A63P9336 Series - AMIC Technology

A63P9336 Series
512K X 36 Bit Synchronous High Speed SRAM
with Burst Counter and Pipelined Data Output
Preliminary
Document Title
512K X 36 Bit Synchronous High Speed SRAM with Burst Counter and Pipelined
Data Output
Revision History
Rev. No.
0.0
History
Issue Date
Remark
Initial issue
March 3, 2007
Preliminary
PRELIMINARY (March, 2007, Version 0.0)
AMIC Technology, Corp.
A63P9336 Series
Preliminary
512K X 36 Bit Synchronous High Speed SRAM
with Burst Counter and Pipelined Data Output
Features
„ Fast access times: 2.6/2.8/3.2/3.5/3.8/4.2 ns
(250/227/200/166/150/133 MHZ)
„ Single +2.5V+5% or +2.5V-5% power supply
„ Synchronous burst function
„ Individual Byte Write control and Global Write
„ Registered output for pipelined applications
„ Three separate chip enables allow wide range of
options for CE control, address pipelining
„ Selectable BURST mode
„ SLEEP mode (ZZ pin) provided
„ Available in 100-pin LQFP package
„ All Pb-free (Lead-free) products are RoHS compliant
General Description
The A63P9336 is a high-speed SRAM containing 18M
bits of bit synchronous memory, organized as 512K
words by 36 bits.
The A63P9336 combines advanced synchronous
peripheral circuitry, 2-bit burst control, input registers,
output registers and a 512KX36 SRAM core to provide a
wide range of data RAM applications.
The positive edge triggered single clock input (CLK)
controls all synchronous inputs passing through the
registers. Synchronous inputs include all addresses (A0
- A18), all data inputs (I/O1 - I/O36), active LOW chip
enable ( CE ), two additional chip enables (CE2, CE2 ),
burst control inputs ( ADSC , ADSP , ADV ), byte write
enables ( BWE , BW1 , BW2 , BW3 , BW4 ) and
Global Write ( GW ). Asynchronous inputs include
PRELIMINARY (March, 2007, Version 0.0)
output enable ( OE ), clock (CLK), BURST mode
(MODE) and SLEEP mode (ZZ).
Burst operations can be initiated with either the address
status processor ( ADSP ) or address status controller
( ADSC ) input pin. Subsequent burst sequence burst
addresses can be internally generated by the A63P9336
and controlled by the burst advance ( ADV ) pin. Write
cycles are internally self-timed and synchronous with the
rising edge of the clock (CLK).
This feature simplifies the write interface. Individual Byte
enables allow individual bytes to be written. BW1
controls I/O1 - I/O9, BW2 controls I/O10 - I/O18, BW3
controls I/O19 - I/O27, and BW4 controls I/O28 - I/O36, all
on the condition that BWE is LOW. GW LOW
causes all bytes to be written.
1
AMIC Technology, Corp.
A63P9336 Series
ADSP
84
A9
ADSC
85
81
OE
86
ADV
BWE
87
A8
GW
88
82
CLK
89
83
GND
90
BW1
93
CE2
BW2
94
VCC
BW3
95
91
BW4
96
92
CE
CE2
97
A7
99
98
A6
100
Pin Configuration
I/O19
1
80
I/O18
I/O20
2
79
I/O17
I/O21
3
78
I/O16
VCCQ
4
77
VCCQ
GNDQ
5
76
GNDQ
I/O22
6
75
I/O15
I/O23
7
74
I/O14
I/O24
8
73
I/O13
I/O25
9
72
I/O12
GNDQ
10
71
GNDQ
VCCQ
11
70
VCCQ
I/O26
12
69
I/O11
I/O27
13
68
I/O10
NC
14
67
GND
VCC
15
66
NC
NC
16
65
VCC
GND
17
64
ZZ
I/O28
18
63
I/O8
I/O29
19
62
I/O7
VCCQ
20
61
VCCQ
GNDQ
21
60
GNDQ
I/O30
22
59
I/O6
I/O31
23
58
I/O5
I/O32
24
57
I/O4
I/O33
25
56
I/O3
GNDQ
26
55
GNDQ
VCCQ
27
54
VCCQ
I/O34
28
53
I/O2
I/O35
29
52
I/O1
I/O36
30
51
I/O9
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
A4
A3
A2
A1
A0
NC
NC
GND
VCC
A18
A17
A10
A11
A12
A13
A14
A15
2
50
32
A5
PRELIMINARY (March, 2007, Version 0.0)
A16
31
MODE
A63P9336E
AMIC Technology, Corp.
