 1 2 L 3 5/6L A 4 5 6 1/2L A K DC Current meter 7 8 9 1/6L Note3: The Uniformity definition (Min Brightness / Max Brightness) x 100% Date : 2008/08/21 AMPIRE CO., LTD. 11 4.3 Touch Panel Electrical Specification Parameter Condition Standard Value X Axis 400 ~ 900 Ω Y Axis 200 ~ 500 Ω Insulating Resistance DC 25 V More than 10MΩ Linearity -- ±1.5 % Notes life by Pen Note a 100,000 times(min) Input life by finger Note b 1,000,000 times (min) Terminal Resistance Note A. Notes area for pen notes life test is 10 x 9 mm. Size of word is 7.5 x 6.72 Shape of pen end: R0.8 Load: 250 g Note B By Silicon rubber tapping at same point Shape of rubber end: R8 Load: 200g Frequency: 5 Hz Interface No. Symbol 1 X1 Touch Panel Right Signal in X Axis 2 Y1 Touch Panel Upper Signal in Y Axis 3 X2 Touch Panel Left Signal in X Axis 4 Y2 Touch Panel Low Signal in Y Axis Date : 2008/08/21 Function AMPIRE CO., LTD. 12 5 Interface specifications Pin no 1 2 3 4 5 6 7 Symbol DGND PWM NC /RESET RS /CS506 I/O Description Remark - GND LED dimming control(with LED driver IC). Must be floating. Reset signal for TFT LCD controller. Register and Data select for TFT LCD controller. Chip select low active signal for TFT LCD controller. 80mode: /WR low active signal for TFT LCD controller. 8 /WR I 68mode: E signal latch on rising edge. 80mode: /RD low active signal for TFT LCD controller. 9 /RD I 68mode: R/W signal Hi: read, Lo: write. 10 DB0 I 11 DB1 I 12 DB2 I 13 DB3 I 14 DB4 I 15 DB5 I 16 DB6 I 17 DB7 I 18 DB8 I Data bus. 19 DB9 I 20 DB10 I 21 DB11 I 22 DB12 I 23 DB13 I 24 DB14 I 25 DB15 I 26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND Serial clock for Touch panel controller/ 30 SK/X1 I Touch Panel Right Signal in X Axis. Data Output for Touch panel controller/ 31 DO/X2 I Touch Panel Left Signal in X Axis. Data In for Touch panel controller/ 32 DI/Y1 I Touch Panel Upper Signal in Y Axis. Chip Select for Touch panel controller/ 33 TPCS/Y2 I Touch Panel Lower Signal in Y Axis. 34 IRQ I Interrupt for Touch panel controller. 35-37 VDD - Power supply for the logic (3.3V). 38-40 DGND - GND. 29~34 : SK, DO, DI, CS, IRQ for Touch Panel controller TSC2046/ X1, X2, Y1, Y2 for Touch Panel (without TSC2046) Date : 2008/08/21 I I I AMPIRE CO., LTD. 13 NOTE : Pin3: PWM signal input. It is for brightness control. ITEM SYMBOL MIN TYP MAX UNIT ADJ signal frequency fPWM 100 -- 1K Hz ADJ signal logic level High VIH 2.0 -- 3.3V V ADJ signal logic level Low VIL 0 -- 0.8 V F=100~1K Hz H Duty=100% Brightness=100% L H Duty=75% Brightness=75% L H Duty=50% Brightness=50% L H Duty=25% Brightness=25% L H Duty=0% Brightness=0% L Date : 2008/08/21 AMPIRE CO., LTD. 14 6 BLOCK DIAGRAM G1 320 xRGBx240 G240 S960 S1 VCOM Driving Circuit DC/DC Gate Driver Circuit TFT Panel R6 G6 B6 DCLK VS HS DE Power Supply Circuit Output control SRAM 640x240x6x6 bits Power circuit SRAM control Input control 4 PLL /CSLCD SDI SCK /RESET MCU OSC TFT LCD controller LED Driver PWM Touch Panel TP controller VDD VSS /RESET /WR (E) /RD(R/W) /CS RS DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 DB12 DB13 DB14 DB15 DB16 DB17 262K/65K SK/X1 DO/X2 DI/Y1 TPCS/Y2 IRQ FPC circuit Date : 2008/08/21 AMPIRE CO., LTD. 15 7 Interface Protocol 7.1 16Bit-80/68- Write to Command Register 7.2 16Bit-80/68-Write to Display RAM /CS 80 mode 68 mode /RD /WR E R/W RS DB[15:0] Note1 Display RAM Write Enable 0x000C1 Note2 Send Data1 Note3 Send Data2 Note4 Note5 Send DataN Display RAM Write Disable 0x00080 Note1: DB[15:0] send 0x000C1 to Enable the Display RAM write. Note2: DB[15:0] represent the writing Data1 to Display RAM Note3: DB[15:0] represent the writing Data2 to Display RAM Note4: DB[15:0] represent the writing DataN to Display RAM Note5: DB[15:0] send 0x00080 to Disable the Display RAM write. Date : 2008/08/21 AMPIRE CO., LTD. 16 7.3 Data transfer order Setting 7.3.1 18 bit interface 262K color only (Pin28 65K/262K =High) DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 7.3.2 16 bit interface 65K color (Pin28 65K/262K =Low) 15 14 13 12 11 10 9 8 7 6 5 4 DB R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 2 P P data R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 0 B1 B0 2 1 0 B3 B2 B1 B0 2 X 1 0 R5 B1 R4 B0 P nd 1 B2 3 7.3.3 16 bit interface 262K color (Pin28 65K/262K =High) DB 15 14 13 12 11 10 9 8 7 6 5 4 3 1 st data X X X X X X X X X X X X X P 2 B3 B2 7.3.4 9 bit interface 262K color only (Pin28 65K/262K =High) DB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 st data X X X X X X X R5 R4 R3 R2 R1 R0 G5 G4 G3 nd 2 data X X X X X X X G2 G1 G0 B5 B4 B3 B2 B1 B0 P P P P 7.3.5 8 bit interface 65K color (Pin28 65K/262K =Low) DB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 st data X X X X X X X X R4 R3 R2 R1 R0 G5 G4 G3 2 nd data X X X X X X X X G2 G1 G0 B4 B3 B2 B1 B0 P P P P 7.3.6 8 bit interface 262K color (Pin28 65K/262K =High) DB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 st data X X X X X X X X 2 nd data X X X X X X X X R3 R2 R1 R0 G5 G4 3 rd data X X X X X X X X G1 G0 B5 B4 B3 B2 P P P P P P Date : 2008/08/21 AMPIRE CO., LTD. 1 0 R5 G3 B1 R4 G2 B0 17 8 Register Depiction Register Address (Hex) 00 Description Register Address (Hex) 01 Description Register Address (Hex) 02 Description Register Address (Hex) 03 Description Register Address (Hex) 04 Description Register Address (Hex) 05 Description Register Address (Hex) 06 Description Register Address (Hex) 07 Description Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark MSB of X-axis start position 00 set the horizontals start position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark LSB of X-axis start position 00 set the horizontals start position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark MSB of X-axis end position 01 set the horizontals end position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark LSB of X-axis end position 3F set the horizontals end position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark MSB of Y-axis start position 00 set the vertical start position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark LSB of Y-axis start position 00 Set the vertical start position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark MSB of Y-axis end position 00 set the vertical end position of display active region Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark LSB of Y-axis end position EF Set the vertical end position of display active region To simplify the address control of display RAM access, the window area address function allows for writing data only within a window area of display RAM specified by registers REG[00]~REG[07] . After writing data to the display RAM, the Address counter will be increased within setting window address-range which is specified by Date : 2008/08/21 AMPIRE CO., LTD. 18 MIN X address (REG[0] & REG[1]) MAX X address (REG[2] & REG[3]) MIN Y address (REG[4] & REG[5]) MAX Y address (REG[6] & REG[7]) Therefore, data can be written consecutively without thinking the data address. Register Address (Hex) 08 Default DB7 DB6 DB5 DB4 (Hex) 01 X X X X DB3 DB2 X X DB1 DB0 Remark _PanelXSize H_Byte[1:0] Description Set the panel X size Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 (Hex) (Hex) 09 40 _PanelXSize L_Byte[7:0] Description Set the panel X size DB0 Remark The register REG[08] and REG[09] is use to calculate the RAM address. If you want to use the TFT as Landscape mode (320x240), the REG[08] & RGE[09 must set to 320. If you want to use the TFT as Portrait mode (240x320), the REG[08] & RGE[09] must set to 240. Date : 2008/08/21 AMPIRE CO., LTD. 19 Register Address (Hex) Default (Hex) 0A 00 DB7 DB6 DB5 DB4 X X X X DB3 X DB2 DB1 DB0 [17:16] bits of memory write start address Description Memory write start address Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) [15:8] bits of memory write start address 0B 00 Description Memory write start address Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) [7:0] bits of memory write start address 0C 00 Description Memory write start address Register Address (Hex) 0x10 Default (Hex) DB7 DB6 DB5 DB4 Remark DB3 DB2 Remark Remark DB1 DB0 Remark BUS_SEL Blanking P/S_SEL CLK_SEL 0x0D Bit_SWAP OUT_TEST "0x10_Clk_sel[1:0]" : The TFT controller built-in 40Mhz PLL clock. These bits are for select the TFT panel dot clock frequency. 00 : 20Mhz 01: 10Mhz 02: 5 Mhz "0x10_ps_sel[2]" : The TFT controller support parallel and serial RGB interface. These bits are for select the output timing. 0 : serial Panel 1: Parallel panel "0x10_blanking_tmp[3]" 0 : OFF (blanking) 1: ON ( normal operation) Description "0x10_bus_sel[5:4]" : It only for serial Panel 00=R , 01=G , 10=B "0x10_out_test[6]" : Self test 0 : normal operation 1: for test (don’t use for normal operation) When set the bit to “1” , the Rout=(Reg 2a[6:0]) Gout=(Reg 2b[6:0]) Bout=(Reg 2c[6:0]) "0x10_bit_swap[7]" : 0-normal The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) X X EVEN _ODD 0x11 00 " Even line of serial panel data out sequence or data bus order of parallel panel 000: RGB 001: RBG Description 010: GRB 011: GBR 100: BRG 101: BGR Others: reserved Date : 2008/08/21 AMPIRE CO., LTD. 20 Odd line of serial panel data out sequence 000: RGB 001: RBG 010: GRB 011: GBR 100: BRG 101: BGR Others: reserved Must Set to 0x05 for AM320240N1 Register Address (Hex) 0x12 Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark 00 Hsync_stH_Byte[3:0] For TFT output timing adjust: Description Hsync start position H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x13 00 Hsync_stL_Byte[7:0] For TFT output timing adjust: Description Hsync start position L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x14 00 Hsync_pwH_Byte[3:0] For TFT output timing adjust: Description Hsync pulse width