XC61C Series - Torex Semiconductor

XC61C Series
ETR0201_015a
Low Voltage Detectors (VDF= 0.8V~1.5V)
Standard Voltage Detectors (VDF 1.6V~6.0V)
■GENERAL DESCRIPTION
The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser
trimming technologies.
Detect voltage is extremely accurate with minimal temperature drift.
Both CMOS and N-ch open drain output configurations are available.
■APPLICATIONS
■FEATURES
●Microprocessor reset circuitry
●Memory battery back-up circuits
●Power-on reset circuits
●Power failure detection
●System battery life and charge voltage monitors
Highly Accurate
: ± 2%
: ± 1%(Standard Voltage VD: 2.6V~5.1V)
Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V]
Detect Voltage Range
: 0.8V ~ 6.0V in 0.1V increments
Operating Voltage Range : 0.7V ~ 6.0V (Low Voltage)
0.7V~10.0V (Standard Voltage)
Detect Voltage Temperature Characteristics
: ±100ppm/℃ (TYP.)
Output Configuration
: N-ch open drain or CMOS
Packages
: SSOT-24
SOT-23
SOT-89
TO-92
Environmentally Friendly : EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUITS
■TYPICAL PERFORMANCE CHARACTERISTICS
1/18
XC61C Series
■PIN CONFIGURATION
TO-92
(SIDE VIEW)
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTIONS
VIN
Supply Voltage Input
3
VSS
Ground
1
VOUT
Output
-
NC
No Connection
SSOT-24
SOT-23
SOT-89
TO-92
2
3
2
2
4
2
3
1
1
1
3
-
-
■PRODUCT CLASSIFICATION
●Ordering Information
XC61C①②③④⑤⑥⑦-⑧(*1)
DESIGNATOR
ITEM
SYMBOL
①
Output Configuration
C
N
②③
Detect Voltage
08 ~ 60
④
Output Delay
⑤
Detect Accuracy
0
1
2
NR
NR-G
MR
MR-G
PR
PR-G
TH
TH-G
TB
TB-G
⑥⑦-⑧
(*1)
(*1)
Packages (Order Unit)
DESCRIPTION
CMOS output
N-ch open drain output
e.g.0.9V → ②0, ③9
e.g.1.5V → ②1, ③5
No delay
Within ±1% (VDF(T)=2.6V~5.1V)
Within ±2%
SSOT-24 (3,000/Reel)
SSOT-24 (3,000/Reel)
SOT-23 (3,000/Reel)
SOT-23 (3,000/Reel)
SOT-89 (1,000/Reel)
SOT-89 (1,000/Reel)
TO-92 Taping Type: Paper type (2,000/Tape)
TO-92 Taping Type: Paper type (2,000/Tape)
TO-92 Taping Type: Bag (500/Bag)
TO-92 Taping Type: Bag (500/Bag)
The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.
2/18
XC61C
Series
■BLOCK DIAGRAMS
(1) CMOS Output
(2) N-ch Open Drain Output
■ABSOLUTE MAXIMUM RATINGS
Ta = 25OC
PARAMETER
SYMBOL
*1
*2
Input Voltage
Output Current
VIN
IOUT
CMOS
Output Voltage
N-ch Open Drain Output *1
Power Dissipation
SOT-89
TO-92
Operating Ambient Temperature
Storage Temperature
UNITS
50
mA
V
VSS -0.3 ~ VIN +0.3
VOUT
VSS -0.3 ~ 9.0
V
VSS -0.3 ~ 12.0
N-ch Open Drain Output *2
SSOT-24
SOT-23
RATINGS
VSS-0.3 ~ 9.0
VSS-0.3 ~ 12.0
150
Pd
Topr
Tstg
150
500
300
-40~+85
-55~+125
mW
℃
℃
*1: Low voltage: VDF(T)=0.8V~1.5V
*2: Standard voltage: VDF(T)=1.6V~6.0V
3/18
XC61C Series
■ELECTRICAL CHARACTERISTICS
VDF (T) = 0.8V to 6.0V ± 2%
VDF (T) = 2.6V to 5.1V ± 1%
PARAMETER
SYMBOL
Detect Voltage
VDF
CONDITIONS
VDF(T)=0.8V~1.5V *1
VDF(T)=1.6V~6.0V *2
VDF(T)=2.6V~5.1V *2
Hysteresis Range
VHYS
Supply Current
ISS
Operating Voltage *1
Operating Voltage *2
VIN
VIN = 1.5V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VDF(T) = 0.8V to 1.5V
VDF(T) = 1.6V to 6.0V
N-ch VDS = 0.5V
Output Current *1
CMOS, P-ch VDS = 2.1V
IOUT
Output Current *2
N-ch VDS = 0.5V
CMOS, P-ch VDS = 2.1V
CMOS
Output
(Pch)
Leakage
ILEAK
Current
N-ch
Open
Drain
Temperature
ΔVDF/
Characteristics
(ΔTopr・VDF)
Delay Time
tDLY
(VDR→VOUT inversion)
NOTE:
*1: Low Voltage: VDF(T)=0.8V~1.5V
*2: Standard Voltage: VDF(T)=1.6V~6.0V
