Data Sheet 10-Bit, 4× Oversampled SDTV Video Decoder with Differential Inputs ADV7281 FEATURES GENERAL DESCRIPTION Worldwide NTSC/PAL/SECAM color demodulation support One 10-bit analog-to-digital converter (ADC), 4× oversampling per channel for CVBS, Y/C, and YPrPb modes Analog video input channels with on-chip antialiasing filter ADV7281: up to 4 input channels ADV7281-M: up to 6 input channels ADV7281-MA: up to 8 input channels Video input support for CVBS (composite), Y/C (S-Video), and YPrPb (component) Fully differential, pseudo differential, and single-ended CVBS video input support NTSC/PAL/SECAM autodetection Short-to-battery (STB) diagnostics on 2 video inputs (ADV7281 and ADV7281-M only) Up to 4 V common-mode input range solution Excellent common-mode noise rejection capabilities 5-line adaptive 2D comb filter and CTI video enhancement Adaptive Digital Line Length Tracking (ADLLT), signal processing, and enhanced FIFO management provide mini-time base correction (TBC) functionality Integrated automatic gain control (AGC) with adaptive peak white mode Fast switching capability Adaptive contrast enhancement (ACE) Down dither (8-bit to 6-bit) Rovi (Macrovision) copy protection detection MIPI CSI-2 output interface (ADV7281-M and ADV7281-MA) 8-bit ITU-R BT.656 YCrCb 4:2:2 output (ADV7281) Full featured vertical blanking interval (VBI) data slicer Power-down mode available 2-wire, I2C-compatible serial interface Qualified for automotive applications −40°C to +105°C temperature grade 32-lead, 5 mm × 5 mm, RoHS-compliant LFCSP The ADV7281/ADV7281-M/ADV7281-MA are versatile one-chip, multiformat video decoders. The ADV7281/ ADV7281-M/ADV7281-MA automatically detect standard analog baseband video signals compatible with worldwide NTSC, PAL, and SECAM standards in the form of composite, S-Video, and component video. The ADV7281 converts the analog video signals into a YCrCb 4:2:2 video data stream that is compatible with the 8-bit ITU-R BT.656 interface standard. The ADV7281-M/ADV7281-MA convert the analog video signals into an 8-bit YCrCb 4:2:2 video data stream that is output over a mobile industry processor interface (MIPI®) CSI-2 interface. The analog video inputs of the ADV7281/ADV7281-M/ ADV7281-MA accept single-ended, pseudo differential, and fully differential signals. The ADV7281 provides four analog inputs and two STB diagnostic pins. The ADV7281-M provides six analog inputs, two STB diagnostic pins, and three generalpurpose outputs. The ADV7281-MA provides eight analog inputs and three general-purpose outputs. The ADV7281/ADV7281-M/ADV7281-MA are programmed via a 2-wire, serial bidirectional port (I2C compatible) and are fabricated in a 1.8 V CMOS process. The ADV7281/ ADV7281-M/ADV7281-MA are provided in space-saving LFCSP surface-mount, RoHS-compliant packages. The ADV7281/ADV7281-M/ADV7281-MA are rated over the −40°C to +105°C temperature range. This makes the ADV7281/ ADV7281-M/ADV7281-MA ideal for automotive applications. APPLICATIONS Smartphone/multimedia handsets Automotive infotainment DVRs for video security Media players Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADV7281 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Input Networks ............................................................................... 17 Applications ....................................................................................... 1 Single-Ended Input Network .................................................... 17 General Description ......................................................................... 1 Differential Input Network ....................................................... 17 Revision History ............................................................................... 2 Short-to-Battery Protection ...................................................... 17 Functional Block Diagrams ............................................................. 3 Input Configuration ....................................................................... 18 Specifications..................................................................................... 4 Electrical Specifications ............................................................... 4 Short-to-Battery (STB) Diagnostics (ADV7281/ADV7281-M Only) ................................................................................................ 19 Video Specifications ..................................................................... 5 Programming the STB Diagnostic Function .......................... 19 Analog Specifications ................................................................... 6 Adaptive Contrast Enhancement (ACE) ..................................... 21 Clock and I2C Timing Specifications ......................................... 6 ITU-R BT.656 Tx Configuration (ADV7281 Only) .................. 22 MIPI Video Output Specifications (ADV7281-M and ADV7281-MA Only) ................................................................... 7 MIPI CSI-2 Output ........................................................................ 23 Pixel Port Timing Specifications (ADV7281 Only) ................. 9 Register Maps .............................................................................. 25 Absolute Maximum Ratings.......................................................... 10 PCB Layout Recommendations.................................................... 27 Thermal Resistance .................................................................... 10 Analog Interface Inputs ............................................................. 27 Reflow Solder .............................................................................. 10 Power Supply Decoupling ......................................................... 27 ESD Caution ................................................................................ 10 VREFN and VREFP Pins .......................................................... 27 Pin Configurations and Function Descriptions ......................... 11 Digital Outputs ........................................................................... 27 Theory of Operation ...................................................................... 14 Exposed Metal Pad ..................................................................... 28 Analog Front End (AFE) ........................................................... 14 Digital Inputs .............................................................................. 28 Standard Definition Processor (SDP) ...................................... 15 Power Supply Sequencing .............................................................. 16 MIPI Outputs (D0P, D0N, CLKP, CLKN) ADV7281-M/ ADV7281-MA only .................................................................... 28 Optimal Power-Up Sequence.................................................... 16 Typical Circuit Connections ......................................................... 29 Simplified Power-Up Sequence ................................................ 16 Outline Dimensions ....................................................................... 32 Power-Down Sequence .............................................................. 16 Ordering Guide .......................................................................... 32 DVDDIO Supply Voltage ................................................................ 16 Automotive Products ................................................................. 32 I2C Port Description ....................................................................... 24 REVISION HISTORY 4/14—Rev. A to Rev. B Changes to General Description Section ...................................... 1 Changed Single-Ended CVBS Input from 35 mA to 47 mA ...... 4 Changes to Table 7 .......................................................................... 10 Changes to Theory of Operation Section .................................... 14 Changes to DVDDIO Supply Voltage ................................................ 16 Changes to Short-to-Battery Protection Section ........................ 17 Changes to Ordering Guide .......................................................... 32 11/13—Rev. 0 to Rev. A Changes to Features and General Description Sections.............. 1 Added Figure 1; Renumbered Sequentially .................................. 3 Changes to Table 1 ............................................................................ 4 Added Pixel Port Timing Specifications (ADV7281 Only) Section ................................................................................................ 9 Added Endnote 1; Table 7 ............................................................. 10 Added Figure 7 and Table 9 .......................................................... 11 Changes to Theory of Operation Section.................................... 14 Changes to Optimal Power-Up Sequence Section and DVDDIO Supply Voltage Section................................................................... 16 Changes to Table 13 ....................................................................... 18 Changes to Programming the STB Diagnostic Function Section.............................................................................................. 19 Added ITU-R BT.656 Tx Configuration (ADV7281 Only) Section.............................................................................................. 