16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Features DDR4 SDRAM RDIMM MTA36ASF2G72PZ – 16GB Features Figure 1: 284-Pin RDIMM (MO-309, R/C-B) • DDR4 functionality and operations supported as defined in the component data sheet • 284-pin, registered dual in-line memory module (RDIMM) • Fast data transfer rates: PC4-2400, PC4-2133, or PC4-1866 • 16GB (2 Gig x 72) • VDD = 1.2V ±60mV • VPP = 2.5V ±125mV • VDDSPD = 3.0–3.6V • Supports ECC error detection and correction • Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals • Low-power auto self refresh (LPASR) • Data bus inversion (DBI) for data bus • On-die V REFDQ generation and calibration • Dual-rank • On-board I2C temperature sensor with integrated serial presence-detect (SPD) EEPROM • 16 internal banks; 4 groups of 4 banks each • Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the mode register set (MRS) • Selectable BC4 or BL8 on-the-fly (OTF) • Gold edge contacts • Halogen-free • Fly-by topology • Terminated control, command, and address bus Module height: 31.25mm (1.23in) Options Marking • Operating temperature – Commercial (0°C ≤ T A ≤ +95°C) • Package – 284-pin DIMM (halogen-free) • Frequency/CAS latency – 0.83ns @ CL = 16 (DDR4-2400) – 0.93ns @ CL = 15 (DDR4-2133) – 1.07ns @ CL = 13 (DDR4-1866) None Z -2G4 -2G1 -1G9 Table 1: Key Timing Parameters Speed Grade Data Rate (MT/s) Industry Nomenclature CL = 18 CL = 16 CL = 15 CL = 14 CL = 13 CL = 12 CL = 11 CL = 9 tRCD tRP tRC (ns) (ns) (ns) -2G4 PC4-2400 2400 2133 2133 1866 1866 1600 1600 1333 13.32 13.32 45.32 -2G1 PC4-2133 – 2133 2133 1866 1866 1600 1600 1333 13.5 13.5 46.5 -1G9 PC4-1866 – – – 1866 1866 1600 1600 1333 13.5 13.5 47.5 PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 1 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Features Table 2: Addressing Parameter 16GB Row address 64K A[15:0] Column address 1K A[9:0] Device bank group address 4 BG[1:0] Device bank address per group 4 BA[1:0] Device configuration 4Gb (1 Gig x 4), 16 banks Module rank address 2 CS_n[1:0] Table 3: Part Numbers and Timing Parameters – 16GB Modules Base device: MT40A1G4,1 4Gb DDR4 SDRAM Module Part Number2 Density Configuration Module Bandwidth Memory Clock/ Data Rate Clock Cycles (CL-tRCD-tRP) MTA36ASF2G72PZ-2G4__ 16GB 2 Gig x 72 19.2 GB/s 0.83ns/2400 MT/s 16-16-16 MTA36ASF2G72PZ-2G1__ 16GB 2 Gig x 72 17.0 GB/s 0.93ns/2133 MT/s 15-15-15 MTA36ASF2G72PZ-1G9__ 16GB 2 Gig x 72 14.9 GB/s 1.07ns/1866 MT/s 13-13-13 Notes: 1. The data sheet for the base device can be found on Micron’s web site. 2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions. Consult factory for current revision codes. Example: MTA36ASF2G72PZ-2G1A1. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 2 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Pin Assignments Pin Assignments Table 4: Pin Assignments 284-Pin DDR4 RDIMM Front 284-Pin DDR4 RDIMM Back Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin 1 VSS 37 DQ24 73 CK0_t 109 DQS14_t 143 VREFCA 179 VSS 215 CK1_t 251 VSS 2 DQ4 38 VSS 74 CK0_c 110 DQS14_c 144 VSS 180 DQ25 216 CK1_c 252 DQS5_c 3 VSS 39 DQS12_t 75 VDD 111 VSS 145 DQ5 181 VSS 217 VDD 253 DQS5_t 4 DQ0 40 DQS12-c 76 VTT 112 DQ46 146 VSS 182 DQS3_c 218 VTT 254 VSS 5 VSS 41 VSS 77 EVENT_n 113 VSS 147 DQ1 183 DQS3_t 219 PARITY 255 DQ47 6 DQS9_t 42 DQ30 78 A0 114 DQ42 148 VSS 184 VSS 220 VDD 256 VSS 7 DQS09_c 43 VSS 79 VDD 115 VSS 149 DQS0_c 185 DQ31 221 BA1 257 DQ43 8 VSS 44 DQ26 80 BA0 116 DQ52 150 DQS0_t 186 VSS 222 A10_AP 258 VSS 9 DQ6 45 VSS 81 RAS_n/ A16 117 VSS 151 VSS 187 DQ27 223 VDD 259 DQ53 10 VSS 46 CB4 82 VDD 118 DQ48 152 DQ7 188 VSS 224 NC 260 VSS 11 DQ2 47 VSS 83 S0_n 119 VSS 153 VSS 189 CB5 225 WE_n/ A14 261 DQ53 12 VSS 48 CB0 84 VDD 120 DQS15_t 154 DQ3 190 VSS 226 VDD 262 VSS 13 DQ12 49 DQS8 85 CAS_n/ A15 121 DQS15_c 155 VSS 191 CB1 227 NC 263 DQ49 14 VSS 50 DQS17_t 86 ODT0 122 VSS 156 DQ13 192 VSS 228 VDD 264 VSS 15 DQ8 51 DQS17_c 87 VDD 123 DQ54 157 VSS 193 DQS8_c 229 A13 265 DQS6_c 16 VSS 52 VSS 88 S1_n 124 VSS 158 DQ9 194 DQS8_t 230 VDD 266 DQS6_t 17 DQS10_t 53 CB6 89 VDD 125 DQ50 159 VSS 195 VSS 231 A17 267 VSS 18 DQS10_c 54 VSS 90 ODT1 126 VSS 160 DQS1_c 196 CB7 232 NF 268 DQ55 19 VSS 55 CB2 91 VDD 127 DQ60 161 DQS1_t 197 VSS 233 VDD 269 VSS 20 DQ14 56 VSS 92 NF 128 VSS 162 VSS 198 CB3 234 NF 