XC61C Series ETR0201_015a Low Voltage Detectors (VDF= 0.8V~1.5V) Standard Voltage Detectors (VDF 1.6V~6.0V) ■GENERAL DESCRIPTION The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser trimming technologies. Detect voltage is extremely accurate with minimal temperature drift. Both CMOS and N-ch open drain output configurations are available. ■APPLICATIONS ■FEATURES ●Microprocessor reset circuitry ●Memory battery back-up circuits ●Power-on reset circuits ●Power failure detection ●System battery life and charge voltage monitors Highly Accurate : ± 2% : ± 1%(Standard Voltage VD: 2.6V~5.1V) Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V] Detect Voltage Range : 0.8V ~ 6.0V in 0.1V increments Operating Voltage Range : 0.7V ~ 6.0V (Low Voltage) 0.7V~10.0V (Standard Voltage) Detect Voltage Temperature Characteristics : ±100ppm/℃ (TYP.) Output Configuration : N-ch open drain or CMOS Packages : SSOT-24 SOT-23 SOT-89 TO-92 Environmentally Friendly : EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUITS ■TYPICAL PERFORMANCE CHARACTERISTICS 1/18 XC61C Series ■PIN CONFIGURATION TO-92 (SIDE VIEW) ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTIONS VIN Supply Voltage Input 3 VSS Ground 1 VOUT Output - NC No Connection SSOT-24 SOT-23 SOT-89 TO-92 2 3 2 2 4 2 3 1 1 1 3 - - ■PRODUCT CLASSIFICATION ●Ordering Information XC61C①②③④⑤⑥⑦-⑧(*1) DESIGNATOR ITEM SYMBOL ① Output Configuration C N ②③ Detect Voltage 08 ~ 60 ④ Output Delay ⑤ Detect Accuracy 0 1 2 NR NR-G MR MR-G PR PR-G TH TH-G TB TB-G ⑥⑦-⑧ (*1) (*1) Packages (Order Unit) DESCRIPTION CMOS output N-ch open drain output e.g.0.9V → ②0, ③9 e.g.1.5V → ②1, ③5 No delay Within ±1% (VDF(T)=2.6V~5.1V) Within ±2% SSOT-24 (3,000/Reel) SSOT-24 (3,000/Reel) SOT-23 (3,000/Reel) SOT-23 (3,000/Reel) SOT-89 (1,000/Reel) SOT-89 (1,000/Reel) TO-92 Taping Type: Paper type (2,000/Tape) TO-92 Taping Type: Paper type (2,000/Tape) TO-92 Taping Type: Bag (500/Bag) TO-92 Taping Type: Bag (500/Bag) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant. 2/18 XC61C Series ■BLOCK DIAGRAMS (1) CMOS Output (2) N-ch Open Drain Output ■ABSOLUTE MAXIMUM RATINGS Ta = 25OC PARAMETER SYMBOL *1 *2 Input Voltage Output Current VIN IOUT CMOS Output Voltage N-ch Open Drain Output *1 Power Dissipation SOT-89 TO-92 Operating Ambient Temperature Storage Temperature UNITS 50 mA V VSS -0.3 ~ VIN +0.3 VOUT VSS -0.3 ~ 9.0 V VSS -0.3 ~ 12.0 N-ch Open Drain Output *2 SSOT-24 SOT-23 RATINGS VSS-0.3 ~ 9.0 VSS-0.3 ~ 12.0 150 Pd Topr Tstg 150 500 300 -40~+85 -55~+125 mW ℃ ℃ *1: Low voltage: VDF(T)=0.8V~1.5V *2: Standard voltage: VDF(T)=1.6V~6.0V 3/18 XC61C Series ■ELECTRICAL CHARACTERISTICS VDF (T) = 0.8V to 6.0V ± 2% VDF (T) = 2.6V to 5.1V ± 1% PARAMETER SYMBOL Detect Voltage VDF CONDITIONS VDF(T)=0.8V~1.5V *1 VDF(T)=1.6V~6.0V *2 VDF(T)=2.6V~5.1V *2 Hysteresis Range VHYS Supply Current ISS Operating Voltage *1 Operating Voltage *2 VIN VIN = 1.5V VIN = 2.0V VIN = 3.0V VIN = 4.0V VIN = 5.0V VDF(T) = 0.8V to 1.5V VDF(T) = 1.6V to 6.0V N-ch VDS = 0.5V Output Current *1 CMOS, P-ch VDS = 2.1V IOUT Output Current *2 N-ch VDS = 0.5V CMOS, P-ch VDS = 2.1V CMOS Output (Pch) Leakage ILEAK Current N-ch Open Drain Temperature ΔVDF/ Characteristics (ΔTopr・VDF) Delay Time tDLY (VDR→VOUT inversion) NOTE: *1: Low Voltage: VDF(T)=0.8V~1.5V *2: Standard Voltage: VDF(T)=1.6V~6.0V VDF (T): Nominal detect voltage Release Voltage: VDR = VDF + VHYS 4/18 VIN=VDFx0.9, VOUT=0V VIN=6.0V, VOUT=6.0V VIN = 0.7V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 2.0V VIN = 3.0V VIN = 4.0V VIN = 5.0V VIN = 8.0V MIN. VDF(T) x 0.98 VDF(T) x 0.99 VDF x 0.02 0.7 0.7 0.10 0.85 1.0 3.0 5.0 6.0 7.0 - TYP. VDF x 0.05 0.7 0.8 0.9 1.0 1.1 0.80 2.70 -7.5 2.2 7.7 10.1 11.5 13.0 -10.0 MAX. VDF(T) x 1.02 VDF(T) x 1.01 VDF x 0.08 2.3 2.7 3.0 3.2 3.6 6.0 10.0 -1.5 -2.0 - -10 - VDF(T) VDF(T) Ta=25℃ UNITS CIRCUITS V 1 V 1 V 1 μA 2 V 1 3 4 mA 3 4 nA 3 *1 - 10 100 -40℃ ≦ Topr ≦ 85℃ - ±100 - ppm/ ℃ 1 Inverts from VDR to VOUT - 0.03 0.20 ms 5 VIN=10.0V, VOUT=10.0V *2 XC61C Series ■OPERATIONAL EXPLANATION (Especially prepared for CMOS output products) ① When input voltage (VIN) is higher than detect voltage (VDF), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) ② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS) level. ③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become unstable. (As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.) ④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS) level will be maintained. ⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) ⑥ The difference between VDR and VDF represents the hysteresis range. ●Timing Chart 5/18 XC61C Series ■NOTES ON USE 1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded. 2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below) 3. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, irrespective of N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below ) 4. Please use N-ch open drain output configuration, when a resistor RIN is connected between the VIN pin and power source. In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1μF, please test with the actual device. (refer to the Oscillation Description (1) below) 5. With a resistor RIN connected between the VIN pin and the power supply, the VIN pin voltage will be getting lower than the power supply voltage as a result of the IC's supply current flowing through the VIN pin. 6. In order to stabilize the IC's operations, please ensure that VIN pin input frequency's rise and fall times are more than 2 μ s/ V. 7. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment. Power supply ●Oscillation Description (1) Load current oscillation with the CMOS output configuration When the voltage applied at power supply, release operations commence and the detector's output voltage increases. Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the power supply and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at the VIN pin will rise and release operations will begin over again. Oscillation may occur with this " release - detect - release " repetition. Further, this condition will also appear via means of a similar mechanism during detect operations. (2) Oscillation as a result of through current Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (RIN) during release voltage operations. (refer to Figure 3) Since hysteresis exists during detect operations, oscillation is unlikely to occur. Power supply 6/18 Power supply XC61C Series 100kΩ* 7/18 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS ●Low Voltage Note : Unless otherwise stated, the N-ch open drain pull-up resistance value is 100kΩ. 8/18 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Low Voltage (Continued) (4) N-ch Driver Output Current vs. VDS XC61CC0902 (0.9V) XC61CC1102(1.1V) VIN =0.8V 1.0 0.8 0.6 0.7V 0.4 0.2 0 0.2 0.4 0.6 0.8 Ta=25℃ VIN =0.8V 1.0 0.8 0.6 0.7V 0.4 0.2 0 1.0 Ta=25℃ 1.2 0 0.2 0.4 VDS (V) XC61CC1502(1.5V) 0.8 1.5 1.0 0.5 0 1.0 0.2 0.4 0.6 0.8 1.0 VDS (V) Ta=25℃ VIN =0.8V 1.0 0.8 0.6 0.7V 0.4 0.2 0 0.2 0.4 0.6 0.8 VIN =1.4V 6.0 1.0V 2.0 0 1.0 1.2V 4.0 0 0.2 0.4 VDS (V) 0.6 0.8 1.0 1.2 1.4 VDS (V) (5) N-ch Driver Output Current vs. Input Voltage XC61CC0902 (0.9V) XC61CC1102 (1.1V) XC61CC1502(1.5V) 5.0 Output Current: IOUT (mA) VDS=0.5V 2.0 1.5 1.0 Ta=85℃ 25℃ 0.5 -40℃ 0 0.2 0.4 0.6 0.8 Ta=-40℃ VDS=0.5V 4.0 25℃ 3.0 2.0 80℃ 1.0 0 1.0 10 Output Current: IOUT (mA) 2.5 Output Current: IOUT (mA) 0 XC61CC1502(1.5V) Ta=25℃ 1.2 0 VIN =1.0V 2.0 8.0 Output Current: IOUT (mA) Output Current: IOUT (mA) 0.6 2.5 VDS (V) 1.4 0 Output Current: IOUT (mA) Ta=25℃ 1.2 0 XC61CC1102(1.1V) 3.0 1.4 Output Current: IOUT (mA) Output Current: IOUT (mA) 1.4 0 Input Voltage: VIN (V) 0.2 0.4 0.6 0.8 1.0 VDS=0.5V 25℃ 6 4 85℃ 2 0 1.2 Ta=-40℃ 8 0 Input Voltage: VIN (V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Input Voltage: VIN (V) (6) P-ch Driver Output Current vs. Input Voltage XC61CC0902 (0.9V) XC61CC1102 (1.1V) Ta= 25℃ VDS=2.1V 8 1.5V 6 1.0V 4 0.5V 2 0 1 2 3 4 Input Voltage: VIN (V) 5 12 6 VDS=2.1V 10 8 1.5V 6 1.0V 4 0.5V 2 0 0 1 2 3 4 Input Voltage: VIN (V) 5 6 Output Current: IOUT (mA) Ta= 25℃ 10 0 XC61CC1502(1.5V) 12 Output Current: IOUT (mA) Output Current: IOUT (mA) 12 Ta= 25℃ 10 VDS=2.1V 8 1.5V 6 1.0V 4 0.5V 2 0 0 1 2 3 4 5 6 Input Voltage: VIN (V) 9/18 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage XC61CC2702 (2.7V) 3.5 3.5 3.0 3.0 Supply Current: ISS (μA) Supply Current: ISS (μA) (1) Supply Current vs. Input Voltage XC61CC1802 (1.8V) 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 0 2 4 6 8 2.5 2.0 1.0 -40℃ 0.5 0 10 0 Input Voltage: VIN (V) 3.0 3.0 2.5 1.5 4 6 8 10 XC61CC4502 (4.5V) 3.5 Supply Current: ISS (μA) Supply Current: ISS (μA) XC61CC3602 (3.6V) Ta=85℃ 25℃ 2 Input Voltage: VIN (V) 3.