VDF (T): Nominal detect voltage
Release Voltage: VDR = VDF + VHYS
4/18
VIN=VDFx0.9, VOUT=0V
VIN=6.0V, VOUT=6.0V
VIN = 0.7V
VIN = 1.0V
VIN = 6.0V
VIN = 1.0V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VIN = 8.0V
MIN.
VDF(T)
x 0.98
VDF(T)
x 0.99
VDF
x 0.02
0.7
0.7
0.10
0.85
1.0
3.0
5.0
6.0
7.0
-
TYP.
VDF
x 0.05
0.7
0.8
0.9
1.0
1.1
0.80
2.70
-7.5
2.2
7.7
10.1
11.5
13.0
-10.0
MAX.
VDF(T)
x 1.02
VDF(T)
x 1.01
VDF
x 0.08
2.3
2.7
3.0
3.2
3.6
6.0
10.0
-1.5
-2.0
-
-10
-
VDF(T)
VDF(T)
Ta=25℃
UNITS CIRCUITS
V
1
V
1
V
1
μA
2
V
1
3
4
mA
3
4
nA
3
*1
-
10
100
-40℃ ≦ Topr ≦ 85℃
-
±100
-
ppm/
℃
1
Inverts from VDR to VOUT
-
0.03
0.20
ms
5
VIN=10.0V, VOUT=10.0V
*2
XC61C
Series
■OPERATIONAL EXPLANATION
(Especially prepared for CMOS output products)
① When input voltage (VIN) is higher than detect voltage (VDF), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS)
level.
③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become
unstable. (As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.)
④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)
level will be maintained.
⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
⑥ The difference between VDR and VDF represents the hysteresis range.
●Timing Chart
5/18
XC61C Series
■NOTES ON USE
1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising
phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may
occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)
3. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, irrespective of
N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release even
if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below )
4. Please use N-ch open drain output configuration, when a resistor RIN is connected between the VIN pin and power source.
In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1μF, please test with the actual device.
(refer to the Oscillation Description (1) below)
5. With a resistor RIN connected between the VIN pin and the power supply, the VIN pin voltage will be getting lower than the
power supply voltage as a result of the IC's supply current flowing through the VIN pin.
6. In order to stabilize the IC's operations, please ensure that VIN pin input frequency's rise and fall times are more than 2 μ s/ V.
7. Torex places an importance on improving our products and its reliability.
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.
Power supply
●Oscillation Description
(1) Load current oscillation with the CMOS output configuration
When the voltage applied at power supply, release operations commence and the detector's output voltage increases.
Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the
power supply and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the
voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will
commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the
voltage level at the VIN pin will rise and release operations will begin over again.
Oscillation may occur with this " release - detect - release " repetition.
Further, this condition will also appear via means of a similar mechanism during detect operations.
(2) Oscillation as a result of through current
Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through
current's resistor (RIN) during release voltage operations. (refer to Figure 3)
Since hysteresis exists during detect operations, oscillation is unlikely to occur.