270 DQ51 21 VSS 57 RESET_n 93 VSS 129 DQ56 163 DQ15 199 VSS 235 SA2 271 VSS 22 DQ10 58 VDD 94 DQ36 130 VSS 164 VSS 200 CKE1 236 VSS 272 DQ61 23 VSS 59 CKE0 95 VSS 131 DQS16_t 165 DQ11 201 VDD 237 DQ37 273 VSS 24 DQ20 60 VDD 96 DQ32 132 DQS16_c 166 VSS 202 NC 238 VSS 274 DQS7_c 25 VSS 61 ACT_n 97 VSS 133 VSS 167 DQ21 203 VDD 239 DQ33 275 DQS7_t 26 DQ16 62 BG0 98 DQS13_t 134 DQ62 168 VSS 204 BG1 240 VSS 276 VSS 27 VSS 63 VDD 99 DQS13_c 135 VSS 169 DQ17 205 ALERT_n 241 DQS4_c 277 DQ63 28 DQS11_t 64 A12 100 VSS 136 DQ58 170 VSS 206 VDD 242 DQS4_t 278 VSS 29 DQS11_c 65 A9 101 DQ38 137 VSS 171 DQS2_c 207 A11 243 VSS 279 DQ59 30 VSS 66 VDD 102 Vss 138 SA0 172 DQS2_t 208 A7 244 DQ39 280 VSS 31 DQ22 67 A8 103 DQ34 139 SA1 173 VSS 209 VDD 245 VSS 281 VDDSPD 32 VSS 68 A6 104 VSS 140 SCL 174 DQ23 210 A5 246 DQ35 282 SDA 33 DQ18 69 VDD 105 DQ44 141 VPP 175 VSS 211 A4 247 VSS 283 VPP 34 VSS 70 A3 106 VSS 142 NF 176 DQ19 212 VDD 248 DQ45 284 NF 35 DQ28 71 A1 107 DQ40 177 VSS 213 A2 249 VSS 36 VSS 72 VDD 108 VSS 178 DQ19 214 VDD 250 DQ41 PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 3 Symbol Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Pin Descriptions Pin Descriptions The pin description table below is a comprehensive list of all possible pins for all DDR4 modules. All pins listed may not be supported on this module. See Pin Assignments for information specific to this module. Table 5: Pin Descriptions Symbol Type Description Ax Input Address inputs: Provide the row address for ACTIVATE commands and the column address for READ/WRITE commands to select one location out of the memory array in the respective bank. (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, and RAS_n/A16 have additional functions; see individual entries in this table). The address inputs also provide the op-code during the MODE REGISTER SET command. A10/AP Input Auto precharge: A10 is sampled during READ and WRITE commands to determine whether auto precharge should be performed to the accessed bank after a READ or WRITE operation (HIGH = Auto precharge; LOW = No auto precharge). A10 is sampled during a PRECHARGE command to determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank addresses. A12/BC_n Input Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed. (HIGH = No burst chop; LOW = Burst-chopped). See the Command Truth Table. ACT_n Input Command input: ACT_n indicates an ACTIVATE command. When ACT_n (along with CS_n) is LOW, the input pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are treated as row address inputs for the ACTIVATE command. When ACT_n is HIGH (along with CS_n LOW), the input pins RAS_n/ A16, CAS_n/A15, and WE_n/A14 are treated as normal commands that use the RAS_n, CAS_n, and WE_n signals. See the Command Truth Table. BAx Input Bank address inputs: Define the bank (within a bank group) to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BGx Input Bank group address inputs: Define the bank group to which a REFRESH, ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configurations. BG1 is not used in the x16 configuration. C0/CKE1 C1/CS1_n C2/ODT1 Input Stack address inputs: These inputs are used only when devices are stacked, i.e., 2H, 4H, and 8H stacks for x4 and x8 configurations. These pins are not used in the x16 configuration. DDR4 supports a traditional DDP package, which uses these three signals to control the second die (CS1_n, CKE1, ODT1). DDR4 is not anticipated to support a traditional QDP package. For all other stack configurations, such as a 4H or 8H, it is assumed to be a single-load (master/slave)-type configuration where C0, C1, and C2 are used as chip ID selects in conjunction with a single CS_n, CKE, and ODT. CK_t CK_c Input Clock: Differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 4 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Pin Descriptions Table 5: Pin Descriptions (Continued) Symbol Type Description CKEx Input Clock enable: CKE HIGH activates, and CKE LOW deactivates, the internal clock signals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become stable during the power-on and initialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE must be held HIGH throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and RESET#) are disabled during self refresh. CS_n