A63P9336 Series
Block Diagram
ZZ
MODE
LOGIC
MODE
ADV
CLK
CLK
LOGIC
BURST
LOGIC
ADDRESS
COUNTER
CLR
ADSC
ADSP
A0-A18
ADDRESS
REGISTERS
19
8
8
GW
BWE
BW1
BW2
BYTE
WRITE
ENABLE
LOGIC
BW3
8
8
BW4
BYTE1
WRITE
DRIVER
9
BYTE2
WRITE
DRIVER
9
512KX9X4
MEMORY
BYTE3
WRITE
DRIVER
9
BYTE4
WRITE
DRIVER
9
36
OUTPUT
REGISTERS
ARRAY
36
4
DATA-IN
REGISTERS
4
CE
CE2
CE2
CHIP
ENABLE
LOGIC
PIPELINED
ENABLE
LOGIC
OE
OUTPUT
ENABLE
LOGIC
I/O1 - I/O36
PRELIMINARY (March, 2007, Version 0.0)
3
AMIC Technology, Corp.
A63P9336 Series
Pin Description
Pin No.
Symbol
32 – 37, 42 - 50, 81, 82,
99, 100
A0 - A18
89
CLK
87, 93 - 96
BWE , BW1 BW4
88
GW
Global Write
86
OE
Output Enable
92, 97, 98
CE2 ,CE2, CE
Chip Enables
83
ADV
84
ADSP
Processor Address Status
85
ADSC
Controller Address Status
31
MODE
Burst Mode:
64
ZZ
1,2, 3, 6 - 9, 12, 13, 18,
19, 22 - 25, 28, 29,
30,51,52, 53,
56 - 59, 62, 63, 68, 69, 72
- 75, 78, 79,80
I/O1- I/O36
15, 41, 65, 91
VCC
Power Supply
17, 40, 67, 90
GND
Ground
4, 11, 20, 27,
54, 61, 70, 77
VCCQ
Isolated Output Buffer Supply
5, 10, 21, 26,
55, 60, 71, 76
GNDQ
Isolated Output Buffer Ground
PRELIMINARY (March, 2007, Version 0.0)
Description
Address Inputs
Clock
Byte Write Enables
Burst Address Advance
HIGH or NC (Interleaved burst)
LOW (Linear burst)
Asynchronous Power-Down (Snooze):
HIGH (Sleep)
LOW or NC (Wake up)
Data Inputs/Outputs
4
AMIC Technology, Corp.
A63P9336 Series
Synchronous Truth Table (See Notes 1 Through 5)
Operation
Deselected Cycle,
Power-down
Deselected Cycle,
Power-down
Deselected Cycle,
Power-down
Deselected Cycle,
Power-down
Deselected Cycle,
Power-down
READ Cycle,
Begin Burst
READ Cycle,
Begin Burst
WRITE Cycle,
Begin Burst
READ Cycle,
Begin Burst
READ Cycle,
Begin Burst
READ Cycle,
Continue Burst
READ Cycle,
Continue Burst
READ Cycle,
Continue Burst
READ Cycle,
Continue Burst
WRITE Cycle,
Continue Burst
WRITE Cycle,
Continue Burst
READ Cycle,
Suspend Burst
READ Cycle,
Suspend Burst
READ Cycle,
Suspend Burst
READ Cycle,
Suspend Burst
WRITE Cycle,
Suspend Burst
WRITE Cycle,
Suspend Burst
Address
Used
NONE
CE
CE2
CE2
ADSP
ADSC
ADV
WRITE
OE
H
X
X
X
L
X
X
X
L-H
I/O
Operation
High-Z
NONE
L
X
L
L
X
X
X
X
L-H
High-Z
NONE
L
H
X
L
X
X
X
X
L-H
High-Z
NONE
L
X
L
H
L
X
X
X
L-H
High-Z
NONE
L
H
X
H
L
X
X
X
L-H
High-Z
External
L
L
H
L
X
X
X
L
L-H
Dout
External
L
L
H
L
X
X
X
H
L-H
High-Z
External
L
L
H
H
L
X
L
X
L-H
Din
External
L
L
H
H
L
X
H
L
L-H
Dout
External
L
L
H
H
L
X
H
H
L-H
High-Z
Next
X
X
X
H
H
L
H
L
L-H
Dout
Next
X
X
X
H
H
L
H
H
L-H
High-Z
Next
H
X
X
X
H
L
H
L
L-H
Dout
Next
H
X
X
X
H
L
H
H
L-H
High-Z
Next
X
X
X
H
H
L
L
X
L-H
Din
Next
H
X
X
X
H
L
L
X
L-H
Din
Current
X
X
X
H
H
H
H
L
L-H
Dout
Current
X
X
X
H
H
H
H
H
L-H
High-Z
Current
H
X
X
X
H
H
H
L
L-H
Dout
Current
H
X
X
X
H
H
H
H
L-H
High-Z
Current
X
X
X
H
H
H
L
X
L-H
Din
Current
H
X
X
X
H
H
L
X
L-H
Din
PRELIMINARY (March, 2007, Version 0.0)
5
CLK
AMIC Technology, Corp.
A63P9336 Series
Notes: 1. X = "Disregard", H = Logic High, L = Logic Low.
2. WRITE = L means:
1) Any BWx ( BW1, BW2 , BW3 , or BW4 ) and BWE are low or
2) GW is low.
3. All inputs except OE must be synchronized with setup and hold times around the rising edge (L-H) of CLK.
4. For write cycles that follow read cycles, OE must be HIGH before the input data request setup time and held
HIGH throughout the input data hold time.
5. ADSP LOW always initiates an internal Read at the L-H edge of CLK. A Write is performed by setting one or
more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to
the Write timing diagram for clarification.
Write Truth Table
Operation
GW
BWE
BW1
BW2
BW3
BW4
READ
H
H
X
X
X
X
READ
H
L
H
H
H
H
WRITE Byte 1
H
L
L
H
H
H
WRITE all bytes
H
L
L
L
L
L
WRITE all bytes
L
X
X
X
X
X
PRELIMINARY (March, 2007, Version 0.0)
6
AMIC Technology, Corp.
A63P9336 Series
Linear Burst Address Table (MODE = LOW)
First Address (External)
Second Address (Internal)
Third Address (Internal)
Fourth Address (Internal)
X . . . X00
X . . . X01
X . . . X10
X . . . X11
X . . . X01
X . . . X10
X . . . X11
X . . . X00
X . . . X10
X . . . X11
X . . . X00
X . . . X01
X . . . X11
X . . . X00
X . . . X01
X . . . X10
Interleaved Burst Address Table (MODE = HIGH or NC)
First Address (External)
Second Address (Internal)
Third Address (Internal)
Fourth Address (Internal)
X . . . X00
X . . . X01
X . . . X10
X . . . X11
X . . . X01
X . . . X00
X . . . X11
X . . . X10
X . . . X10
X . . . X11
X . . . X00
X . . . X01
X . . . X11
X . . . X10
X . . . X01
X . . . X00
Absolute Maximum Ratings*
*Comments
Power Supply Voltage (VCC) . . . . . . . . . -0.5V to +3.6V
Voltage Relative to GND for any Pin Except VCC (Vin,
Vout) . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VCC +0.5V
Power Dissipation (PD) . . . . . . . . . . . . . . . . . . . . . . . 2W
Operating Temperature (Topr) . . . . . . . . . . 0°C to 70°C
Storage Temperature (Tbias) . . . . . . . . . -10°C to 85 °C
Storage Temperature (Tstg) . . . . . . . . . . . -55°C to 125°C
Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to this device.
These are stress ratings only. Functional operation of
this device at these or any other conditions above those
indicated in the operational sections of this specification
is not implied or intended. Exposure to the absolute
maximum rating conditions for extended periods may
affect device reliability.
Recommended DC Operating Conditions
(0°C ≤ TA ≤ 70°C, VCC, VCCQ = 2.5V+5% or 2.5V-5%, unless otherwise noted)
Symbol
Min.
Typ.
Max.
Unit
Supply Voltage (Operating Voltage Range)
2.375
2.5
2.625
V
Isolated Input Buffer Supply
2.375
2.5
2.625
V
Supply Voltage to GND
0.0
-
0.0
V
VIH
Input High Voltage
1.7
-
VCC+0.
V
VIHQ
Input High Voltage (I/O Pins)
1.7
-
VCC+0.
V
VIL
Input Low Voltage
-0.3
-
0.7
V
VCC
VCCQ
GND
Parameter
PRELIMINARY (March, 2007, Version 0.0)
7
Note
1, 2
1, 2
AMIC Technology, Corp.
A63P9336 Series
DC Electrical Characteristics
(0°C ≤ TA ≤ 70°C, VCC, VCCQ = 2.5V+5% or 2.5V-5%, unless otherwise noted)
Symbol
Parameter
Min.
Max.
Unit
Test Conditions
⏐ILI⏐
Input Leakage Current
-
±2.0
μA
All inputs VIN = GND to VCC
⏐ILO⏐
Output Leakage Current
-
±2.0
μA
OE = VIH, Vout = GND to VCC
Supply Current
-
400
mA
Device selected; VCC = max.
Iout = 0mA, all inputs = VIH or VIL
Cycle time = tKC min.
ICC1
ISB1
Standby Current
ISB2
-
180
mA
-
150
mA
Device deselected; VCC = max.
All inputs are fixed.
All inputs ≥ VCC - 0.2V
or ≤ GND + 0.2V
Cycle time = tKC min.
Note
3, 11
11
ZZ ≥ VCC - 0.2V
VOL
Output Low Voltage
-
0.4
V
IOL = 1 mA
VOH
Output High Voltage
2.0
-
V
IOH = -1 mA
Capacitance
Symbol
Parameter
Typ.
Max.
Unit
CIN
Input Capacitance
3
4
pF
CI/O
Input/Output Capacitance
4
5
pF
Conditions
TA = 25 C; f = 1MHz
VCC = 2.5V
* These parameters are sampled and not 100% tested.
PRELIMINARY (March, 2007, Version 0.0)
8
AMIC Technology, Corp.
A63P9336 Series
AC Characteristics
Symbol
(0°C ≤ TA ≤ 70°C, VCC = 2.5V+5% or 2.5V-5%)
Parameter
-2.6
-2.8
-3.2
-3.5
-3.8
-4.2
Unit
Min.
Max
Min.
Max
Min.
Max
Min.
Max
Min.
Max
Min.
Max
Note
tKC
Clock Cycle Time
4.0
-
4.4
-
5.0
-
6.0
-
6.7
-
7.5
-
ns
tKH
Clock High Time
1.7
-
2.0
-
2.0
-
2.2
-
2.5
-
3.0
-
ns
tKL
Clock Low Time
1.7
-
2.0
-
2.0
-
2.2
-
2.5
-
3.0
-
ns
tKQ
Clock to Output Valid
-
2.6
-
2.8
-
3.2
-
3.5
-
3.8
-
4.2
ns
tKQX
Clock to Output Invalid
1.5
-
1.5
-
1.5
-
1.5
-
1.5
-
1.5
-
ns
tKQLZ
Clock to Output in Low-Z
1.5
-
1.5
-
1.5
-
1.5
-
1.5
-
1.5
-
ns
5, 6
tKQHZ
Clock to Output in
High-Z
1.5
2.6
1.5
2.8
1.5
3.0
1.5
3.0
1.5
3.0
1.5
3.5
ns
5, 6
tOEQ
OE to Output Valid
-
2.6
-
2.8
-
3.2
-
3.5
-
3.8
-
4.2
ns
8
tOELZ
OE to Output in Low-Z
0
-
0
-
0
-
0
-
0
-
0
-
ns
5, 6
tOEHZ
OE to Output in High-Z
-
2.6
-
2.8
-
3.2
-
3.5
-
3.8
-
4.2
ns
5, 6
Address
1.2
-
1.4
-
1.4
-
1.5
-
1.5
-
1.5
-
ns
7, 9
tADSS
Address Status
( ADSC , ADSP )
1.2
-
1.4
-
1.4
-
1.5
-
1.5
-
1.5
-
ns
7, 9
tADVS
Address Advance
( ADV )
1.2
-
1.4
-
1.4
-
1.5
-
1.5
-
1.5
-
ns
7, 9
tWS
Write Signals
( BW1, BW2 , BW3 ,
BW4 , BWE , GW )
1.2
-
1.4
-
1.4
-
1.5
-
1.5
-
1.5
-
ns
7, 9
tDS
Data-in
1.2
-
1.4
-
1.4
-
1.5
-
1.5
-
1.5
-
ns
7, 9
tCES
Chip Enable
1.2
-
1.4
-
1.4
-
1.5
-
1.5
-
1.5
-
ns
7, 9
Setup Times
tAS
( CE , CE2, CE2 )
PRELIMINARY (March, 2007, Version 0.0)
9
AMIC Technology, Corp.
A63P9336 Series
AC Characteristics (continued)
Symbol
Parameter
-2.6
-2.8
-3.2
-3.5
-3.8
-4.2
Unit
Note
Min.
Max
Min.
Max
Min.
Max
Min.
Max
Min.
Max
Min.
Max
Address
0.3
-
0.4
-
0.5
-
0.5
-
0.5
-
0.5
-
ns
7, 9
tADVH
Address Status
( ADSC , ADSP )
0.3
-
0.4
-
0.5
-
0.5
-
0.5
-
0.5
-
ns
7, 9
tAAH
Address Advance
( ADV )
0.3
-
0.4
-
0.5
-
0.5
-
0.5
-
0.5
-
ns
7, 9
tWH
Write Signal
( BW1, BW2 ,
BW3 ,
BW4 , BWE ,
GW )
0.3
-
0.4
-
0.5
-
0.5
-
0.5
-
0.5
-
ns
7, 9
tDH
Data-in
0.3
-
0.4
-
0.5
-
0.5
-
0.5
-
0.5
-
ns
7, 9
tCEH
Chip Enable
( CE , CE2, CE2 )
0.3
-
0.4
-
0.5
-
0.5
-
0.5
-
0.5
-
ns
7, 9
Hold Times
tAH
Notes:
1. All voltages refer to GND.
2. Overshoot: VIH ≤ +4.6V for t ≤ tKC/2.
Undershoot: VIH ≥ -0.7V for t ≤ tKC/2.
Power-up: VIH ≤ +3.6 and VCC ≤ 3.1V
for t ≤ 200ms
3. ICC is given with no output current. ICC increases with greater output loading and faster cycle times.
4. Test conditions assume the output loading shown in Figure 1, unless otherwise specified.
5. For output loading, CL = 5pF, as shown in Figure 2. Transition is measured ±150mV from steady state voltage.
6. At any given temperature and voltage condition, tKQHZ is less than tKQLZ and tOEHZ is less than tQELZ.
7. A WRITE cycle is defined by at least one Byte Write enable LOW and ADSP HIGH for the required setup and hold
times. A READ cycle is defined by all byte write enables HIGH and ( ADSC or ADV LOW) or ADSP LOW for the
required setup and hold times.
8. OE has no effect when a Byte Write enable is sampled LOW.
9. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK
when either ADSP or ADSC is LOW and the chip is enabled. All other synchronous inputs must meet the setup and
hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid
at each rising edge of CLK when either ADSP or ADSC is LOW to remain enabled.
10. The load used for VOH, VOL testing is shown in Figure 2. AC load current is higher than the given DC values.
AC I/O curves are available upon request.
11. "Device Deselected" means device is in POWER-DOWN mode, as defined in the truth table. "Device Selected" means
device is active (not in POWER-DOWN mode).
12. MODE pin has an internal pulled-up, and ZZ pin has an internal pulled-down. All of then exhibit an input leakage current
of 10μA.
13. Snooze (ZZ) input is recommended that users plan for four clock cycles to go into SLEEP mode and four clocks to
emerge from SLEEP mode to ensure no data is lost.
PRELIMINARY (March, 2007, Version 0.0)
10
AMIC Technology, Corp.
A63P9336 Series
Timing Waveforms
tKC
CLK
tKH
tKL
tADSS
tADSH
ADSP
tADSS
tADSH
ADSC
tAS
tAH
A1
ADDRESS
A2
tWS
A3
Burst continued with
new base address
tWH
GW,BWE
BW1-BW4
tCES
Delselected
cycle
tCEH
CE
(NOTE *2)
(NOTE *4)
tADVS
tADVH
ADV
ADV suspends
burst
OE
tOEHZ
(NOTE *3)
tKQLZ
DOUT
High-Z
Q(A1)
tOEQ
tOELZ
tKQHZ
tKQ
tKQX
Q(A2)
Q(A2+1)
Q(A2+2)
Q(A2+3)
Q(A2)
Q(A2+1)
Q(A3)
Burst wraps around
to its initial state
(NOTE *1)
tKQ
Single READ
BURST READ
Read Timing
Notes:
*1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the internal burst address immediately
following A2.
*2. Timing for CE2 and CE2 is identical to that for CE . As shown in this diagram, when CE is LOW, CE2 is
LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
*3. Timing shown assumes that the device was not enabled before entering this sequence. OE does not cause Q
to be driven until after the rising edge of the following clock.
PRELIMINARY (March, 2007, Version 0.0)
11
AMIC Technology, Corp.
A63P9336 Series
Timing Waveforms (continued)
tKC
CLK
tKH
tKL
tADSS
tADSH
ADSP
tADSS
ADSC extends burst
tADSS
tADSH
tADSH
ADSC
tAS
tAH
A1
ADDRESS
A2
A3
BYTE W RITE signals are ignored
for first cycle when ADSP initiates burst
tWS
tWH
BW E,BW 1-BW 4
(NOTE *5)
tWS
tWH
GW
tCES
tCEH
CE
(NOTE *2)
tADVS
tADVH
ADV
(NOTE *4)
OE
(NOTE *3)
tDS
DIN
ADV suspends burst
High-Z
tDH
D(A1)
tOEHZ
D(A2)
D(A2+1)
D(A2+1)
D(A2+2)
D(A2+3)
D(A3)
D(A3+1)
D(A3+2)
(NOTE *1)
DOUT
BURST READ
Single W RITE
Extended BURST W RITE
Write Timing
Notes: *1. D(A2) refers to output from address A2. D(A2+1) refers to output from the internal burst address immediately
following A2.
*2. Timing for CE2 and CE2 is identical to that for CE . As shown in the above diagram, when CE is LOW,
CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
*3. OE must be HIGH before the input data setup, and held HIGH throughout the data hold period. This prevents
input/output data contention for the period prior to the time Byte Write enable inputs are sampled.
*4. ADV must be HIGH to permit a Write to the loaded address.
*5. Byte Write enables are decided by means of a Write truth table.
PRELIMINARY (March, 2007, Version 0.0)
12
AMIC Technology, Corp.
A63P9336 Series
Timing Waveforms (continued)
tKC
CLK
tKH
tADSS
tKL
tADSH
ADSP
ADSC
tAS tAH
ADDRESS
A2
A1
A4
A3
tWS
tWH
tDS
tDH
A5
A6
GW,BWE,
BW1-BW4
(NOTE *3)
tCES
tCEH
CE
(NOTE *2)
ADV
OE
tKQ
DIN
High-Z
tOELZ
D(A3)
tKQLZ
D(A5)
tOEHZ
D(A6)
tKQ
(NOTE *1)
DOUT
High-Z
Q(A1)
Back-to-Back READs
Q(A2)
Q(A3)
Single WRITE
Q(A4)
Pass-through
READ
(NOTE *4)
Q(A4+1)
Q(A4+2)
BURST READ
Q(A4+3)
Back-to-Back
WRITEs
Read/Write Timing
Notes: *1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the internal burst address immediately
following A4.
*2. Timing for CE2 and CE2 is identical to that for CE . As shown in this diagram, when CE is LOW, CE2 is
LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
*3. Byte Write enables are decided by means of a Write truth table.
*4. Pass-through occurs when data is first written, then Read in sequence.
PRELIMINARY (March, 2007, Version 0.0)
13
AMIC Technology, Corp.
A63P9336 Series
AC Test Conditions
Input Pulse Levels
GND to 2.5V
Input Rise and Fall Times
1.0ns
Input Timing Reference Levels
1.25V
Output Reference Levels
1.25V
Output Load
See Figures 1 and 2
+2.5V
Q
ZO=50Ω
1667Ω
RL=50Ω
Q
VT=1.25V
1538Ω
5pF
Figure 1. Output Load Equivalent
Figure 2. Output Load Equivalent
PRELIMINARY (March, 2007, Version 0.0)
14
AMIC Technology, Corp.
A63P9336 Series
Ordering Information
Part No.
Access Times (ns)
Frequency (MHz)
Package
A63P9336E-2.6F
2.6
250
100L Pb-Free LQFP
A63P9336E-2.8F
2.8
225
100L Pb-Free LQFP
A63P9336E-3.2F
3.2
200
100L Pb-Free LQFP
A63P9336E-3.5F
3.5
166
100L Pb-Free LQFP
A63P9336E-3.8F
3.8
150
100L Pb-Free LQFP
A63P9336E-4.2F
4.2
133
100L Pb-Free LQFP
PRELIMINARY (March, 2007, Version 0.0)
15
AMIC Technology, Corp.
A63P9336 Series
Package Information
LQFP 100L Outline Dimensions
unit: inches/mm
HE
A2
A1
y
D
E
80
51
50
100
31
1
L1
L
HD
D
81
30
e
b
c
θ
Symbol
Dimensions in inches
Min.
Nom.
Max.
Dimensions in mm
Min.
Nom.
Max.
A1
0.002
-
-
0.05
-
-
A2
0.053
0.055
0.057
1.35
1.40
1.45
b
0.011
0.013
0.015
0.27
0.32
0.37
c
0.005
-
0.008
0.12
-
0.20
HE
0.860
0.866
0.872
21.85
22.00
22.15
E
0.783
0.787
0.791
19.90
20.00
20.10
HD
0.624
0.630
0.636
15.85
16.00
16.15
D
0.547
0.551
0.555
13.90
14.00
14.10
e
L
0.026 BSC
0.018
L1
0.024
0.65 BSC
0.030
0.45
0.039 REF
0.60
0.75
1.00 REF
y
-
-
0.004
-
-
0.1
θ
0°
3.5°
7°
0°
3.5°
7°
Notes:
1. Dimensions D and E do not include mold protrusion.
2. Dimensions b does not include dambar protrusion.
Total in excess of the b dimension at maximum material condition.
3. Dambar cannot be located on the lower radius of the foot.
PRELIMINARY (March, 2007, Version 0.0)
16
AMIC Technology, Corp.