Power supply
6/18
Power supply
XC61C
Series
100kΩ*
7/18
XC61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS
●Low Voltage
Note : Unless otherwise stated, the N-ch open drain pull-up resistance value is 100kΩ.
8/18
XC61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Low Voltage (Continued)
(4) N-ch Driver Output Current vs. VDS
XC61CC0902 (0.9V)
XC61CC1102(1.1V)
VIN =0.8V
1.0
0.8
0.6
0.7V
0.4
0.2
0
0.2
0.4
0.6
0.8
Ta=25℃
VIN =0.8V
1.0
0.8
0.6
0.7V
0.4
0.2
0
1.0
Ta=25℃
1.2
0
0.2
0.4
VDS (V)
XC61CC1502(1.5V)
0.8
1.5
1.0
0.5
0
1.0
0.2
0.4
0.6
0.8
1.0
VDS (V)
Ta=25℃
VIN =0.8V
1.0
0.8
0.6
0.7V
0.4
0.2
0
0.2
0.4
0.6
0.8
VIN =1.4V
6.0
1.0V
2.0
0
1.0
1.2V
4.0
0
0.2
0.4
VDS (V)
0.6
0.8
1.0
1.2
1.4
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage
XC61CC0902 (0.9V)
XC61CC1102 (1.1V)
XC61CC1502(1.5V)
5.0
Output Current: IOUT (mA)
VDS=0.5V
2.0
1.5
1.0
Ta=85℃
25℃
0.5
-40℃
0
0.2
0.4
0.6
0.8
Ta=-40℃
VDS=0.5V
4.0
25℃
3.0
2.0
80℃
1.0
0
1.0
10
Output Current: IOUT (mA)
2.5
Output Current: IOUT (mA)
0
XC61CC1502(1.5V)
Ta=25℃
1.2
0
VIN =1.0V
2.0
8.0
Output Current: IOUT (mA)
Output Current: IOUT (mA)
0.6
2.5
VDS (V)
1.4
0
Output Current: IOUT (mA)
Ta=25℃
1.2
0
XC61CC1102(1.1V)
3.0
1.4
Output Current: IOUT (mA)
Output Current: IOUT (mA)
1.4
0
Input Voltage: VIN (V)
0.2
0.4
0.6
0.8
1.0
VDS=0.5V
25℃
6
4
85℃
2
0
1.2
Ta=-40℃
8
0
Input Voltage: VIN (V)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Input Voltage: VIN (V)
(6) P-ch Driver Output Current vs. Input Voltage
XC61CC0902 (0.9V)
XC61CC1102 (1.1V)
Ta= 25℃
VDS=2.1V
8
1.5V
6
1.0V
4
0.5V
2
0
1
2
3
4
Input Voltage: VIN (V)
5
12
6
VDS=2.1V
10
8
1.5V
6
1.0V
4
0.5V
2
0
0
1
2
3
4
Input Voltage: VIN (V)
5
6
Output Current: IOUT (mA)
Ta= 25℃
10
0
XC61CC1502(1.5V)
12
Output Current: IOUT (mA)
Output Current: IOUT (mA)
12
Ta= 25℃
10
VDS=2.1V
8
1.5V
6
1.0V
4
0.5V
2
0
0
1
2
3
4
5
6
Input Voltage: VIN (V)
9/18
XC61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage
XC61CC2702 (2.7V)
3.5
3.5
3.0
3.0
Supply Current: ISS (μA)
Supply Current: ISS (μA)
(1) Supply Current vs. Input Voltage
XC61CC1802 (1.8V)
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
2
4
6
8
2.5
2.0
1.0
-40℃
0.5
0
10
0
Input Voltage: VIN (V)
3.0
3.0
2.5
1.5
4
6
8
10
XC61CC4502 (4.5V)
3.5
Supply Current: ISS (μA)
Supply Current: ISS (μA)
XC61CC3602 (3.6V)
Ta=85℃
25℃
2
Input Voltage: VIN (V)
3.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
2
4
6
8
10
0
Input Voltage: VIN (V)
2
4
6
8
10
Input Voltage: VIN (V)
(2) Detect, Release Voltage vs. Ambient Temperature
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
1.85
Detect, Release Voltage: VDF, VDR (V)
Detect, Release Voltage: VDF, VDR (V)