Input Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides external rank selection on systems with multiple ranks. CS_n is considered part of the command code. DM_n UDM_n LDM_n Input Input data mask: DM_n is an input mask signal for write data. Input data is masked when DM is sampled LOW coincident with that input data during a write access. DM is sampled on both edges of DQS. DM is not supported in x4 configurations. The UDM_n and LDM_n pins are used in the x16 configuration, UDM_n is associated with DQ[15:8]; LDM_n is associated with DQ[7:0]. The DM, DBI, and TDQS functions are enabled by mode register settings. See Data Mask (DM). ODT Input On-die termination: ODT (registered HIGH) enables termination resistance internal to the DDR4 SDRAM. When ODT is enabled, on-die termination (RTT) is applied only to each DQ, DQS_t, DQS_c, DM_n/DBI_n/TDQS_t, and TDQS_c signal for x4, x8 configurations (when the TDQS function is enabled via mode register). For the x16 configuration, RTT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode registers are programmed to disable RTT. PAR Input Parity for command and address: This function can be enabled or disabled via the mode register. When enabled, the PARITY signal covers all command and address inputs, including RAS_n/A16, CAS_n/A15, WE_n/A14, A[17:0], A10/AP, A12/BC_n, BA[1:0], BG[1:0], C0/A18, C1/A19, and C2/A20. Control pins CS_n, CKE, and ODT are not covered by the PARITY signal. Unused address pins that are density- and configurationspecific should be treated internally as 0s by the DRAM parity logic. RAS_n/A16 CAS_n/A15 WE_n/A14 Input Command inputs: RAS_n/A16 , CAS_n/A15, and WE_n/A14 (along with CS_n and ACT_n) define the command and/or address being entered. See the ACT_n description in this table. RESET_n Input Active LOW asynchronous reset: Reset is active when RESET_n is LOW; inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD, i.e., 960mV for DC HIGH; 240mV for DC LOW. TEN Input Connectivity test mode: Active when TEN is HIGH; inactive when TEN is LOW. TEN must be LOW during normal operation. TEN is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD (960mV for DC HIGH; 240mV for DC LOW). DQ I/O Data input/output: Bidirectional data bus. DQ represents DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If CRC is enabled via the mode register, then CRC code is added at the end of the data burst. Either one or all of DQ0, DQ1, DQ2, or DQ3 is/are used for monitoring of internal VREF level during test via mode register setting MR[4] A[4] = HIGH; training times change when enabled. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 5 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Pin Descriptions Table 5: Pin Descriptions (Continued) Symbol Type Description DBI_n UDBI_n LDBI_n I/O DBI input/output: Data bus inversion. DBI_n is an input/output signal used for data bus inversion in the x8 configuration. UDBI_n and LDBI_n are used in the x16 configuration; UDBI_n is associated with DQ[15:8], and LDBI_n is associated with DQ[7:0]. The DBI feature is not supported on x4 configurations. DBI can be configured for both READ (output) and WRITE (input) operations depending on the mode register settings. The DM, DBI, and TDQS functions are enabled by mode register settings. See data bus inversion (DBI). DQS_t DQS_c DQSU_t DQSU_c DQSL_t DQSL_c I/O Data strobe: Output with READ data, input with WRITE data. Edge-aligned with READ data, centered-aligned with WRITE data. For x16 configurations, DQSL corresponds to the data on DQ[7:0]; DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS corresponds to the data on DQ[3:0] and DQ[7:0] respectively. DDR4 SDRAM support a differential data strobe only and do not support a single-ended data strobe. ALERT_n Output Alert output: This signal allows the SDRAM to indicate to the system's memory controller that a specific alert or event has occurred. Alerts will include command/address parity errors and CRC data errors when either of those functions is enabled in the mode register. TDQS_t TDQS_c Output Termination data strobe: TDQS_t and TDQS_c are applicable for x8 SDRAM only. When enabled via the mode register, the SDRAM enable the same RTT termination resistance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c. When