H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x15 10 Hsync_pwL_Byte[7:0] For TFT output timing adjust: Description Hsync pulse width L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x16 00 Hact_stH_Byte[3:0] For TFT output timing adjust: Description DE pulse start position H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x17 38 Hact_stL_Byte[7:0] For TFT output timing adjust: Description DE pulse start position L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Date : 2008/08/21 AMPIRE CO., LTD. 21 Register Address (Hex) 0x18 Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark 01 Hact_pwH_Byte[3:0] For TFT output timing adjust: Description DE pulse width H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x19 40 Hact_pwL_Byte[7:0] For TFT output timing adjust: Description DE pulse width L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x1A 01 HtotalH_Byte[3:0] For TFT output timing adjust: Description Hsync total clocks H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x1B B8 HtotalL_Byte[7:0] For TFT output timing adjust: Description Hsync total clocks H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x1C 00 Vsync_stH_Byte[3:0] For TFT output timing adjust: Description Vsync start position H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x1D 00 Vsync_stL_Byte[7:0] For TFT output timing adjust: Description Vsync start position L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x1E 00 Vsync_pwH_Byte[3:0] For TFT output timing adjust: Vsync pulse width H-Byte Description The default setting is suitable for AM320240N1. Don’t need to modify it. Date : 2008/08/21 AMPIRE CO., LTD. 22 Register Address (Hex) 0x1F Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark 08 Vsync_pwL_Byte[7:0] For TFT output timing adjust: Description Vsync pulse width L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x20 00 Vact_stH_Byte[3:0] For TFT output timing adjust: Description Vertical DE pulse start position H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x21 12 Vact_stL_Byte[7:0] For TFT output timing adjust: Description Vertical DE pulse start position L-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x22 00 Vact_pwH_Byte[3:0] For TFT output timing adjust: Description Vertical Active width H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Address (Hex) 0x23 Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark F0 Vact_pwL_Byte[7:0] For TFT output timing adjust: Description Vertical Active width H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x24 01 VtotalH_Byte[3:0] For TFT output timing adjust: Description Vertical total width H-Byte The default setting is suitable for AM320240N1. Don’t need to modify it. Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x25 09 VtotalL_Byte[7:0] For TFT output timing adjust: Vertical total width L-Byte Description The default setting is suitable for AM320240N1. Don’t need to modify it. Date : 2008/08/21 AMPIRE CO., LTD. 23 Register Address (Hex) Default (Hex) DB7 DB6 26 00 X X DB5 DB4 X X DB3 X DB2 DB1 DB0 Remark [17:16] bits of memory read start address Description Memory read start address Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) [15:8] bits of memory write start address 27 00 Description Memory read start address Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) [7:0] bits of memory write start address 28 00 Description Memory read start address Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) [7:1] Reversed 29 00 Description [0] Load output timing related setting (H sync., V sync. and DE) to take effect Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x2A 00 X TestPatternRout[6:0] When " REG[0x10]_out_test[6]" : Self test =1 ; Description The Rout data equal to TestPatternRout[6:0] Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x2B 00 X TestPatternGout[6:0] When " REG[0x10]_out_test[6]" : Self test =1 ; Description The Gout data equal to TestPatternGout[6:0] Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark (Hex) (Hex) 0x2C 00 X TestPatternBout[6:0] When " REG[0x10]_out_test[6]" : Self test =1 ; Description The Bout data equal to TestPatternBout[6:0] If you set the " REG[0x10]_out_test[6]" : Self test =1 , the TFT controller will skip the connect of the display RAM. The Output port will send the REG[2A] ,REG[2B],REG[2C] data. Date : 2008/08/21 AMPIRE CO., LTD. 24 Register Address (Hex) Default DB7 DB6 DB5 DB4 DB3 (Hex) DB2 DB1 DB0 Remark Rising/falling _rotate edge[2] [1:0] [3] Output pin X_DCON level control ; TFT Power ON/OFF control 0: TFT POWER circuit OFF 1: TFT POWER circuit ON Rising/falling edge[2] : 0: The RGB out put data are on the Rising edge of the DCLK. Description 1: The RGB out put data are on the Falling edge of the DCLK. _rotate [1:0]: 00 : rotate 0 degree 01 : rotate90 degree 10 : rotate 270 degree 11 : rotate 180 