1.90
VDR
1.80
VDF
1.75
-50
-25
0
25
50
75
100
2.80
VDR
2.75
2.70
VDF
2.65
-50
Ambient Temperature : Ta (℃)
XC61CC3602 (3.6V)
Detect, Release Voltage: VDF, VDR (V)
Detect, Release Voltage: VDF, VDR (V)
25
50
75
100
4.7
VDR
3.7
3.6
VDF
-25
0
25
50
75
Ambient Temperature : Ta (℃)
10/18
0
XC61CC4502 (4.5V)
3.8
3.5
-50
-25
Ambient Temperature : Ta (℃)
100
VDR
4.6
4.5
VDF
4.4
-50
-25
0
25
50
75
Ambient Temperature : Ta (℃)
100
XC61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage (Continued)
(3) Output Voltage vs. Input Voltage
XC61CN1802 (1.8V)
XC61CN2702 (2.7V)
3
2
1
0
0
Ta=25℃
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Ta=25℃
1
2
1
0
2
0
1
Input Voltage: VIN (V)
XC61CN3602 (3.6V)
5
3
2
1
0
Ta=25℃
Output Voltage: VOUT (V)
Ta=25℃
Output Voltage: VOUT (V)
3
XC61CN4502 (4.5V)
4
0
2
Input Voltage: VIN (V)
1
2
3
4
3
2
1
0
4
0
1
Input Voltage: VIN (V)
2
3
4
5
Input Voltage: VIN (V)
Note : The N-channel
pull
up resistance
is 100k
N-ch open open
drain drain
pull up
resistance
valuevalue
is 100kΩ.
Ω.
(4) N-ch Driver Output Current vs. VDS
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
10
30
VIN =1.5V
Ta=25℃
Output Current: I OUT (mA)
Output Current: I OUT (mA)
Ta=25℃
8
6
4
1.0V
2
0
0
0.5
1.0
1.5
20
2.0V
15
10
1.5V
5
1.0V
0
2.0
VIN =2.5V
25
0
0.5
1.0
80
80
Ta=25℃
VIN =3.0V
30
2.5V
20
2.0V
10
1.5V
0.5
1.0
1.5
VDS (V)
2.0
2.5
3.0
Output Current: I OUT (mA)
Output Current: I OUT (mA)
40
0
2.0
2.5
3.0
XC61CC4502 (4.5V)
XC61CC3602 (3.6V)
0
1.5
VDS (V)
VDS (V)
XC61CC4502
(4.5V)
XC61CC4502 (4.5V品
)
Ta=25℃
Ta=25℃
70
70
60
60
VIN =4.0V
VIN =4.0V
3.5V
3.5V
50
50
40
40
3.0V
3.0V
30
30
2.5V
2.5V
20
20
2.0V
2.0V
10
10
00
1.5V
1.5V
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
VDS (V)
VDS (V)
11/18
XC61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage (Continued)
(4) N-ch Driver Output Current vs. VDS
XC61CC1802 (1.8V)
1000
Output Current: IOUT (μA)
VIN =0.8V
Ta=25℃
Output Current: IOUT (μA)
XC61CC2702 (2.7V)
1000
800
600
0.7V
400
200
0
0
0.2
0.4
0.6
0.8
Ta=25℃
800
600
400
0.7V
200
0
1.0
VIN =0.8V
0
0.2
0.4
XC61CC3602 (3.6V)
Ta=25℃
VIN =0.8V
600
400
0.7V
200
0
0.2
1.0
XC61CC4502 (4.5V)
Ta=25℃
800
0
0.8
1000
Output Current: IOUT (μA)
Output Current: IOUT (μA)
1000
0.6
VDS (V)
VDS (V)
0.4
0.6
0.8
600
400
0.7V
200
0
1.0
VIN =0.8V
800
0
0.2
0.4
VDS (V)
0.6
0.8
1.0
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
15
25
VDS=0.5V
Ta=-40℃
10
Output Current: IOUT (mA)
Output Current: IOUT (mA)
VDS=0.5V
25℃
5
85℃
0
0
0.5
1.0
1.5
25℃
15
10
85℃
5
0
2.0
0
Input Voltage: VIN (V)
XC61CC3602 (3.6V)
1.5
2.0
2.5
3.0
XC61CC4502 (4.5V)
VDS=0.5V
Ta=-40℃
25
Output Current: IOUT (mA)
Output Current: IOUT (mA)