the TDQS function is disabled via the mode register, the DM/TDQS_t pin provides the data mask (DM) function, and the TDQS_c pin is not used. The TDQS function must be disabled in the mode register for both the x4 and x16 configurations. The DM function is supported only in x8 and x16 configurations. VDD Supply Power supply: 1.2V ±0.060V VDDQ Supply DQ power supply: 1.2V ±0.060V VPP Supply DRAM activating power supply: 2.5V -0.125V / +0.250V VREFCA Supply Reference voltage for control, command, and address pins. VSS Supply Ground. VSSQ Supply DQ ground. ZQ Reference RFU – Reserved for future use. NC – No connect: No internal electrical connection is present. NF – No function: Internal connection may be present but has no function. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN Reference ball for ZQ calibration: This ball is tied to an external 240Ω resistor (RZQ), which is tied to VSSQ. 6 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM DQ Map DQ Map Table 6: Component-to-Module DQ Map Front Component Reference Number Component DQ U1 U2 U3 U4 U5 U7 U8 U9 PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN Module DQ Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number 0 3 154 U11 0 3 154 1 0 4 1 0 4 2 2 11 2 2 11 3 1 147 3 1 147 0 14 20 0 14 20 1 13 156 1 13 156 2 15 163 2 15 163 3 12 13 3 12 13 0 22 31 0 22 31 1 21 167 1 21 167 2 23 174 2 23 174 3 20 24 3 20 24 0 30 42 0 30 42 1 28 35 1 28 35 2 31 185 2 31 185 3 29 178 3 29 178 0 CB3 198 0 CB3 198 1 CB0 48 1 CB0 48 2 CB2 55 2 CB2 55 3 CB1 191 3 CB1 191 0 38 101 0 38 101 1 37 237 1 37 237 2 39 244 2 39 244 3 36 94 3 36 94 0 43 257 0 43 257 1 41 250 1 41 250 2 42 114 2 42 114 3 40 107 3 40 107 0 55 266 0 55 266 1 52 116 1 52 116 2 54 123 2 54 123 3 53 259 3 53 259 U12 U13 U14 U15 U17 U18 U19 7 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM DQ Map Table 6: Component-to-Module DQ Map Front (Continued) Component Reference Number Component DQ Module DQ Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number U10 0 62 134 U20 0 62 134 1 60 127 1 60 127 2 63 277 2 63 277 3 61 270 3 61 270 Table 7: Component-to-Module DQ Map Back Component Reference Number Component DQ U21 U22 U23 U24 U25 U26 PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN Module DQ Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number 0 60 127 U30 0 56 129 1 62 134 1 58 136 2 61 270 2 57 272 3 63 277 3 59 279 0 52 116 0 48 118 1 55 266 1 51 268 2 53 259 2 49 261 3 54 123 3 50 125 0 41 250 0 45 248 1 43 257 1 46 112 2 40 107 2 44 105 3 42 114 3 47 255 0 37 237 0 34 103 1 38 101 1 32 96 2 36 94 2 35 246 3 39 244 3 33 239 0 CB0 48 0 CB6 53 1 CB3 198 1 CB5 189 2 CB1 191 2 CB7 196 3 CB2 55 3 CB4 46 0 28 35 0 25 180 1 30 42 1 27 187 2 29 178 2 24 37 3 31 185 3 26 44 U31 U32 U33 U34 U35 8 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM DQ Map Table 7: Component-to-Module DQ Map Back (Continued) Component Reference Number Component DQ U27 U28 U29 PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN Module DQ Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number 0 21 167 U36 0 18 33 1 22 31 1 17 169 2 20 24 2 19 176 3 23 174 3 16 26 0 13 156 0 9 158 1 14 20 1 11 165 2 12 13 2 8 15 3 15 163 3 10 22 0 0 4 0 5 145 1 3 154 1 6 9 2 1 147 2 4 2 3 2 11 3 7 152 U37 U38 9 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Functional Block Diagram Functional Block Diagram Figure 2: Functional Block Diagram A/B-CS0_n A/B-CS1_n DQS9_t DQS9_c DQS0_t DQS0_c CS_n DQS_t DQS_c DQ0 DQ1 DQ2 DQ3 VSS DQS1_t DQS1_c DQ DQ DQ DQ ZQ DQ8 DQ9 DQ10 DQ11 VSS DQ DQ DQ DQ ZQ U1 CS_n DQS_t DQS_c DQ DQ DQ DQ U29 ZQ VSS CS_n DQS_t DQS_c U12 CS_n DQS_t DQS_c DQ DQ DQ DQ DQ16 DQ17 DQ18 DQ19 VSS DQS3_t DQS3_c ZQ VSS CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ U13 CS_n DQS_t DQS_c DQ DQ DQ DQ U36 ZQ VSS CS_n DQS_t DQS_c DQ24 DQ25 DQ26 DQ27 VSS DQS8_t DQS8_c DQ DQ DQ DQ ZQ CB0 CB1 CB2 CB3 VSS DQ DQ DQ DQ ZQ U14 CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ VSS CS_n DQS_t DQS_c U5 U25 DQS5_t DQS5_c DQ40 DQ41 DQ42 DQ43 VSS VSS DQ DQ DQ DQ ZQ U17 U33 VSS DQ DQ DQ DQ ZQ U8 DQ DQ DQ DQ ZQ VSS DQ48 DQ49 DQ50 DQ51 VSS DQS7_t DQS7_c DQ56 DQ57 DQ58 DQ59 VSS CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ U19 CS_n DQS_t DQS_c DQ DQ DQ DQ VSS DQ DQ DQ DQ ZQ U20 U2 DQ60 DQ61 