degree Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) _H byte 30 00 X X X X X H-Offset[3:0] Description Set the Horizontal offset Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) 31 00 _L byte H-Offset[7:0] Description Set the Horizontal offset Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) 32 00 X X X X X _H byte V-Offset[3:0] Description Set the Vertical offset Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) 33 00 _L byte V-Offset[7:0] Description Set the Vertical offset Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) [7:4] Reserved _H byte H-def[3:0] 34 00 Description [3:0] MSB of image horizontal physical resolution in memory Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) 35 40 _L byte H-def[7:0] Description [7:0] LSB of image horizontal physical resolution in memory 0x2D 00 Date : 2008/08/21 X X X X [3] AMPIRE CO., LTD. 25 Remark Remark Remark Remark Remark Remark Register Address (Hex) 36 Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark _H byte V-def[3:0] [3:0] MSB of image vertical physical resolution in memory 01 [7:4] Reserved Description Register Default Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 (Hex) (Hex) 37 E0 _L byte V-def[7:0] Description [7:0] LSB of image vertical physical resolution in memory Remark The total RAM size is 640x240x18bit. The user can arrange the Horizontal ram size by REG[34],REG[35] and the Vertical ram size by REG[36],REG[37]. EX: 320x480x18bit REG[34]=0x01 , REG[35]=0x40 , REG[36]=0x01 , REG[37]=0xE0 EX: 640x240x18bit. REG[34]=0x02 , REG[35]=0x80 , REG[36]=0x00 , REG[37]=0xF0 Date : 2008/08/21 AMPIRE CO., LTD. 26 9 Application Note: /* Exported types ------------------------------------------------------------*/ typedef unsigned char uint8; typedef signed int8; typedef unsigned short uint16; typedef signed int16; typedef unsigned long uint32; typedef signed int32; char short int /*****************************************************************/ /* STEP1: Define MCU BUS type */ /*****************************************************************/ #define Mode80 //#define Mode68 // 8080 MCU /WR /RD // 6800 MCU R/W E /*****************************************************************/ /* STEP2: Define BUS wide */ /*****************************************************************/ //#define C80_18B /#define C80_16B //#define C80_9B //#define C80_8B /*****************************************************************/ /* STEP3: Define Landscap/Portrait */ /*****************************************************************/ #define Landscap //#define Portrait /*****************************************************************/ /* STEP4: Define Resolution */ /*****************************************************************/ #ifdef Landscap #define Resolution_X 320 #define Resolution_Y 240 #endif #ifdef Portrait #define Resolution_X 240 #define Resolution_Y 320 #endif Date : 2008/08/21 AMPIRE CO., LTD. 27 /*****************************************************************/ /* STEP5: TFT timing */ /*****************************************************************/ #define Rising 0<<2 #define Falling // Don't need to change 1<<2 #define LCD_DCLK // Don't need to change 8 // Select DCLK Frequency MHz // (can be 5,6,7,8,10,12,15) #define LCD_DCLK_Latch Rising // Rising: for Rising Edge // Falling: for Rising Edge #define H_Sync_Pluse_Wide 10 // Hsync Pluse Wide #define H_Sync_to_DE 68 // DE horizontal start position #define H_Sync_total 408 // Horizontal total #define V_Sync_Pluse_Wide 8 // Vsync Pluse Wide #define V_Sync_to_DE 18 // DE vertical start position #define V_Sync_total 262 // Vertical total //*************************************************************// /**************Don't need to change the bellow macro**************/ #if LCD_DCLK== 5 #define R41 1 #define R42 1 #define R10_B10 2 #endif #if LCD_DCLK== 6 #define R41 3 #define R42 4 #define R10_B10 2 #endif #if LCD_DCLK== 7 #define R41 4 #define R42 3 #define R10_B10 1 #endif Date : 2008/08/21 AMPIRE CO., LTD. 28 #if LCD_DCLK== 8 #define R41 12 #define R42 10 #define R10_B10 1 #endif #if LCD_DCLK== 10 #define R41 1 #define R42 1 #define R10_B10 1 #endif #if LCD_DCLK== 12 #define R41 5 #define R42 6 #define R10_B10 1 #endif #if LCD_DCLK== 15 #define R41 2 #define R42 3 #define R10_B10 1 #endif #define _DisplayRAM_WriteEnable_ 0xc1 #define _DisplayRAM_WriteDisable_ 0x80 typedef struct { uint8 REG_Index; uint8 REG_Value; }FSA506_REG_Setting; #ifdef Landscap Date : 2008/08/21 AMPIRE CO., LTD. 29 static FSA506_REG_Setting