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 0 2 4 6 8 10 0 Input Voltage: VIN (V) 2 4 6 8 10 Input Voltage: VIN (V) (2) Detect, Release Voltage vs. Ambient Temperature XC61CC1802 (1.8V) XC61CC2702 (2.7V) 1.85 Detect, Release Voltage: VDF, VDR (V) Detect, Release Voltage: VDF, VDR (V) 1.90 VDR 1.80 VDF 1.75 -50 -25 0 25 50 75 100 2.80 VDR 2.75 2.70 VDF 2.65 -50 Ambient Temperature : Ta (℃) XC61CC3602 (3.6V) Detect, Release Voltage: VDF, VDR (V) Detect, Release Voltage: VDF, VDR (V) 25 50 75 100 4.7 VDR 3.7 3.6 VDF -25 0 25 50 75 Ambient Temperature : Ta (℃) 10/18 0 XC61CC4502 (4.5V) 3.8 3.5 -50 -25 Ambient Temperature : Ta (℃) 100 VDR 4.6 4.5 VDF 4.4 -50 -25 0 25 50 75 Ambient Temperature : Ta (℃) 100 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage (Continued) (3) Output Voltage vs. Input Voltage XC61CN1802 (1.8V) XC61CN2702 (2.7V) 3 2 1 0 0 Ta=25℃ Output Voltage: VOUT (V) Output Voltage: VOUT (V) Ta=25℃ 1 2 1 0 2 0 1 Input Voltage: VIN (V) XC61CN3602 (3.6V) 5 3 2 1 0 Ta=25℃ Output Voltage: VOUT (V) Ta=25℃ Output Voltage: VOUT (V) 3 XC61CN4502 (4.5V) 4 0 2 Input Voltage: VIN (V) 1 2 3 4 3 2 1 0 4 0 1 Input Voltage: VIN (V) 2 3 4 5 Input Voltage: VIN (V) Note : The N-channel pull up resistance is 100k N-ch open open drain drain pull up resistance valuevalue is 100kΩ. Ω. (4) N-ch Driver Output Current vs. VDS XC61CC1802 (1.8V) XC61CC2702 (2.7V) 10 30 VIN =1.5V Ta=25℃ Output Current: I OUT (mA) Output Current: I OUT (mA) Ta=25℃ 8 6 4 1.0V 2 0 0 0.5 1.0 1.5 20 2.0V 15 10 1.5V 5 1.0V 0 2.0 VIN =2.5V 25 0 0.5 1.0 80 80 Ta=25℃ VIN =3.0V 30 2.5V 20 2.0V 10 1.5V 0.5 1.0 1.5 VDS (V) 2.0 2.5 3.0 Output Current: I OUT (mA) Output Current: I OUT (mA) 40 0 2.0 2.5 3.0 XC61CC4502 (4.5V) XC61CC3602 (3.6V) 0 1.5 VDS (V) VDS (V) XC61CC4502 (4.5V) XC61CC4502 (4.5V品 ) Ta=25℃ Ta=25℃ 70 70 60 60 VIN =4.0V VIN =4.0V 3.5V 3.5V 50 50 40 40 3.0V 3.0V 30 30 2.5V 2.5V 20 20 2.0V 2.0V 10 10 00 1.5V 1.5V 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VDS (V) VDS (V) 11/18 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage (Continued) (4) N-ch Driver Output Current vs. VDS XC61CC1802 (1.8V) 1000 Output Current: IOUT (μA) VIN =0.8V Ta=25℃ Output Current: IOUT (μA) XC61CC2702 (2.7V) 1000 800 600 0.7V 400 200 0 0 0.2 0.4 0.6 0.8 Ta=25℃ 800 600 400 0.7V 200 0 1.0 VIN =0.8V 0 0.2 0.4 XC61CC3602 (3.6V) Ta=25℃ VIN =0.8V 600 400 0.7V 200 0 0.2 1.0 XC61CC4502 (4.5V) Ta=25℃ 800 0 0.8 1000 Output Current: IOUT (μA) Output Current: IOUT (μA) 1000 0.6 VDS (V) VDS (V) 0.4 0.6 0.8 600 400 0.7V 200 0 1.0 VIN =0.8V 800 0 0.2 0.4 VDS (V) 0.6 0.8 1.0 VDS (V) (5) N-ch Driver Output Current vs. Input Voltage XC61CC1802 (1.8V) XC61CC2702 (2.7V) 15 25 VDS=0.5V Ta=-40℃ 10 Output Current: IOUT (mA) Output Current: IOUT (mA) VDS=0.5V 25℃ 5 85℃ 0 0 0.5 1.0 1.5 25℃ 15 10 85℃ 5 0 2.0 0 Input Voltage: VIN (V) XC61CC3602 (3.6V) 1.5 2.0 2.5 3.0 XC61CC4502 (4.5V) VDS=0.5V Ta=-40℃ 25 Output Current: IOUT (mA) Output Current: IOUT (mA) 1.0 40 VDS=0.5V 25℃ 20 15 10 85℃ 5 0 1 2 3 Input Voltage: VIN (V) 12/18 0.5 Input Voltage: VIN (V) 30 0 Ta=-40℃ 20 4 Ta=-40℃ 30 25℃ 20 85℃ 10 0 0 1 2 3 Input Voltage: VIN (V) 4 5 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage (Continued) (6) P-ch Driver Output Current vs. Input Voltage XC61CC1802 (1.8V) XC61CC2702 (2.7V) 15 15 VDS=2.1V Output Current: IOUT (mA) Output Current: IOUT (mA) VDS=2.1V 1.5V 10 1.0V 5 0.5V 0 1.5V 10 1.0V 5 0.5V 0 0 2 4 6 8 10 0 2 Input Voltage: VIN (V) 4 8 10 Input Voltage: VIN (V) XC61CC3602 (3.6V) XC61CC4502 (4.5V) 15 15 VDS=2.1V VDS=2.1V Output Current: IOUT (mA) Output Current: IOUT (mA) 6 1.5V 10 1.0V 5 0.5V 0 1.5V 10 1.0V 5 0.5V 0 0 2 4 6 Input Voltage: VIN (V) 8 10 0 2 4 6 8 10 Input Voltage: VIN (V) 13/18 XC61C Series ■PACKAGING INFORMATION ●SSOT-24 ●SOT-23 2.0±0.1 +0.15 0.25 -0.1 +0.15 0.25 -0.1 +0.1 0 -0 +0.15 0.25 -0.1 +0.1 0.125 -0.05 +0.15 0.35 -0.1 0.05 1.3±0.2 5° 5° 4.0±0.25 1.5±0.1 (0.1) 1.0±0.2 2.5±0.1 (0.4) ●SOT-89 14/18 XC61C Series ■PACKAGING INFORMATION(Continued) ●TO-92 ●TB TYPE ●TH TYPE +0.35 4.65 -0.45 3.7±0.3 3.7±0.3 0.4±0.05 0.45±0.1 (1.27) 10.0MIN +0.4 4.8 -0.5 +0.35 4.65 -0.45 0.45±0.1 +0.4 2.5 -0.1 0.4±0.05 +0.4 2.5 -0.1 15/18 XC61C Series ■MARKING RULE ● SSOT-24, SOT-23, SOT-89 4 ① represents integer of detect voltage and CMOS Output (XC61CC series) 3 ① ② 1 MARK A B C D E F H ④ 2 3 CONFIGURATION CMOS CMOS CMOS CMOS CMOS CMOS CMOS VOLTAGE (V) 0.X 1.X 2.X 3.X 4.X 5.X 6.X N-Channel Open Drain Output (XC61CN series) ③ ④ 1 MARK K L M N P R S 2 CONFIGURATION N-ch N-ch N-ch N-ch N-ch N-ch N-ch VOLTAGE (V) 0.X 1.X 2.X 3.X 4.X 5.X 6.X ② represents decimal number of detect voltage ③ 2 ① 1 ④ ② ② ① 3 MARK 0 1 2 3 4 VOLTAGE (V) X.0 X.1 X.2 X.3 X.4 MARK 5 6 7 8 9 VOLTAGE (V) X.5 X.6 X.7 X.8 X.9 ③ represents delay time (Except for SSOT-24) MARK DELAY TIME PRODUCT SERIES 3 No Delay Time XC61Cxxx0xxx ④ represents production lot number Based on the internal standard. (G, I, J, O, Q, W excluded) 16/18 XC61C Series ■MARKING RULE (Continued) ●TO-92 ① represents output configuration MARK OUTPUT CONFIGURATION C N CMOS N-ch ②, ③ represents detect voltage (ex.) MARK ② 3 5 TO-92 (SIDE VIEW) ③ 3 0 VOLTAGE (V) 3.3 5.0 ④ represents delay time MARK DELAY TIME 0 No delay ⑤ represents detect voltage accuracy MARK 1 2 DETECT VOLTAGE ACCURACY Within ± 1% (Semi-custom) Within ± 2% ⑥ represents a least significant digit of production year MARK 5 6 PRODUCTION YEAR 2005 2006 ⑦ represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded) * No character inversion used. 17/18 XC61C Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 18/18