DQ62 DQ63 VSS U30 ZQ CS_n DQS_t DQS_c DQ DQ DQ DQ PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN ZQ VSS CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ U3 CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ ZQ U4 CS0_n CS1_n BA[1:0] BG[1:0] ACT_n A[17, 13:0] RAS_n/A16 CAS_n/A15 WE_n/A14 CKE0 CKE1 ODT0 ODT1 PAR_IN ALERT_CONN & DDR4 SDRAM ZQ CS_n DQS_t DQS_c DQ DQ DQ DQ DDR4 SDRAM VSS U26 CK1_t CK1_c ZQ U15 Rank 0: U1–U5, U7–U15, U17–U20 Rank 1: U21–38 CS_n DQS_t DQS_c DQ DQ DQ DQ Command, control, address, and clock line terminations: U34 ZQ VSS CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ CK[3:0]_t CK[3:0]_c RESET_CONN VSS DQ DQ DQ DQ ZQ P L L CK0_t CK0_c ZQ A/B-CS0_n: Rank 0 A/B-CS1_n: Rank 1 A/B-BA[1:0]: DDR4 SDRAM A/B-BG[1:0]: DDR4 SDRAM A/B-ACT_n: DDR4 SDRAM A/B-A[17,13:0]: DDR4 SDRAM A/B-RAS_n/A16: DDR4 SDRAM A/B-CAS_n/A15: DDR4 SDRAM A/B-WE_n/A14: DDR4 SDRAM A/B-CKE0: Rank 0 A/B-CKE1: Rank 1 A/B-ODT0: Rank 0 A/B-ODT1: Rank 1 A/B-PAR: DDR4 SDRAM ALERT_DRAM: DDR4 SDRAM R E G I S T E R U27 VSS CS_n DQS_t DQS_c U7 CS_n DQS_t DQS_c DQ DQ DQ DQ A/B-CS_n[1:0], A/B-BA[1:0]A/B-BG[1:0], A/B-ACT_n, A/B-A[17, 13:0], A/B-RAS_n/A16, A/B-CAS_n/A15, A/B-WE_n/A14, A/B-CKE[1:0], A/B-ODT[1:0] U24 DDR4 SDRAM VTT DDR4 SDRAM CK[3:0]_t CK[3:0]_c ZQ VDD VSS DQ DQ DQ DQ ZQ U18 U6 CS_n DQS_t DQS_c DQ DQ DQ DQ U32 SCL ZQ DQ DQ DQ DQ ZQ U9 U22 ZQ VSS CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ DQ DQ DQ DQ U10 VDDSPD SPD EEPROM/ Temp Sensor VDD DDR4 SDRAM VTT Control, command and address termination VREFCA U21 ZQ SDA A1 A2 SA0 SA1 SA2 EVENT# CS_n DQS_t DQS_c DQ DQ DQ DQ SPD EEPROM/ Temp sensor EVT A0 VSS CS_n DQS_t DQS_c DDR4 SDRAM VPP DDR4 SDRAM VSS DDR4 SDRAM VSS VSS Note: U28 DQS16_t DQS16_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ ZQ DQS15_t DQS15_c DQ52 DQ53 DQ54 DQ55 VSS U31 ZQ CS_n DQS_t DQS_c VSS CS_n DQS_t DQS_c DQS14_t DQS14_c DQ44 DQ45 DQ46 DQ47 VSS U23 DQS6_t DQS6_c ZQ CS_n DQS_t DQS_c CS_n DQS_t DQS_c U38 DQS13_t DQS13_c DQ36 DQ37 DQ38 DQ39 VSS ZQ CS_n DQS_t DQS_c DQ DQ DQ DQ U11 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ ZQ DQS17_t DQS17_c CB4 CB5 CB6 CB7 VSS ZQ CS_n DQS_t DQS_c DQ20 DQ21 DQ22 DQ23 VSS DQS12_t DQS12_c CS_n DQS_t DQS_c DQ DQ DQ DQ CS_n DQS_t DQS_c DQS11_t DQS11_c DQ28 DQ29 DQ30 DQ31 VSS U35 DQS4_t DQS4_c DQ32 DQ33 DQ34 DQ35 VSS DQ12 DQ13 DQ14 DQ15 VSS U37 DQS2_t DQS2_c DQ4 DQ5 DQ6 DQ7 VSS DQS10_t DQS10_c U16 CS_n DQS_t DQS_c 1. The ZQ ball on each DDR4 component is connected to an external 240Ω ±1% resistor that is tied to ground. It is used for the calibration of the component’s ODT and output driver. 10 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM General Description General Description High-speed DDR4 SDRAM modules use DDR4 SDRAM devices with 2 or 4 internal memory bank groups. DDR4 SDRAM modules utilizing 4- and 8-bit-wide DDR4 SDRAM have 4 internal bank groups consisting of 4 memory banks each, providing a total of 16 banks. Sixteen-bit-wide DDR4 SDRAM has 2 internal bank groups consisting of 4 memory banks each, providing a total of 8 banks. DDR4 SDRAM modules benefit from DDR4 SDRAM's use of an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single READ or WRITE operation for the DDR4 SDRAM effectively consists of a single 8n-bit-wide, four-clock data transfer at the internal DRAM core and eight corresponding n-bit-wide, one-half-clock-cycle data transfers at the I/O pins. DDR4 modules use two sets of differential signals: DQS, DQS# to capture data and CK and CK# to capture commands, addresses, and control signals. Differential clocks and data strobes ensure exceptional noise immunity for these signals and provide precise crossing points to capture input signals. Fly-By Topology DDR4 modules use faster clock speeds than earlier DDR technologies, making signal quality more important than ever. For improved signal quality, the clock, control, command, and address buses have been routed in a fly-by topology, where each clock, control, command, and address pin on each DRAM is connected to a single trace and terminated (rather than a tree structure, where the termination is off the module near the connector). Inherent to fly-by topology, the timing skew between the clock and DQS signals can be easily accounted for by using the write-leveling