FSA506_A[] = { {0x40,0x12}, {0x41,R41}, {0x42,R42}, {0x08,(uint8)(Resolution_X>>8)}, {0x09,(uint8)(Resolution_X)}, {0x0a,0x00}, {0x0b,0x00}, {0x0c,0x00}, {0x10,0x0C|R10_B10}, //{0x10,0x0C|0x02}, {0x11,0x05}, {0x12,0x00}, {0x13,0x00}, {0x14,(uint8)(H_Sync_Pluse_Wide>>8)}, {0x15,(uint8)(H_Sync_Pluse_Wide)}, {0x16,(uint8)(H_Sync_to_DE>>8)}, {0x17,(uint8)(H_Sync_to_DE)}, {0x18,(uint8)(Resolution_X>>8)}, {0x19,(uint8)(Resolution_X)}, {0x1a,(uint8)(H_Sync_total>>8)}, {0x1b,(uint8)(H_Sync_total)}, {0x1c,0x00}, {0x1d,0x00}, {0x1e,(uint8)(V_Sync_Pluse_Wide>>8)}, {0x1f,(uint8)(V_Sync_Pluse_Wide)}, {0x20,(uint8)(V_Sync_to_DE>>8)}, {0x21,(uint8)(V_Sync_to_DE)}, {0x22,(uint8)(Resolution_Y>>8)}, {0x23,(uint8)(Resolution_Y)}, {0x24,(uint8)(V_Sync_total>>8)}, {0x25,(uint8)(V_Sync_total)}, {0x26,0x00}, {0x27,0x00}, {0x28,0x00}, {0x29,0x01}, Date : 2008/08/21 AMPIRE CO., LTD. 30 {0x2d,LCD_DCLK_Latch|0x08}, // [7:4] Reserved // [3] Output pin X_DCON level control // [2] Output clock inversion 0: Normal 1: Inverse // [1:0] Image rotate // 00: 0° 01: 90° 10: 270° 11: 180° {0x30,0x00}, {0x31,0x00}, {0x32,0x00}, {0x33,0x00}, {0x34,(uint8)(Resolution_X>>8)}, {0x35,(uint8)(Resolution_X)}, {0x36,(uint8)((2*Resolution_Y)>>8)}, {0x37,(uint8)(2*Resolution_Y)}, }; #endif #ifdef Portrait static FSA506_REG_Setting FSA506_A[] = { {0x40,0x12}, {0x41,R41}, {0x42,R42}, {0x08,(uint8)(Resolution_X>>8)}, {0x09,(uint8)(Resolution_X)}, {0x0a,0x00}, {0x0b,0x00}, {0x0c,0x00}, {0x10,0x0C|R10_B10}, //{0x10,0x0C|0x02}, {0x11,0x05}, {0x12,0x00}, {0x13,0x00}, {0x14,(uint8)(H_Sync_Pluse_Wide>>8)}, {0x15,(uint8)(H_Sync_Pluse_Wide)}, {0x16,(uint8)(H_Sync_to_DE>>8)}, {0x17,(uint8)(H_Sync_to_DE)}, Date : 2008/08/21 AMPIRE CO., LTD. 31 {0x18,(uint8)(Resolution_Y>>8)}, {0x19,(uint8)(Resolution_Y)}, {0x1a,(uint8)(H_Sync_total>>8)}, {0x1b,(uint8)(H_Sync_total)}, {0x1c,0x00}, {0x1d,0x00}, {0x1e,(uint8)(V_Sync_Pluse_Wide>>8)}, {0x1f,(uint8)(V_Sync_Pluse_Wide)}, {0x20,(uint8)(V_Sync_to_DE>>8)}, {0x21,(uint8)(V_Sync_to_DE)}, {0x22,(uint8)(Resolution_X>>8)}, {0x23,(uint8)(Resolution_X)}, {0x24,(uint8)(V_Sync_total>>8)}, {0x25,(uint8)(V_Sync_total)}, {0x26,0x00}, {0x27,0x00}, {0x28,0x00}, {0x29,0x01}, {0x2d,LCD_DCLK_Latch|0x08|0x01}, // [7:4] Reserved // [3] Output pin X_DCON level control // [2] Output clock inversion 0: Normal 1: Inverse // [1:0] Image rotate // 00: 0° 01: 90° 10: 270° 11: 180° {0x30,0x00}, {0x31,0x00}, {0x32,0x00}, {0x33,0x00}, {0x34,(uint8)(Resolution_X>>8)}, {0x35,(uint8)(Resolution_X)}, {0x36,(uint8)((2*Resolution_Y)>>8)}, {0x37,(uint8)(2*Resolution_Y)}, }; #define NOP() __asm{NOP} #endif Date : 2008/08/21 AMPIRE CO., LTD. 32 /**************Don't need to change the above macro**************/ void AMP506_80Mode_Command_SendAddress(uint8 Addr); void AMP506_80Mode_Command_SendData(uint8 Data); void AMP506_80Mode_16Bit_Memory_SendData(uint16 Dat16bit); void AMP506_Command_Write(uint8 CMD_Address,uint8 CMD_Value); void Initial_AMP506(void) ; void AMP506_WindowSet(uint16 S_X,uint16 S_Y,uint16 E_X,uint16 E_Y) ; void FD506_DisplayRAM_WriteEnable(void); void FD506_DisplayRAM_WriteDisable(void); void GUI_RectangleFill(uint32 x0, uint32 y0, uint32 x1, uint32 y1, uint16 color); void Full_LCD(uint16 Dat16bit); /**************FSA506 Write Registr Address function *************************/ void AMP506_80Mode_Command_SendAddress(uint8 Addr) { #ifdef Mode68 uint16 i; CLR_nWRL; CLR_RS; CLR_CS1; CLR_nRD; DB16OUT(Addr); NOP();NOP(); SET_nWRL; //Enable NOP();NOP();NOP(); NOP();NOP();//NOP(); NOP();NOP();NOP(); CLR_nWRL; //Enable SET_RS; SET_CS1; #endif #ifdef Mode80 SET_nRD; //SET_RW CLR_RS; DB16OUT(Addr); NOP(); CLR_CS1; CLR_nWRL; Date : 2008/08/21 //CLR_E AMPIRE CO., LTD. 33 NOP();NOP();NOP(); SET_nWRL; //SER_E // Low to High Latch Data to AMP506 Buffer SET_RS; SET_CS1; #endif } /**************FSA506 Write Command Data function *************************/ void AMP506_80Mode_Command_SendData(uint8 Data) { #ifdef Mode68 uint16 i; CLR_nWRL; //E SET_RS; CLR_CS1; CLR_nRD; //W/R DB16OUT(Data); NOP();NOP(); SET_nWRL; NOP();NOP();NOP();NOP();NOP();//NOP();NOP();NOP(); CLR_nWRL; //E nable SET_RS; SET_CS1; #endif #ifdef Mode80 SET_nRD; SET_RS; DB16OUT(Data); NOP(); // NOP() CLR_CS1; CLR_nWRL; NOP();NOP();NOP(); SET_nWRL; // Low to High Latch Data to AMP506 Buffer SET_RS; SET_CS1; #endif Date : 2008/08/21 AMPIRE CO., LTD. 34 } /**************FSA506 Write Data function *************************/ void AMP506_80Mode_16Bit_Memory_SendData(uint16 Dat16bit) { #ifdef Mode80 #ifdef C80_16B SET_nRD; SET_RS; DB16OUT(Dat16bit);NOP(); CLR_CS1; CLR_nWRL; NOP(); NOP(); NOP(); SET_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif #ifdef C80_8B DB16OUT(Dat16bit>>8);NOP();NOP(); SET_nRD; SET_RS; CLR_CS1; CLR_nWRL; NOP(); NOP(); NOP(); SET_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; //Delay_uS(1); DB16OUT(Dat16bit);NOP(); NOP(); SET_nRD; SET_RS; CLR_CS1; CLR_nWRL; Date : 2008/08/21 AMPIRE CO., LTD. 35 NOP(); NOP(); NOP(); SET_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif //Delay_uS(1); #ifdef C80_18B uint32 k=0; uint16 R_temp,G_temp,B_temp; R_temp=((0xf800&Dat16bit)>>11); G_temp=((0x07e0&Dat16bit)>>5); B_temp=((0x001f&Dat16bit)); k|=((R_temp<<1)<<12); //+G_temp+B_temp; k|=(G_temp<<6); k|=(B_temp<<1); FIO1MASK=0xFFE0FFFF; FIO1PIN=k; // FIOMASK 只可寫 P1.20~P1.16 // 將 Address A20~A16 寫入 P1.20~P1.16 FIO1MASK=0x00; SET_nRD; SET_RS; DB16OUT(k);NOP(); CLR_CS1; CLR_nWRL; NOP(); NOP(); NOP(); SET_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif Date : 2008/08/21 AMPIRE CO., LTD. 36 #ifdef C80_9B uint32 k=0; uint16 R_temp,G_temp,B_temp; R_temp=((0xf800&Dat16bit)>>11); G_temp=((0x07e0&Dat16bit)>>5); B_temp=((0x001f&Dat16bit)); k|=((R_temp<<1)<<12); //+G_temp+B_temp; k|=(G_temp<<6); k|=(B_temp<<1); SET_nRD; SET_RS; CLR_CS1; CLR_nWRL; DB16OUT(((k&0x3FE00)>>9)); SET_nWRL; // Low to High Latch Data to AMP506 Buffer DB16OUT((k&0x1FF)); NOP(); SET_CS1; // Delay_uS(1); SET_nRD; SET_RS; CLR_CS1; CLR_nWRL; NOP(); NOP(); NOP(); SET_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif #endif Date : 2008/08/21 AMPIRE CO., LTD. 37 #ifdef Mode68 #ifdef C80_16B uint16 i; NOP();NOP(); CLR_nWRL; //E=0 SET_RS; CLR_CS1; CLR_nRD; // W/R=0 DB16OUT(Dat16bit); SET_nWRL; // Low to High Latch Data to AMP506 Buffer NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP(); CLR_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif #ifdef C80_8B uint16 i; //for (i=0;i<16;i++); NOP();NOP(); CLR_nWRL; //E=0 SET_RS; CLR_CS1; CLR_nRD; // W/R=0 DB16OUT(Dat16bit>>8); SET_nWRL; // Low to High Latch Data to AMP506 Buffer NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP(); CLR_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; CLR_nWRL; //E=0 SET_RS; CLR_CS1; CLR_nRD; // W/R=0 Date : 2008/08/21 AMPIRE CO., LTD. 38 DB16OUT(Dat16bit); SET_nWRL; // Low to High Latch Data to AMP506 Buffer NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP(); CLR_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif //Delay_uS(1); #ifdef C80_18B uint32 k=0; uint16 R_temp,G_temp,B_temp; uint16 i; NOP();NOP(); R_temp=((0xf800&Dat16bit)>>11); G_temp=((0x07e0&Dat16bit)>>5); B_temp=((0x001f&Dat16bit)); k|=((R_temp<<1)<<12); //+G_temp+B_temp; k|=(G_temp<<6); k|=(B_temp<<1); FIO1MASK=0xFFE0FFFF; FIO1PIN=k; // FIOMASK 只可寫 P1.20~P1.16 // 將 Address A20~A16 寫入 P1.20~P1.16 FIO1MASK=0x00; CLR_nWRL; //E=0 SET_RS; CLR_CS1; CLR_nRD; // W/R=0 DB16OUT(k); SET_nWRL; // Low to High Latch Data to AMP506 Buffer NOP();NOP();NOP();NOP();NOP();//NOP();NOP();NOP(); CLR_nWRL; Date : 2008/08/21 // Low to High Latch Data to AMP506 Buffer AMPIRE CO., LTD. 39 SET_CS1; #endif #ifdef C80_9B uint32 k=0; uint16 R_temp,G_temp,B_temp; uint16 i; //for (i=0;i<16;i++); NOP();NOP(); R_temp=((0xf800&Dat16bit)>>11); G_temp=((0x07e0&Dat16bit)>>5); B_temp=((0x001f&Dat16bit)); k|=((R_temp<<1)<<12); //+G_temp+B_temp; k|=(G_temp<<6); k|=(B_temp<<1); CLR_nWRL; //E=0 SET_RS; CLR_CS1; CLR_nRD; // W/R=0 DB16OUT(((k&0x3FE00)>>9)); SET_nWRL; // Low to High Latch Data to AMP506 Buffer NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP(); CLR_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; // Delay_uS(1); CLR_nWRL; //E=0 SET_RS; CLR_CS1; CLR_nRD; // W/R=0 DB16OUT((k&0x1FF)); Date : 2008/08/21 AMPIRE CO., LTD. 40 SET_nWRL; // Low to High Latch Data to AMP506 Buffer NOP();NOP();NOP();NOP();//NOP();NOP();NOP();NOP(); CLR_nWRL; // Low to High Latch Data to AMP506 Buffer SET_CS1; #endif #endif } /**************FSA506 Write Command function *************************/ void AMP506_Command_Write(uint8 CMD_Address,uint8 CMD_Value) { AMP506_80Mode_Command_SendAddress(CMD_Address); AMP506_80Mode_Command_SendData(CMD_Value); } /**************FSA506 Initial function *************************/ void Initial_AMP506(void) { // uint8 i; for(i=0;i < (sizeof(FSA506_A) / sizeof (FSA506_A[0]));i++) { AMP506_Command_Write(FSA506_A[i].REG_Index , FSA506_A[i].REG_Value); } } /**************FSA506 Set Start & End area function *************************/ void AMP506_WindowSet(uint16 S_X,uint16 S_Y,uint16 E_X,uint16 E_Y) { Date : 2008/08/21 AMPIRE CO., LTD. 41 AMP506_80Mode_Command_SendAddress(0x00); AMP506_80Mode_Command_SendData((S_X)>>8); AMP506_80Mode_Command_SendData(S_X); AMP506_80Mode_Command_SendData((E_X-1)>>8); AMP506_80Mode_Command_SendData(E_X-1); AMP506_80Mode_Command_SendData(S_Y>>8); AMP506_80Mode_Command_SendData(S_Y); AMP506_80Mode_Command_SendData((E_Y-1)>>8); AMP506_80Mode_Command_SendData(E_Y-1); } //**************************************************************************** // Enable Display RAM Write //**************************************************************************** void FD506_DisplayRAM_WriteEnable(void) { AMP506_80Mode_Command_SendAddress(_DisplayRAM_WriteEnable_); } //**************************************************************************** // Disable Display RAM Write //**************************************************************************** void FD506_DisplayRAM_WriteDisable(void) { AMP506_80Mode_Command_SendAddress(_DisplayRAM_WriteDisable_); } /**************FSA506 Set Start & End area function *************************/ void GUI_RectangleFill(uint32 x0, uint32 y0, uint32 x1, uint32 y1, uint16 color) { uint32 k,l; Date : 2008/08/21 AMPIRE CO., LTD. 42 AMP506_WindowSet(x0,y0,x1,y1); FD506_DisplayRAM_WriteEnable(); for(k=y0;k<y1;k++) { for(l=x0;l<x1;l++) { AMP506_80Mode_16Bit_Memory_SendData(color); } } FD506_DisplayRAM_WriteDisable(); } /**************Full Display function *************************/ void Full_LCD(uint16 Dat16bit) { GUI_RectangleFill(0,0,Resolution_X,Resolution_Y,Dat16bit); } void main(void) { Initial_AMP506(); Full_LCD(0xf800); Full_LCD(0x07e0); Full_LCD(0x001f); } Date : 2008/08/21 AMPIRE CO., LTD. 43 The TFT LCD controller default value is for AM320240N1 already. So we can start to write our data in a few steps: Target: To write a 640x240 data to Display RAM and scroll the display data by change the Horizontal offset register. 9.1 Step 1: Make sure the interface Protocol. 9.2 Step 2: Define the Horizontal ram seize = 640 and Vertical ram size =240 640x240x18bit. REG[34]=0x02 , REG[35]=0x80 , REG[36]=0x00 , REG[37]=0xF0 9.3 Step 3: Define the Panel X Size = 320 REG[8]=0x01 , REG[9]=0x40 9.4 Step4: Define the Write window. Start=(0,0) End=(619,239) REG[0]=0x00 , REG[1]=0x00 , REG[2]=0x02 , REG[3]=0x6B , // Start X , End X REG[4]=0x00 , REG[5]=0x00 , REG[6]=0x00 , REG[7]=0xEF , // Star Y ,End Y Date : 2008/08/21 AMPIRE CO., LTD. 44 9.5 Step5: Write the 640x240x18 bit data consecutively 9.6 Step6: The display will show the following image. 9.7 Step7: Change the Horizontal offset to switch or scroll the display data. Set the Horizontal offset = 160 , REG[30]=00 REG[31]=A0 . You will see Date : 2008/08/21 AMPIRE CO., LTD. 45 9.8 Step8: Change the Horizontal offset to switch or scroll the display data. Set the Horizontal offset = 320 , REG[30]=01 REG[31]=40 . You will see DISPLAYED COLOR AND INPUT DATA Color & Gray Scale Basic Color Red Green Blue Black Red(0) Green(0) Blue(0) Cyan Magenta Yellow White Black Red(62) Red(61) : Red(31) : Red(1) Red(0) Black Green(62) Green(61) : Green(31) : Green(1) Green(0) Black Blue(62) Blue(61) : Blue(31) : Blue(1) Blue(0) DATA SIGNAL R5 0 1 0 0 0 1 1 1 0 0 0 : 0 : 1 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 R4 0 1 0 0 0 1 1 1 0 0 0 : 1 : 1 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 Date : 2008/08/21 R3 0 1 0 0 0 1 1 1 0 0 0 : 1 : 1 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 R2 0 1 0 0 0 1 1 1 0 0 0 : 1 : 1 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 R1 0 1 0 0 0 1 1 1 0 0 1 : 1 : 1 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 R0 0 1 0 0 0 1 1 1 0 1 0 : 1 : 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 G5 0 0 1 0 1 0 1 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 1 1 0 0 0 : 0 : 0 0 G4 0 0 1 0 1 0 1 1 0 0 0 : 0 : 0 0 0 0 0 : 1 : 1 1 0 0 0 : 0 : 0 0 G3 0 0 1 0 1 0 1 1 0 0 0 : 0 : 0 0 0 0 0 : 1 : 1 1 0 0 0 : 0 : 0 0 G2 0 0 1 0 1 0 1 1 0 0 0 : 0 : 0 0 0 0 0 : 1 : 1 1 0 0 0 : 0 : 0 0 AMPIRE CO., LTD. G1 0 0 1 0 1 0 1 1 0 0 0 : 0 : 0 0 0 0 1 : 1 : 1 1 0 0 0 : 0 : 0 0 G0 0 0 1 0 1 0 1 1 0 0 0 : 0 : 0 0 0 1 0 : 0 : 0 1 0 0 0 : 0 : 0 0 B5 0 0 0 1 1 1 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 0 0 0 : 0 : 1 1 B4 0 0 0 1 1 1 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 0 0 0 : 1 : 1 1 B3 0 0 0 1 1 1 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 0 0 0 : 1 : 1 1 B2 0 0 0 1 1 1 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 0 0 0 : 1 : 1 1 B1 0 0 0 1 1 1 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 0 0 1 : 1 : 1 1 46 B0 0 0 0 1 1 1 0 1 0 0 0 : 0 : 0 0 0 0 0 : 0 : 0 0 0 1 0 : 1 : 0 1 10 QUALITY AND RELIABILITY 10.1 TEST CONDITIONS Tests should be conducted under the following conditions : Ambient temperature : 25 ± 5°C Humidity : 60 ± 25% RH. 10.2 SAMPLING PLAN Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan . 10.3 ACCEPTABLE QUALITY LEVEL A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation. 10.4 APPEARANCE An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under flourescent light. The inspection area of LCD panel shall be within the range of following limits. Date : 2008/08/21 AMPIRE CO., LTD. 47 10.5 INSPECTION QUALITY CRITERIA No. Item 1 Non display 2 Irregular operation Criterion for defects Defect type No non display is allowed Major No irregular operation is allowed Major 3 Short No short are allowed Major 4 Open Any segments or common patterns that don’t activate are rejectable. Major 5 6 7 8 Black/White spot (I) Black/White line (I) Black/White sport (II) Black/White line (II) 9 Back Light 10 Display pattern Size D (mm) D < 0.15 0.15 < D < 0.20 0.20 < D < 0.30 0.30 < D U U U U U Length(mm) 10 < L 5.0 < L < 10 1.0 < L < 5.0 L < 1.0 U U U U U U Acceptable number Ignore 3 2 0 U 0.03 < W 0.04 < W 0.06 < W 0.07 < W < < < < U U U U U U U U 0.04 0.06 0.07 0.09 Size D (mm) D < 0.30 0.30 < D < 0.50 0.50 < D < 1.20 1.20 < D U U U U Length (mm) 20 < L 10 < L < 20 5.0 < L < 10 L < 5.0 U U U U U U Acceptable number Ignore 5 3 0 U U Acceptable number 5 3 2 1 Width (mm) 0.05 < W < 0.07 0.07 < W < 0.09 0.09 < W < 0.10 0.10 < W < 0.15 U U U U U U U U Acceptable number 5 3 2 1 1. No Lighting is rejectable 2. Flickering and abnormal lighting are rejectable Unit:mm A+B ≤ 0.30 0 < C 2 Minor Minor Minor Minor Major Minor D+E F+G ≤ 0.25 ≤ 0.25 2 2 Note: 1. Acceptable up to 3 damages 2. NG if there’re to two or more pinholes per dot Date : 2008/08/21 AMPIRE CO., LTD. 48 Blemish & Foreign matters 11 Size D (mm) D < 0.15 0.15 < D < 0.20 0.20 < D < 0.30 0.30 < D U Size: A+ B D= 2 Scratch on Polarizer 12 U U U U Width (mm) W < 0.0 U U 3 0.03<W < 0.05 U U 0.05<W < 0.08 U Acceptable number Ignore 3 2 0 U U Length (mm) Ignore L < 2.0 L > 2.0 L > 1.0 L < 1.0 Note (1) U U U U Acceptable number Ignore Ignore 1 1 Ignore Note(1) Minor Minor 0.08<W Note(1) Regard as a blemish Bubble in 13 polarizer Size D (mm) D < 0.20 0.20 < D < 0.50 0.50 < D < 0.80 0.80 < D U U U U U U Acceptable number Ignore 3 2 0 Minor Stains on 14 LCD panel surface Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable. Minor 15 Rust which is visible in the bezel is rejectable. Minor Defect of land surface 16 contact (poor soldering) Evident crevices which is visible are rejectable. Minor Parts 17 mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Parts 18 alignment 1. LSI, IC lead width is more than 50% beyond pad outline. 2. Chip component is off center and more than 50% of the leads is off the pad outline. Major Major Major Minor Rust in Bezel Conductive foreign matter 19 (Solder ball, Solder chips) Faulty PCB 20 correction 1. 0.45<φ ,N≧1 2. 0.30<φ < 0.45 ,N≧1 φ:Average diameter of solder ball (unit: mm) 3. 0.50<L ,N≧1 L: Average length of solder chip (unit: mm) 1. Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. 2. Short circuited part is cut, and no resist coating has been performed. Date : 2008/08/21 U U AMPIRE CO., LTD. Minor Major Minor Minor Minor Minor 49 The TFT panel may have bright dot or Dark dot. The acceptable number defection: 21 Defect Dot Bright dot Dark dot Total dot 2 3 4 Distance between Dark-- dark L≧5 mm Minor 11 Reliability test items : Test Item Test Conditions High Temperature Operation 70±3°C , t=96 hrs Low Temperature Operation -20±3°C , t=96 hrs High Temperature Storage 80±3°C , t=96 hrs 1,2 Low Temperature Storage -30±3°C , t=96 hrs 1,2 40°C , Humidity 90%, 96 hrs 1,2 Humidity Test Note -30°C ~ 25°C ~ 80°C 1,2 30 min. 5 min. 30 min. ( 1 cycle ) Total 5 cycle Sweep frequency:10~55~10 Hz/1min Amplitude : 0.75mm Vibration Test (Packing) 2 Test direction : X.Y.Z/3 axis Duration : 30min/each axis 150pF 330 ohm ±8kV, 10times air discharge Static Electricity 150pF 330 ohm ±4kV, 10times contact discharge Note 1 : Condensation of water is not permitted on the module. Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH). Definitions of life end point : z Current drain should be smaller than the specific value. z Function of the module should be maintained. z Appearance and display quality should not have degraded noticeably. z Contrast ratio should be greater than 50% of the initial value. Thermal Shock Test Date : 2008/08/21 AMPIRE CO., LTD. 50 12 USE PRECAUTIONS 12.1 Handling precautions 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers. 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations. 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize. 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately. 12.2 Installing precautions 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. 1MΩ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it. 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure. 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case. 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off. 12.3 Storage precautions 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%. 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light. 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend. Date : 2008/08/21 AMPIRE CO., LTD. 51 12.4 Operating precautions 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break. 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard. 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage. 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions. 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements. 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON. 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions. 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk. Date : 2008/08/21 AMPIRE CO., LTD. 52 12.5 Other 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles. 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability. 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products. Date : 2008/08/21 AMPIRE CO., LTD. 53 晶采 光 電 科技 13 OUTLINE DIMENSION 13.1 OUTLINE DIMENSION Date : 2008/08/21 AMPIRE CO., LTD. 54