1.0
40
VDS=0.5V
25℃
20
15
10
85℃
5
0
1
2
3
Input Voltage: VIN (V)
12/18
0.5
Input Voltage: VIN (V)
30
0
Ta=-40℃
20
4
Ta=-40℃
30
25℃
20
85℃
10
0
0
1
2
3
Input Voltage: VIN (V)
4
5
XC61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage (Continued)
(6) P-ch Driver Output Current vs. Input Voltage
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
15
15
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
VDS=2.1V
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
4
8
10
Input Voltage: VIN (V)
XC61CC3602 (3.6V)
XC61CC4502 (4.5V)
15
15
VDS=2.1V
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
6
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
Input Voltage: VIN (V)
8
10
0
2
4
6
8
10
Input Voltage: VIN (V)
13/18
XC61C Series
■PACKAGING INFORMATION
●SSOT-24
●SOT-23
2.0±0.1
+0.15
0.25 -0.1
+0.15
0.25 -0.1
+0.1
0 -0
+0.15
0.25 -0.1
+0.1
0.125 -0.05
+0.15
0.35 -0.1
0.05
1.3±0.2
5°
5°
4.0±0.25
1.5±0.1
(0.1)
1.0±0.2
2.5±0.1
(0.4)
●SOT-89
14/18
XC61C
Series
■PACKAGING INFORMATION(Continued)
●TO-92
●TB TYPE
●TH TYPE
+0.35
4.65 -0.45
3.7±0.3
3.7±0.3
0.4±0.05
0.45±0.1
(1.27)
10.0MIN
+0.4
4.8 -0.5
+0.35
4.65 -0.45
0.45±0.1
+0.4
2.5 -0.1
0.4±0.05
+0.4
2.5 -0.1
15/18
XC61C Series
■MARKING RULE
● SSOT-24, SOT-23, SOT-89
4
① represents integer of detect voltage and
CMOS Output (XC61CC series)
3
①
②
1
MARK
A
B
C
D
E
F
H
④
2
3
CONFIGURATION
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
VOLTAGE (V)
0.X
1.X
2.X
3.X
4.X
5.X
6.X
N-Channel Open Drain Output (XC61CN series)
③ ④
1
MARK
K
L
M
N
P
R
S
2
CONFIGURATION
N-ch
N-ch
N-ch
N-ch
N-ch
N-ch
N-ch
VOLTAGE (V)
0.X
1.X
2.X
3.X
4.X
5.X
6.X
② represents decimal number of detect voltage
③
2
①
1
④
②
②
①
3
MARK
0
1
2
3
4
VOLTAGE (V)
X.0
X.1
X.2
X.3
X.4
MARK
5
6
7
8
9
VOLTAGE (V)
X.5
X.6
X.7
X.8
X.9
③ represents delay time
(Except for SSOT-24)
MARK
DELAY TIME
PRODUCT SERIES
3
No Delay Time
XC61Cxxx0xxx
④ represents production lot number
Based on the internal standard. (G, I, J, O, Q, W excluded)
16/18
XC61C
Series
■MARKING RULE (Continued)
●TO-92
① represents output configuration
MARK
OUTPUT
CONFIGURATION
C
N
CMOS
N-ch
②, ③ represents detect voltage (ex.)
MARK
②
3
5
TO-92
(SIDE VIEW)
③
3
0
VOLTAGE (V)
3.3
5.0
④ represents delay time
MARK
DELAY TIME
0
No delay
⑤ represents detect voltage accuracy
MARK
1
2
DETECT VOLTAGE ACCURACY
Within ± 1% (Semi-custom)
Within ± 2%
⑥ represents a least significant digit of production year
MARK
5
6
PRODUCTION YEAR
2005
2006
⑦ represents production lot number
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)
* No character inversion used.
17/18
XC61C Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
18/18