feature of DDR4. Registering Clock Driver Operation Registered DDR4 SDRAM modules use a registering clock driver device consisting of a register and a phase-lock loop (PLL). The device complies with the JEDEC DDR4 Register Specification. The register section of the registering clock driver latches command and address input signals on the rising clock edge. The PLL section of the registering clock driver receives and redrives the differential clock signals (CK, CK#) to the DDR4 SDRAM devices. The registering clock driver(s) reduces clock, control, command, and address signal loading by isolating DRAM from the system controller. Parity Operations The registering clock driver includes a parity-checking function that can be enabled or disabled in control word RC0E. When parity checking is enabled, the registering clock driver forwards sampled commands to the SDRAM only when no parity error has occurred. If the parity error function has been disabled, the registering clock driver forwards sampled commands to the DRAM regardless of whether a parity error has occurred. Parity is also checked during control word WRITE operations unless parity checking is disabled. The registering clock driver receives a parity bit at the DPAR input from the memory controller and compares it with the data received on the qualified CA inputs and indicates on its open-drain ALERT_n pin whether a parity error has occurred. Valid parity is PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 11 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Registering Clock Driver Operation defined as an even number of 1s across the address and command inputs qualified by at least one of the DCS[n:0] signals being LOW. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 12 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Electrical Specifications Electrical Specifications Stresses greater than those listed may cause permanent damage to the module. This is a stress rating only, and functional operation of the module at these or any other conditions outside those indicated in each device's data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Table 8: Absolute Maximum Ratings Symbol Parameter Min Max Units Notes VDD VDD supply voltage relative to VSS –0.4 1.5 V 1 VDDQ VDDQ supply voltage relative to VSS –0.4 1.5 V 1 VPP Voltage on VPP pin relative to Vss -0.4 3.0 V 3 VIN, VOUT Voltage on any pin relative to VSS –0.4 1.5 V Table 9: Operating Conditions Symbol Parameter Min Nom Max Units Notes VDD VDD supply voltage 1.14 1.2 1.26 V 2 VPP DRAM Activating Power Supply 2.375 2.5 2.750 V 3 0.49 × VDD 0.5 × VDD 0.51 × VDD V 0.49 × VDD 20mV 0.5 × VDD 0.51 × VDD + 20mV V 4 – – – µA 5 –10 0 10 µA –36 0 72 µA 0 – 85 °C 7 >85 – 95 °C 6, 7 VREFCA(DC) Input reference voltage command/ address bus VTT Termination reference voltage (DC) – command/address bus II Input leakage current; Any input 0V ≤ VIN ≤ VDD; VREF input 0V ≤ VIN ≤ 0.75V (All other pins not under test = 0V) Address inputs, RAS_n, CAS_n, WE_n, CS_n, CKE, ODT, BA, BG, CK_t, CK_c IOZ Output leakage current; 0V ≤ VOUT ≤ VDD; DQ and ODT are disabled; ODT is HIGH DQ, DQS_t, DQS_c, ALERT_n IVREF VREF supply leakage current; VREFDQ = VDD/2 or VREFCA = VDD/2 (All other pins not under test = 0V) TOPER Normal operating temperature range Extended temperature operating range (optional) Notes: PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 1. VDD and VDDQ must be within 300mV of each other at all times; VREFCA must not be greater than 0.6 x VDDQ or less than 500mV; VREF may be less than or equal to 300mV. 2. VDDQ tracks with VDD; VDDQ and VDD are tied together. 3. VPP must be greater than or equal to VDD at all times. 4. VTT termination voltages in excess of specification limit will adversely affect command and address signals' voltage margins, and reduce timing margins. 5. Inputs are terminated to VDD/2. Input current is dependent on terminating resistance selected in register. 