22 Changes to Register Maps Section ............................................... 25 Changes to Power Supply Decoupling Section and Digital Outputs Section .............................................................................. 27 Changes to Typical Circuit Connections Section ...................... 29 Updated Outline Dimensions ....................................................... 32 Changes to Ordering Guide .......................................................... 32 8/13—Revision 0: Initial Version Rev. B | Page 2 of 32 Data Sheet ADV7281 FUNCTIONAL BLOCK DIAGRAMS ADV7281 CLOCK PROCESSING BLOCK XTALP PLL ADLLT PROCESSING 10-BIT ADC DIGITAL PROCESSING BLOCK LCC 2D COMB + SHA AA FILTER ADC VBI SLICER – COLOR DEMOD AA FILTER DIAGNOSTICS DIAG1 ACE DOWN DITHER I2C/CONTROL REFERENCE 8-BIT PIXEL DATA P0 TO P7 INTRQ 11633-200 AA FILTER OUTPUT BLOCK AIN3 AIN4 AA FILTER MUX BLOCK DIFFERENTIAL OR SINGLE-ENDED ANALOG VIDEO INPUTS AIN1 AIN2 FIFO XTALN SCLK SDATA ALSB RESET PWRDWN DIAG2 Figure 1. ADV7281 Functional Block Diagram ADV7281-M CLKP CLOCK PROCESSING BLOCK XTALP PLL ADLLT PROCESSING 10-BIT ADC DIGITAL PROCESSING BLOCK MIPI Tx XTALN CLKN D0P 2D COMB + SHA AA FILTER ADC VBI SLICER – COLOR DEMOD AA FILTER DIAGNOSTICS DIAG1 ACE DOWN DITHER GPO0 GPO1 GPO2 I2C/CONTROL REFERENCE INTRQ 11633-001 AIN5 AIN6 AA FILTER OUTPUT BLOCK AIN3 AIN4 AA FILTER MUX BLOCK DIFFERENTIAL OR SINGLE-ENDED ANALOG VIDEO INPUTS AIN1 AIN2 FIFO D0N SCLK SDATA ALSB RESET PWRDWN DIAG2 Figure 2. ADV7281-M Functional Block Diagram ADV7281-MA CLKP CLOCK PROCESSING BLOCK XTALP PLL MIPI Tx ADLLT PROCESSING XTALN CLKN D0P AA FILTER 2D COMB + SHA AA FILTER DIGITAL PROCESSING BLOCK ADC – VBI SLICER COLOR DEMOD AA FILTER ACE DOWN DITHER I2C/CONTROL REFERENCE SCLK SDATA ALSB RESET PWRDWN Figure 3. ADV7281-MA Functional Block Diagram Rev. B | Page 3 of 32 GPO0 GPO1 GPO2 INTRQ 11633-002 MUX BLOCK DIFFERENTIAL OR SINGLE-ENDED ANALOG VIDEO INPUTS AA FILTER OUTPUT BLOCK 10-BIT ADC AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 FIFO D0N ADV7281 Data Sheet SPECIFICATIONS ELECTRICAL SPECIFICATIONS AVDD, DVDD, PVDD, and MVDD = 1.71 V to 1.89 V, DVDDIO = 2.97 V to 3.63 V, specified at operating temperature range, unless otherwise noted. Table 1. Parameter STATIC PERFORMANCE ADC Resolution Integral Nonlinearity Differential Nonlinearity DIGITAL INPUTS Input High Voltage Symbol Test Conditions/Comments N INL DNL CVBS mode CVBS mode VIH Input Low Voltage VIL Input Leakage Current IIN DVDDIO = 3.3 V DVDDIO = 1.8 V, ADV7281 only DVDDIO = 3.3 V DVDDIO = 1.8 V, ADV7281 only RESET pin SDATA, SCLK pins PWRDWN, ALSB pins Min −10 −10 −10 VIH VIL XTALN pin XTALN pin 1.2 VOH 2.4 1.4 Output Low Voltage VOL DVDDIO = 3.3 V, ISOURCE = 0.4 mA DVDDIO = 1.8 V, ISOURCE = 0.4 mA, ADV7281 only DVDDIO = 3.3 V, ISINK = 3.2 mA DVDDIO = 1.8 V, ISINK = 1.6 mA, ADV7281 only PLL Power Supply Analog Power Supply Digital Power Supply MIPI Tx Power Supply Digital I/O Supply Current PVDD AVDD DVDD MVDD IDVDDIO PLL Supply Current MIPI Tx Supply Current Analog Supply Current Single-Ended CVBS Input Differential CVBS Input IPVDD IMVDD IAVDD Y/C Input YPrPb Input Digital Supply Current Single-Ended CVBS Input Differential CVBS Input ADV7281-M/ADV7281-MA only ADV7281-M/ADV7281-MA ADV7281 ADV7281-M/ADV7281-MA only Fully differential and pseudo differential CVBS 10 Bits LSB LSB 2.97 1.62 1.71 1.71 1.71 1.71 0.8 0.4 +10 +15 +50 10 V V V V µA µA µA pF 0.4 V V V V ILEAK COUT ADV7281-M/ADV7281-MA ADV7281 Unit 2 1.2 CIN DVDDIO Max 2 ±0.6 Input Capacitance CRYSTAL INPUT Input High Voltage Input Low Voltage DIGITAL OUTPUTS Output High Voltage High Impedance Leakage Current Output Capacitance POWER REQUIREMENTS1, 2 Digital I/O Power Supply Typ 3.3 3.3 1.8 1.8 1.8 1.8 1.5 5 12 14 0.4 0.2 V V 10 20 µA pF 3.63 3.63 1.89 1.89 1.89 1.89 V V V V V V mA mA mA mA 47 69 mA mA 60 75 mA mA 60 60 mA mA 60 60 mA mA IDVDD Fully differential and pseudo differential CVBS Y/C Input YPrPb Input Rev. B | Page 4 of 32 Data Sheet Parameter POWER-DOWN CURRENTS1 Digital I/O Supply Power-Down Current PLL Supply Power-Down Current Analog Supply Power-Down Current Digital Supply Power-Down Current MIPI Tx Supply Power-Down Current Total Power Dissipation in Power-Down Mode 1 2 ADV7281 Symbol Test Conditions/Comments IDVDDIO_PD DVDDIO = 3.3 V, ADV7281-M/ ADV7281-MA DVDDIO = 3.3 V, ADV7281 IPVDD_PD IAVDD_PD IDVDD_PD IMVDD_PD Min ADV7281-M and ADV7281-MA only Typ Max Unit 73 μA 84 46 0.2 420 4.5 1 μA μA μA μA μA mW Guaranteed by characterization. Typical current consumption values are measured with nominal voltage supply levels and an SMPTE bar test pattern. VIDEO SPECIFICATIONS AVDD, DVDD, PVDD, and MVDD = 1.71 V to 1.89 V, DVDDIO = 2.97 V to 3.63 V, specified at operating temperature range, unless otherwise noted. Specifications guaranteed by characterization. Table 2. Parameter NONLINEAR SPECIFICATIONS1 Differential Phase Differential Gain Luma Nonlinearity NOISE SPECIFICATIONS Signal-to-Noise Ratio, Unweighted Analog Front-End Crosstalk Common-Mode Rejection Ratio2 LOCK TIME SPECIFICATIONS Horizontal Lock Range Vertical Lock Range fSC Subcarrier Lock Range Color Lock-In Time Synchronization Depth Range Color Burst Range Vertical Lock Time Autodetection Switch Speed3 Fast Switch Speed4 LUMA SPECIFICATIONS Luma Brightness Accuracy Luma Contrast Accuracy Symbol Test Conditions/Comments Min DP DG LNL CVBS input, modulated 5-step CVBS input, modulated 5-step CVBS input, 5-step 0.9 0.5 2.0 Degrees % % SNR Luma ramp Luma flat field 57.1 58 60 73 dB dB dB dB CMRR Typ −5 40 Max +5 70 Unit 2 100 100 % Hz kHz Lines % % Fields Lines ms 1 1 % % ±1.3 60 20 5 200 200 CVBS, 1 V input 1 These specifications apply for all CVBS input types (NTSC, PAL, and SECAM), as well as for single-ended and differential CVBS inputs. The CMRR of this circuit design is critically dependent on the external resistor matching on the circuit inputs (see the Input Networks section). The CMRR measurement was performed with 0.1% tolerant resistors, a common-mode voltage of 1 V, and a common-mode frequency of 10 kHz. 3 Autodetection switch speed is the time required for the ADV7281/ADV7281-M/ADV7281-MA to detect which video format is present at its input, for example, PAL I or NTSC M. 4 Fast switch speed is the time required for the ADV7281/ADV7281-M/ADV7281-MA to switch from one analog input (single-ended or differential) to another, for example, switching from AIN1 to AIN2. 2 Rev. B | Page 5 of 32 ADV7281 Data Sheet ANALOG SPECIFICATIONS AVDD, DVDD, PVDD, and MVDD = 1.71 V to 1.89 V, DVDDIO = 2.97 V to 3.63 V, specified at operating temperature range, unless otherwise noted. Specifications guaranteed by characterization. Note that MVDD only applies to the ADV7281-M/ADV7281-MA. Table 3. Parameter CLAMP CIRCUITRY External Clamp Capacitor Input Impedance Large Clamp Source Current Large Clamp Sink Current Fine Clamp Source Current Fine Clamp Sink Current Test Conditions/Comments Min Typ Max 0.1 10 0.4 0.4 10 10 Clamps switched off Unit μF MΩ mA mA μA μA CLOCK AND I2C TIMING SPECIFICATIONS AVDD, DVDD, PVDD, and MVDD = 1.71 V to 1.89 V, DVDDIO = 2.97 V to 3.63 V, specified at operating temperature range, unless otherwise noted. Specifications guaranteed by characterization. Note that MVDD only applies to the ADV7281-M/ADV7281-MA. Table 4. Parameter SYSTEM CLOCK AND CRYSTAL Nominal Frequency Frequency Stability I2C PORT SCLK Frequency SCLK Minimum Pulse Width High SCLK Minimum Pulse Width Low Hold Time (Start Condition) Setup Time (Start Condition) SDATA Setup Time SCLK and SDATA Rise Times SCLK and SDATA Fall Times Setup Time (Stop Condition) RESET INPUT RESET Pulse Width Symbol Min Typ Max Unit ±50 MHz ppm 28.63636 400 t1 t2 t3 t4 t5 t6 t7 t8 kHz μs μs μs μs ns ns ns μs 0.6 1.3 0.6 0.6 100 300 300 0.6 5 ms t3 t5 t3 SDATA t2 t4 t7 2 Figure 4. I C Timing Diagram Rev. B | Page 6 of 32 t8 11633-003 t1 t6 SCLK Data Sheet ADV7281 MIPI VIDEO OUTPUT SPECIFICATIONS (ADV7281-M AND ADV7281-MA ONLY) AVDD, DVDD, PVDD, and MVDD = 1.71 V to 1.89 V, DVDDIO = 2.97 V to 3.63 V, specified at operating temperature range, unless otherwise noted. The CSI-2 clock lane of the ADV7281-M/ADV7281-MA remains in high speed (HS) mode even when the data lane enters low power (LP) mode. For this reason, some measurements on the clock lane that pertain to low power mode are not applicable. Unless otherwise stated, all high speed measurements were performed with the ADV7281-M/ADV7281-MA operating in interlaced mode and with a nominal 216 Mbps output data rate. Specifications guaranteed by characterization. Table 5. Parameter UNIT INTERVAL Interlaced Output DATA LANE LP TX DC SPECIFICATIONS1 Thevenin Output High Level Thevenin Output Low Level DATA LANE LP TX AC SPECIFICATIONS1 Rise Time, 15% to 85% Fall Time, 85% to 15% Rise Time, 30% to 85% Data Lane LP Slew Rate vs. CLOAD Maximum Slew Rate over Entire Vertical Edge Region Symbol UI Minimum Slew Rate 400 mV ≤ VOUT ≤ 930 mV 400 mV ≤ VOUT ≤ 700 mV 700 mV ≤ VOUT ≤ 930 mV DATA LANE HS TX SIGNALING REQUIREMENTS Low Power to High Speed Transition Stage VOH VOL 1.1 −50 Typ Max t9 t11 |V1| ns V mV 25 25 35 ns ns ns Rising edge 150 mV/ns Falling edge 150 mV/ns VOH VOL 1.2 0 Unit 1.3 +50 Falling edge Rising edge Rising edge First clock pulse after stop state or last pulse before stop state All other clock pulses t10 High Speed Differential Voltage Swing Differential Voltage Mismatch Single-Ended Output High Voltages Static Common-Mode Voltage Level Static Common-Mode Voltage Mismatch Dynamic Common Level Variations 50 MHz to 450 MHz Above 450 MHz Min 4.63 Minimum Slew Rate 400 mV ≤ VOUT ≤ 930 mV 400 mV ≤ VOUT ≤ 700 mV 700 mV ≤ VOUT ≤ 930 mV Pulse Width of LP Exclusive-OR Clock Period of LP Exclusive-OR Clock CLOCK LANE LP TX DC SPECIFICATIONS1 Thevenin Output High Level Thevenin Output Low Level CLOCK LANE LP TX AC SPECIFICATIONS1 Rise Time, 15% to 85% Fall Time, 85% to 15% Clock Lane LP Slew Rate Maximum Slew Rate over Entire Vertical Edge Region Test Conditions/Comments 30 30 >0 40 mV/ns mV/ns mV/ns ns 20 90 ns ns 1.1 −50 1.2 0 1.3 +50 V mV 25 25 ns ns Rising edge 150 mV/ns Falling edge 150 mV/ns Falling edge Rising edge Rising edge See Figure 5 30 30 >0 mV/ns mV/ns mV/ns Time that the D0P pin is at VOL and the D0N pin is at VOH Time that the D0P and D0N pins are at VOL t10 plus the HS-zero period 50 ns Rev. B | Page 7 of 32 40 + (4 × UI) 145 + (10 × UI) 140 200 150 200 85 + (6 × UI) ns 270 10 360 250 5 ns mV p-p mV mV mV mV 25 15 mV mV ADV7281 Data Sheet Parameter Rise Time, 20% to 80% Fall Time, 80% to 20% High Speed to Low Power Transition Stage Symbol Test Conditions/Comments t12 Time that the ADV7281-M/ ADV7281-MA drive the flipped last data bit after sending the last payload data bit of an HS transmission burst Post-end-of-transmission rise time (30% to 85%) Time from start of t12 to start of low power state following an HS transmission burst Time that a low power state is transmitted after an HS transmission burst See Figure 5 t13 t14 t15 CLOCK LANE HS TX SIGNALING REQUIREMENTS Low Power to High Speed Transition Stage2 Time that the CLKP pin is at VOL and the CLKN pin is at VOH Time that the CLKP and CLKN pins are at VOL Clock HS-zero period High Speed Differential Voltage Swing Differential Voltage Mismatch Single-Ended Output High Voltages Static Common-Mode Voltage Level Static Common-Mode Voltage Mismatch Dynamic Common Level Variations 50 MHz to 450 MHz Above 450 MHz Rise Time, 20% to 80% Fall Time, 80% to 20% HS TX CLOCK TO DATA LANE TIMING REQUIREMENTS Data to Clock Skew 2 Typ Max 0.3 × UI 0.3 × UI Unit ns ns ns 35 ns 105 + (12 × UI) ns 100 ns 50 ns 38 95 ns 270 10 360 250 5 ns mV p-p mV mV mV mV 0.15 0.15 25 15 0.3 × UI 0.3 × UI mV mV ns ns 0.35 × UI 0.65 × UI ns 300 140 500 200 150 200 These measurements were performed with CLOAD = 50 pF. The clock lane remains in high speed mode throughout normal operation. These results apply only to the ADV7281-M/ADV7281-MA during startup. |V2| CLKP/CLKN D0P/D0N t9 t10 t11 VOH |V1| VOL t13 TRANSMIT FIRST DATA BIT t14 LOW POWER TO HIGH SPEED TRANSITION HS-ZERO START OF TRANSMISSION SEQUENCE HIGH SPEED DATA TRANSMISSION t12 t15 HS-TRAIL HIGH SPEED TO LOW POWER TRANSITION Figure 5. ADV7281-M/ADV7281-MA Output Timing Diagram (Conforms with MIPI CSI-2 Specification) Rev. B | Page 8 of 32 11633-004 1 |V2| Min 0.15 0.15 60 + (4 × UI) Data Sheet ADV7281 PIXEL PORT TIMING SPECIFICATIONS (ADV7281 ONLY) AVDD, DVDD, and PVDD = 1.71 V to 1.89 V, DVDDIO = 1.62 V to 3.63 V, specified at operating temperature range, unless otherwise noted. Specifications guaranteed by characterization. Table 6. Parameter CLOCK OUTPUTS LLC Mark Space Ratio DATA AND CONTROL OUTPUTS Data Output Transitional Time Symbol Test Conditions/Comments Min t16:t17 Typ 45:55 t18 Negative clock edge to start of valid data (tSETUP = t17 − t18) End of valid data to negative clock edge (tHOLD = t16 − t19) t19 t16 t17 OUTPUT LLC t18 11633-201 t19 OUTPUTS P0 TO P7 Figure 6. ADV7281 Pixel Port and Control Output Timing Diagram Rev. B | Page 9 of 32 Max Unit 55:45 % duty cycle 3.8 ns 6.9 ns ADV7281 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 7. Parameter1 AVDD to GND DVDD to GND PVDD to GND MVDD to GND1 DVDDIO to GND PVDD to DVDD MVDD to DVDD2 AVDD to DVDD Digital Inputs Voltage Digital Outputs Voltage Analog Inputs to Ground Maximum Junction Temperature (TJ max) Storage Temperature Range Infrared Reflow Soldering (20 sec) Rating 2.2 V 2.2 V 2.2 V 2.2 V 4V −0.9 V to +0.9 V −0.9 V to +0.9 V −0.9 V to +0.9 V GND − 0.3 V to DVDDIO + 0.3 V GND − 0.3 V to DVDDIO + 0.3 V GND − 0.3 V to AVDD + 0.3 V 140°C THERMAL RESISTANCE −65°C to +150°C 260°C The ADV7281/ADV7281-M/ADV7281-MA are Pb-free, environmentally friendly products. They are manufactured using the most up-to-date materials and processes. The coating on the leads of each device is 100% pure Sn electroplate. The devices are suitable for Pb-free applications and can withstand surfacemount soldering at up to 255°C (±5°C). The Absolute Maximum Ratings assume that DGND pins and the exposed pad of the ADV7281/ADV7281-M/ADV7281-MA are connected together to a common ground plane (GND). This is part of the recommended layout scheme. See PCB Layout Recommendations for more information. The Absolute Maximum Ratings are stated in relation to this common ground plane. 2 MVDD applies to the ADV7281-M and ADV7281-MA only. 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The thermal resistance values in Table 8 are specified for the device soldered onto a 4-layer printed circuit board (PCB) with a common ground plane and with the exposed pad of the device connected to DGND. The values in Table 8 are maximum values. Table 8. Thermal Resistance for the 32-Lead LFCSP Thermal Characteristic Junction-to-Ambient Thermal Resistance (Still Air) Junction-to-Case Thermal Resistance Symbol θJA Value 32.5 Unit °C/W θJC 2.3 °C/W REFLOW SOLDER In addition, the ADV7281/ADV7281-M/ADV7281-MA are backward-compatible with conventional SnPb soldering processes. This means that the electroplated Sn coating can be soldered with Sn/Pb solder pastes at conventional reflow temperatures of 220°C to 235°C. ESD CAUTION These devices are high performance integrated circuits with an ESD rating of <2 kV, and they are ESD sensitive. Proper precautions must be taken for handling and assembly. Rev. B | Page 10 of 32 Data Sheet ADV7281 32 31 30 29 28 27 26 25 LLC PWRDWN SCLK SDATA ALSB RESET INTRQ AIN4 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS ADV7281 TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 AIN3 DIAG2 DIAG1 AVDD VREFN VREFP AIN2 AIN1 NOTES 1. THE EXPOSED PAD MUST BE CONNECTED TO DGND. 11633-202 1 2 3 4 5 6 7 8 P3 9 P2 10 P1 11 P0 12 DVDD 13 XTALP 14 XTALN 15 PVDD 16 DGND DVDDIO DVDD DGND P7 P6 P5 P4 Figure 7. Pin Configuration, ADV7281 Table 9. Pin Function Descriptions, ADV7281 Pin No. 1, 4 2 3, 13 5 to 12 14 Mnemonic DGND DVDDIO DVDD P7 to P0 XTALP Type Ground Power Power Output Output 15 XTALN Input 16 17, 18, 24, 25 19 20 21 22 23 26 PVDD AIN1 to AIN4 Power Input VREFP VREFN AVDD DIAG1 DIAG2 INTRQ Output Output Power Input Input Output 27 RESET Input 28 ALSB Input 29 30 31 32 SDATA SCLK PWRDWN LLC Input/output Input Input Output EPAD (EP) Description Ground for Digital Supply. Digital I/O Power Supply (1.8 V or 3.3 V). Digital Power Supply (1.8 V). Video Pixel Output Ports. Connect this pin to the external 28.63636 MHz crystal, or leave it unconnected if an external 1.8 V, 28.63636 MHz clock oscillator source is used to clock the ADV7281. The crystal used with the ADV7281 must be a fundamental crystal. Input Pin for the External 28.63636 MHz Crystal. The crystal used with the ADV7281must be a fundamental crystal. If an external 1.8 V, 28.63636 MHz clock oscillator source is used to clock the ADV7281, the output of the oscillator is fed into the XTALN pin. PLL Power Supply (1.8 V). Analog Video Input Channels. Internal Voltage Reference Output. Internal Voltage Reference Output. Analog Power Supply (1.8 V). Diagnostic Input 1. Diagnostic Input 2. Interrupt Request Output. An interrupt occurs when certain signals are detected on the input video. System Reset Input (Active Low). A minimum low reset pulse width of 5 ms is required to reset the ADV7281 circuitry. This pin selects the I2C write address for the ADV7281. When ALSB is set to Logic 0, the write address is 0x40; when ALSB is set to Logic 1, the write address is 0x42. I2C Port Serial Data Input/Output. I2C Port Serial Clock Input. The maximum clock rate is 400 kHz. Power-Down Pin. A logic low on this pin places the ADV7281 in power-down mode. Line-Locked Output Clock for Output Pixel Data. The clock output is nominally 27 MHz, but it increases or decreases according to the video line length. Exposed Pad. The exposed pad must be connected to DGND. Rev. B | Page 11 of 32 Data Sheet 32 31 30 29 28 27 26 25 PWRDWN SCLK SDATA ALSB RESET AIN6 AIN5 DIAG2 ADV7281 1 2 3 4 5 6 7 8 ADV7281-M TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 AIN4 AIN3 DIAG1 AVDD VREFN VREFP AIN2 AIN1 NOTES 1. THE EXPOSED PAD MUST BE CONNECTED TO DGND. 11633-005 D0P D0N CLKP CLKN MVDD XTALP XTALN PVDD 9 10 11 12 13 14 15 16 DGND DVDDIO DVDD DGND INTRQ GPO2 GPO1 GPO0 Figure 8. Pin Configuration, ADV7281-M Table 10. Pin Function Descriptions, ADV7281-M Pin No. 1, 4 2 3 5 Mnemonic DGND DVDDIO DVDD INTRQ Type Ground Power Power Output 6 to 8 Output 9 10 11 12 13 14 GPO2 to GPO0 D0P D0N CLKP CLKN MVDD XTALP 15 XTALN Input 16 17, 18, 23, 24, 26, 27 19 20 21 22 25 28 PVDD AIN1 to AIN6 Power Input VREFP VREFN AVDD DIAG1 DIAG2 RESET Output Output Power Input Input Input 29 ALSB Input 30 31 32 SDATA SCLK PWRDWN EPAD (EP) Input/output Input Input Output Output Output Output Power Output Description Ground for Digital Supply. Digital I/O Power Supply (3.3 V). Digital Power Supply (1.8 V). Interrupt Request Output. An interrupt occurs when certain signals are detected on the input video. General-Purpose Outputs. These pins can be configured via I2C to allow control of external devices. Positive MIPI Differential Data Output. Negative MIPI Differential Data Output. Positive MIPI Differential Clock Output. Negative MIPI Differential Clock Output. MIPI Digital Power Supply (1.8 V). Connect this pin to the external 28.63636 MHz crystal, or leave it unconnected if an external 1.8 V, 28.63636 MHz clock oscillator source is used to clock the ADV7281-M. The crystal used with the ADV7281-M must be a fundamental crystal. Input Pin for the External 28.63636 MHz Crystal. The crystal used with the ADV7281-M must be a fundamental crystal. If an external 1.8 V, 28.63636 MHz clock oscillator source is used to clock the ADV7281-M, the output of the oscillator is fed into the XTALN pin. PLL Power Supply (1.8 V). Analog Video Input Channels. Internal Voltage Reference Output. Internal Voltage Reference Output. Analog Power Supply (1.8 V). Diagnostic Input 1. Diagnostic Input 2. System Reset Input (Active Low). A minimum low reset pulse width of 5 ms is required to reset the ADV7281-M circuitry. This pin selects the I2C write address for the ADV7281-M. When ALSB is set to Logic 0, the write address is 0x40; when ALSB is set to Logic 1, the write address is 0x42. I2C Port Serial Data Input/Output. I2C Port Serial Clock Input. The maximum clock rate is 400 kHz. Power-Down Pin. A logic low on this pin places the ADV7281-M in power-down mode. Exposed Pad. The exposed pad must be connected to DGND. Rev. B | Page 12 of 32 ADV7281 32 31 30 29 28 27 26 25 PWRDWN SCLK SDATA ALSB RESET AIN8 AIN7 AIN6 Data Sheet 1 2 3 4 5 6 7 8 ADV7281-MA TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 AIN5 AIN4 AIN3 AVDD VREFN VREFP AIN2 AIN1 NOTES 1. THE EXPOSED PAD MUST BE CONNECTED TO DGND. 11633-006 D0P D0N CLKP CLKN MVDD XTALP XTALN PVDD 9 10 11 12 13 14 15 16 DGND DVDDIO DVDD DGND INTRQ GPO2 GPO1 GPO0 Figure 9. Pin Configuration, ADV7281-MA Table 11. Pin Function Descriptions, ADV7281-MA Pin No. 1, 4 2 3 5 Mnemonic DGND DVDDIO DVDD INTRQ Type Ground Power Power Output 6 to 8 Output 9 10 11 12 13 14 GPO2 to GPO0 D0P D0N CLKP CLKN MVDD XTALP 15 XTALN Input 16 17, 18, 22, 23, 24, 25, 26, 27 19 20 21 28 PVDD AIN1 to AIN8 Power Input VREFP VREFN AVDD RESET Output Output Power Input 29 ALSB Input 30 31 32 SDATA SCLK PWRDWN EPAD (EP) Input/output Input Input Output Output Output Output Power Output Description Ground for Digital Supply. Digital I/O Power Supply (3.3 V). Digital Power Supply (1.8 V). Interrupt Request Output. An interrupt occurs when certain signals are detected on the input video. General-Purpose Outputs. These pins can be configured via I2C to allow control of external devices. Positive MIPI Differential Data Output. Negative MIPI Differential Data Output. Positive MIPI Differential Clock Output. Negative MIPI Differential Clock Output. MIPI Digital Power Supply (1.8 V). Connect this pin to the external 28.63636 MHz crystal, or leave it unconnected if an external 1.8 V, 28.63636 MHz clock oscillator source is used to clock the ADV7281-MA. The crystal used with the ADV7281-MA must be a fundamental crystal. Input Pin for the External 28.63636 MHz Crystal. The crystal used with the ADV7281-MA must be a fundamental crystal. If an external 1.8 V, 28.63636 MHz clock oscillator source is used to clock the ADV7281-MA, the output of the oscillator is fed into the XTALN pin. PLL Power Supply (1.8 V). Analog Video Input Channels. Internal Voltage Reference Output. Internal Voltage Reference Output. Analog Power Supply (1.8 V). System Reset Input (Active Low). A minimum low reset pulse width of 5 ms is required to reset the ADV7281-MA circuitry. This pin selects the I2C write address for the ADV7281-MA. When ALSB is set to Logic 0, the write address is 0x40; when ALSB is set to Logic 1, the write address is 0x42. I2C Port Serial Data Input/Output. I2C Port Serial Clock Input. The maximum clock rate is 400 kHz. Power-Down Pin. A logic low on this pin places the ADV7281-MA in power-down mode. Exposed Pad. The exposed pad must be connected to DGND. Rev. B | Page 13 of 32 ADV7281 Data Sheet THEORY OF OPERATION The ADV7281/ADV7281-M/ADV7281-MA are versatile onechip, multiformat video decoders. The ADV7281/ADV7281-M/ ADV7281-MA automatically detect standard analog baseband video signals compatible with worldwide NTSC, PAL, and SECAM standards in the form of composite, S-Video, and component video. ANALOG FRONT END (AFE) The ADV7281 converts the analog video signal into an 8-bit YCrCb 4:2:2 video data stream that is compatible with the 8-bit ITU-R BT.656 interface standard. The analog front end (AFE) of the ADV7281/ADV7281-M/ ADV7281-MA comprises a single high speed, 10-bit ADC that digitizes the analog video signal before applying it to the standard definition processor (SDP). The AFE uses differential channels to the ADC to ensure high performance in mixedsignal applications and to enable differential CVBS inputs to be connected directly to the ADV7281/ADV7281-M/ ADV7281-MA. The ADV7281-M/ADV7281-MA convert the analog video signals into an 8-bit YCrCb 4:2:2 video data stream that is output over a MIPI CSI-2 interface. The AFE also includes an input mux that enables multiple video signals to be applied to the ADV7281/ADV7281-M/ ADV7281-MA. The input mux allows The MIPI CSI-2 output interface connects to a wide range of video processors and FPGAs. The accurate 10-bit analog-to-digital conversion provides professional quality video performance for consumer applications with true 8-bit data resolution. The analog video inputs of the ADV7281/ADV7281-M/ ADV7281-MA accept single-ended, pseudo differential, and fully differential composite video signals, as well as S-Video and YPrPb video signals, supporting a wide range of consumer and automotive video sources. In differential CVBS mode, the ADV7281/ADV7281-M/ ADV7281-MA, along with an external resistor divider, provide a common-mode input range of up to 4 V, enabling the removal of large signal, common-mode transients present on the video lines. The automatic gain control (AGC) and clamp restore circuitry allows an input video signal peak-to-peak range of 0 V to 1.0 V at the analog video input pins of the ADV7281/ADV7281-M/ ADV7281-MA. Alternatively, the AGC and clamp restore circuitry can be bypassed for manual settings. AC coupling of the input video signals provides short-to-battery (STB) protection. In the ADV7281 and ADV7281-M, STB diagnostics can be performed on two input video signals. The ADV7281/ADV7281-M/ADV7281-MA support a number of other functions, including 8-bit to 6-bit down dither mode and adaptive contrast enhancement (ACE). The ADV7281/ADV7281-M/ADV7281-MA are programmed via a 2-wire, serial bidirectional port (I2C compatible) and are fabricated in a 1.8 V CMOS process. The monolithic CMOS construction of the ADV7281/ADV7281-M/ADV7281-MA ensures greater functionality with lower power dissipation. Up to four composite video signals to be applied to the ADV7281 Up to six composite video signals to be applied to the ADV7281-M Up to eight composite video signals to be applied to the ADV7281-MA. Current clamps are positioned in front of the ADC to ensure that the video signal remains within the range of the converter. A resistor divider network is required before each analog input channel to ensure that the input signal is kept within the range of the ADC (see the Input Networks section). Fine clamping of the video signal is performed downstream by digital fine clamping within the ADV7281/ADV7281-M/ADV7281-MA. Table 12 lists the three ADC clock rates that are determined by the video input format to be processed. These clock rates ensure 4× oversampling per channel for CVBS, Y/C, and YPrPb modes. Table 12. ADC Clock Rates Input Format CVBS Y/C (S-Video) YPrPb 1 ADC Clock Rate (MHz)1 57.27 114 172 Oversampling Rate per Channel 4× 4× 4× Based on a 28.63636 MHz crystal between the XTALP and XTALN pins. The fully differential AFE of the ADV7281/ADV7281-M/ ADV7281-MA provides inherent small and large signal noise rejection, improved electromagnetic interference (EMI) protection, and the ability to absorb ground bounce. Support is provided for both true differential and pseudo differential signals. The ADV7281/ADV7281-M/ADV7281-MA are rated over the −40°C to +105°C temperature range. This makes the ADV7281/ ADV7281-M/ADV7281-MA ideal for automotive applications. Rev. B | Page 14 of 32 Data Sheet ADV7281 STANDARD DEFINITION PROCESSOR (SDP) The ADV7281/ADV7281-M/ADV7281-MA are capable of decoding a large selection of baseband video signals in composite (both single-ended and differential), S-Video, and component formats. The video standards supported by the video processor include • • • PAL B, PAL D, PAL G, PAL H, PAL I, PAL M, PAL N, PAL Nc, PAL 60 NTSC J, NTSC M, NTSC 4.43 SECAM B, SECAM D, SECAM G, SECAM K, SECAM L Using the standard definition processor (SDP), the ADV7281/ ADV7281-M/ADV7281-MA can automatically detect the video standard and process it accordingly. The ADV7281/ADV7281-M/ADV7281-MA have a five-line adaptive 2D comb filter that provides superior chrominance and luminance separation when decoding a composite video signal. This highly adaptive filter automatically adjusts its processing mode according to the video standard and signal quality without user intervention. Video user controls such as brightness, contrast, saturation, and hue are also available with the ADV7281/ADV7281-M/ADV7281-MA. The ADV7281/ADV7281-M/ADV7281-MA implement the patented Adaptive Digital Line Length Tracking (ADLLT™) algorithm to track varying video line lengths from sources such as VCRs. ADLLT enables the ADV7281/ADV7281-M/ ADV7281-MA to track and decode poor quality video sources such as VCRs and noisy sources from tuner outputs and camcorders. The ADV7281/ADV7281-M/ ADV7281-MA contain a chroma transient improvement (CTI) processor that sharpens the edge rate of chroma transitions, resulting in sharper vertical transitions. Adaptive contrast enhancement (ACE) offers improved visual detail using an algorithm that automatically varies contrast levels to enhance picture detail. ACE increases the contrast in dark areas of an image without saturating the bright areas of the image. This feature is particularly useful in automotive applications, where it can be important to discern objects in shaded areas. Down dithering converts the output of the ADV7281/ ADV7281-M/ADV7281-MA from an 8-bit to a 6-bit output, enabling ease of design for standard LCD panels. The SDP can process a variety of VBI data services, such as closed captioning (CCAP), wide screen signaling (WSS), and copy generation management system (CGMS). VBI data is transmitted via the MIPI CSI-2 link as ancillary data packets. The ADV7281/ADV7281-M/ADV7281-MA are fully Rovi® (Macrovision®) compliant; detection circuitry enables Type I, Type II, and Type III protection levels to be identified and reported to the user. The decoders are also fully robust to all Macrovision signal inputs. Rev. B | Page 15 of 32 ADV7281 Data Sheet POWER SUPPLY SEQUENCING OPTIMAL POWER-UP SEQUENCE The optimal power-up sequence for the ADV7281/ADV7281-M/ ADV7281-MA is to first power up the 3.3 V DVDDIO supply, followed by the 1.8 V supplies DVDD, PVDD, AVDD, and MVDD. MVDD only applies to the ADV7281-M/ADV7281-MA models. When powering up the ADV7281/ADV7281-M/ADV7281-MA, follow these steps. During power-up, all supplies must adhere to the specifications listed in the Absolute Maximum Ratings section. 5. 6. Assert the PWRDWN and RESET pins (pull the pins low). Power up the DVDDIO supply. After DVDDIO is fully asserted, power up the 1.8 V supplies. After the 1.8 V supplies are fully asserted, pull the PWRDWN pin high. Wait 5 ms and then pull the RESET pin high. After all power supplies and the PWRDWN and RESET pins are powered up and stable, wait an additional 5 ms before initiating I2C communication with the ADV7281/ ADV7281-M/ADV7281-MA. SIMPLIFIED POWER-UP SEQUENCE Alternatively, the ADV7281/ADV7281-M/ADV7281-MA can be powered up by asserting all supplies and the PWRDWN and RESET pins simultaneously. After this operation, perform a software reset, then wait 10 ms before initiating I2C communication with the ADV7281/ADV7281-M/ADV7281-MA. VOLTAGE 3.3V 1.8V 3.3V SUPPLY POWER-DOWN SEQUENCE The ADV7281/ADV7281-M/ADV7281-MA supplies can be deasserted simultaneously as long as DVDDIO does not go below a lower rated supply. DVDDIO SUPPLY VOLTAGE For correct operation of the ADV7281-M/ADV7281-MA, the DVDDIO supply must be from 2.97 V to 3.63 V. The ADV7281 can operate with a nominal DVDDIO voltage of 1.8 V. In this case, apply the power-up sequences described previously. The only changes are that DVDDIO is powered up to 1.8 V instead of 3.3 V, and the PWRDWN and RESET pins of the ADV7281 are powered up to 1.8 V instead of 3.3 V. Note that when the ADV7281 operates with a nominal DVDDIO voltage of 1.8 V, then drive strength of all digital outputs must be set to maximum. Note that when DVDDIO is 1.8 V, no pin of the ADV7281 should be pulled up to 3.3 V. For example, the I2C pins of the ADV7281 (SCLK and SDATA) should also be pulled up to 1.8 V instead of 3.3 V. PWRDWN PIN 1.8V SUPPLIES PWRDWN PIN POWER-UP 3.3V SUPPLY POWER-UP RESET PIN 1.8V SUPPLIES POWER-UP RESET PIN POWER-UP 5ms RESET OPERATION Figure 10. Optimal Power-Up Sequence Rev. B | Page 16 of 32 5ms WAIT TIME 11633-007 1. 2. 3. 4. While the supplies are being established, care must be taken to ensure that a lower rated supply does not go above a higher rated supply level. During power-up, all supplies must adhere to the specifications listed in the Absolute Maximum Ratings section. Data Sheet ADV7281 INPUT NETWORKS An input network (external resistor and capacitor circuit) is required on the AINx input pins of the decoder. The components of the input network depend on the video format selected for the analog input. transmission involves transmitting a CVBS signal and a source ground signal. SINGLE-ENDED INPUT NETWORK • • • Figure 11 shows the input network to use on each AINx input pin of the ADV7281/ADV7281-M/ADV7281-MA when any of the following video input formats is used: Single-ended CVBS YC (S-Video) YPrPb INPUT CONNECTOR VIDEO INPUT FROM SOURCE 100nF 24Ω EXT ESD AIN3 51Ω 11633-008 • • • Figure 11. Single-Ended Input Network The 24 Ω and 51 Ω resistors supply the 75 Ω end termination required for the analog video input. These resistors also create a resistor divider with a gain of 0.68. The resistor divider attenuates the amplitude of the input analog video and scales the input to the ADC range of the ADV7281/ADV7281-M/ADV7281-MA. This allows an input range to the ADV7281/ADV7281-M/ ADV7281-MA of up to 1.47 V p-p. Note that amplifiers within the ADC restore the amplitude of the input signal so that signal-to-noise ratio (SNR) performance is maintained. Differential video transmission has several key advantages over single-ended transmission, including the following: Inherent small signal and large signal noise rejection Improved EMI performance Ability to absorb ground bounce Resistor R1 provides the RF end termination for the differential CVBS input lines. For a pseudo differential CVBS input, a value of 75 Ω is recommended for R1. For a fully differential CVBS input, a value of 150 Ω is recommended for R1. The 1.3 kΩ and 430 Ω resistors create a resistor divider with a gain of 0.25. The resistor divider attenuates the amplitude of the input analog video, but increases the input common-mode range of the ADV7281/ADV7281-M/ADV7281-MA to 4 V p-p. Note that amplifiers within the ADC restore the amplitude of the input signal so that SNR performance is maintained. The 100 nF ac coupling capacitor removes the dc bias of the analog input video before it is fed into the AINx pin of the ADV7281/ ADV7281-M/ADV7281-MA. The clamping circuitry within the ADV7281/ADV7281-M/ADV7281-MA restores the dc bias of the input signal to the optimal level before it is fed into the ADC of the ADV7281/ADV7281-M/ADV7281-MA. The combination of the 1.3 kΩ and 430 Ω resistors and the 100 nF ac coupling capacitors limits the current flow into the ADV7281/ADV7281-M/ADV7281-MA during short-to-battery (STB) events (see the Short-to-Battery Protection section). The 100 nF ac coupling capacitor removes the dc bias of the analog input video before it is fed into the AINx pin of the ADV7281/ ADV7281-M/ADV7281-MA. The clamping circuitry within the ADV7281/ADV7281-M/ADV7281-MA restores the dc bias of the input signal to the optimal level before it is fed into the ADC of the ADV7281/ADV7281-M/ADV7281-MA. To achieve optimal performance, the 1.3 kΩ and 430 Ω resistors must be closely matched; that is, all 1.3 kΩ and 430 Ω resistors must have the same resistance tolerance, and this tolerance must be as low as possible. DIFFERENTIAL INPUT NETWORK SHORT-TO-BATTERY PROTECTION Figure 12 shows the input network to use when differential CVBS video is input on the AINx input pins of the ADV7281/ ADV7281-M/ADV7281-MA. In differential mode, the ADV7281/ADV7281-M/ADV7281-MA are protected against short-to-battery (STB) events by the external 100 nF ac coupling capacitors (see Figure 12). The external input network resistors are sized to be large enough to reduce the current flow during an STB event but to be small enough not to effect the operation of the ADV7281/ADV7281-M/ADV7281-MA. INPUT CONNECTOR 1.3kΩ 100nF AIN1 430Ω EXT ESD R1 1.3kΩ 430Ω 100nF INPUT CONNECTOR AIN2 11633-009 VIDEO INPUT FROM SOURCE Figure 12. Differential Input Network Fully differential video transmission involves transmitting two complementary CVBS signals. Pseudo differential video Choose the power rating of the input network resistors to withstand the high voltages of STB events. Similarly, choose the breakdown voltage of the ac-coupling capacitors to be robust to STB events. The R1 resistor is protected because no current or limited current flows through it during an STB event. The ADV7281/ADV7281-M provides two STB diagnostic pins that can be used to generate an interrupt when an STB event occurs. For more information, see the Short-to-Battery (STB) Diagnostics (ADV7281/ADV7281-M Only) section. Rev. B | Page 17 of 32 ADV7281 Data Sheet INPUT CONFIGURATION The INSEL[4:0] bits specify predefined analog input routing schemes, eliminating the need for manual mux programming and allowing the user to route the various video signal types to the decoder. For example, if the CVBS input is selected, the remaining channels are powered down. The input format of the ADV7281-M/ADV7281-MA is specified using the INSEL[4:0] bits (see Table 13). These bits also configure the SDP core to process CVBS, differential CVBS, Y/C (S-Video), or component (YPbPr) format. The INSEL[4:0] bits are located in the user sub map of the register space at Address 0x00[4:0]. For more information about the registers, see the Register Maps section. Table 13. Input Format Specified by the INSEL[4:0] Bits Analog Inputs ADV7281-M CVBS input on AIN1 CVBS input on AIN2 CVBS input on AIN3 CVBS input on AIN4 Reserved Reserved CVBS input on AIN5 CVBS input on AIN6 Y input on AIN1; C input on AIN2 Y input on AIN3; C input on AIN4 Reserved INSEL[4:0] Bit Value 00000 00001 00010 00011 00100 00101 00110 00111 01000 Video Format CVBS CVBS CVBS CVBS CVBS CVBS CVBS CVBS Y/C (S-Video) 01001 Y/C (S-Video) ADV7281 CVBS input on AIN1 CVBS input on AIN2 Reserved Reserved Reserved Reserved CVBS input on AIN3 CVBS input on AIN4 Y input on AIN1; C input on AIN2 Reserved 01010 Y/C (S-Video) Reserved 01011 Y/C (S-Video) 01100 YPrPb Y input on AIN3; C input on AIN4 Reserved1 01101 YPrPb Reserved1 01110 Differential CVBS 01111 Differential CVBS Positive input on AIN1; Negative input on AIN2 Reserved 10000 Differential CVBS Reserved Positive input on AIN1; Negative input on AIN2 Positive input on AIN3; Negative input on AIN4 Reserved 10001 Differential CVBS 10010 to 11111 Reserved Positive input on AIN3; Negative input on AIN4 Reserved Positive input on AIN5; Negative input on AIN6 Reserved 1 Y input on AIN5; C input on AIN6 Y input on AIN1; Pb input on AIN2; Pr input on AIN3 Reserved ADV7281-MA CVBS input on AIN1 CVBS input on AIN2 CVBS input on AIN3 CVBS input on AIN4 CVBS input on AIN5 CVBS input on AIN6 CVBS input on AIN7 CVBS input on AIN8 Y input on AIN1; C input on AIN2 Y input on AIN3; C input on AIN4 Y input on AIN5; C input on AIN6 Y input on AIN7; C input on AIN8 Y input on AIN1; Pb input on AIN2; Pr input on AIN3 Y input on AIN4; Pb input on AIN5; Pr input on AIN6 Positive input on AIN1; Negative input on AIN2 Positive input on AIN3; Negative input on AIN4 Positive input on AIN5; Negative input on AIN6 Positive input on AIN7; Negative input on AIN8 Reserved Note that it is possible for the ADV7281 to receive YPbPr formats; however, a manual muxing scheme is required. In this case luma(Y) is fed in on AIN1 or AIN3, blue chroma(Pb) is fed in on AIN4 and red chroma (Pr) is fed in on AIN2. Rev. B | Page 18 of 32 Data Sheet ADV7281 SHORT-TO-BATTERY (STB) DIAGNOSTICS (ADV7281/ADV7281-M ONLY) The ADV7281/ADV7281-M senses an STB event via the DIAG1 and DIAG2 pins. The DIAG1 and DIAG2 pins can sense an STB event on either the positive or negative differential input because of the negligible voltage drop across Resistor R1. DIAG1 R4 1.3kΩ 100nF AIN1 This bit powers up or powers down the diagnostic circuitry for the DIAG1 pin. 430Ω EXT ESD R1 1.3kΩ Table 14. DIAG1_SLICER_PWRDN Function 430Ω 100nF INPUT CONNECTOR AIN2 DIAG1_SLICER_PWRDN 0 11633-010 VIDEO INPUT FROM SOURCE 1 (default) Figure 13. Diagnostic Connections Resistors R4 and R5 divide down the voltage at the input connector to protect the DIAGx pin from an STB event. The DIAGx pin circuitry compares this voltage to a programmable reference voltage, known as the diagnostic slice level. When the diagnostic slice level is exceeded, an STB event has occurred. When the DIAGx pin voltage exceeds the diagnostic slice level voltage, a hardware interrupt is triggered and indicated by the INTRQ pin. A readback register is also provided, which allows the user to determine the DIAGx pin on which the STB event occurred. R5 + R4 R5 × DIAGNOSTIC_SLICE_LEVEL Diagnostic Slice Level Power up the diagnostic circuitry for the DIAG1 pin. Power down the diagnostic circuitry for the DIAG1 pin. DIAG1_SLICE_LEVEL[2:0], User Sub Map, Address 0x5D[4:2] The DIAG1_SLICE_LEVEL[2:0] bits allow the user to set the diagnostic slice level for the DIAG1 pin. When a voltage greater than the diagnostic slice level is seen on the DIAG1 pin, an STB interrupt is triggered. In order for the diagnostic slice level to be set correctly, the diagnostic circuitry for the DIAG1 pin must be powered up (see Table 14). Table 15. DIAG1_SLICE_LEVEL[2:0] Settings Use Equation 1 to find the trigger voltage for a selected diagnostic slice level. VSTB _ TRIGGER = By default, the STB diagnostic function is disabled on the ADV7281/ADV7281-M. To enable the diagnostic function, follow the instructions in this section. DIAG1 Pin DIAG1_SLICER_PWRDN, User Sub Map, Address 0x5D[6] R5 INPUT CONNECTOR PROGRAMMING THE STB DIAGNOSTIC FUNCTION (1) where: VSTB_TRIGGER is the minimum voltage required at the input connector to trigger the STB interrupt on the ADV7281/ADV7281-M. DIAGNOSTIC_SLICE_LEVEL is the programmable reference voltage. DIAG1_SLICE_LEVEL[2:0] 000 001 010 011 (default) 100 101 110 111 Rev. B | Page 19 of 32 Diagnostic Slice Level 75 mV 225 mV 375 mV 525 mV 675 mV 825 mV 975 mV 1.125 V ADV7281 Data Sheet In order for the diagnostic slice level to be set correctly, the diagnostic circuitry for the DIAG2 pin must be powered up (see Table 16). DIAG2 Pin DIAG2_SLICER_PWRDN, User Sub Map, Address 0x5E[6] This bit powers up or powers down the diagnostic circuitry for the DIAG2 pin. Table 16. DIAG2_SLICER_PWRDN Function DIAG2_SLICER_PWRDN 0 1 (default) Diagnostic Slice Level Power up the diagnostic circuitry for the DIAG2 pin. Power down the diagnostic circuitry for the DIAG2 pin. DIAG2_SLICE_LEVEL[2:0], User Sub Map, Address 0x5E[4:2] Table 17. DIAG2_SLICE_LEVEL[2:0] Settings DIAG2_SLICE_LEVEL[2:0] 000 001 010 011 (default) 100 101 110 111 The DIAG2_SLICE_LEVEL[2:0] bits allow the user to set the diagnostic slice level for the DIAG2 pin. When a voltage greater than the diagnostic slice level is seen on the DIAG2 pin, an STB interrupt is triggered. Rev. B | Page 20 of 32 Diagnostic Slice Level 75 mV 225 mV 375 mV 525 mV 675 mV 825 mV 975 mV 1.125 V Data Sheet ADV7281 ADAPTIVE CONTRAST ENHANCEMENT (ACE) The ADV7281/ADV7281-M/ADV7281-MA can increase the contrast of an image depending on the content of the picture, allowing bright areas to be made brighter and dark areas to be made darker. The optional ACE feature enables the contrast within dark areas to be increased without significantly affecting the bright areas. The ACE feature is particularly useful in automotive applications, where it can be important to discern objects in shaded areas. The ACE function is disabled by default. To enable the ACE function, execute the register writes shown in Table 18. To disable the ACE function, execute the register writes shown in Table 19. Table 18. Register Writes to Enable the ACE Function Register Map User Sub Map (0x40 or 0x42) User Sub Map 2 (0x40 or 0x42) User Sub Map 2 (0x40 or 0x42) Register Address 0x0E 0x80 0x0E Register Write 0x40 0x80 0x00 Description Enter User Sub Map 2 Enable ACE Reenter user sub map Register Write 0x40 0x00 0x00 Description Enter User Sub Map 2 Disable ACE Reenter user sub map Table 19. Register Writes to Disable the ACE Function Register Map User Sub Map (0x40 or 0x42) User Sub Map 2 (0x40 or 0x42) User Sub Map 2 (0x40 or 0x42) Register Address 0x0E 0x80 0x0E Rev. B | Page 21 of 32 ADV7281 Data Sheet ITU-R BT.656 Tx CONFIGURATION (ADV7281 ONLY) The ADV7281 receives analog video and outputs digital video according to the ITU-R BT.656 specification. The ADV7281 outputs the ITU-R BT.656 video data stream over the P0 to P7 data pins and has a line-locked clock (LLC) pin. VIDEO DECODER Video data is output over the P0 to P7 pins in YCrCb 4:2:2 format. Synchronization signals are automatically embedded in the video data signal in accordance with the ITU-R BT.656 specification. The LLC output is used to clock the output data on the P0 to P7 pins at a nominal frequency of 27 MHz. ADV7281 P0 P1 P2 P3 ANALOG FRONT END STANDARD DEFINITION PROCESSOR P4 P5 P6 P7 LLC 11633-018 ANALOG VIDEO INPUT ITU-R BT.656 DATA STREAM Figure 14. ITU-R BT.656 Output Stage of the ADV7281 Rev. B | Page 22 of 32 Data Sheet ADV7281 MIPI CSI-2 OUTPUT The clock lanes are used to clock the output video. After the ADV7281-M/ADV7281-MA are programmed, the clock lanes exit low power mode and remain in high speed mode until the part is reset or powered down. The decoder in the ADV7281-M/ADV7281-MA outputs an ITU-R BT.656 data stream. The ITU-R BT.656 data stream is connected into a CSI-2 Tx module. Data from the CSI-2 Tx module is fed into a D-PHY physical layer and output serially from the device. The ADV7281-M/ADV7281-MA output video data in an 8-bit YCrCb 4:2:2 format. The video data is output in an interlaced format at a nominal data rate of 216 Mbps. The output of the ADV7281-M/ADV7281-MA consists of a single data channel on the D0P and D0N lanes and a clock channel on the CLKP and CLKN lanes. Video data is output over the data lanes in high speed mode. The data lanes enter low power mode during the horizontal and vertical blanking periods. D0P (1 BIT) CSI Tx DATA OUTPUT (8 BITS) VIDEO DECODER ITU-R BT.656 DATA STREAM CSI-2 Tx DATA LANE LP SIGNALS (2 BITS) CLOCK LANE LP SIGNALS (2 BITS) D0N (1 BIT) D-PHY Tx CLKP (1 BIT) CLKN (1 BIT) Figure 15. MIPI CSI-2 Output Stage of the ADV7281-M/ADV7281-MA Rev. B | Page 23 of 32 11633-011 ANALOG VIDEO INPUT ADV7281 Data Sheet I2C PORT DESCRIPTION 4. The ADV7281/ADV7281-M/ADV7281-MA support a 2-wire, I2C-compatible serial interface. Two inputs, serial data (SDATA) and serial clock (SCLK), carry information between the ADV7281/ADV7281-M/ADV7281-MA and the system I2C master controller. The I2C port of the ADV7281/ADV7281-M/ ADV7281-MA allows the user to set up and configure the decoder and to read back captured VBI data. The R/W bit determines the direction of the data. Logic 0 on the LSB of the first byte means that the master writes information to the peripheral. Logic 1 on the LSB of the first byte means that the master reads information from the peripheral. The ADV7281/ADV7281-M/ADV7281-MA have a number of possible I2C slave addresses and subaddresses (see the Register Maps section). The main map of the ADV7281/ADV7281-M/ ADV7281-MA has four possible slave addresses for read and write operations, depending on the logic level of the ALSB pin (see Table 20). The ADV7281/ADV7281-M/ADV7281-MA act as standard I2C slave devices on the bus. The data on the SDATA pin is eight bits long, supporting the 7-bit address plus the R/W bit. The device has subaddresses to enable access to the internal registers; therefore, it interprets the first byte as the device address and the second byte as the starting subaddress. The subaddresses auto-increment, allowing data to be written to or read from the starting subaddress. A data transfer is always terminated by a stop condition. The user can also access any unique subaddress register individually without updating all the registers. Table 20. Main Map I2C Address for the ADV7281-M/ ADV7281-MA R/W Bit 0 1 0 1 Slave Address 0x40 (write) 0x41 (read) 0x42 (write) 0x43 (read) Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, they cause an immediate jump to the idle condition. During a given SCLK high period, the user should issue only one start condition, one stop condition, or a single stop condition followed by a single start condition. If an invalid subaddress is issued by the user, the ADV7281/ADV7281-M/ ADV7281-MA do not issue an acknowledge and return to the idle condition. The ALSB pin controls Bit 1 of the slave address. By changing the logic level of the ALSB pin, it is possible to control two ADV7281/ADV7281-M/ADV7281-MA devices in an application without using the same I2C slave address. The LSB (Bit 0) specifies either a read or write operation: Logic 1 corresponds to a read operation, and Logic 0 corresponds to a write operation. To control the device on the bus, a specific protocol is followed. 2. 3. If the highest subaddress is exceeded in auto-increment mode, one of the following actions is taken: The master initiates a data transfer by establishing a start condition, which is defined as a high to low transition on SDATA while SCLK remains high, and indicates that an address/data stream follows. All peripherals respond to the start condition and shift the next eight bits (the 7-bit address plus the R/W bit). The bits are transferred from MSB to LSB. The peripheral that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse; this is known as an acknowledge (ACK) bit. • • In read mode, the register contents of the highest subaddress continue to be output until the master device issues a no acknowledge, which indicates the end of a read. A no acknowledge condition occurs when the SDATA line is not pulled low on the ninth pulse. In write mode, the data for the invalid byte is not loaded into a subaddress register. A no acknowledge is issued by the ADV7281/ADV7281-M/ADV7281-MA, and the part returns to the idle condition. SDATA SCLK S 1–7 8 9 START ADDR R/W ACK 1–7 8 9 1–7 SUBADDRESS ACK DATA 8 9 P ACK STOP Figure 16. Bus Data Transfer WRITE SEQUENCE S SLAVE ADDR A(S) SUBADDRESS A(S) LSB = 0 READ SEQUENCE A(S) DATA A(S) P LSB = 1 S SLAVE ADDR A(S) SUBADDRESS A(S) S S = START BIT P = STOP BIT DATA SLAVE ADDR A(S) A(S) = ACKNOWLEDGE BY SLAVE A(M) = ACKNOWLEDGE BY MASTER DATA A(M) A(S) = NO ACKNOWLEDGE BY SLAVE A(M) = NO ACKNOWLEDGE BY MASTER Figure 17. Read and Write Sequence Rev. B | Page 24 of 32 DATA A(M) P 11633-013 1. 11633-012 ALSB Pin 0 0 1 1 All other devices withdraw from the bus and maintain an idle condition. In the idle condition, the device monitors the SDATA and SCLK lines for the start condition and the correct transmitted address. Data Sheet ADV7281 The user sub map has the same I2C slave address as the main map. To access the user sub map, set the SUB_USR_EN bits in the main map (Address 0x0E[6:5]) to 00. REGISTER MAPS The ADV7281 contains a single main register map. The main register map contains three sub maps: user sub map, interrupt/VDP map, User Sub Map2. Interrupt/VDP Sub Map The interrupt/VDP sub map contains registers that can be used to program internal interrupts, control the INTRQ pin, and decode vertical blanking interval (VBI) data. The ADV7281-M/ADV7281-MA contain two register maps: the main register map and the CSI register map (see Figure 18). The main register map of the ADV7281-M/ADV7281-MA contains three sub maps in a similar manner as the ADV7281. The interrupt/VDP sub map has the same I2C slave address as the main map. To access the interrupt/VDP sub map, set the SUB_USR_EN bits in the main map (Address 0x0E[6:5]) to 01. Main Map The I2C slave address of the main map of the ADV7281-M/ ADV7281-MA is set by the ALSB pin (see Table 20). The main map allows the user to program the I2C slave address of the CSI map. The main map contains three sub maps: the user sub map, the interrupt/VDP sub map, and User Sub Map 2. These three sub maps are accessed by writing to the SUB_USR_EN bits (Address 0x0E[6:5]) within the main map (see Figure 18 and Table 21). User Sub Map 2 User Sub Map 2 contains registers that control the ACE, down dither, and fast lock functions. It also contains controls that set the acceptable input luma and chroma limits before the ADV7281-M/ ADV7281-MA enter free run and color kill modes. User Sub Map 2 has the same I2C slave address as the main map. To access User Sub Map 2, set the SUB_USR_EN bits in the main map (Address 0x0E[6:5]) to 10. User Sub Map The user sub map contains registers that program the analog front end and digital core of the ADV7281-M/ADV7281-MA. MAIN MAP CSI MAP DEVICE ADDRESS DEVICE ADDRESS WRITE: 0x88 (RECOMMENDED READ: 0x89 SETTINGS) ALSB PIN HIGH WRITE: 0x42 READ: 0x43 0x0E[6:5] = 00 0x0E[6:5] = 01 0x0E[6:5] = 10 USER SUB MAP INTERRUPT/VDP SUB MAP USER SUB MAP 2 CSI MAP ADDRESS IS PROGRAMMABLE AND SET BY REGISTER 0xFE IN THE USER SUB MAP NOTES 1. CSI MAP ONLY APPLIES TO THE ADV7281-M/ADV7281-MA MODELS. 11633-014 ALSB PIN LOW WRITE: 0x40 READ: 0x41 Figure 18. Register Map and Sub Map Access Table 21. I2C Register Map and Sub Map Addresses ALSB Pin 0 0 0 0 0 0 1 1 1 1 1 1 X1 X1 1 R/W Bit 0 (write) 1 (read) 0 (write) 1 (read) 0 (write) 1 (read) 0 (write) 1 (read) 0 (write) 1 (read) 0 (write) 1 (read) 0 (write) 1 (read) Slave Address 0x40 0x41 0x40 0x41 0x40 0x41 0x42 0x43 0x42 0x43 0x42 0x43 0x88 0x89 SUB_USR_EN Bits (Address 0x0E[6:5]) 00 00 01 01 10 10 00 00 01 01 10 10 XX1 XX1 Register Map or Sub Map User sub map User sub map Interrupt/VDP sub map Interrupt/VDP sub map User Sub Map 2 User Sub Map 2 User sub map User sub map Interrupt/VDP sub map Interrupt/VDP sub map User Sub Map 2 User Sub Map 2 CSI map (ADV7281-M/ADV7281-MA only) CSI map (ADV7281-M/ADV7281-MA only) X and XX mean don’t care. Rev. B | Page 25 of 32 ADV7281 Data Sheet CSI Map (ADV7281-M/ADV7281-MA) SUB_USR_EN Bits, Address 0x0E[6:5] The CSI map contains registers that control the MIPI CSI-2 output stream from the ADV7281-M/ADV7281-MA. The ADV7281-M/ADV7281-MA main map contains three sub maps: the user sub map, the interrupt/VDP sub map, and User Sub Map 2 (see Figure 18). The user sub map is available by default. The other two sub maps are accessed using the SUB_USR_EN bits. When programming of the interrupt/VDP map or User Sub Map 2 is completed, it is necessary to write to the SUB_USR_EN bits to return to the user sub map. The CSI map has a programmable I2C slave address, which is programmed using Register 0xFE in the user sub map of the main map. The default value for the CSI map address is 0x00; however, the CSI map cannot be accessed until the I2C slave address is reset. The recommended I2C slave address for the CSI map is 0x88. To reset the I2C slave address of the CSI map, write to the CSI_TX_SLAVE_ADDRESS[7:1] bits in the main register map (Address 0xFE[7:1]). Set these bits to a value of 0x88 (I2C write address; I2C read address is 0x89). Rev. B | Page 26 of 32 Data Sheet ADV7281 PCB LAYOUT RECOMMENDATIONS The ADV7281/ADV7281-M/ADV7281-MA are high precision, high speed, mixed-signal devices. To achieve maximum performance from the parts, it is important to use a well-designed PCB. This section provides guidelines for designing a PCB for use with the ADV7281/ADV7281-M/ADV7281-MA. ANALOG INTERFACE INPUTS When routing the analog interface inputs on the PCB, keep track lengths to a minimum. Use 75 Ω trace impedances when possible; trace impedances other than 75 Ω increase the chance of reflections. POWER SUPPLY DECOUPLING It is recommended that each power supply pin be decoupled with 100 nF and 10 nF capacitors. The basic principle is to place a decoupling capacitor within approximately 0.5 cm of each power pin. Avoid placing the decoupling capacitors on the opposite side of the PCB from the ADV7281/ADV7281-M/ADV7281-MA because doing so introduces inductive vias in the path. Place the decoupling capacitors between the power plane and the power pin. Current should flow from the power plane to the capacitor and then to the power pin. Do not apply the power connection between the capacitor and the power pin. The best approach is to place a via near, or beneath, the decoupling capacitor pads down to the power plane (see Figure 19). VIA TO SUPPLY SUPPLY 10nF VIA TO GND 11633-015 GROUND 100nF Figure 19. Recommended Power Supply Decoupling It is especially important to maintain low noise and good stability for the PVDD pin. Careful attention must be paid to regulation, filtering, and decoupling. It is highly desirable to provide separate regulated supplies for each circuit group AVDD, DVDD, DVDDIO, PVDD, and MVDD. MVDD only applies to the ADV7281-M/ADV7281-MA models. Some graphic controllers use substantially different levels of power when active (during active picture time) and when idle (during horizontal and vertical sync periods). This disparity can result in a measurable change in the voltage supplied to the analog supply regulator, which can, in turn, produce changes in the regulated analog supply voltage. This problem can be mitigated by regulating the analog supply, or at least the PVDD supply, from a different, cleaner power source, for example, from a 12 V supply. Using a single ground plane for the entire board is also recommended. Experience has shown that the noise performance is the same or better with a single ground plane. Using multiple ground planes can be detrimental because each separate ground plane is smaller, and long ground loops can result. VREFN AND VREFP PINS Place the circuit associated with the VREFN and VREFP pins as close as possible to the ADV7281/ADV7281-M/ADV7281-MA and on the same side of the PCB as the part. DIGITAL OUTPUTS The ADV7281 digital outputs are INTRQ, LLC, P0:P7. The ADV7281-M/ADV7281-MA are INTRQ, GPO0 to GPO2. Minimize the trace length that the digital outputs must drive. Longer traces have higher capacitance, requiring more current and, in turn, causing more internal digital noise. Shorter traces reduce the possibility of reflections. Adding a 30 Ω to 50 Ω series resistor can suppress reflections, reduce EMI, and reduce current spikes inside the ADV7281/ ADV7281-M/ADV7281-MA. If series resistors are used, place them as close as possible to the pins of the ADV7281/ ADV7281-M/ ADV7281-MA. However, try not to add vias or extra length to the output trace in an attempt to place the resistors closer. If possible, limit the capacitance that each digital output must drive to less than 15 pF. This recommendation can be easily accommodated by keeping traces short and by connecting the outputs to only one device. Loading the outputs with excessive capacitance increases the current transients inside the ADV7281/ ADV7281-M/ADV7281-MA, creating more digital noise on the power supplies. Rev. B | Page 27 of 32 ADV7281 Data Sheet EXPOSED METAL PAD The ADV7281/ADV7281-M/ADV7281-MA have an exposed metal pad on the bottom of the package. This pad must be soldered to ground. The exposed pad is used for proper heat dissipation, noise suppression, and mechanical strength. DIGITAL INPUTS The digital inputs of the ADV7281/ADV7281-M/ADV7281-MA are designed to work with 1.8 V signals (3.3 V for DVDDIO) and are not tolerant of 5 V signals. Extra components are required if 5 V logic signals must be applied to the decoder. MIPI OUTPUTS (D0P, D0N, CLKP, CLKN) ADV7281-M/ADV7281-MA ONLY It is recommended that the MIPI output traces be kept as short as possible and on the same side of the PCB as the ADV7281-M/ ADV7281-MA device. It is also recommended that a solid plane (preferably a ground plane) be placed on the layer adjacent to the MIPI traces to provide a solid reference plane. MIPI transmission operates in both differential and singleended modes. During high speed transmission, the pair of outputs operates in differential mode; in low power mode, the pair operates as two independent single-ended traces. Therefore, it is recommended that each output pair be routed as two loosely coupled 50 Ω single-ended traces to reduce the risk of crosstalk between the two traces in low power mode. Rev. B | Page 28 of 32 Data Sheet ADV7281 TYPICAL CIRCUIT CONNECTIONS Figure 20 provides an example of how to connect the ADV7281. For detailed schematics of the ADV7281 evaluation board, contact a local Analog Devices, Inc., field applications engineer or an Analog Devices distributor. 0.1µF A IN1 DIFF1+ 1.3kΩ FULLY 150Ω DIFFERENTIAL CVBS INPUT 430Ω 430Ω 0.1µF DVDD _1.8V A IN2 DIFF1– 1.3kΩ AVDD _1.8V DVDDIO _3.3V 9.1 kΩ DIAG1 0.1µF 1 kΩ 10nF 0.1µF 0.1µF 0.1µF 10nF 10nF 10nF 0.1µF DIFF2+ A IN3 1.3kΩ 430Ω 430Ω DVDD _1.8V 0.1µF 1.3kΩ 0.1µF AVDD _1.8V A IN4 10nF 18 AIN2 22 DIAG1 24 AIN3 AIN4 DIAG2 LOCATE VREFP AND VREFN CAPACITOR AS CLOSE AS POSSIBLE TO THE ADV7281 AND ON THE SAME SIDE OF THE PCB AS THE ADV7281 AIN2 ADV7281 AIN3 25 AIN4 23 DIAG2 19 VREFP 20 VREFN 16 P0 TO P7 PVDD 21 3 DIAG1 AVDD AIN1 DVDD 17 AIN1 DVDD 1 kΩ DVDDIO 2 DIAG2 13 9.1kΩ P0 P1 P2 P3 P4 P5 P6 P7 12 11 10 9 8 7 6 5 P0 P1 P2 P3 P4 P5 P6 P7 YCrCb 8-BIT ITU-R BT.656 DATA 0.1µF LOCATE CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS, THE ADV7281 14 XTALP 15 XTALN 28 ALSB 31 PWRDWN 47pF LLC 32 INTRQ 26 LLC INTRQ 28.63636MHz 47pF DVDDIO 4kΩ RESET SCLK SDATA 27 RESET 30 SCLK 29 SDATA 11633-203 4 PWRDWN DGND ALSB TIED HIGH: I2C ADDRESS = 0x42 ALSB TIED LOW: I2C ADDRESS = 0x40 DGND DIFF2– PVDD _1.8V DVDDIO _3.3V 75Ω 1 PSEUDO DIFFERENTIAL CVBS INPUT Figure 20. Typical Connection Diagram, ADV7281 Rev. B | Page 29 of 32 ADV7281 Data Sheet Figure 21 provides an example of how to connect the ADV7281-M. For detailed schematics of the ADV7281-M evaluation board, contact a local Analog Devices, Inc., field applications engineer or an Analog Devices distributor. DVDD _1.8V 0.1µF DIFF1+ 1.3kΩ FULLY 150Ω DIFFERENTIAL CVBS INPUT DIFF1– 0.1µF 0.1µF A IN1 AVDD _1.8V DVDDIO _3.3V 0.1µF 0.1µF 10nF 10nF MVDD _1.8V 10nF 10nF 430Ω 430Ω 0.1µF PVDD _1.8V DVDDIO _3.3V A IN2 1.3kΩ M VDD_1.8V DVDD _1.8V 9.1 kΩ 0.1µF AVDD _1.8V DIAG1 10nF PSEUDO DIFFERENTIAL CVBS INPUT PVDD 13 16 MVDD AIN1 AIN2 21 18 AIN2 430Ω AVDD 17 AIN1 3 A IN3 DVDD 1.3kΩ 2 0.1µF DIFF2+ DVDDIO 1 kΩ D0P 75Ω DIFF2– 430Ω 22 DIAG1 0.1µF D0N 9 10 D0P D0N DIAG1 A IN4 1.3kΩ 9.1kΩ 23 AIN3 DIAG2 24 AIN4 1 kΩ AIN3 CLKP 11 CLKP AIN4 CLKN 12 CLKN ADV7281-M 0.1µF 24Ω DIAG2 A IN5 AIN5 51Ω AIN6 26 AIN5 27 AIN6 GPO2 0.1µF A IN 6 51Ω 14 47pF GPO1 GPO0 8 GPO0 INTRQ 47pF GPO2 7 28.63636MHz 15 6 GPO1 XTALP 5 INTRQ XTALN LOCATE VREFN AND VREFP CAPACITOR AS CLOSE AS POSSIBLE TO THE ADV7281-M AND ON THE SAME SIDE OF THE PCB AS THE ADV7281-M DVDDIO 4kΩ 29 ALSB VREFP ALSB TIED HIGH: I2C ADDRESS = 0x42 ALSB TIED LOW: I2C ADDRESS = 0x40 19 0.1µF 28 RESET SCLK SDATA 31 30 PWRDWN 20 RESET SCLK SDATA DGND PWRDWN VREFN 4 32 DGND 24Ω 1 SINGLE -ENDED CVBS INPUT EXAMPLE LOCATE CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS, THE ADV7281-M Figure 21. Typical Connection Diagram, ADV7281-M Rev. B | Page 30 of 32 11633-115 SINGLE -ENDED CVBS INPUT EXAMPLE 25 DIAG2 Data Sheet ADV7281 Figure 22 provides an example of how to connect the ADV7281-MA. For detailed schematics of the ADV7281-MA evaluation board, contact a local Analog Devices field applications engineer or an Analog Devices distributor. 0.1µF COMPONENT VIDEO INPUT Y 24Ω A IN1 51Ω 0.1µF Pb 24Ω A IN2 51Ω 0.1µF Pr SINGLEENDED CVBS INPUT 24Ω A IN 3 51Ω 0.1µF 24Ω A IN 4 51Ω DVDD _1.8V 0.1µF DIFF1+ 0.1µF A IN5 0.1µF 10nF 10nF 430Ω 430Ω 0.1µF 1.3kΩ PVDD _1.8V DVDDIO _3.3V A IN6 M VDD _1.8V DVDD _1.8V 0.1µF AVDD _1.8V 430Ω 22 A IN 3 13 MVDD 16 21 AVDD PVDD 3 A IN 2 430Ω 150Ω D0P D0N 9 10 D0P D0N A IN 3 0.1µF A IN8 23 A IN 4 24 A IN 5 A IN 4 CLKP 11 CLKP A IN 5 CLKN 12 CLKN ADV7281-MA 25 A IN 6 A IN 7 A IN 8 26 27 A IN 6 A IN 7 A IN 8 GPO2 LOCATE CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS, THE ADV7281-MA 14 47pF GPO1 GPO0 8 GPO0 INTRQ 47pF GPO2 7 28.63636MHz 15 6 GPO1 XTALP 5 INTRQ XTALN LOCATE VREFN AND VREFP CAPACITOR AS CLOSE AS POSSIBLE TO THE ADV7281-MA AND ON THE SAME SIDE OF THE PCB AS THE ADV7281-MA DVDDIO 4kΩ 29 ALSB VREFP ALSB TIED HIGH: I2C ADDRESS = 0x42 ALSB TIED LOW: I2C ADDRESS = 0x40 19 0.1µF 28 RESET SCLK 30 SCLK SDATA 1 SDATA 31 PWRDWN 20 RESET DGND PWRDWN VREFN DGND 32 4 1.3kΩ A IN 1 DVDD 18 A IN 2 2 1.3kΩ 17 A IN 1 A IN7 10nF DVDDIO 0.1µF DIFF2+ DIFF2– 10nF 75Ω DIFF1– FULLY DIFFERENTIAL CVBS INPUT 0.1µF 0.1µF 10nF MVDD _1.8V Figure 22. Typical Connection Diagram, ADV7281-MA Rev. B | Page 31 of 32 11633-116 PSEUDO DIFFERENTIAL CVBS INPUT 1.3kΩ AVDD _1.8V DVDDIO _3.3V ADV7281 Data Sheet OUTLINE DIMENSIONS 0.30 0.25 0.18 32 25 1 24 0.50 BSC *3.75 EXPOSED PAD 3.60 SQ 3.55 17 TOP VIEW 0.80 0.75 0.70 0.50 0.40 0.30 8 16 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE PIN 1 INDICATOR 9 BOTTOM VIEW 0.25 MIN FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. *COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5 WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION. 08-16-2010-B PIN 1 INDICATOR 5.10 5.00 SQ 4.90 Figure 23. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 5 mm × 5 mm Body, Very Very Thin Quad (CP-32-12) Dimensions shown in millimeters ORDERING GUIDE Model1, 2 ADV7281WBCPZ ADV7281WBCPZ-RL ADV7281WBCPZ-M ADV7281WBCPZ-M-RL ADV7281WBCPZ-MA ADV7281WBCPZ-MA-RL EVAL-ADV7281EBZ EVAL-ADV7281MEBZ EVAL-ADV7281MAEBZ 1 2 Temperature Range −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +105°C Package Description 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] Evaluation Board for the ADV7281 Evaluation Board for the ADV7281-M Evaluation Board for the ADV7281-MA Package Option CP-32-12 CP-32-12 CP-32-12 CP-32-12 CP-32-12 CP-32-12 Z = RoHS Compliant Part. W = Qualified for Automotive Applications. AUTOMOTIVE PRODUCTS The ADV7281W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). ©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11633-0-4/14(B) Rev. B | Page 32 of 32