6. The refresh rate is required to double when 85°C < TOPER ≤ 95°C. 7. For additional information, refer to technical note TN-00-08: "Thermal Applications" available on Micron's web site. 13 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM DRAM Operating Conditions DRAM Operating Conditions Recommended AC operating conditions are given in the DDR4 component data sheets. Component specifications are available on Micron’s web site. Module speed grades correlate with component speed grades, as shown below. Table 10: Module and Component Speed Grades DDR3 components may exceed the listed module speed grades; module may not be available in all listed speed grades Module Speed Grade Component Speed Grade -2G4 -083E -2G1 -093E -1G9 -107E Design Considerations Simulations Micron memory modules are designed to optimize signal integrity through carefully designed terminations, controlled board impedances, routing topologies, trace length matching, and decoupling. However, good signal integrity starts at the system level. Micron encourages designers to simulate the signal characteristics of the system's memory bus to ensure adequate signal integrity of the entire memory system. Power Operating voltages are specified at the DRAM, not at the edge connector of the module. Designers must account for any system voltage drops at anticipated power levels to ensure the required supply voltage is maintained. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 14 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM IDD Specifications IDD Specifications Table 11: DDR4 IDD Specifications and Conditions – 16GB (Die Revision A) Values are for the MT40A1G4 DDR4 SDRAM only and are computed from values specified in the 4Gb (1 Gig x 4) component data sheet Parameter Symbol 2400 2133 1866 Units IDD01 One bank ACTIVATE-PRECHARGE current One bank ACTIVATE-PRECHARGE, wordline boost, IPP current One bank ACTIVATE-READ-PRECHARGE current 1152 1116 1080 mA 1 126 126 126 mA 1 IPP0 IDD1 1350 1314 1278 mA Precharge standby current IDD2N 2 1224 1152 1080 mA Precharge standby ODT current IDD2NT1 1224 1170 1116 mA 2 576 576 576 mA 2 900 900 900 mA 2 Precharge power-down current IDD2P Precharge quite standby current IDD2Q Active standby current IDD3N 1404 1332 1260 mA Active standby IPP current IPP3N2 108 108 108 mA 2 720 720 720 mA 1 2898 2718 2538 mA Active power-down current IDD3P Burst read current IDD4R 1 Burst read IDDQ current IDDQ4R 936 864 792 mA Burst write current IDD4W1 3168 2808 2538 mA 1 2178 2178 2178 mA 1 270 270 270 mA Self refresh current: Normal temperature range (0–85°C) IDD6N 2 684 684 684 mA Self refresh current: Extended temperature range (0–95°C) IDD6E2 828 828 828 mA Self refresh current: Reduced temperature range (0–45°C) IDD6R2 324 324 324 mA 2 Burst refresh current (1x REF) IDD5B Burst refresh IPP current (1 x REF) IPP5B Auto self refresh current (25°C) IDD6A 216 216 216 mA Auto self refresh current (45°C) IDD6A 2 324 324 324 mA Auto self refresh current (75°C) IDD6A2 432 432 432 mA 1 4068 3618 3168 mA 1 306 270 234 mA 2 648 648 648 mA Bank interleave read current IDD7 Bank interleave read IPP current IPP7 Maximum power-down current Notes: PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN IDD8 1. One module rank in the active IDD/PP, the other rank in IDD2P/PP3N. 2. All ranks in this IDD/PP condition. 15 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Registering Clock Driver Specifications Registering Clock Driver Specifications Table 12: Registering Clock Driver Electrical Characteristics SSTE32882 devices or equivalent Parameter Symbol Pins Min Nom Max Units DC supply voltage VDD – 1.425 1.5 1.575 V DC reference voltage VREF – 0.49 × VDD - 20mV 0.5 × VDD 0.51 × VDD + 20mV V DC termination voltage VTT – 0.49 × VDD - 20mV 0.5 × VDD 0.51 × VDD + 20mV V AC high-level input voltage VIH(AC) Control, command, address VREF + 175mV – VDD + 400mV V AC low-level input voltage VIL(AC) Control, command, address –0.4 – VREF - 175mV V DC high-level input voltage VIH(DC) Control, command, address VREF + 100mV – VDD + 0.4 V DC low-level input voltage VIL(DC) Control, command, address –0.4 – VREF - 100mV V High-level input voltage VIH(CMOS) RESET#, MIRROR 0.65 × VDD – VDD V Low-level input voltage VIL(CMOS) RESET#, MIRROR 0 – 0.35 × VDD V Differential input crosspoint voltage range VIX(AC) CK, CK#, FBIN, FBIN# 0.5 × VDD - 175mV 0.5 × VDD 0.5 × VDD + 175mV V Differential input voltage VID(AC) CK, CK# 350 – VDD + TBD mV High-level output current IOH Err_Out# – – TBD mA Low-level output current IOL Err_Out# TBD – TBD mA Note: PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 1. Timing and switching specifications for the register listed are critical for proper operation of the DDR4 SDRAM RDIMMs. These are meant to be a subset of the parameters for the specific device used on the module. 16 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Temperature Sensor with Serial Presence-Detect EEPROM Temperature Sensor with Serial Presence-Detect EEPROM The temperature sensor continuously monitors the module's temperature and can be read back at any time over the I2C bus shared with the SPD EEPROM. Refer to JEDEC JC-42.4 EE1004 and TSE2004 device specification for complete details. Serial Presence-Detect For the latest SPD data, refer to Micron's SPD page: www.micron.com/SPD. Table 13: Temperature Sensor with SPD EEPROM Operating Conditions Parameter/Condition Symbol Min Max Units VDDSPD 2.2 3.6 V Input low voltage: Logic 0; All inputs VIL –0.5 VDDSPD * 0.3 V Input high voltage: Logic 1; All inputs VIH VDDSPD * 0.7 VDDSPD + 0.5 V Output low voltage: 3 mA sink current VDDSPD >2V Supply voltage VOL – 0.4 V Input leakage current: (SCL, SDA) VIN = VDDSPD or VSSSPD ILI – ±5 µA Output leakage current: VOUT = VDDSPD or VSSSPD, SDA in Hi-Z ILO – ±5 µA Table 14: Temperature Sensor and EEPROM Serial Interface Timing Parameter/Condition Symbol Min Max Units tSCL 10 1000 kHz Clock pulse width HIGH time tHIGH 260 – ns Clock pulse width LOW time tLOW 500 – ns tTIMEOUT 25 35 ms SDA rise time tR – 120 ns SDA fall time tF – 120 ns Data-in setup time tSU:DAT 50 – ns Data-in hold time tHD:DI 0 – ns Data out hold time tHD:DAT 0 350 ns Start condition setup time tSU:STA 260 – ns Start condition hold time tHD:STA 260 – ns Stop condition setup time tSU:STO 260 – ns tBUF 500 – ns tW – 5 ms Clock frequency Detect Clock Low Timeout Time the bus must be free before a new transition can start WRITE time Warm power cycle time off Time from power on to first command PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN tPOFF 1 – ms tINIT 10 – ms 17 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Temperature Sensor with Serial Presence-Detect EEPROM EVENT# Pin The temperature sensor also adds the EVENT# pin. This is an open-drain output that requires a pull-up to VDDSPD. Not used by the SPD EEPROM, EVENT# is a temperature sensor output used to flag critical events that can be set up in the sensor’s configuration registers. EVENT# has three defined modes of operation: interrupt mode, comparator mode, and TCRIT Only. In Interrupt Mode the EVENT# pin will remain asserted until it is released by writing a "1" to the Clear Event bit in the Status Register. In Comparator Mode the EVENT# pin will clear itself when the error condition is removed. This mode is always used when the temperature is compared against the TCRIT limit. In TCRIT Only Mode the EVENT# pin will only be asserted if the measured temperature exceeds the TCRIT limit. It will remain asserted until the temperature drops below the TCRIT Limits minus the TCRIT Hysteresis. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 18 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 284-Pin DDR4 RDIMM Module Dimensions Module Dimensions Figure 3: 284-Pin DDR4 RDIMM Front view 3.9 (0.153) MAX 133.50 (5.256) 133.20 (5.244) U1 0.75 (0.03) R (8X) U2 U3 U4 U5 U6 U7 U8 U9 U10 31.40 (1.236) 31.10 (1.224) U16 U11 2.50 (0.098) D (2X) U12 U13 U14 U15 U17 U18 U19 U20 16.1 (0.63) TYP 4.8 (0.189) TYP 9.5 (0.374) TYP 0.75 (0.030) R Pin 1 2.20 (0.087) TYP 0.85 (0.033) TYP 0.60 (0.0236) TYP 1.41 (0.055) 1.39 (0.054) Pin 142 72.25 (2.84) TYP 124.95 (4.92) TYP Back view U21 U22 U23 U24 U25 U33 U34 0.45 (0.02) x 45°, 4X U26 U27 U28 U29 3.0 (0.118) 4X TYP U30 U31 U32 U35 U36 U37 U38 0.5 (0.0197) TYP 3.15 (0.124) TYP Pin 284 22.1 (0.87) TYP 10.2 (0.4) TYP 5.95 (0.234) TYP 22.95 (0.9) TYP 25.5 (1.0) TYP Pin 143 28.05 (1.1) TYP 63.75 (2.51) TYP 55.25 (2.175) TYP Notes: 10.2 (0.4) TYP 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted. 2. The dimensional diagram is for reference only. 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 www.micron.com/productsupport Customer Comment Line: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. PDF: 09005aef84f8c349 asf36c2gx72pz.pdf - Rev. C 05/13 EN 19 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved.