STM8L151x6/8 STM8L152x6/8 8-bit ultra-low-power MCU, up to 64 KB Flash, 2 KB data EEPROM, RTC, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, comparators Datasheet - production data Features Operating conditions – Operating power supply: 1.65 to 3.6 V (without BOR), 1.8 to 3.6 V (with BOR) – Temp. range: -40 to 85, 105 or 125 °C Low-power features – 5 low-power modes: Wait, Low-power run (5.9 µA), Low-power wait (3 µA), Activehalt with full RTC (1.4 µA), Halt (400 nA) – Consumption: 200 µA/MHz+330 µA – Fast wake up from Halt mode (4.7 µs) – Ultra low leakage per I/0: 50 nA Advanced STM8 core – Harvard architecture and 3-stage pipeline – Max freq: 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources Reset and supply management – Low-power, ultra safe BOR reset with five programmable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) Clock management – 32 kHz and 1-16 MHz crystal oscillators – Internal 16 MHz factory-trimmed RC and 38 kHz low consumption RC – Clock security system Low-power RTC – BCD calendar with alarm interrupt, – Digital calibration with +/- 0.5ppm accuracy – Advanced anti-tamper detection LCD: 8x40 or 4x44 w/ step-up converter DMA – 4 ch. for ADC, DACs, SPIs, I2C, USARTs, Timers, 1 ch. for memory-to-memory 2x12-bit DAC (dual mode) with output buffer 12-bit ADC up to 1 Msps/28 channels – Temp. sensor and internal ref. voltage February 2015 This is information on a product in full production. LQFP80 14 x 14 mm LQFP64 10 x 10 mm LQFP48 7 x 7 mm UFQFPN48 7 x 7 mm Memories – Up to 64 KB of Flash memory with up to 2 KB of data EEPROM with ECC and RWW – Flexible write/read protection modes – Up to 4 KB of RAM 2 ultra-low-power comparators – 1 with fixed threshold and 1 rail to rail – Wake up capability Timers – Three 16-bit timers with 2 channels (IC, OC, PWM), quadrature encoder – One 16-bit advanced control timer with 3 channels, supporting motor control – One 8-bit timer with 7-bit prescaler – One window, one independent watchdog – Beeper timer with 1, 2 or 4 kHz frequencies Communication interfaces – Two synchronous serial interface (SPI) – Fast I2C 400 kHz SMBus and PMBus – Three USARTs (ISO 7816 interface + IrDA) Up to 67 I/Os, all mappable on interrupt vectors Up to 16 capacitive sensing channels supporting touchkey, proximity, linear touch and rotary touch sensors Fast on-chip programming and non-intrusive debugging with SWIM, Bootloader using USART 96-bit unique ID Table 1. Device summary Reference STM8L151x6/8 STM8L152x6/8 DocID17943 Rev 7 Part number STM8L151R6, STM8L151C8, STM8L151M8, STM8L151R8 STM8L152R6, STM8L152C8, STM8L152M8, STM8L152R8 1/137 www.st.com Contents STM8L151x6/8 STM8L152x6/8 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2.1 STM8L ultra-low-power 8-bit family benefits . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.3 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10 Digital-to-analog converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 21 3.13 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15 3.14.1 16-bit advanced control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 16-bit general purpose timers (TIM2, TIM3, TIM5) . . . . . . . . . . . . . . . . 22 3.14.3 8-bit basic timer (TIM4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15.1 2/137 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 3.15.2 Contents Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.2 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.18 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.2 Embedded reset and power control block characteristics 9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DocID17943 Rev 7 . . . . . . . . . . 69 3/137 4 Contents STM8L151x6/8 STM8L152x6/8 9.4 10 9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.3.9 LCD controller (STM8L152x6/8 only) . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3.12 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3.13 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.3.14 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.1 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.4 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 11 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 High-density and medium+ density STM8L15x pin description . . . . . . . . . . . . . . . . . . . . . 28 Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 69 Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Total current consumption and timing in Low-power run mode at VDD = 1.65 V to 3.6 V . 78 Total current consumption in Low-power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 80 Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 84 Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 85 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 98 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DocID17943 Rev 7 5/137 6 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. 6/137 STM8L151x6/8 STM8L152x6/8 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 114 RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . 124 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 127 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. High-density and medium+ density STM8L15xx6/8 device block diagram . . . . . . . . . . . . 13 Clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 STM8L151M8 80-pin package pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM8L152M8 80-pin package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM8L151R8 and STM8L151R6 64-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . 26 STM8L152R8 and STM8L152R6 64-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8L151C8 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM8L152C8 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Typical IDD(RUN) from RAM vs. VDD (HSI clock source), fCPU =16 MHz . . . . . . . . . . . . . . . 74 Typical IDD(RUN) from Flash vs. VDD (HSI clock source), fCPU = 16 MHz . . . . . . . . . . . . . . 74 Typical IDD(Wait) from RAM vs. VDD (HSI clock source), fCPU = 16 MHz . . . . . . . . . . . . . . 77 Typical IDD(Wait) from Flash (HSI clock source), fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 77 Typical IDD(LPR) vs. VDD (LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . . 79 Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . 81 Typical IDD(AH) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Typical IDD(Halt) vs. VDD (internal reference voltage OFF) . . . . . . . . . . . . . . . . . . . . . . . . 85 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Typical LSI clock source frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical VIL and VIH vs. VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Typical VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Typical VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Typical VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Typical VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Typical VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 SPI1 timing diagram - slave mode and CPHA=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 117 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 117 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 121 DocID17943 Rev 7 7/137 8 List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. 8/137 STM8L151x6/8 STM8L152x6/8 LQFP80 14 x 14 mm low-profile quad flat package footprint . . . . . . . . . . . . . . . . . . . . . . 122 LQFP80 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 124 LQFP64, 10 x 10 mm low-profile quad flat package footprint . . . . . . . . . . . . . . . . . . . . . . 125 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 127 LQFP48, 7 x 7 mm low-profile quad flat package footprint . . . . . . . . . . . . . . . . . . . . . . . . 128 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 1 Introduction Introduction This document describes the features, pinout, mechanical data and ordering information for: devices. High-density STM8L15xxx devices: STM8L151x8 and STM8L152x8 microcontrollers with a Flash memory density of 64 Kbytes. Medium+ density STM8L15xxx devices: STM8L151R6 and STM8L152R6 microcontrollers with Flash memory density of 32 Kbytes. For further details on the STMicroelectronics ultra-low-power family please refer to Section 2.3: Ultra-low-power continuum on page 12. For detailed information on device operation and registers, refer to the reference manual (RM0031). For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054). For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044). 2 Description The high-density and medium+ density STM8L15xx6/8 ultra-low-power devices feature an enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low-power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming. All high-density and medium+ density STM8L15xx6/8 microcontrollers feature embedded data EEPROM and low-power low-voltage single-supply program Flash memory. The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit ADC, two DACs, two comparators, a real-time clock, four 16-bit timers, one 8-bit timer, as well as standard communication interfaces such as two SPIs, an I2C interface, and three USARTs. A 8x40 or 4x44-segment LCD is available on the STM8L152x8 devices. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. DocID17943 Rev 7 9/137 60 Description 2.1 STM8L151x6/8 STM8L152x6/8 STM8L ultra-low-power 8-bit family benefits High-density and medium+ density STM8L15xx6/8 devices are part of the STM8L ultra-lowpower family providing the following benefits: Integrated system – Up to 64 Kbytes of high-density embedded Flash program memory – Up to 2 Kbytes of data EEPROM – Up to 4 Kbytes of RAM – Internal high-speed and low-power low speed RC. – Embedded reset ultra-low-power consumption – 1 µA in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low-power wait mode and Low-power run mode Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access. Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. – Wide choice of development tools STM8L ultra-low-power microcontrollers can operate either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 °C and -40 to +125 °C temperature ranges. These features make the STM8L ultra-low-power microcontroller families suitable for a wide range of applications: Medical and handheld equipment Application control and user interface PC peripherals, gaming, GPS and sport equipment Alarm systems, wired and wireless sensors Metering The devices are offered in four different packages from 48 to 80 pins. Different sets of peripherals are included depending on the device. Refer to Section 3 for an overview of the complete range of peripherals proposed in this family. All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. Figure 1 shows the block diagram of the High-density and medium+ density STM8L15xx6/8 families. 10/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 2.2 Description Device overview Table 2. High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts Features Flash (Kbytes) STM8L15xC8 STM8L15xR8 STM8L15xM8 STM8L15xR6 64 64 64 32 Data EEPROM (Kbytes) RAM (Kbytes) 4 LCD Timers 2 1 4 8x24 or 4x28 (1) 4 (1) 8x36 or 4x40 8x40 or 4x44 2 (1) 8x36 or 4x40(1) Basic 1 (8-bit) 1 (8-bit) 1 (8-bit) 1 (8-bit) General purpose 3 (16-bit) 3 (16-bit) 3 (16-bit) 3 (16-bit) Advanced control 1 (16-bit) 1 (16-bit) 1 (16-bit) 1 (16-bit) 2 2 2 2 1 1 1 1 3 SPI Communication I2C interfaces USART 3 3 3 GPIOs (2) 41 54(2) 68(2) 54(2) 12-bit synchronized ADC (number of channels) 1 (25) 1 (28) 1 (28) 1 (28) Number of channels 2 2 2 2 2 2 2 2 Comparators (COMP1/COMP2) 2 2 2 2 12-Bit DAC Others RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency Operating voltage Operating temperature Packages 16 MHz 1.8 to 3.6 V (down to 1.65 V at power-down) with BOR 1.65 to 3.6 V without BOR 40 to +85 °C / 40 to +105 °C /40 to +125 °C UFQFPN48 LQFP48 LQFP64 LQFP80 LQFP64 1. STM8L152x6/8 versions only. 2. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). DocID17943 Rev 7 11/137 60 Description 2.3 STM8L151x6/8 STM8L152x6/8 Ultra-low-power continuum The ultra-low-power STM8L151x6/8, STM8L152x6/8 and STM8L162x8 are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101 line, STM8L151/152 lines, and STM8L162 line. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features. They are all based on STMicroelectronics 0.13 µm ultra low-leakage process. Note: 1 The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices. 2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family. Please refer to STM32L15xx documentation for more information on these devices. Performance All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. Shared peripherals STM8L15xx6/8 and STM32L15xxx share identical peripherals which ensure a very easy migration from one family to another: Analog peripherals: ADC1, DAC1/DAC2, and comparators COMP1/COMP2 Digital peripherals: RTC and some communication interfaces Common system strategy To offer flexibility and optimize performance, the STM8L15xx6/8 and STM32L1xxxx devices use a common architecture: Same power supply range from 1.65 to 3.6 V. For STM8L101xx and medium-density STM8L15xxx, the power supply must be above 1.8 V at power-on, and go below 1.65 V at power-down. Architecture optimized to reach ultra low consumption both in low-power modes and Run mode Fast startup strategy from low-power modes Flexible system clock Ultra safe reset: same reset strategy for both STM8L15xx6/8 and STM32L1xxxx including power-on reset, power-down reset, brownout reset and programmable voltage detector. Features STMicroelectronics ultra-low-power continuum also lies in feature compatibility: 12/137 More than 10 packages with pin counts from 20 to 100 pins and size down to 3 x 3 mm Memory density ranging from 4 to 128 Kbytes DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 3 Functional overview Functional overview Figure 1. High-density and medium+ density STM8L15xx6/8 device block diagram /3#?). /3#?/54 6$$ -(ZOSCILLATOR -(ZINTERNAL2# /3#?). /3#?/54 K(ZOSCILLATOR 6$$ #LOCK CONTROLLER AND#33 6/,42%' #LOCKS TOCOREAND PERIPHERALS K(ZINTERNAL2# 2%3%4 )NTERRUPTCONTROLLER $EBUGMODULE 37)- BIT4IMER CHANNELS BIT4IMER CHANNELS BIT4IMER 06$ BIT4IMER CHANNELS BIT4IMER )2?4)- )NFRAREDINTERFACE $-!CHANNELS 3#,3$! 3-" )£# 30)?-/3)30)?-)3/ 30)?3#+30)?.33 30)?-/3)30)?-)3/ 30)?3#+30)?.33 53!24?2853!24?48 53!24?#+ 53!24?2853!24?48 53!24?#+ 53!24?2853!24?48 53!24?#+ 6 6 $$! 33! !$#?).X 6 2%& 6 2%& 30) 30) 53!24 UPTO+BYTE $ATA%%02/UPTO +BYTE2!0ORT! 0!;= 0ORT" 0";= 0ORT# 0#;= 0ORT$ 0$;= 0ORT% 0%;= 53!24 0ORT& 0&;= 0ORT' 0';= 0ORT( 0(;= 0ORT) 0);= 53!24 6 6 $$! 33! BIT!$# 4EMPSENSOR "EEPER #/-0?).0 #/-0?).0 #/-0?).$!#?/54 )NTERNALREFERENCE VOLTAGE 6 TO6 ,#$ "%%0 !,!2-#!,)" 4!-0 )7$' K(ZCLOCK #/-0 77$' #/-0 BIT$!# BIT$!# *' $!#?/54 06$?). UPTO +BYTE 0ROGRAM MEMORY 24# 62%&).4OUT .234 "/2 ! D D R ES S C O N T R OL AN D D AT AB U SES CHANNELS 6 $$6 TO 6 6 33 0/20$2 34-#ORE 37)- 0OWER ,#$DRIVER YPSY 3%'X#/-X BIT$!# BIT$!# ,#$BOOSTER AIB 1. Legend: AF: alternate function ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access DAC: Digital-to-analog converter I²C: Inter-integrated circuit multimaster interface IWDG: Independent watchdog DocID17943 Rev 7 13/137 60 Functional overview STM8L151x6/8 STM8L152x6/8 LCD: Liquid crystal display POR/PDR: Power on reset / power-down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog 3.1 Low-power modes The high-density and medium+ density STM8L15xx6/8 devices support five low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: 14/137 Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Low-power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low-power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low-power wait mode: This mode is entered when executing a Wait for event in Lowpower run mode. It is similar to Low-power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low-power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Functional overview 3.2 Central processing unit STM8 3.2.1 Advanced STM8 Core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. Architecture and registers Harvard architecture 3-stage pipeline 32-bit wide program memory bus - single cycle fetching most instructions X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations 8-bit accumulator 24-bit program counter - 16 Mbyte linear memory space 16-bit stack pointer - access to a 64 Kbyte level stack 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing 20 addressing modes Indexed indirect addressing mode for lookup tables located anywhere in the address space Stack pointer relative addressing mode for local variables and parameter passing Instruction set 3.2.2 80 instructions with 2-byte average instruction size Standard data movement and logic/arithmetic functions 8-bit by 8-bit multiplication 16-bit by 8-bit and 16-bit by 16-bit division Bit manipulation Data transfer between stack and accumulator (push/pop) with direct stack access Data transfer using the X and Y registers or direct memory-to-memory transfers Interrupt controller The high-density and medium+ density STM8L15xx6/8x devices feature a nested vectored interrupt controller: Nested interrupts with 3 software priority levels 32 interrupt vectors with hardware priority Up to 40 external interrupt sources on 11 vectors Trap and reset interrupts DocID17943 Rev 7 15/137 60 Functional overview STM8L151x6/8 STM8L152x6/8 3.3 Reset and supply management 3.3.1 Power supply scheme The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows: 3.3.2 VSS1, VDD1, VSS2, VDD2, VSS3, VDD3, VSS4, VDD4= 1.65 to 3.6 V: external power supply for I/Os and for the internal regulator. Provided externally through VDD pins, the corresponding ground pin is VSS. VSS1/VSS2/VSS3/VSS4 and VDD1/VDD2/VDD3/VDD4 must not be left unconnected. VSSA, VDDA = 1.65 to 3.6 V: external power supplies for analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is used). VDDA and VSSA must be connected to VDD and VSS, respectively. VREF+, VREF- (for ADC1): external reference voltage for ADC1. Must be provided externally through VREF+ and VREF- pin. VREF+ (for DAC1/2): external voltage reference for DAC1 and DAC2 must be provided externally through VREF+. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR). For the device sales types without the “D” option (see Section 11: Ordering information scheme), it is coupled with a brownout reset (BOR) circuitry. It that case the device operates between 1.8 and 3.6 V, BOR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD min. value at power-down is 1.65 V). Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains in reset state when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: For device sales types with the “D” option (see Section 11: Ordering information scheme) BOR is permanently disabled and the device operates between 1.65 and 3.6 V. In this case it is not possible to enable BOR through the option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 16/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 3.3.3 Functional overview Voltage regulator The high-density and medium+ density STM8L15xx6/8 devices embed an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes: Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes. Low-power voltage regulator mode (LPVR) for Halt, Active-halt, Low-power run and Low-power wait modes. When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. 3.4 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. Features Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. Clock management: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. System clock sources: 4 different clock sources can be used to drive the system clock: – 1-16 MHz High speed external crystal (HSE) – 16 MHz High speed internal RC oscillator (HSI) – 32.768 Low speed external crystal (LSE) – 38 kHz Low speed internal RC (LSI) RTC and LCD clock sources: the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock. Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI. Configurable main clock output (CCO): This outputs an external clock for use by the application. DocID17943 Rev 7 17/137 60 Functional overview STM8L151x6/8 STM8L152x6/8 Figure 2. Clock tree diagram &66 +6( +6(26& 0+] 26&B287 26&B,1 6<6&/. WRFRUHDQG +6, +6,5& 0+] /6, /6( 3HULSKHUDO &ORFNHQDEOHELWV /6( &/.%((36(/>@ /6, /6,5& N +] PHPRU\ 6<6&/. 3UHVFDOHU %((3&/. WR%((3 ,:'*&/. WR,:'* 57&&/. 57&6(/>@ 26&B287 57& SUHVFDOHU /6(26& N+] 26&B,1 57&&/. &66B/6( FRQILJXUDEOH FORFNRXWSXW &&2 &&2 SUHVFDOHU 3&/. WRSHULSKHUDOV /&'SHULSKHUDO FORFNHQDEOHELW 57&&/. WR57& WR/&' +DOW +6, /6, +6( /6( 6<6&/. /&'&/. WR/&' /&'SHULSKHUDO FORFNHQDEOHELW DL 3.5 Low-power real-time clock The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter. Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically. The subsecond field can also be read in binary format. The calendar can be corrected from 1 to 32767 RTC clock pulses. This allows to make a synchronization to a master clock. The RTC offers a digital calibration which allows an accuracy of +/-0.5 ppm. It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability. Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours Periodic alarms based on the calendar can also be generated from LSE period to every year A clock security system detects a failure on LSE, and can provide an interrupt with wakeup capability. The RTC clock can automatically switch to LSI in case of LSE failure. The RTC also provides 3 anti-tamper detection pins. This detection embeds a programmable filter and can wakeup the MCU. 18/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 3.6 Functional overview LCD (Liquid crystal display) The LCD is only available on STM8L152x6/8 devices. The liquid crystal display drives up to 8 common terminals and up to 40 segment terminals to drive up to 320 pixels. It can also be configured to drive up to 4 common and 44 segments (up to 176 pixels). Internal step-up converter to guarantee contrast control whatever VDD. Static 1/2, 1/3, 1/4, 1/8 duty supported. Static 1/2, 1/3, 1/4 bias supported. Phase inversion to reduce power consumption and EMI. Up to 8 pixels which can programmed to blink. The LCD controller can operate in Halt mode. Note: Unnecessary segments and common pins can be used as general I/O pins. 3.7 Memories The high-density and medium+ density STM8L15xx6/8 devices have the following main features: Up to 4 Kbytes of RAM The non-volatile memory is divided into three arrays: – Up to 64 Kbytes of medium-density embedded Flash program memory – Up to 2 Kbytes of Data EEPROM – Option bytes. The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix. The option byte protects part of the Flash program memory from write and readout piracy. 3.8 DMA A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, DAC1,DAC2, I2C1, SPI1, SPI2, USART1, USART2, USART3, and the 5 Timers. DocID17943 Rev 7 19/137 60 Functional overview 3.9 STM8L151x6/8 STM8L152x6/8 Analog-to-digital converter 12-bit analog-to-digital converter (ADC1) with 28 channels (including 4 fast channel), temperature sensor and internal reference voltage Conversion time down to 1 µs with fSYSCLK= 16 MHz Programmable resolution Programmable sampling time Single and continuous mode of conversion Scan capability: automatic conversion performed on a selected group of analog inputs Analog watchdog: interrupt generation when the converted voltage is outside the programmed threshold Triggered by timer Note: ADC1 can be served by DMA1. 3.10 Digital-to-analog converter 12-bit DAC with 2 buffered outputs (two digital signals can be converted into two analog voltage signal outputs) Synchronized update capability using timers DMA capability for each channel External triggers for conversion Noise-wave generation Triangular-wave generation Dual DAC channels with independent or simultaneous conversions Input reference voltage VREF+ for better resolution Note: DAC can be served by DMA1. 3.11 Ultra-low-power comparators The high-density and medium+ density STM8L15xx6/8 devices embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O). One comparator with fixed threshold (COMP1). One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following: – DAC output – External I/O – Internal reference voltage or internal reference voltage submultiple (1/4, 1/2, 3/4) The two comparators can be used together to offer a window function. They can wake up from Halt mode. 20/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 3.12 Functional overview System configuration controller and routing interface The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped. The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC1 and the internal reference voltage VREFINT. It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (see Section 3.13: Touch sensing). 3.13 Touch sensing The high-density and medium+ density STM8L15xx6/8 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (for example glass or plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In the high-density and medium+ density STM8L15xx6/8 devices, the acquisition sequence is managed by software and it involves analog I/O groups and the routing interface. Reliable touch sensing solution can be quickly and easily implemented using the free STM8 touch sensing firmware library. 3.14 Timers The high-density and medium+ density STM8L15xx6/8 devices contain one advanced control timer (TIM1), three 16-bit general purpose timers (TIM2,TIM3 and TIM5) and one 8bit basic timer (TIM4). All the timers can be served by DMA1. Table 3 compares the features of the advanced control, general-purpose and basic timers. Table 3. Timer feature comparison Timer Counter Counter resolution type DMA1 request generation Any integer from 1 to 65536 TIM1 TIM2 Prescaler factor 16-bit Capture/compare channels Complementary outputs 3+1 3 up/down Any power of 2 from 1 to 128 TIM3 Yes 2 None TIM5 TIM4 8-bit up Any power of 2 from 1 to 32768 DocID17943 Rev 7 0 21/137 60 Functional overview 3.14.1 STM8L151x6/8 STM8L152x6/8 16-bit advanced control timer (TIM1) This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver. 3.14.2 3.14.3 16-bit up, down and up/down autoreload counter with 16-bit prescaler 3 independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output 1 additional capture/compare channel which is not connected to an external I/O Synchronization module to control the timer with external signals Break input to force timer outputs into a defined state 3 complementary outputs with adjustable dead time Encoder mode Interrupt capability on various events (capture, compare, overflow, break, trigger) 16-bit general purpose timers (TIM2, TIM3, TIM5) 16-bit autoreload (AR) up/down-counter 7-bit prescaler adjustable to fixed power of 2 ratios (1…128) 2 individually configurable capture/compare channels PWM mode Interrupt capability on various events (capture, compare, overflow, break, trigger) Synchronization with other timers or external signals (external clock, reset, trigger and enable) 8-bit basic timer (TIM4) The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation. 3.15 Watchdog timers The watchdog system is based on two independent timers providing maximum security to the applications. 3.15.1 Window watchdog timer The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence. 3.15.2 Independent watchdog timer The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures. 22/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Functional overview It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure. 3.16 Beeper The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz. 3.17 Communication interfaces 3.17.1 SPI The serial peripheral interfaces (SPI1 and SPI2) provide half/ full duplex synchronous serial communication with external devices. Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave Full duplex synchronous transfers Simplex synchronous transfers on 2 lines with a possible bidirectional data line Master or slave operation - selectable by hardware or software Hardware CRC calculation Slave/master selection input pin Note: SPI1 and SPI2 can be served by the DMA1 Controller. 3.17.2 I2C The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing. Note: Master, slave and multi-master capability Standard mode up to 100 kHz and fast speed modes up to 400 kHz. 7-bit and 10-bit addressing modes. SMBus 2.0 and PMBus support Hardware CRC calculation I2C1 can be served by the DMA1 Controller. DocID17943 Rev 7 23/137 60 Functional overview 3.17.3 STM8L151x6/8 STM8L152x6/8 USART The USART interfaces (USART1, USART2 and USART3) allow full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates. 1 Mbit/s full duplex SCI SPI1 emulation High precision baud rate generator Smartcard emulation IrDA SIR encoder decoder Single wire half duplex mode Note: USART1, USART2 and USART3 can be served by the DMA1 Controller. 3.18 Infrared (IR) interface The high-density and medium+ density STM8L15xx6/8 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals. 3.19 Development support Development tools Development tools for the STM8 microcontrollers include: The STice emulation system offering tracing and code profiling The STVD high-level language debugger including C compiler, assembler and integrated development environment The STVP Flash programming software The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools. Single wire data interface (SWIM) and debug module The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming. The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes. The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers. Bootloader A bootloader is available to reprogram the Flash memory using the USART1, USART2, USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces. The reference document for the bootloader is UM0560: STM8 bootloader user manual. 24/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Pin description 0) 0) 0) 0) 0% 0% 0# 0# 0# 0# 0# 0# 633 6 $$ 0# 0# 0' 0' 0' 0' Figure 3. STM8L151M8 80-pin package pinout (without LCD) 0( 0( 0( 0( 0! .2340! 0! 0! 0! 0! 0! 0! 633!62%& 633 6$$ 6$$! 62%& 0' 0' 0' 0$ 0$ 0$ 0$ 0& 0& 0& 0& 0& 0& 0& 0& 633 6$$ 0" 0" 0" 0" 0" 0" 0' 2ES 0% 0% 0% 0% 0% 0% 0$ 0$ 0$ 0$ 0( 0( 0( 0( 6 $$ 633 0" 0" AI 1. Pin 22 is reserved and must be tied to VDD. 2. The above figure shows the package top view. 0) 0) 0) 0) 0% 0% 0# 0# 0# 0# 0# 0# 633 6 $$ 0# 0# 0' 0' 0' 0' Figure 4. STM8L152M8 80-pin package pinout (with LCD) 0( 0( 0( 0( 0! .2340! 0! 0! 0! 0! 0! 0! 633!62%& 633 6$$ 6$$! 62%& 0' 0' 0' 0$ 0$ 0$ 0$ 0& 0& 0& 0& 0& 0& 0& 0& 633 6$$ 0" 0" 0" 0" 0" 0" 0' 6,#$ 0% 0% 0% 0% 0% 0% 0$ 0$ 0$ 0$ 0( 0( 0( 0( 6 $$ 633 0" 0" 4 Pin description AI 1. The above figure shows the package top view. DocID17943 Rev 7 25/137 60 Pin description STM8L151x6/8 STM8L152x6/8 0% 0% 0# 0# 0# 0# 0# 0# 6 33 6 $$ 0# 0# 0' 0' 0' 0' Figure 5. STM8L151R8 and STM8L151R6 64-pin pinout (without LCD) 0! .2340! 0! 0! 0! 0! 0! 0! 633!62%& 633 6$$ 6$$! 62%& 0' 0' 0' 0$ 0$ 0$ 0$ 0& 0& 0& 0& 0& 0& 0" 0" 0" 0" 0" 0" 0' 2ES 0% 0% 0% 0% 0% 0% 0$ 0$ 0$ 0$ 6 $$ 6 33 0" 0" AI 1. Pin 18 is reserved and must be tied to VDD. 2. The above figure shows the package top view. 0% 0% 0# 0# 0# 0# 0# 0# 6 33 6 $$ 0# 0# 0' 0' 0' 0' Figure 6. STM8L152R8 and STM8L152R6 64-pin pinout (with LCD) 0! .2340! 0! 0! 0! 0! 0! 0! 633!62%& 633 6$$ 6$$! 62%& 0' 0' 0' 0$ 0$ 0$ 0$ 0& 0& 0& 0& 0& 0& 0" 0" 0" 0" 0" 0" 0' 6,#$ 0% 0% 0% 0% 0% 0% 0$ 0$ 0$ 0$ 6 $$ 6 33 0" 0" AI 1. The above figure shows the package top view. 26/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Pin description 0% 0% 0# 0# 0# 0# 0# 0# 6 33 6 $$ 0# 0# Figure 7. STM8L151C8 48-pin pinout (without LCD) 0! .2340! 0! 0! 0! 0! 0! 0! 633633!62%& 6$$ 6$$! 62%& 0$ 0$ 0$ 0$ 0& 0" 0" 0" 0" 0" 0" 0" 0% 0% 0% 0% 0% 0% 0$ 0$ 0$ 0$ 0" 2ES AI 1. Pin 13 is reserved and must be tied to VDD. 2. The above figure shows the package top view. 0% 0% 0# 0# 0# 0# 0# 0# 6 33 6 $$ 0# 0# Figure 8. STM8L152C8 48-pin pinout (with LCD) 0! .2340! 0! 0! 0! 0! 0! 0! 633633!62%& 6$$ 6$$! 62%& 0$ 0$ 0$ 0$ 0& 0" 0" 0" 0" 0" 0" 0" 6,#$ 0% 0% 0% 0% 0% 0% 0$ 0$ 0$ 0$ 0" AI 1. The above figure shows the package top view. DocID17943 Rev 7 27/137 60 Pin description STM8L151x6/8 STM8L152x6/8 Table 4. Legend/abbreviation Type I= input, O = output, S = power supply FT: Five-volt tolerant Level Output HS = high sink/source (20 mA) Port and control Input configuration Output float = floating, wpu = weak pull-up T = true open drain, OD = open drain, PP = push pull Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state). Reset state Table 5. High-density and medium+ density STM8L15x pin description Main function (after reset) X X HS X X Port H0 LCD segment 36 I/O FT(5) X X X HS X X Port H1 LCD segment 37 I/O FT(5) X X X HS X X Port H2 LCD segment 38 X Port H3 LCD segment 39 PP (3) I/O FT(5) X OD - PH1/LCD SEG 37 2 Ext. interrupt - (3) Output wpu - PH0/LCD SEG 36 (3) floating UFQFPN48 and LQFP48 - I/O level LQFP64 1 Pin name Type LQFP80 Input High sink/source Pin number Default alternate function 3 - - PH2/LCD SEG 38 4 - - PH3/LCD SEG 39 (3) I/O FT(5) X X X HS X 6 2 2 NRST/PA1(1) I/O X HS 7 3 PA2/OSC_IN/ 3 [USART1_TX](2)/ [SPI1_MISO] (2) I/O X X X HS X HSE oscillator input / X Port A2 [USART1 transmit] / [SPI1 master in- slave out] / 8 4 PA3/OSC_OUT/ 4 [USART1_RX](2)/[ SPI1_MOSI](2) I/O X X X HS X HSE oscillator output / X Port A3 [USART1 receive]/ [SPI1 master out/slave in]/ 5 PA4/TIM2_BKIN/ [TIM2_ETR](2) 5 LCD_COM0(3)/ADC1_IN2 [COMP1_INP] I/O FT(5) X X HS X Timer 2 - break input / /[Timer 2 - trigger] / X Port A4 LCD COM 0 / ADC1 input 2/ [Comparator 1 positive input] 10 6 PA5/TIM3_BKIN/ [TIM3_ETR](2)/ 6 LCD_COM1(3)/ADC1_IN1/ [COMP1_INP] FT(5) X X X HS X Timer 3 - break input / [Timer 3 - trigger] / LCD_COM 1 / X Port A5 ADC1 input 1/ [Comparator 1 positive input] 11 7 PA6/ADC1_TRIG/ 7 LCD_COM2(3)/ADC1_IN0/ I/O FT(5) X [COMP1_INP] X X HS X ADC1 - trigger / LCD_COM2 X Port A6 / ADC1 input 0/ [Comparator 1 positive input] 9 28/137 I/O X DocID17943 Rev 7 X Reset PA1 STM8L151x6/8 STM8L152x6/8 Pin description Table 5. High-density and medium+ density STM8L15x pin description (continued) PB0(4)/TIM2_CH1/ 39 31 24 LCD_SEG10(3)/ADC1_IN18 I/O FT(5) X / [COMP1_INP] PB1/TIM3_CH1/ 40 32 25 LCD_SEG11(3)/ADC1_IN17 I/O FT(5) X / [COMP1_INP] PB2/ 41 33 26 TIM2_CH2/LCD_SEG12(3)/ I/O FT(5) X ADC1_IN16/[COMP1_INP] PB3/TIM2_ETR/ 42 34 27 LCD_SEG13(3)/ADC1_IN15 I/O FT(5) X /[COMP1_INP] 43 35 - - 44 36 - - PB4(4)/SPI1_NSS/ - LCD_SEG14(3)/ADC1_IN14 I/O FT(5) X /[COMP1_INP] Main function (after reset) High sink/source X HS X X Port A7 X HS X Timer 2 - channel 1 /LCD segment 10/ X Port B0 ADC1_IN18/ [Comparator 1 positive input] X HS X Timer 3 - channel 1 / LCD segment 11 / X Port B1 ADC1_IN17/ [Comparator 1 positive input] X HS X Timer 2 - channel 2 / LCD segment 12 / X Port B2 ADC1_IN16/ [Comparator 1 positive input] X HS X Timer 2 - trigger / LCD segment 13 X Port B3 /ADC1_IN15/ [Comparator 1 positive input] X HS X SPI1 master/slave select / LCD segment 14 / X Port B4 ADC1_IN14/ [Comparator 1 positive input] X X X X X PP X OD Ext. interrupt I/O FT(5) X Output wpu PA7/LCD_SEG0(3)/ TIM5_CH1 floating 8 Pin name I/O level 8 Input Type UFQFPN48 and LQFP48 12 LQFP64 LQFP80 Pin number Default alternate function LCD segment 0 / TIM5 channel 1 PB4(4)/SPI1_NSS/ LCD_SEG14(3)/ADC1_IN14 28 I/O FT(5) X /DAC_OUT2/ [COMP1_INP] X X HS X SPI1 master/slave select / LCD segment 14 / X Port B4 ADC1_IN14 / DAC channel 2 output/ [Comparator 1 positive input] PB5/SPI1_SCK/ - LCD_SEG15(3)/ADC1_IN13 I/O FT(5) X / [COMP1_INP] X X HS X SPI1 clock / LCD segment X Port B5 15 / ADC1_IN13/ [Comparator 1 positive input] X HS X [SPI1 clock] / LCD segment 15 / ADC1_IN13 X Port B5 / DAC channel 2 output/ [Comparator 1 positive input] PB5/SPI1_SCK/ LCD_SEG15(3)/ADC1_IN13 29 I/O FT(5) X /DAC_OUT2/ [COMP1_INP] X DocID17943 Rev 7 29/137 60 Pin description STM8L151x6/8 STM8L152x6/8 Table 5. High-density and medium+ density STM8L15x pin description (continued) 45 37 - - PB6/SPI1_MOSI/ - LCD_SEG16(3)/ADC1_IN12 I/O FT(5) X /[COMP1_INP] PB6/SPI1_MOSI/ 30 LCD_SEG16(3)/ADC1_IN12 I/O FT(5) X /DAC_OUT2/[COMP1_INP] PB7/SPI1_MISO/ 46 38 31 LCD_SEG17(3)/ ADC1_IN11/[COMP1_INP] I/O 65 53 37 PC0/I2C1_SDA I/O FT(5) X 66 54 38 PC1/I2C1_SCL PC2/USART1_RX/ 69 57 41 LCD_SEG22/ADC1_IN6/ [COMP1_INP] /VREFINT - - PC3/USART1_TX/ 42 LCD_SEG23(3)/ ADC1_IN5 FT(5) I/O FT (5) X X X X X Main function (after reset) PP OD High sink/source Ext. interrupt Output Default alternate function X HS X SPI1 master out/slave in/ LCD segment 16 / X Port B6 ADC1_IN12/ [Comparator 1 positive input] X HS X SPI1 master out/ slave in / LCD segment 16 / X Port B6 ADC1_IN12 / DAC channel 2 output/[Comparator 1 positive input] X HS X SPI1 master in- slave out/ LCD segment 17 / X Port B7 ADC1_IN11/[Comparator 1 positive input] X T(6) Port C0 I2C1 data X T(6) Port C1 I2C1 clock I/O FT(5) X X X HS X USART1 receive / LCD segment 22 / X Port C2 ADC1_IN6/ [Comparator 1 positive input] /Internal reference voltage output I/O FT(5) X X X HS X USART1 transmit / X Port C3 LCD segment 23 / ADC1_IN5 X HS X USART1 transmit / LCD segment 23 / ADC1_IN5 / X Port C3 [Comparator 2 negative input] /[Comparator 1 input positive] X HS X USART1 synchronous clock / I2C1_SMB / [Configurable clock output] / LCD segment X Port C4 24 / ADC1_IN4 / [Comparator 2 negative input] / [Comparator 1 positive input] 70 58 PC3/USART1_TX/ LCD_SEG23(3)/ ADC1_IN5/ I/O FT(5) X [COMP2_INM] / [COMP1_INP] 71 59 PC4/USART1_CK/ I2C1_SMB/ [CCO](2)/ - LCD_SEG24(3)/ ADC1_IN4/[COMP2_INM] /[COMP1_INP] 30/137 wpu floating Pin name I/O level Input Type UFQFPN48 and LQFP48 LQFP64 LQFP80 Pin number I/O FT(5) X X X DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Pin description Table 5. High-density and medium+ density STM8L15x pin description (continued) - - PC4/USART1_CK/ I2C1_SMB/[CCO](2)/ LCD_SEG24(3)/ADC1_IN4/ 43 I/O FT(5) X [COMP2_INM] / [COMP1_INP] / [LCD_COM4] Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type UFQFPN48 and LQFP48 LQFP64 LQFP80 Pin number Default alternate function X X HS X USART1 synchronous clock / I2C1_SMB / [Configurable clock output] / LCD segment 24 / ADC1_IN4 / X Port C4 [Comparator 2 negative input] / [Comparator 1 positive input] / [LCD_COM4](3) PC5/OSC32_IN 72 60 44 /[SPI1_NSS](2)/ [USART1_TX](2) I/O FT(5) X X X HS X LSE oscillator input / [SPI1 X Port C5 master/slave select] / [USART1 transmit] PC6/OSC32_OUT/ 73 61 45 [SPI1_SCK](2)/ [USART1_RX](2) I/O FT(5) X X X HS X X Port C6 X HS X LCD segment 25 /ADC1_IN3/ [Comparator 2 X Port C7 negative input] / [Comparator 1 positive input] X HS X LCD segment 25 /ADC1_IN3/ USART3 synchronous clock/ X Port C7 [Comparator 2 negative input] / [Comparator 1 positive input]/ [LCD_COM5](3) X HS X Timer 3 - channel 2 / [ADC1_Trigger] / LCD X Port D0 segment 7 / ADC1_IN22 / [Comparator 2 positive input] 74 62 - - PC7/LCD_SEG25(3)/ - ADC1_IN3/[COMP2_INM] / [COMP1_INP] PC7/LCD_SEG25(3)/ ADC1_IN3/USART3_CK/ 46 [COMP2_INM] / [COMP1_INP] / [LCD_COM5] I/O FT(5) X I/O FT(5) X PD0/TIM3_CH2/ [ADC1_TRIG](2)/ 29 25 20 I/O FT(5) X LCD_SEG7(3)/ADC1_IN22/ [COMP2_INP] X X X LSE oscillator output / [SPI1 clock] / [USART1 receive] PD1/TIM3_ETR/ LCD_COM3(3)/ADC1_IN21/ 30 26 21 I/O FT(5) X [COMP1_INP]// [COMP2_INP] X X HS X Timer 3 - trigger / LCD_COM3 / ADC1_IN21 / X Port D1 [Comparator 1 positive input] /[Comparator 2 positive input] PD2/TIM1_CH1 31 27 22 /LCD_SEG8(3)/ADC1_IN20/ I/O FT(5) X [COMP1_INP] X X HS X Timer 1 - channel 1 / LCD X Port D2 segment 8 / ADC1_IN20/ [Comparator 1 positive input] DocID17943 Rev 7 31/137 60 Pin description STM8L151x6/8 STM8L152x6/8 Table 5. High-density and medium+ density STM8L15x pin description (continued) Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type UFQFPN48 and LQFP48 LQFP64 LQFP80 Pin number Default alternate function PD3/ TIM1_ETR/ LCD_SEG9(3)/ 32 28 23 ADC1_IN19/ [COMP1_INP] I/O FT(5) X X X HS X Timer 1 - trigger / LCD segment 9 / X Port D3 ADC1_IN19/ [Comparator 1 positive input] PD4/TIM1_CH2 /LCD_SEG18(3)/ ADC1_IN10/ [COMP1_INP] I/O FT(5) X X X HS X Timer 1 - channel 2 / LCD X Port D4 segment 18 / ADC1_IN10/ [Comparator 1 positive input] 57 45 - - 58 46 - - 59 47 - - 60 48 32/137 PD4/TIM1_CH2 /LCD_SEG18(3)/ 33 ADC1_IN10/SPI2_MISO/ [COMP1_INP] PD5/TIM1_CH3 /LCD_SEG19(3)/ ADC1_IN9/ [COMP1_INP] PD5/TIM1_CH3 /LCD_SEG19(3)/ 34 ADC1_IN9/SPI2_MOSI/ [COMP1_INP] PD6/TIM1_BKIN /LCD_SEG20(3)/ ADC1_IN8/RTC_CALIB/ [COMP1_INP]/VREFINT PD6/TIM1_BKIN /LCD_SEG20(3)/ 35 ADC1_IN8/RTC_CALIB/ SPI2_SCK/[COMP1_INP]/ VREFINT PD7/TIM1_CH1N /LCD_SEG21(3)/ ADC1_IN7/RTC_ALARM/ [COMP1_INP]/VREFINT I/O FT(5) X X X HS X Timer 1 - channel 2 / LCD segment 18 / X Port D4 ADC1_IN10/SPI2 master in/slave out/ [Comparator 1 positive input] I/O FT(5) X X X HS X Timer 1 - channel 3 / LCD X Port D5 segment 19 / ADC1_IN9/ [Comparator 1 positive input] X HS X Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/ X Port D5 SPI2 master out/slave in/ [Comparator 1 positive input] X HS X Timer 1 - break input / LCD segment 20 / ADC1_IN8 / X Port D6 RTC calibration/[Comparator 1 positive input]/Internal reference voltage output X HS X Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration/SPI2 clock/ X Port D6 [Comparator 1 positive input]/Internal reference voltage output X HS X Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC X Port D7 alarm/[Comparator 1 positive input]/Internal reference voltage output I/O FT (5) X I/O FT(5) X I/O FT(5) X I/O FT(5) X X X X X DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Pin description Table 5. High-density and medium+ density STM8L15x pin description (continued) - - PD7/TIM1_CH1N /LCD_SEG21(3)/ ADC1_IN7/RTC_ALARM 36 I/O FT(5) X /SPI2_NSS/[COMP1_INP]/ VREFINT Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type UFQFPN48 and LQFP48 LQFP64 LQFP80 Pin number Default alternate function X X HS X Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm X Port D7 /SPI2 master/slave select/[Comparator 1 positive input]/Internal reference voltage output 61 49 - PG4/LCD_SEG32/ SPI2_NSS I/O FT(5) X X X HS X X Port G4 LCD segment 32 / SPI2 master/slave select 62 50 - PG5/LCD_SEG33/ SPI2_SCK I/O FT(5) X X X HS X X Port G5 LCD segment 33 / SPI2 clock 63 51 - PG6/LCD_SEG34/ SPI2_MOSI I/O FT(5) X X X HS X X Port G6 LCD segment 34 / SPI2 master out- slave in 64 52 - PG7/LCD_SEG35/ SPI2_MISO I/O FT(5) X X X HS X X Port G7 LCD segment 35 / SPI2 master in- slave out 23 19 14 PE0/LCD_SEG1(3)/ TIM5_CH2 I/O FT(5) X X X HS X X Port E0 LCD segment 1/ Timer 5 channel 2 24 20 15 PE1/TIM1_CH2N /LCD_SEG2(3) I/O FT(5) X X X HS X X Port E1 Timer 1 - inverted channel 2 / LCD segment 2 25 21 16 PE2/TIM1_CH3N /LCD_SEG3(3)/ [CCO](2) I/O FT(5) X X X HS X Timer 1 - inverted channel 3 X Port E2 / LCD segment 3 / [Configurable clock output] I/O FT(5) X X X HS X X Port E3 LCD segment 4 PE3/LCD_SEG4 USART2_RX I/O FT(5) X X X HS X X Port E3 LCD segment 4/ USART2 receive PE4/LCD_SEG5(3)/ DAC_TRIG1 I/O FT(5) X X X HS X X Port E4 LCD segment 5/ DAC 1 trigger PE4/LCD_SEG5(3)/ DAC_TRIG2/USART2_TX I/O FT(5) X X X HS X LCD segment 5/ X Port E4 DAC 2 trigger/ USART2 transmit X HS X LCD segment 6 / ADC1_IN23/ [Comparator 1 X Port E5 positive input] /[Comparator 2 positive input] 26 27 - 28 - - PE3/LCD_SEG4(3) 22 17 - - 23 18 - (3)/ PE5/LCD_SEG6(3)/ - ADC1_IN23/[COMP1_INP]/ I/O FT(5) X [COMP2_INP] X DocID17943 Rev 7 33/137 60 Pin description STM8L151x6/8 STM8L152x6/8 Table 5. High-density and medium+ density STM8L15x pin description (continued) - - Main function (after reset) PP OD High sink/source Output Ext. interrupt floating - PE5/LCD_SEG6(3)/ ADC1_IN23/[COMP1_INP]/ 24 19 I/O FT(5) X [COMP2_INP] / USART2_CK wpu I/O level LQFP64 Pin name Type Input LQFP80 UFQFPN48 and LQFP48 Pin number Default alternate function X X HS X LCD segment 6 / ADC1_IN23/ [Comparator 1 X Port E5 positive input] / [Comparator 2 positive input] /USART2 synchronous clock PE6/LCD_SEG26(3)/ PVD_IN/TIM5_BKIN/ 47 USART3_TX/ [LCD_COM6](3) I/O FT(5) X X X HS X LCD segment 26 /PVD_IN X Port E6 /TIM5 break input / USART3 transmit/[LCD_COM6](3) 75 63 - PE6/LCD_SEG26(3)/ PVD_IN/TIM5_BKIN I/O FT(5) X X X HS X X Port E6 LCD segment 26 /PVD_IN /TIM5 break input 76 64 - PE7/LED_SEG27/ TIM5_ETR I/O FT(5) X X X HS X X Port E7 LCD segment 27/ TIM5 trigger LCD segment 27/ TIM5 trigger/ X Port E7 USART3 receive/ [LCD_COM7](3) PE7/LED_SEG27/ 48 TIM5_ETR/USART3_RX/ [LCD_COM7](3) X X X HS X PI0/RTC_TAMP1/ [SPI2_NSS]/[TIM3_CH3] I/O FT(5) X X HS X X Port I0 RTC tamper 1 input [SPI2 master/slave select] [TIM3 channel 3] - PI1/RTC_TAMP2/ [SPI2_SCK] I/O FT(5) X X HS X X Port I1 RTC tamper 2 input [SPI2 clock] - - PI2/RTC_TAMP3/ [SPI2_MOSI] I/O FT(5) X X HS X X Port I2 RTC tamper 3 input [SPI2 master out- slave in] 80 - - PI3/TIM5_CH1/ [SPI2_MISO]/[TIM3_CH2] I/O FT(5) X X HS X X Port I3 TIM5 Channel 1 [SPI2 master in- slave out] [TIM3 channel 2] - - 32 PF0/ADC1_IN24/ DAC_OUT1 I/O X X X HS X X Port F0 ADC1_IN24 / DAC 1 output - 39 - PF0/ADC1_IN24/ DAC_OUT1/[USART3_TX] I/O X X X HS X X Port F0 49 - PF0/ADC1_IN24/ - DAC_OUT1/ I/O [USART3_TX]/[SPI1_MISO] X X X HS X ADC1_IN24 / DAC 1 output/ X Port F0 [USART3 transmit] [SPI1 master in- slave out] - - 77 - - 78 - 79 34/137 I/O FT(5) DocID17943 Rev 7 ADC1_IN24 / DAC 1 output/ [USART3 transmit] STM8L151x6/8 STM8L152x6/8 Pin description Table 5. High-density and medium+ density STM8L15x pin description (continued) Pin number ADC1_IN25/ X Port F1 DAC channel 2 output/ [USART3 receive] 51 - PF2/ADC1_IN26/ - [SPI2_SCK]/ [USART3_SCK] I/O X X X HS X ADC1_IN26 X Port F2 [SPI2 clock] [USART3 clock] 52 - - PF3/ADC1_IN27/ [SPI1_NSS] I/O X X X HS X X Port F3 ADC1_IN27 [SPI1 master/slave select] - 41 - PF4/LCD_SEG36/ [LCD _COM4](9) I/O FT(5) X X X HS X X Port F4 LCD segment 36/ [LCD_COM4](9) 53 - - PF4/LCD_SEG40/ [LCD_COM4] I/O FT(5) X X X HS X X Port F4 LCD segment 40/ [LCD_COM4](9) - 42 - PF5/LCD_SEG37/ [LCD_COM5](9) I/O FT(5) X X X HS X X Port F5 LCD segment 37/ [LCD COM5](9) 54 - - PF5/LCD_SEG41/ [LCD_COM5] I/O FT(5) X X X HS X X Port F5 LCD segment 41/ [LCD COM5](9) - 43 - PF6/LCD_SEG38 /[LCD_COM6](9) I/O FT(5) X X X HS X X Port F6 LCD segment 38/ [LCD COM6](9) 55 - - PF6/LCD_SEG42/ [LCD_COM6] I/O FT(5) X X X HS X X Port F6 LCD segment 42/ [LCD COM6](9) - 44 - PF7/LCD_SEG39/ [LCD_COM7](9) I/O FT(5) X X X HS X X Port F7 LCD segment 39/ [LCD COM7](9) 56 - - PF7/LCD_SEG43/ [LCD_COM7] I/O FT(5) X X X HS X X Port F7 LCD segment 43/ [LCD COM7](9) Main function (after reset) X HS X PP X OD X High sink/source I/O Ext. interrupt PF1/ADC1_IN25/ - DAC_OUT2/ [USART3_RX] wpu 40 floating - I/O level - Pin name Type 50 PF1/ADC1_IN25/ DAC_OUT2/ [USART3_RX]/ [SPI1_MOSI] LQFP80 UFQFPN48 and LQFP48 Output LQFP64 Input Default alternate function I/O X X X HS X ADC1_IN25/ DAC channel 2 output/ X Port F1 [USART3 receive] [SPI1 master out- slave in] 22 18 13 VLCD(7) S LCD booster external capacitor 15 11 10 VDD1 S Digital power supply 14 10 - VSS1 16 12 11 VDDA I/O ground S Analog supply voltage DocID17943 Rev 7 35/137 60 Pin description STM8L151x6/8 STM8L152x6/8 Table 5. High-density and medium+ density STM8L15x pin description (continued) 17 13 12 VREF+/VREF+_DAC Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating I/O level Pin name Type Input UFQFPN48 and LQFP48 LQFP64 LQFP80 Pin number Default alternate function ADC1 and DAC1/2 positive voltage reference S 18 14 PG0/LCD SEG28(3) - /USART3_RX/ [TIM2_BKIN] I/O FT(5) X X X HS X LCD segment 28/ X Port G0 USART3 receive / [Timer 2 - break input] 19 15 PG1/LCD SEG29(3) - /USART3_TX/ [TIM3_BKIN] I/O FT(5) X X X HS X LCD segment 29/ X Port G1 USART3 transmit / [Timer 3 -break input] 20 16 - PG2/LCD_SEG30(3)/ USART3_CK I/O FT(5) X X X HS X LCD segment 30/ X Port G2 USART 3 synchronous clock 21 17 - PG3/LCD SEG 31 (3)/ [TIM3_ETR] I/O FT(5) X X X HS X X Port G3 PH4/USART2_RX I/O FT(5) X X X HS X X Port H4 USART2 receive 33 (5) LCD segment 31/ [Timer 3 - trigger] 34 PH5/USART2_TX I/O FT X X X HS X X Port H5 USART2 transmit 35 PH6/USART2_CK/ TIM5_CH1 I/O FT(5) X X X HS X X Port H6 36 PH7/TIM5_CH2 I/O FT(5) X X X HS X X Port H7 Timer 5 - channel 2 USART2 synchronous clock/ Timer 5 - channel 1 - 9 VSS /VSSA /VREF- S I/O ground / Analog ground voltage / ADC1 negative voltage reference 9 - VSSA /VREF- S Analog ground voltage / ADC1 negative voltage reference 37 29 - VDD3 S IOs supply voltage 38 30 - VSS3 S IOs ground voltage 5 PA0(8)/[USART1_CK](2)/ 1 SWIM/BEEP/IR_TIM (9) 13 1 I/O X X X HS X [USART1 synchronous clock](2)/ SWIM input and X Port A0 output / Beep output / Infrared Timer output 68 56 40 VSS2 IOs ground voltage 67 55 39 VDD2 IOs supply voltage 48 - - VSS4 IOs ground voltage 47 - - VDD4 IOs supply voltage 36/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Pin description 1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output push-pull, not as output open-drain nor as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15xxx and STM8L16xxx reference manual (RM0031). 2. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). 3. Available on STM8L152x6/8 devices only. 4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release. 5. In the 5 V tolerant I/Os, the protection diode to VDD is not implemented. 6. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are not implemented). 7. Available on STM8L152xx devices only. On STM8L151xx devices it is reserved and must be tied to VDD. 8. The PA0 pin is in input pull-up during the reset phase and after reset release. 9. High Sink LED driver capability available on PA0. Note: Slope control of all GPIO pins can be programmed except true open drain pins and by default is limited to 2 MHz. System configuration options As shown in Table 5: High-density and medium+ density STM8L15x pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “Routing interface (RI) and system configuration controller” section in the STM8L05xxx, STM8L15xxx and STM8L16xxx reference manual (RM0031). DocID17943 Rev 7 37/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 5 Memory and register map 5.1 Memory mapping The memory map is shown in Figure 9. Figure 9. Memory map X X&&& X 2!-UPTO+BYTES INCLUDING 3TACK BYTES $ATA%%02/UPTO+BYTES X&& X X 2ESERVED X&& X X&& X X X X X X X X X X&&& X X&& X X&&& X X&& X X X X $ /PTIONBYTES X " X " 62%&).4?&ACTORY?#/.6 43?&ACTORY?#/.6?6 2ESERVED 5NIQUE)$ X&&& X X& X X&&& X $ X % X & X X '0)/ANDPERIPHERALREGISTERS X X X 2ESERVED X " X % "OOT2/- +BYTES X && X X 2ESERVED X%&& X& X # X 2ESERVED X X # #0537)-$EBUG)4# 2EGISTERS X % X & X 2ESETANDINTERRUPTVECTORS &LAS H $-! 3 93 #& ' X ! X ! 2ESERVED ' 0) / 0O RT S X X )4 #%8 4 ) 7 &% 23 4 0 72 #,+ 77 $' ) 7$' "% %0 24# 30 ) )# 53! 24 4 )- 4 )- 4) - 4) - ) 24) 4) - ! $# $! # 30) 53!24 53!24 ,#$ 2) #/ -0 X (IGHDENSITY &LASHPROGRAMMEMORY UPTO+BYTES AI 1. Refer to Table 9 for an overview of hardware register mapping, to Table 8 for details on I/O port hardware registers, and to Table 10 for information on CPU/SWIM/debug module controller registers. 38/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 6. Flash and RAM boundary addresses Memory area Size Start address End address 2 Kbytes 0x00 0000 0x00 07FF 4 Kbytes 0x00 0000 0x00 0FFF 32 Kbytes 0x00 8000 0x00 FFFF 64 Kbytes 0x00 8000 0x01 7FFF RAM Flash program memory 5.2 Register map Table 7. Factory conversion registers Address Block Register label Register name Reset status 0x00 4910 - VREFINT_Factory_ CONV(1) Internal reference voltage factory conversion 0xXX 0x00 4911 - TS_Factory_CONV_ V90(2) Temperature sensor output voltage 0xXX 1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x6. 2. The TS_Factory_CONV_V90 byte represents the 8 LSB of the result of the V90 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x3. Table 8. I/O port hardware register map Register label Register name Reset status 0x00 5000 PA_ODR Port A data output latch register 0x00 0x00 5001 PA_IDR Port A input pin value register 0xXX PA_DDR Port A data direction register 0x00 0x00 5003 PA_CR1 Port A control register 1 0x01 0x00 5004 PA_CR2 Port A control register 2 0x00 0x00 5005 PB_ODR Port B data output latch register 0x00 0x00 5006 PB_IDR Port B input pin value register 0xXX PB_DDR Port B data direction register 0x00 0x00 5008 PB_CR1 Port B control register 1 0x00 0x00 5009 PB_CR2 Port B control register 2 0x00 0x00 500A PC_ODR Port C data output latch register 0x00 0x00 500B PB_IDR Port C input pin value register 0xXX PC_DDR Port C data direction register 0x00 0x00 500D PC_CR1 Port C control register 1 0x00 0x00 500E PC_CR2 Port C control register 2 0x00 Address 0x00 5002 0x00 5007 0x00 500C Block Port A Port B Port C DocID17943 Rev 7 39/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 8. I/O port hardware register map (continued) Register label Register name Reset status 0x00 500F PD_ODR Port D data output latch register 0x00 0x00 5010 PD_IDR Port D input pin value register 0xXX PD_DDR Port D data direction register 0x00 0x00 5012 PD_CR1 Port D control register 1 0x00 0x00 5013 PD_CR2 Port D control register 2 0x00 0x00 5014 PE_ODR Port E data output latch register 0x00 0x00 5015 PE_IDR Port E input pin value register 0xXX PE_DDR Port E data direction register 0x00 0x00 5017 PE_CR1 Port E control register 1 0x00 0x00 5018 PE_CR2 Port E control register 2 0x00 0x00 5019 PF_ODR Port F data output latch register 0x00 0x00 501A PF_IDR Port F input pin value register 0xXX PF_DDR Port F data direction register 0x00 0x00 501C PF_CR1 Port F control register 1 0x00 0x00 501D PF_CR2 Port F control register 2 0x00 0x00 501E PG_ODR Port F data output latch register 0x00 0x00 501F PG_IDR Port G input pin value register 0xXX PG_DDR Port G data direction register 0x00 0x00 5021 PG_CR1 Port G control register 1 0x00 0x00 5022 PG_CR2 Port G control register 2 0x00 0x00 5023 PH_ODR Port H data output latch register 0x00 0x00 5024 PH_IDR Port H input pin value register 0xXX PH_DDR Port H data direction register 0x00 0x00 5026 PH_CR1 Port H control register 1 0x00 0x00 5027 PH_CR2 Port H control register 2 0x00 0x00 5028 PI_ODR Port I data output latch register 0x00 0x00 5029 PI_IDR Port I input pin value register 0xXX PI_DDR Port I data direction register 0x00 0x00 502B PI_CR1 Port I control register 1 0x00 0x00 502C PI_CR2 Port I control register 2 0x00 Address 0x00 5011 0x00 5016 0x00 501B 0x00 5020 0x00 5025 0x00 502A 40/137 Block Port D Port E Port F Port G Port H Port I DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map Address Block Register label 0x00 502E to 0x00 5049 Register name Reset status Reserved area (28 bytes) 0x00 5050 FLASH_CR1 Flash control register 1 0x00 0x00 5051 FLASH_CR2 Flash control register 2 0x00 FLASH _PUKR Flash program memory unprotection key register 0x00 0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00 0x00 5054 FLASH _IAPSR Flash in-application programming status register 0x00 0x00 5052 Flash 0x00 5055 to 0x00 506F Reserved area (27 bytes) 0x00 5070 DMA1_GCSR DMA1 global configuration & status register 0xFC 0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00 0x00 5072 to 0x00 5074 Reserved area (3 bytes) 0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00 0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00 0x00 5077 DMA1_C0NDTR DMA1 number of data to transfer register (channel 0) 0x00 0x00 5078 DMA1_C0PARH DMA1 peripheral address high register (channel 0) 0x52 0x00 5079 DMA1_C0PARL DMA1 peripheral address low register (channel 0) 0x00 DMA1 0x00 507A Reserved area (1 byte) 0x00 507B DMA1_C0M0ARH DMA1 memory 0 address high register (channel 0) 0x00 0x00 507C DMA1_C0M0ARL DMA1 memory 0 address low register (channel 0) 0x00 0x00 507D to 0x00 507E Reserved area (2 bytes) 0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00 0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00 0x00 5081 DMA1_C1NDTR DMA1 number of data to transfer register (channel 1) 0x00 0x00 5082 DMA1_C1PARH DMA1 peripheral address high register (channel 1) 0x52 DMA1_C1PARL DMA1 peripheral address low register (channel 1) 0x00 0x00 5083 DMA1 DocID17943 Rev 7 41/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Block Register label 0x00 5084 Register name Reset status Reserved area (1 byte) 0x00 5085 DMA1_C1M0ARH DMA1 memory 0 address high register (channel 1) 0x00 DMA1_C1M0ARL DMA1 memory 0 address low register (channel 1) 0x00 DMA1 0x00 5086 0x00 5087 0x00 5088 Reserved area (2 bytes) 0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00 0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00 0x00 508B DMA1_C2NDTR DMA1 number of data to transfer register (channel 2) 0x00 0x00 508C DMA1_C2PARH DMA1 peripheral address high register (channel 2) 0x52 DMA1_C2PARL DMA1 peripheral address low register (channel 2) 0x00 DMA1 0x00 508D 0x00 508E Reserved area (1 byte) 0x00 508F DMA1_C2M0ARH DMA1 memory 0 address high register (channel 2) 0x00 0x00 5090 DMA1_C2M0ARL DMA1 memory 0 address low register (channel 2) 0x00 0x00 5091 0x00 5092 Reserved area (2 bytes) 0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00 0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00 0x00 5095 DMA1_C3NDTR DMA1 number of data to transfer register (channel 3) 0x00 0x00 5096 DMA1_C3PARH_ C3M1ARH DMA1 peripheral address high register (channel 3) 0x40 DMA1_C3PARL_ C3M1ARL DMA1 peripheral address low register (channel 3) 0x00 0x00 5098 DMA_C3M0EAR DMA channel 3 memory 0 extended address register 0x00 0x00 5099 DMA1_C3M0ARH DMA1 memory 0 address high register (channel 3) 0x00 0x00 509A DMA1_C3M0ARL DMA1 memory 0 address low register (channel 3) 0x00 0x00 5097 0x00 509B to 0x00 509C 42/137 DMA1 Reserved area (3 bytes) DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Block Register label Register name Reset status SYSCFG_RMPCR3 Remapping register 3 0x00 SYSCFG_RMPCR1 Remapping register 1 0x00 0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00 0x00 50A0 EXTI_CR1 External interrupt control register 1 0x00 0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00 EXTI_CR3 External interrupt control register 3 0x00 0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00 0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00 0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00 0x00 50A6 WFE_CR1 WFE control register 1 0x00 WFE_CR2 WFE control register 2 0x00 0x00 50A8 WFE_CR3 WFE control register 3 0x00 0x00 50A9 WFE_CR4 WFE control register 4 0x00 EXTI_CR4 External interrupt control register 4 0x00 EXTI_CONF2 External interrupt port select register 2 0x00 0x00 509D 0x00 509E SYSCFG 0x00 50A2 ITC - EXTI 0x00 50A7 WFE 0x00 50AA ITC - EXTI 0x00 50AB 0x00 50A9 to 0x00 50AF Reserved area (7 bytes) 0x00 50B0 RST_CR Reset control register 0x00 RST_SR Reset status register 0x01 PWR_CSR1 Power control and status register 1 0x00 PWR_CSR2 Power control and status register 2 0x00 RST 0x00 50B1 0x00 50B2 PWR 0x00 50B3 0x00 50B4 to 0x00 50BF Reserved area (12 bytes) 0x00 50C0 CLK_CKDIVR Clock master divider register 0x03 0x00 50C1 CLK_CRTCR Clock RTC register 0x00(1) 0x00 50C2 CLK_ICKCR Internal clock control register 0x11 0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00 CLK_PCKENR2 Peripheral clock gating register 2 0x00 0x00 50C5 CLK_CCOR Configurable clock control register 0x00 0x00 50C6 CLK_ECKCR External clock control register 0x00 0x00 50C7 CLK_SCSR System clock status register 0x01 0x00 50C8 CLK_SWR System clock switch register 0x01 0x00 50C9 CLK_SWCR Clock switch control register 0xX0 0x00 50C4 CLK DocID17943 Rev 7 43/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Register label Register name Reset status 0x00 50CA CLK_CSSR Clock security system register 0x00 0x00 50CB CLK_CBEEPR Clock BEEP register 0x00 0x00 50CC CLK_HSICALR HSI calibration register 0xXX CLK_HSITRIMR HSI clock calibration trimming register 0x00 0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00 0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11 100X 0x00 50D0 CLK_PCKENR3 Peripheral clock gating register 3 0x00 0x00 50CD Block CLK 0x00 50D1 to 0x00 50D2 Reserved area (2 bytes) 0x00 50D3 WWDG_CR WWDG control register 0x7F WWDG_WR WWDR window register 0x7F WWDG 0x00 50D4 0x00 50D5 to 00 50DF Reserved area (11 bytes) 0x00 50E0 0x00 50E1 IWDG 0x00 50E2 IWDG_KR IWDG key register 0xXX IWDG_PR IWDG prescaler register 0x00 IWDG_RLR IWDG reload register 0xFF 0x00 50E3 to 0x00 50EF Reserved area (13 bytes) 0x00 50F0 0x00 50F1 0x00 50F2 BEEP_CSR1 BEEP_CSR2 0x00 50F4 to0x00 513F RTC 0x00 5142 Time register 1 0x00 RTC_TR2 Time register 2 0x00 RTC_TR3 Time register 3 0x00 Reserved area (1 byte) 0x00 5144 0x00 5146 0x00 5147 44/137 0x1F RTC_TR1 0x00 5143 0x00 5145 BEEP control/status register 2 Reserved area (76 bytes) 0x00 5140 0x00 5141 0x00 Reserved area (2 bytes) BEEP 0x00 50F3 BEEP control/status register 1 RTC RTC_DR1 Date register 1 0x01 RTC_DR2 Date register 2 0x21 RTC_DR3 Date register 3 0x00 Reserved area (1 byte) DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5148 RTC_CR1 Control register 1 0x00(1) 0x00 5149 RTC_CR2 Control register 2 0x00(1) RTC_CR3 Control register 3 0x00(1) 0x00 514A RTC 0x00 514B Reserved area (1 byte) 0x00 514C RTC_ISR1 Initialization and status register 1 0x01 0x00 514D RTC_ISR2 Initialization and Status register 2 0x00 0x00 514E 0x00 514F Reserved area (2 bytes) 0x00 5150 0x00 5151 RTC 0x00 5152 RTC_SPRERH Synchronous prescaler register high 0x00(1) RTC_SPRERL Synchronous prescaler register low 0xFF(1) RTC_APRER Asynchronous prescaler register 0x7F(1) 0x00 5153 Reserved area (1 byte) 0x00 5154 RTC_WUTRH Wakeup timer register high 0xFF(1) RTC_WUTRL Wakeup timer register low 0xFF(1) RTC 0x00 5155 0x00 5156 Reserved area (1 byte) 0x00 5157 RTC_SSRL Subsecond register low 0x00 0x00 5158 RTC_SSRH Subsecond register high 0x00 0x00 5159 RTC_WPR Write protection register 0x00 0x00 5158 RTC_SSRH Subsecond register high 0x00 0x00 5159 RTC_WPR Write protection register 0x00 RTC_SHIFTRH Shift register high 0x00 0x00 515B RTC_SHIFTRL Shift register low 0x00 0x00 515C RTC_ALRMAR1 Alarm A register 1 0x00(1) 0x00 515D RTC_ALRMAR2 Alarm A register 2 0x00(1) 0x00 515E RTC_ALRMAR3 Alarm A register 3 0x00(1) 0x00 515F RTC_ALRMAR4 Alarm A register 4 0x00(1) 0x00 515A RTC 0x00 5160 to 0x00 5163 Reserved area (4 bytes) 0x00 5164 0x00 5165 0x00 5166 0x00 5167 to 0x00 5169 RTC RTC_ALRMASSRH Alarm A subsecond register high 0x00(1) RTC_ALRMASSRL Alarm A subsecond register low 0x00(1) RTC_ALRMASSMS KR Alarm A masking register 0x00(1) Reserved area (3 bytes) DocID17943 Rev 7 45/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Block Register label Register name Reset status RTC_CALRH Calibration register high 0x00(1) RTC_CALRL Calibration register low 0x00(1) 0x00 516C RTC_TCR1 Tamper control register 1 0x00(1) 0x00 516D RTC_TCR2 Tamper control register 2 0x00(1) 0x00 516A 0x00 516B RTC 0x00 516E to 0x00 518A 0x00 5190 Reserved area CSSLSE CSSLSE_CSR 0x00 519A to 0x00 51FF CSS on LSE control and status register 0x00(1) Reserved area 0x00 5200 SPI1_CR1 SPI1 control register 1 0x00 0x00 5201 SPI1_CR2 SPI1 control register 2 0x00 0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00 SPI1_SR SPI1 status register 0x02 0x00 5204 SPI1_DR SPI1 data register 0x00 0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07 0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00 0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00 0x00 5203 SPI1 0x00 5208 to 0x00 520F Reserved area (8 bytes) 0x00 5210 I2C1_CR1 I2C1 control register 1 0x00 0x00 5211 I2C1_CR2 I2C1 control register 2 0x00 0x00 5212 I2C1_FREQR I2C1 frequency register 0x00 0x00 5213 I2C1_OARL I2C1 own address register low 0x00 0x00 5214 I2C1_OARH I2C1 own address register high 0x00 0x00 5215 I2C1_OARH I2C1 own address register for dual mode 0x00 0x00 5216 I2C1_DR I2C1 data register 0x00 I2C1_SR1 I2C1 status register 1 0x00 0x00 5218 I2C1_SR2 I2C1 status register 2 0x00 0x00 5219 I2C1_SR3 I2C1 status register 3 0x0X 0x00 521A I2C1_ITR I2C1 interrupt control register 0x00 0x00 521B I2C1_CCRL I2C1 clock control register low 0x00 0x00 521C I2C1_CCRH I2C1 clock control register high 0x00 0x00 521D I2C1_TRISER I2C1 TRISE register 0x02 0x00 521E I2C1_PECR I2C1 packet error checking register 0x00 0x00 5217 46/137 I2C1 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Block Register label 0x00 521F to 0x00 522F Register name Reset status Reserved area (17 bytes) 0x00 5230 USART1_SR USART1 status register 0xC0 0x00 5231 USART1_DR USART1 data register 0xXX 0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00 0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00 0x00 5234 USART1_CR1 USART1 control register 1 0x00 USART1_CR2 USART1 control register 2 0x00 0x00 5236 USART1_CR3 USART1 control register 3 0x00 0x00 5237 USART1_CR4 USART1 control register 4 0x00 0x00 5238 USART1_CR5 USART1 control register 5 0x00 0x00 5239 USART1_GTR USART1 guard time register 0x00 0x00 523A USART1_PSCR USART1 prescaler register 0x00 0x00 5235 USART1 0x00 523B to 0x00 524F Reserved area (21 bytes) 0x00 5250 TIM2_CR1 TIM2 control register 1 0x00 0x00 5251 TIM2_CR2 TIM2 control register 2 0x00 0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00 0x00 5253 TIM2_ETR TIM2 external trigger register 0x00 0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00 0x00 5255 TIM2_IER TIM2 interrupt enable register 0x00 0x00 5256 TIM2_SR1 TIM2 status register 1 0x00 0x00 5257 TIM2_SR2 TIM2 status register 2 0x00 TIM2_EGR TIM2 event generation register 0x00 0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00 0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00 0x00 525B TIM2_CCER1 TIM2 capture/compare enable register 1 0x00 0x00 525C TIM2_CNTRH TIM2 counter high 0x00 0x00 525D TIM2_CNTRL TIM2 counter low 0x00 0x00 525E TIM2_PSCR TIM2 prescaler register 0x00 0x00 525F TIM2_ARRH TIM2 auto-reload register high 0xFF 0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF 0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00 0x00 5258 TIM2 DocID17943 Rev 7 47/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Register label Register name Reset status 0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00 0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00 0x00 5265 TIM2_BKR TIM2 break register 0x00 0x00 5266 TIM2_OISR TIM2 output idle state register 0x00 0x00 5264 Block TIM2 0x00 5267 to 0x00 527F Reserved area (25 bytes) 0x00 5280 TIM3_CR1 TIM3 control register 1 0x00 0x00 5281 TIM3_CR2 TIM3 control register 2 0x00 0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00 0x00 5283 TIM3_ETR TIM3 external trigger register 0x00 0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00 0x00 5285 TIM3_IER TIM3 interrupt enable register 0x00 0x00 5286 TIM3_SR1 TIM3 status register 1 0x00 0x00 5287 TIM3_SR2 TIM3 status register 2 0x00 0x00 5288 TIM3_EGR TIM3 event generation register 0x00 0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00 0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00 TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00 0x00 528C TIM3_CNTRH TIM3 counter high 0x00 0x00 528D TIM3_CNTRL TIM3 counter low 0x00 0x00 528E TIM3_PSCR TIM3 prescaler register 0x00 0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF 0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF 0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00 0x00 5292 TIM3_CCR1L TIM3 Capture/Compare register 1 low 0x00 0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00 0x00 5294 TIM3_CCR2L TIM3 Capture/Compare register 2 low 0x00 0x00 5295 TIM3_BKR TIM3 break register 0x00 0x00 5296 TIM3_OISR TIM3 output idle state register 0x00 0x00 528B 0x00 5297 to 0x00 52AF 48/137 TIM3 Reserved area (25 bytes) DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 52B0 TIM1_CR1 TIM1 control register 1 0x00 0x00 52B1 TIM1_CR2 TIM1 control register 2 0x00 0x00 52B2 TIM1_SMCR TIM1 Slave mode control register 0x00 0x00 52B3 TIM1_ETR TIM1 external trigger register 0x00 0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00 0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00 0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00 0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00 0x00 52B8 TIM1_EGR TIM1 event generation register 0x00 0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00 0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00 0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00 0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode register 4 0x00 0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0x00 0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00 0x00 52BF TIM1_CNTRH TIM1 counter high 0x00 TIM1_CNTRL TIM1 counter low 0x00 0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00 0x00 52C2 TIM1_PSCRL TIM1 prescaler register low 0x00 0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF 0x00 52C4 TIM1_ARRL TIM1 Auto-reload register low 0xFF 0x00 52C5 TIM1_RCR TIM1 Repetition counter register 0x00 0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00 0x00 52C7 TIM1_CCR1L TIM1 Capture/Compare register 1 low 0x00 0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00 0x00 52C9 TIM1_CCR2L TIM1 Capture/Compare register 2 low 0x00 0x00 52CA TIM1_CCR3H TIM1 Capture/Compare register 3 high 0x00 0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00 0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00 0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00 0x00 52CE TIM1_BKR TIM1 break register 0x00 0x00 52CF TIM1_DTR TIM1 dead-time register 0x00 0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00 0x00 52D1 TIM1_DCR1 DMA1 control register 1 0x00 0x00 52C0 TIM1 DocID17943 Rev 7 49/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Block 0x00 52D2 Register label Register name Reset status TIM1_DCR2 TIM1 DMA1 control register 2 0x00 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00 TIM1 0x00 52D3 0x00 52D4 to 0x00 52DF Reserved area (12 bytes) 0x00 52E0 TIM4_CR1 TIM4 control register 1 0x00 0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00 0x00 52E2 TIM4_SMCR TIM4 Slave mode control register 0x00 0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00 TIM4_IER TIM4 Interrupt enable register 0x00 0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00 0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00 0x00 52E7 TIM4_CNTR TIM4 counter 0x00 0x00 52E8 TIM4_PSCR TIM4 prescaler register 0x00 0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00 0x00 52E4 TIM4 0x00 52EA to 0x00 52FE 0x00 52FF Reserved area (21 bytes) IRTIM IR_CR Infrared control register 0x00 0x00 5300 TIM5_CR1 TIM5 control register 1 0x00 0x00 5301 TIM5_CR2 TIM5 control register 2 0x00 0x00 5302 TIM5_SMCR TIM5 Slave mode control register 0x00 0x00 5303 TIM5_ETR TIM5 external trigger register 0x00 0x00 5304 TIM5_DER TIM5 DMA1 request enable register 0x00 0x00 5305 TIM5_IER TIM5 interrupt enable register 0x00 0x00 5306 TIM5_SR1 TIM5 status register 1 0x00 TIM5_SR2 TIM5 status register 2 0x00 0x00 5308 TIM5_EGR TIM5 event generation register 0x00 0x00 5309 TIM5_CCMR1 TIM5 Capture/Compare mode register 1 0x00 0x00 530A TIM5_CCMR2 TIM5 Capture/Compare mode register 2 0x00 0x00 530B TIM5_CCER1 TIM5 Capture/Compare enable register 1 0x00 0x00 530C TIM5_CNTRH TIM5 counter high 0x00 0x00 530D TIM5_CNTRL TIM5 counter low 0x00 0x00 530E TIM5_PSCR TIM5 prescaler register 0x00 0x00 530F TIM5_ARRH TIM5 Auto-reload register high 0xFF 0x00 5307 TIM5 50/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Register label Register name Reset status 0x00 5310 TIM5_ARRL TIM5 Auto-reload register low 0xFF 0x00 5311 TIM5_CCR1H TIM5 Capture/Compare register 1 high 0x00 0x00 5312 TIM5_CCR1L TIM5 Capture/Compare register 1 low 0x00 TIM5_CCR2H TIM5 Capture/Compare register 2 high 0x00 0x00 5314 TIM5_CCR2L TIM5 Capture/Compare register 2 low 0x00 0x00 5315 TIM5_BKR TIM5 break register 0x00 0x00 5316 TIM5_OISR TIM5 output idle state register 0x00 0x00 5313 Block TIM5 0x00 5317 to 0x00 533F Reserved area 0x00 5340 ADC1_CR1 ADC1 configuration register 1 0x00 0x00 5341 ADC1_CR2 ADC1 configuration register 2 0x00 0x00 5342 ADC1_CR3 ADC1 configuration register 3 0x1F 0x00 5343 ADC1_SR ADC1 status register 0x00 0x00 5344 ADC1_DRH ADC1 data register high 0x00 0x00 5345 ADC1_DRL ADC1 data register low 0x00 0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F 0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF ADC1_LTRH ADC1 low threshold register high 0x00 0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00 0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00 0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00 0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00 0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00 0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00 0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00 0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00 0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00 0x00 5348 ADC1 0x00 5352 to 0x00 537F Reserved area (46 bytes) 0x00 5380 DAC_CH1CR1 DAC channel 1 control register 1 0x00 0x00 5381 DAC_CH1CR2 DAC channel 1 control register 2 0x00 DAC_CH2CR1 DAC channel 2 control register 1 0x00 0x00 5383 DAC_CH2CR2 DAC channel 2 control register 2 0x00 0x00 5384 DAC_SWTRIG DAC software trigger register 0x00 0x00 5385 DAC_SR DAC status register 0x00 0x00 5382 DAC DocID17943 Rev 7 51/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Block Register label 0x00 5386 to 0x00 5387 Register name Reset status Reserved area (2 bytes) 0x00 5388 DAC_CH1RDHRH DAC channel 1 right aligned data holding register high 0x00 DAC_CH1RDHRL DAC channel 1 right aligned data holding register low 0x00 DAC 0x00 5389 0x00 538A to 0x00 538B Reserved area (2 bytes) 0x00 538C DAC DAC_CH1LDHRH DAC channel 1 left aligned data holding register high 0x00 0x00 538D DAC DAC_CH1LDHRL DAC channel 1 left aligned data holding register low 0x00 0x00 538E to 0x00 538F 0x00 5390 Reserved area (2 bytes) DAC DAC_CH1DHR8 0x00 5391 to 0x00 5393 DAC channel 1 8-bit data holding register 0x00 Reserved area (3 bytes) 0x00 5394 DAC_CH2RDHRH DAC channel 2 right aligned data holding register high 0x00 DAC_CH2RDHRL DAC channel 2 right aligned data holding register low 0x00 DAC 0x00 5395 0x00 5396 to 0x00 5397 Reserved area (2 bytes) 0x00 5398 DAC_CH2LDHRH DAC channel 2 left aligned data holding register high 0x00 DAC_CH2LDHRL DAC channel 2 left aligned data holding register low 0x00 DAC 0x00 5399 0x00 539A to 0x00 539B 0x00 539C Reserved area (2 bytes) DAC DAC_CH2DHR8 0x00 539D to 0x00 539F DAC channel 2 8-bit data holding register 0x00 Reserved area (3 bytes) 0x00 53A0 DAC_DCH1RDHR H DAC channel 1 right aligned data holding register high 0x00 DAC_DCH1RDHRL DAC channel 1 right aligned data holding register low 0x00 DAC 0x00 53A1 0x00 53A2 to 0x00 53AB 52/137 Reserved area (3 bytes) DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Register label Register name Reset status 0x00 53AC DAC_DORH DAC data output register high 0x00 0x00 53AD DAC_DORL DAC data output register low 0x00 0x00 53A2 DAC_DCH2RDHR H DAC channel 2 right aligned data holding register high 0x00 0x00 53A3 DAC_DCH2RDHRL DAC channel 2 right aligned data holding register low 0x00 0x00 53A4 DAC_DCH1LDHRH DAC channel 1left aligned data holding register high 0x00 DAC_DCH1LDHRL DAC channel 1left aligned data holding register low 0x00 0x00 53A6 DAC_DCH2LDHRH DAC channel 2 left aligned data holding register high 0x00 0x00 53A7 DAC_DCH2LDHRL DAC channel 2 left aligned data holding register low 0x00 0x00 53A8 DAC_DCH1DHR8 DAC channel 1 8-bit mode data holding register 0x00 0x00 53A9 DAC_DCH2DHR8 DAC channel 2 8-bit mode data holding register 0x00 0x00 53A5 Block DAC 0x00 53AA to 0x00 53AB Reserved area (2 bytes) 0x00 53AC DAC_CH1DORH Reset value DAC channel 1 data output register high 0x00 DAC_CH1DORL Reset value DAC channel 1 data output register low 0x00 DAC 0x00 53AD 0x00 53AE to 0x00 53AF Reserved area (2 bytes) 0x00 53B0 DAC_CH2DORH Reset value DAC channel 2 data output register high 0x00 DAC_CH2DORL Reset value DAC channel 2 data output register low 0x00 DAC 0x00 53B1 0x00 53B2 to 0x00 53BF Reserved area 0x00 53C0 SPI2_CR1 SPI2 control register 1 0x00 0x00 53C1 SPI2_CR2 SPI2 control register 2 0x00 0x00 53C2 SPI2_ICR SPI2 interrupt control register 0x00 SPI2_SR SPI2 status register 0x02 0x00 53C4 SPI2_DR SPI2 data register 0x00 0x00 53C5 SPI2_CRCPR SPI2 CRC polynomial register 0x07 0x00 53C6 SPI2_RXCRCR SPI2 Rx CRC register 0x00 0x00 53C7 SPI2_TXCRCR SPI2 Tx CRC register 0x00 0x00 53C3 SPI2 DocID17943 Rev 7 53/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Block Register label 0x00 53C8 to 0x00 53DF Register name Reset status Reserved area 0x00 53E0 USART2_SR USART2 status register 0xC0 0x00 53E1 USART2_DR USART2 data register 0xXX 0x00 53E2 USART2_BRR1 USART2 baud rate register 1 0x00 0x00 53E3 USART2_BRR2 USART2 baud rate register 2 0x00 0x00 53E4 USART2_CR1 USART2 control register 1 0x00 USART2_CR2 USART2 control register 2 0x00 0x00 53E6 USART2_CR3 USART2 control register 3 0x00 0x00 53E7 USART2_CR4 USART2 control register 4 0x00 0x00 53E8 USART2_CR5 USART2 control register 5 0x00 0x00 53E9 USART2_GTR USART2 guard time register 0x00 0x00 53EA USART2_PSCR USART2 prescaler register 0x00 0x00 53E5 USART2 0x00 53EB to 0x00 53EF Reserved area 0x00 53F0 USART3_SR USART3 status register 0xC0 0x00 53F1 USART3_DR USART3 data register 0xXX 0x00 53F2 USART3_BRR1 USART3 baud rate register 1 0x00 0x00 53F3 USART3_BRR2 USART3 baud rate register 2 0x00 0x00 53F4 USART3_CR1 USART3 control register 1 0x00 USART3_CR2 USART3 control register 2 0x00 0x00 53F6 USART3_CR3 USART3 control register 3 0x00 0x00 53F7 USART3_CR4 USART3 control register 4 0x00 0x00 53F8 USART3_CR5 USART3 control register 5 0x00 0x00 53F9 USART3_GTR USART3 guard time register 0x00 0x00 53FA USART3_PSCR USART3 prescaler register 0x00 0x00 53F5 0x00 53FB to 0x00 53FF 54/137 USART3 Reserved area DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 9. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5400 LCD_CR1 LCD control register 1 0x00 0x00 5401 LCD_CR2 LCD control register 2 0x00 0x00 5402 LCD_CR3 LCD control register 3 0x00 0x00 5403 LCD_FRQ LCD frequency selection register 0x00 LCD_PM0 LCD Port mask register 0 0x00 0x00 5405 LCD_PM1 LCD Port mask register 1 0x00 0x00 5406 LCD_PM2 LCD Port mask register 2 0x00 0x00 5407 LCD_PM3 LCD Port mask register 3 0x00 0x00 5408 LCD_PM4 LCD Port mask register 4 0x00 0x00 5409 LCD_PM5 LCD Port mask register 5 0x00 0x00 5404 LCD 0x00 540A to 0x00 540B Reserved area (2 bytes) 0x00 540C LCD_RAM0 LCD display memory 0 0x00 0x00 540D LCD_RAM1 LCD display memory 1 0x00 0x00 540E LCD_RAM2 LCD display memory 2 0x00 0x00 540F LCD_RAM3 LCD display memory 3 0x00 0x00 5410 LCD_RAM4 LCD display memory 4 0x00 0x00 5411 LCD_RAM5 LCD display memory 5 0x00 0x00 5412 LCD_RAM6 LCD display memory 6 0x00 0x00 5413 LCD_RAM7 LCD display memory 7 0x00 0x00 5414 LCD_RAM8 LCD display memory 8 0x00 0x00 5415 LCD_RAM9 LCD display memory 9 0x00 LCD_RAM10 LCD display memory 10 0x00 0x00 5417 LCD_RAM11 LCD display memory 11 0x00 0x00 5418 LCD_RAM12 LCD display memory 12 0x00 0x00 5419 LCD_RAM13 LCD display memory 13 0x00 0x00 541A LCD_RAM14 LCD display memory 14 0x00 0x00 541B LCD_RAM15 LCD display memory 15 0x00 0x00 541C LCD_RAM16 LCD display memory 16 0x00 0x00 541D LCD_RAM17 LCD display memory 17 0x00 0x00 541E LCD_RAM18 LCD display memory 18 0x00 0x00 541F LCD_RAM19 LCD display memory 19 0x00 0x00 5420 LCD_RAM20 LCD display memory 20 0x00 LCD_RAM21 LCD display memory 21 0x00 0x00 5416 0x00 5421 LCD LCD DocID17943 Rev 7 55/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 9. General hardware register map (continued) Address Block Register label 0x00 5422 to 0x00 542E 0x00 542F Register name Reset status Reserved area LCD LCD_CR4 0x00 5430 LCD control register 4 Reserved area (1 byte) 0x00 0x00 0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00 0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00 0x00 5433 RI_IOIR1 I/O input register 1 0xXX 0x00 5434 RI_IOIR2 I/O input register 2 0xXX 0x00 5435 RI_IOIR3 I/O input register 3 0xXX 0x00 5436 RI_IOCMR1 I/O control mode register 1 0x00 RI_IOCMR2 I/O control mode register 2 0x00 0x00 5438 RI_IOCMR3 I/O control mode register 3 0x00 0x00 5439 RI_IOSR1 I/O switch register 1 0x00 0x00 543A RI_IOSR2 I/O switch register 2 0x00 0x00 543B RI_IOSR3 I/O switch register 3 0x00 0x00 543C RI_IOGCR I/O group control register 0x3F 0x00 543D RI_ASCR1 Analog switch register 1 0x00 0x00 543E RI_ASCR2 Analog switch register 2 0x00 0x00 543F RI_RCR Resistor control register 1 0x00 0x00 5440 COMP_CSR1 Comparator control and status register 1 0x00 COMP_CSR2 Comparator control and status register 2 0x00 COMP_CSR3 Comparator control and status register 3 0x00 0x00 5443 COMP_CSR4 Comparator control and status register 4 0x00 0x00 5444 COMP_CSR5 Comparator control and status register 5 0x00 0x00 5437 RI 0x00 5441 0x00 5442 COMP1/ COMP2 1. These registers are not impacted by a system reset. They are reset at power-on. 56/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Memory and register map Table 10. CPU/SWIM/debug module/interrupt controller registers Register label Register name Reset status 0x00 7F00 A Accumulator 0x00 0x00 7F01 PCE Program counter extended 0x00 0x00 7F02 PCH Program counter high 0x00 0x00 7F03 PCL Program counter low 0x00 XH X index register high 0x00 XL X index register low 0x00 0x00 7F06 YH Y index register high 0x00 0x00 7F07 YL Y index register low 0x00 0x00 7F08 SPH Stack pointer high 0x03 0x00 7F09 SPL Stack pointer low 0xFF 0x00 7F0A CCR Condition code register 0x28 Address Block 0x00 7F04 0x00 7F05 CPU(1) 0x00 7F0B to 0x00 7F5F 0x00 7F60 Reserved area (85 bytes) CPU CFG_GCR Global configuration register 0x00 0x00 7F70 ITC_SPR1 Interrupt Software priority register 1 0xFF 0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF 0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF ITC_SPR4 Interrupt Software priority register 4 0xFF 0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF 0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF 0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF 0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF 0x00 7F73 ITC-SPR 0x00 7F78 to 0x00 7F79 0x00 7F80 0x00 7F81 to 0x00 7F8F Reserved area (2 bytes) SWIM SWIM_CSR SWIM control status register 0x00 Reserved area (15 bytes) DocID17943 Rev 7 57/137 60 Memory and register map STM8L151x6/8 STM8L152x6/8 Table 10. CPU/SWIM/debug module/interrupt controller registers (continued) Register label Register name Reset status 0x00 7F90 DM_BK1RE DM breakpoint 1 register extended byte 0xFF 0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF 0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF 0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF 0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF DM_BK2RL DM breakpoint 2 register low byte 0xFF 0x00 7F96 DM_CR1 DM Debug module control register 1 0x00 0x00 7F97 DM_CR2 DM Debug module control register 2 0x00 0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10 0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00 0x00 7F9A DM_ENFCTR DM enable function register 0xFF Address 0x00 7F95 Block DM 0x00 7F9B to 0x00 7F9F Reserved area (5 bytes) 1. Accessible by debug module only 58/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 6 Interrupt vector mapping Interrupt vector mapping Table 11. Interrupt mapping IRQ No. Source block - RESET - TRAP 0 (2) 1 TLI FLASH Wakeup from Halt mode Wakeup from Active-halt mode Wakeup from Wait (WFI mode) Wakeup from Wait (WFE mode)(1) Yes Yes Yes Yes 0x00 8000 Software interrupt - - - - 0x00 8004 External Top level Interrupt - - - - Description Reset EOP/WR_PG_DIS - - Yes Vector address 0x00 8008 (3) 0x00 800C (3) Yes 2 DMA1 0/1 DMA1 channels 0/1 - - Yes Yes 0x00 8010 3 DMA1 2/3 DMA1 channels 2/3 - - Yes Yes(3) 0x00 8014 4 RTC/LSE_ CSS RTC alarm interrupt/LSE CSS interrupt Yes Yes Yes Yes 0x00 8018 5 PortE/F interrupt/PVD EXTI E/F/PVD(4) interrupt Yes Yes Yes Yes(3) 0x00 801C Yes Yes Yes Yes(3) 0x00 8020 Yes (3) 0x00 8024 (3) 6 7 EXTIB/G EXTID/H External interrupt port B/G External interrupt port D/H Yes Yes Yes 8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028 9 EXTI1 External interrupt 1 Yes Yes Yes Yes(3) 0x00 802C Yes (3) 0x00 8030 Yes (3) Yes 0x00 8034 0x00 8038 10 11 EXTI2 EXTI3 External interrupt 2 External interrupt 3 Yes Yes Yes Yes Yes 12 EXTI4 External interrupt 4 Yes Yes Yes Yes(3) 13 EXTI5 External interrupt 5 Yes Yes Yes Yes(3) 0x00 803C Yes (3) Yes 0x00 8040 0x00 8044 14 EXTI6 External interrupt 6 Yes Yes Yes Yes Yes(3) LCD interrupt - - Yes Yes 0x00 8048 System clock switch/CSS interrupt/TIM1 break/DAC - - Yes Yes 0x00 804C Yes Yes Yes Yes(3) 0x00 8050 - - Yes Yes(3) 0x00 8054 15 EXTI7 16 LCD 17 CLK/ TIM1/ DAC 18 COMP1/ COMP2 ADC1 Comparator 1 and 2 interrupt/ADC1 TIM2/ USART2 TIM2 update /overflow/trigger/break/ USART2 transmission complete/transmit data register empty interrupt 19 Yes External interrupt 7 DocID17943 Rev 7 59/137 60 Interrupt vector mapping STM8L151x6/8 STM8L152x6/8 Table 11. Interrupt mapping (continued) Description Wakeup from Halt mode Wakeup from Active-halt mode Wakeup from Wait (WFI mode) Wakeup from Wait (WFE mode)(1) TIM2/ USART2 Capture/Compare/USART 2 interrupt - - Yes Yes(3) 0x00 8058 TIM3/ USART3 TIM3 Update /Overflow/Trigger/Break/ USART3 transmission complete/transmit data register empty interrupt - - Yes Yes(3) 0x00 805C 22 TIM3/ USART3 TIM3 Capture/Compare/ USART3 Receive register data full/overrun/idle line detected/parity error/ interrupt - - Yes Yes(3) 0x00 8060 23 TIM1 Update /overflow/trigger/ COM - - - Yes(3) 0x00 8064 24 TIM1 Capture/Compare - - - Yes(3) 0x00 8068 (3) 0x00 806C (3) IRQ No. Source block 20 21 25 26 TIM4 SPI1 Update/overflow/trigger End of Transfer 27 USART 1/ TIM5 USART1 transmission complete/transmit data register empty/ TIM5 update/overflow/ trigger/break 28 USART 1/ TIM5 USART1 Receive register data full/overrun/idle line detected/parity error/ TIM5 capture/compare 29 I2C1/SPI2 I2C1 interrupt(5)/ SPI2 - - Yes Yes Vector address Yes Yes Yes Yes 0x00 8070 - - Yes Yes(3) 0x00 8074 - - Yes Yes(3) 0x00 8078 Yes Yes Yes Yes(3) 0x00 807C 1. The Low-power wait mode is entered when executing a WFE instruction in Low-power run mode. 2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts. 3. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing. 4. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031). 5. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address. 60/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 7 Option bytes Option bytes Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block. All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See Table 12 for details on option byte addresses. The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for the ROP, UBC and PCODESIZE values which can only be taken into account when they are modified in ICP mode (with the SWIM). Refer to the STM8L15x/STM8L16x Flash programming manual (PM0054) and STM8 SWIM and debug manual (UM0470) for information on SWIM programming procedures. Table 12. Option byte addresses Address Option name Option byte No. Option bits 7 6 5 4 3 2 1 0 Factory default setting 00 4800 Read-out protection (ROP) OPT0 ROP[7:0] 0xAA 00 4802 UBC (User Boot code size) OPT1 UBC[7:0] 0x00 00 4807 PCODESIZE OPT2 PCODE[7:0] 0x00 00 4808 Independent watchdog option OPT3 [3:0] Reserved 00 4809 Number of stabilization clock cycles for HSE and LSE oscillators OPT4 Reserved 00 480A Brownout reset (BOR) OPT5 [3:0] Reserved Bootloader option bytes (OPTBL) OPTBL [15:0] 00 480B 00 480C WWDG WWDG IWDG _HALT _HW _HALT LSECNT[1:0] BOR_TH IWDG _HW HSECNT[1:0] BOR_ ON 0x00 0x00 0x00 0x00 OPTBL[15:0] 0x00 DocID17943 Rev 7 61/137 63 Option bytes STM8L151x6/8 STM8L152x6/8 Table 13. Option byte description Option byte no. Option description OPT0 ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L reference manual (RM0031). OPT1 UBC[7:0] Size of the user boot code area UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: Page 0 reserved for the UBC and write protected. ... 0xFF: Page 0 to 254 reserved for the UBC and write-protected. Refer to User boot code section in the STM8L reference manual (RM0031). OPT2 PCODESIZE[7:0] Size of the proprietary code area 0x00: No proprietary code area 0x01: Page 0 reserved for the proprietary code and read/write protected. ... 0xFF: Page 0 to 254 reserved for the proprietary code and read/write protected. Refer to Proprietary code area (PCODE) section in the STM8L reference manual (RM0031) for more details. IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent watchdog off in Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode OPT3 WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles OPT4 LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles 62/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Option bytes Table 13. Option byte description (continued) Option byte no. OPT5 Option description BOR_ON: 0: Brownout reset off 1: Brownout reset on BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to the value of BOR_TH bits. OPTBL OPTBL[15:0]: This option is checked by the boot ROM code after reset. Depending on the content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details. DocID17943 Rev 7 63/137 63 Unique ID 8 STM8L151x6/8 STM8L152x6/8 Unique ID STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user. The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm. The unique device identifier is ideally suited: For use as serial numbers For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory. To activate secure boot processes Table 14. Unique ID registers (96 bits) Address 0x4926 0x4927 0x4928 Unique ID bits 7 6 5 4 3 U_ID[7:0] X co-ordinate on the wafer U_ID[15:8] U_ID[23:16] 0x4929 Y co-ordinate on the wafer 0x492A Wafer number U_ID[39:32] U_ID[31:24] 0x492B U_ID[47:40] 0x492C U_ID[55:48] 0x492D U_ID[63:56] 0x492E 64/137 Content description Lot number U_ID[71:64] 0x492F U_ID[79:72] 0x4930 U_ID[87:80] 0x4931 U_ID[95:88] DocID17943 Rev 7 2 1 0 STM8L151x6/8 STM8L152x6/8 Electrical parameters 9 Electrical parameters 9.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 9.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 9.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 9.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 9.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. Figure 10. Pin loading conditions 34-,0). P& 069 DocID17943 Rev 7 65/137 120 Electrical parameters 9.1.5 STM8L151x6/8 STM8L152x6/8 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 11. Figure 11. Pin input voltage 34-,0). 6). 069 9.2 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 15. Voltage characteristics Symbol Ratings Min Max VDD- VSS External supply voltage (including VDDA)(1) - 0.3 4.0 Input voltage on true open-drain pins (PC0 and PC1) VSS - 0.3 VDD + 4.0 Input voltage on five-volt tolerant (FT) pins VSS - 0.3 VDD + 4.0 Input voltage on any other pin VSS - 0.3 4.0 VIN(2) VESD Electrostatic discharge voltage Unit V see Absolute maximum ratings (electrical sensitivity) on page 119 1. All power (VDD1, VDD2, VDD3, VDD4, VDDA) and ground (VSS1, VSS2, VSS3, VSS4, VSSA) pins must always be connected to the external power supply. 2. VIN maximum must always be respected. Refer to Table 16. for maximum allowed injected current values. 66/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Table 16. Current characteristics Symbol Ratings Max. IVDD Total current into VDD power line (source) 80 IVSS Total current out of VSS ground line (sink) 80 Output current sunk by IR_TIM pin (with high sink LED driver capability) 80 Output current sunk by any other I/O and control pin 25 IIO Output current sourced by any I/Os and control pin IINJ(PIN) IINJ(PIN) - 25 Injected current on true open-drain pins (PC0 and PC1)(1) - 5 / +0 Injected current on five-volt tolerant (FT) pins(1) - 5 / +0 Injected current on any other pin (2) - 5 / +5 Total injected current (sum of all I/O and control pins) (3) Unit mA ± 25 1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 15. for maximum allowed input voltage values. 2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 15. for maximum allowed input voltage values. 3. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 17. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Value Unit -65 to +150 °C Maximum junction temperature DocID17943 Rev 7 150 67/137 120 Electrical parameters 9.3 STM8L151x6/8 STM8L152x6/8 Operating conditions Subject to general operating conditions for VDD and TA. 9.3.1 General operating conditions Table 18. General operating conditions Symbol fSYSCLK(1) VDD VDDA Parameter System clock frequency Standard operating voltage Analog operating voltage Power dissipation at TA= 85 °C for suffix 6 devices PD(3) TJ Min. Max. Unit 1.65 V VDD 3.6 V 0 16 MHz 3.6 V BOR detector disabled (D suffix version) 1.65 BOR detector enabled 1.8(2) ADC and DAC not used 1.65 3.6 V 1.8 3.6 V LQFP80 - 288 LQFP64 - 288 UFQFPN48 - 288 LQFP48 - 288 LQFP80 - 131 LQFP64 - 104 UFQFPN48 - 156 LQFP48 - 77 1.65 V VDD 3.6 V (6 suffix version) -40 85 1.65 V VDD 3.6 V (7 suffix version) -40 105 1.65 V VDD 3.6 V (3 suffix version) -40 125 -40 °C TA 85 °C (6 suffix version) -40 105 -40 °C TA 105 °C (7 suffix version) -40 110(4) -40 °CTA 125 °C (3 suffix version) -40 130(4) ADC or DAC used Must be at the same potential as VDD mW Power dissipation at TA= 125 °C for suffix 3 devices and at TA= 105 °C for suffix 7 devices TA Conditions Temperature range Junction temperature range 1. fSYSCLK = fCPU 2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled by option byte 3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal characteristics” table. 4. TJmax is given by the test limit. Above this value the product behavior is not guaranteed. 68/137 DocID17943 Rev 7 °C STM8L151x6/8 STM8L152x6/8 9.3.2 Electrical parameters Embedded reset and power control block characteristics Table 19. Embedded reset and power control block characteristics Symbol Parameter VDD rise time rate tVDD VDD fall time rate Conditions Min. Typ. Max. Unit BOR detector enabled 0(1) - (1) µs/V BOR detector disabled 0(1) - 1(1) ms/V BOR detector enabled 20(1) - (1) µs/V BOR detector disabled Reset below voltage functional range VDD rising BOR detector enabled tTEMP VPOR Reset release delay Power-on reset threshold VDD rising BOR detector disabled - 3 ms - 1 - Rising edge 1.3(2) 1.5 1.65 1.5 1.65 VPDR Power-down reset threshold Falling edge 1.3(2) Brown-out reset threshold 0 (BOR_TH[2:0]=000) Falling edge 1.67 1.7 1.74 VBOR0 Rising edge 1.69 1.75 1.80 Brown-out reset threshold 1 (BOR_TH[2:0]=001) Falling edge 1.87 1.93 1.97 VBOR1 Rising edge 1.96 2.04 2.07 Falling edge 2.22 2.3 2.35 VBOR2 Brown-out reset threshold 2 (BOR_TH[2:0]=010) Rising edge 2.31 2.41 2.44 Brown-out reset threshold 3 (BOR_TH[2:0]=011) Falling edge 2.45 2.55 2.60 VBOR3 Rising edge 2.54 2.66 2.7 Brown-out reset threshold 4 (BOR_TH[2:0]=100) Falling edge 2.68 2.80 2.85 VBOR4 Rising edge 2.78 2.90 2.95 V DocID17943 Rev 7 69/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Table 19. Embedded reset and power control block characteristics (continued) Symbol Parameter VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst Hysteresis voltage Conditions Min. Typ. Max. Falling edge 1.80 1.84 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.2 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - V 1. Data guaranteed by design, not tested in production. 2. Data based on characterization results, not tested in production. 70/137 Unit DocID17943 Rev 7 mV STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 12. Power supply thresholds 9'' 9'' $ 9 39' 9 %2 5 P9 K\VWHUHVLV P9 K\VWHUHVLV 9325 93'5 ,7HQDEOHG 39'RXWSXW %25UHVHW 1567 %253'5UHVHW 1567 3253'5UHVHW 1567 39' %25DOZD\VDFWLYH %25GLVDEOHGE\RSWLRQE\WH 3253'5%25QRWDYDLODEOH DLE DocID17943 Rev 7 71/137 120 Electrical parameters 9.3.3 STM8L151x6/8 STM8L152x6/8 Supply current characteristics Total current consumption The MCU is placed under the following conditions: All I/O pins in input mode with a static value at VDD or VSS (no load) All peripherals are disabled except if explicitly mentioned. In the following table, data are based on characterization results, unless otherwise specified. Subject to general operating conditions for VDD and TA. Table 20. Total current consumption in Run mode Max. Symbol Para meter (1) Typ. Conditions 55°C fCPU = 125 kHz fCPU = 1 MHz HSI RC osc. fCPU = 4 MHz (16 MHz)(6) fCPU = 8 MHz All peripherals Supply OFF, current code IDD(RUN) in run executed mode from RAM, (5) VDD from 1.65 V to 3.6 V 72/137 85 °C 105 °C 125 °C (2) (3) (4) 0.22 0.28 0.39 0.47 0.51 0.32 0.38 0.49 0.57 0.61 0.59 0.65 0.76 0.84 0.88 0.93 0.99 1.1 1.18 1.22 1.87(7) 1.91(7) (7) fCPU = 16 MHz 1.62 1.68 fCPU = 125 kHz 0.21 0.25 0.35 0.44 0.49 fCPU = 1 MHz 0.3 0.34 0.44 0.53 0.58 fCPU = 4 MHz 0.57 0.61 0.71 0.8 0.85 fCPU = 8 MHz 0.95 0.99 1.09 1.18 1.23 fCPU = 16 MHz 1.73 1.77 1.87(7) 1.96(7) 2.01(7) LSI RC osc. =f f (typ. 38 kHz) CPU LSI 0.029 0.035 0.039 0.044 0.055 LSE external fCPU = fLSE clock (32.768 kHz) 0.028 0.034 0.038 0.042 0.054 HSE external clock (fCPU=fHSE) (8) DocID17943 Rev 7 1.79 Unit mA STM8L151x6/8 STM8L152x6/8 Electrical parameters Table 20. Total current consumption in Run mode (continued) Max. Symbol Para meter Conditions(1) 55°C HSI RC osc.(9) All peripherals Supply OFF, code current executed IDD(RUN) in Run from Flash, VDD from mode 1.65 V to 3.6 V Typ. HSE external clock (fCPU=fHSE) (8) LSI RC osc. 85 °C 105 °C 125 °C (2) (3) (4) fCPU = 125 kHz 0.35 0.46 0.48 0.51 0.59 fCPU = 1 MHz 0.54 0.65 0.67 0.7 0.78 fCPU = 4 MHz 1.16 1.27 1.29 1.32 1.4 fCPU = 8 MHz 1.97 2.08 2.1 2.13 2.21 fCPU = 16 MHz 3.54 3.65 3.67 3.7 3.78 fCPU = 125 kHz 0.35 0.44 0.46 0.49 0.58 fCPU = 1 MHz 0.53 0.62 0.64 0.67 0.76 fCPU = 4 MHz 1.13 1.22 1.24 1.27 1.36 fCPU = 8 MHz 2 2.09 2.11 2.14 2.23 fCPU = 16 MHz 3.69 3.78 3.8 3.83 3.92 fCPU = fLSI 0.110 0.123 0.130 0.138 0.180 0.100 0.101 0.104 0.119 0.163 LSE external clock fCPU = fLSE (32.768 kHz)(10) Unit mA 1. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU=fSYSCLK 2. For devices with suffix 6 3. For devices with suffix 7 4. For devices with suffix 3 5. CPU executing typical data processing 6. The run from RAM consumption can be approximated with the linear formula: IDD(run_from_RAM) = Freq. * 95 µA/MHz + 250 µA 7. Tested in production. 8. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (IDD HSE) must be added. Refer to Table 31. 9. The run from Flash consumption can be approximated with the linear formula: IDD(run_from_Flash) = Freq. * 200 µA/MHz + 330 µA 10. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32 DocID17943 Rev 7 73/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Figure 13. Typical IDD(RUN) from RAM vs. VDD (HSI clock source), fCPU =16 MHz )$$2UN (3)-(Z M! & & & & & 6$$ 6 -36 1. Typical current consumption measured with code executed from RAM. Figure 14. Typical IDD(RUN) from Flash vs. VDD (HSI clock source), fCPU = 16 MHz )$$2UN (3)%%0-(Z M! & & & & & 6$$ 6 -36 1. Typical current consumption measured with code executed from Flash. 74/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters In the following table, data are based on characterization results, unless otherwise specified. Table 21. Total current consumption in Wait mode Max Symbol Parameter Conditions(1) Typ 55°C (2) (3) (4) fCPU = 125 kHz 0.21 0.29 0.33 0.36 0.43 fCPU = 1 MHz 0.25 0.33 0.37 0.4 0.47 fCPU = 4 MHz 0.32 0.4 0.44 0.47 0.54 fCPU = 8 MHz 0.42 0.496 0.54 0.56 0.64 fCPU = 16 MHz 0.66 0.736 0.78(6) 0.8(6) 0.88(6) fCPU = 125 kHz 0.19 0.21 0.3 0.35 0.41 0.2 0.23 0.32 0.36 0.43 0.27 0.3 0.39 0.43 0.5 0.37 0.4 0.49 0.53 0.6 fCPU = 16 MHz 0.63 0.66 LSI fCPU = fLSI 0.028 0.037 0.039 0.044 0.054 LSE(8) external clock (32.768 kHz) fCPU = fLSE 0.027 0.035 0.038 0.042 0.051 HSI CPU not clocked, all peripherals OFF, code Supply executed from IDD(Wait) current in RAM Wait mode with Flash in IDDQ mode,(5) VDD from 1.65 V to 3.6 V 85 °C 105 °C 125 °C HSE fCPU = 1 MHz external clock fCPU = 4 MHz (fCPU=fHSE) fCPU = 8 MHz (7) DocID17943 Rev 7 0.75(6) 0.79(6) Unit mA 0.86(6) 75/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Table 21. Total current consumption in Wait mode (continued) Max Symbol Parameter Conditions(1) Typ 55°C HSI CPU not clocked, all peripherals OFF, Supply code IDD(Wait) current in executed from Wait mode Flash, VDD from 1.65 V to 3.6 V HSE(7) external clock (fCPU= HSE) 85 °C 105 °C 125 °C (2) (3) (4) fCPU = 125 kHz 0.27 0.36 0.42 0.46 0.51 fCPU = 1 MHz 0.29 0.38 0.44 0.48 0.53 fCPU = 4 MHz 0.37 0.46 0.52 0.56 0.61 fCPU = 8 MHz 0.45 0.55 0.61 0.65 0.7 fCPU = 16 MHz 0.69 0.79 0.85 0.89 0.94 fCPU = 125 kHz 0.23 0.29 0.32 0.4 0.47 fCPU = 1 MHz 0.24 0.31 0.34 0.41 0.48 fCPU = 4 MHz 0.32 0.39 0.42 0.49 0.56 fCPU = 8 MHz 0.42 0.49 0.51 0.59 0.66 fCPU = 16 MHz 0.7 0.77 0.79 0.87 0.94 LSI fCPU = fLSI 0.037 0.085 0.105 0.123 0.153 LSE(8) external clock (32.768 kHz) fCPU = fLSE 0.036 0.082 0.095 0.119 0.133 1. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU = fSYSCLK 2. For devices with suffix 6. 3. For devices with suffix 7. 4. For devices with suffix 3. 5. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register. 6. Tested in production. 7. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (IDD HSE) must be added. Refer to Table 31. 8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD HSE) must be added. Refer to Table 32 76/137 DocID17943 Rev 7 Unit mA STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 15. Typical IDD(Wait) from RAM vs. VDD (HSI clock source), fCPU = 16 MHz ,'' :DLW +6,0+]P$ & & & 9'' 9 069 1. Typical current consumption measured with code executed from RAM. Figure 16. Typical IDD(Wait) from Flash (HSI clock source), fCPU = 16 MHz ,'':IL+6,0+] ((21P$ & & & & & 9''9 -36 1. Typical current consumption measured with code executed from Flash. DocID17943 Rev 7 77/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 In the following table, data are based on characterization results, unless otherwise specified. Table 22. Total current consumption and timing in Low-power run mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter all peripherals OFF LSI RC osc. (at 38 kHz) with TIM2 active(2) IDD(LPR) Supply current in Lowpower run mode all peripherals OFF (3) external LSE clock (32.768 kHz) with TIM2 active (2) Typ. Max. TA = -40 °C to 25 °C 5.86 6.38 TA = 55 °C 6.52 7.06 TA = 85 °C 7.68 8.7 TA = 105 °C 10.14 11.77 TA = 125 °C 14.4 18.27 TA = -40 °C to 25 °C 6.2 6.73 TA = 55 °C 6.86 7.41 TA = 85 °C 9.71 10.81 TA = 105 °C 13.17 15.39 TA = 125 °C 16.72 21.1 TA = -40 °C to 25 °C 5.42 5.94 TA = 55 °C 5.9 6.52 TA = 85 °C 6.14 6.8 TA = 105 °C 7.46 8.2 TA = 125 °C 10.25 12.81 TA = -40 °C to 25 °C 5.87 6.48 TA = 55 °C 6.44 6.95 TA = 85 °C 6.7 7.65 TA = 105 °C 8.01 9.15 TA = 125 °C 10.62 16.09 1. No floating I/Os 2. Timer 2 clock enabled and counter running 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32 78/137 DocID17943 Rev 7 Unit A STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 17. Typical IDD(LPR) vs. VDD (LSI clock source), all peripherals OFF & ,''/S 5XQ /6,DOO RII P$ & 9''9 DocID17943 Rev 7 069 79/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 In the following table, data are based on characterization results, unless otherwise specified. Table 23. Total current consumption in Low-power wait mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter all peripherals OFF LSI RC osc. (at 38 kHz) with TIM2 active(2) IDD(LPW) Typ. Max. Unit TA = -40 °C to 25 °C 3.03 3.41 TA = 55 °C 3.38 3.78 TA = 85 °C 4.6 5.34 TA = 105 °C 7.25 8.84 TA = 125 °C 11.89 16.18 TA = -40 °C to 25 °C 3.78 4.21 TA = 55 °C 4.13 4.57 TA = 85 °C 5.29 6.08 9.13 TA = 105 °C 7.54 Supply current in Low-power TA = 125 °C 12.47 15.56 wait mode TA = -40 °C to 25 °C 2.46 2.89 TA = 55 °C 2.58 3.07 TA = 85 °C 3.32 4.05 TA = 105 °C 4.63 6.17 TA = 125 °C 7.52 11.68 TA = -40 °C to 25 °C 2.88 3.29 TA = 55 °C 2.97 3.42 TA = 85 °C 3.69 4.55 TA = 105 °C 5.09 6.78 TA = 125 °C 7.91 12.15 all peripherals OFF LSE external clock(3) (32.768 kHz) with TIM2 active (2) 1. No floating I/Os. 2. Timer 2 clock enabled and counter is running. 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32. 80/137 DocID17943 Rev 7 A STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 18. Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF & & & & & )$$,P 7FI RAM ,3)ALL OFF M! 6$$ 6 .47 1. Typical current consumption measured with code executed from RAM. DocID17943 Rev 7 81/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 In the following table, data are based on characterization results, unless otherwise specified. Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter LCD OFF IDD(AH) Supply current in Active-halt mode (2) TA = -40 °C to 25 °C 0.92 2.25 TA = 55 °C 1.32 3.44 TA = 85 °C 1.63 3.87 TA = 105 °C 3 7.94 TA = 125 °C 5.6 13.8 TA = -40 °C to 25 °C 1.56 3.6 LCD ON TA = 55 °C (static duty/ TA = 85 °C external (3) VLCD) TA = 105 °C 1.64 3.8 2.12 5.03 3.34 8.2 TA = 125 °C 5.83 14.4 TA = -40 °C to 25 °C 1.92 4.56 TA = 55 °C 2.1 4.97 TA = 85 °C 2.6 6.14 TA = 105 °C 3.62 8.49 TA = 125 °C 6.1 15.92 TA = -40 °C to 25 °C 4.2 9.88 TA = 55 °C 4.39 10.32 TA = 85 °C 4.84 11.5 TA = 105 °C 5.98 15 TA = 125 °C 7.21 18.07 LSI RC (at 38 kHz) LCD ON (1/4 duty/ external VLCD) (4) LCD ON (1/4 duty/ internal VLCD) (5) 82/137 Typ. Max. DocID17943 Rev 7 Unit A STM8L151x6/8 STM8L152x6/8 Electrical parameters Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V (continued) Symbol Conditions(1) Parameter LCD OFF IDD(AH) Supply current in Active-halt mode LSE external clock (32.768 kHz) (7) LCD ON (1/4 duty/ external VLCD) (4) LCD ON (1/4 duty/ internal VLCD) (5) IDD(WUFAH) TA = -40 °C to 25 °C 0.54 1.35 TA = 55 °C 0.61 1.44 TA = 85 °C 0.91 2.27 TA = 105 °C 2.24 5.42 TA = 125 °C 5.03 12 TA = -40 °C to 25 °C 0.91 2.13 1.05 2.55 1.42 3.65 2.63 6.35 LCD ON TA = 55 °C (static duty/ TA = 85 °C external (3) VLCD) TA = 105 °C (6) Supply current during wakeup time from Active-halt mode (using HSI) Typ. Max. TA = 125 °C 5.24 13.15 TA = -40 °C to 25 °C 1.6 2.84 TA = 55 °C 1.76 4.37 TA = 85 °C 2.14 5.23 TA = 105 °C 3.37 8.5 TA = 125 °C 5.92 15.19 TA = -40 °C to 25 °C 3.89 9.15 TA = 55 °C 3.89 9.15 TA = 85 °C 4.25 10.49 TA = 105 °C 5.42 16.31 TA = 125 °C 6.58 16.6 Unit A - - - 2.4 - mA Wakeup time from tWU_HSI(AH)(8)(9) Active-halt mode to Run mode (using HSI) - - - 4.7 7 s Wakeup time from tWU_LSI(AH)(8)(9) Active-halt mode to Run mode (using LSI) - - - 150 - s 1. No floating I/O, unless otherwise specified. 2. RTC enabled. Clock source = LSI 3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected. 4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 5. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32 DocID17943 Rev 7 83/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 7. RTC enabled. Clock source = LSE 8. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. 9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. Table 25. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal Symbol Condition(1) Parameter Typ. LSE VDD = 1.8 V IDD(AH) (2) Supply current in Active-halt mode 1.2 (3) VDD = 3 V LSE/32 0.9 LSE 1.4 µA (3) VDD = 3.6 V LSE/32 1.1 LSE 1.6 LSE/32(3) 1.3 1. No floating I/O, unless otherwise specified. 2. Based on measurements on bench with 32.768 kHz external crystal oscillator. 3. RTC clock is LSE divided by 32. Figure 19. Typical IDD(AH) vs. VDD (LSI clock source) & & & )$$!(ALT M! & & 6$$ 6 -36 84/137 DocID17943 Rev 7 Unit STM8L151x6/8 STM8L152x6/8 Electrical parameters In the following table, data are based on characterization results, unless otherwise specified. Table 26. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Symbol Condition(1) Parameter TA = -40 °C to 25 °C TA = 55 °C Supply current in Halt mode (Ultra-low-power ULP bit =1 in TA = 85 °C the PWR_CSR2 register) TA = 105 °C IDD(Halt) TA = 125 °C Typ. Max. 400 1600(2) 810 2400 1600 4500(2) 2900 7700(2) 5.6 18(2) IDD(WUHalt) Supply current during wakeup time from Halt mode (using HSI) 2.4 tWU_HSI(Halt)(3)(4) Wakeup time from Halt to Run mode (using HSI) 4.7 tWU_LSI(Halt) (3)(4) Wakeup time from Halt mode to Run mode (using LSI) 150 Unit nA µA mA 7 µs µs 1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified 2. Tested in production 3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register 4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU Figure 20. Typical IDD(Halt) vs. VDD (internal reference voltage OFF) & & )$$(ALTBGOFF M! & & & 6$$ 6 -36 DocID17943 Rev 7 85/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Current consumption of on-chip peripherals Table 27. Peripheral current consumption Symbol Typ. Parameter VDD = 3.0 V IDD(TIM1) TIM1 supply current(1) 10 IDD(TIM2) TIM2 supply current (1) 7 IDD(TIM3) TIM3 supply current (1) 7 IDD(TIM5) TIM5 supply current (1) 7 IDD(TIM4) TIM4 timer supply current (1) 3 IDD(USART1) USART1 supply current (2) 5 IDD(USART2) USART2 supply current (2) 5 IDD(USART3) USART3 supply current (2) 5 IDD(SPI1) SPI1 supply current (2) 3 IDD(SPI2) SPI2 supply current (2) 3 IDD(I2C1) I2C1 supply current (2) 4 IDD(DMA1) DMA1 supply current(2) 3 IDD(WWDG) WWDG supply current(2) 1 Peripherals ON(3) 63 Unit µA/MHz IDD(ALL) IDD(ADC1) ADC1 supply current(4) 1500 IDD(DAC) DAC supply current(5) 370 IDD(COMP1) Comparator 1 supply current(6) IDD(COMP2) Comparator 2 supply current(6) IDD(PVD/BOR) IDD(BOR) IDD(IDWDG) 0.160 Slow mode 2 Fast mode 5 µA Power voltage detector and brownout Reset unit supply current (7) 2.6 Brownout Reset unit supply current (7) 2.4 including LSI supply current 0.45 excluding LSI supply current 0.05 Independent watchdog supply current 1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production. 2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production. 3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, TIM5, USART1, USART2, USART3, SPI1, SPI2, I2C1, DMA1, WWDG. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion. 86/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters 5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD /2. Floating DAC output. 6. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded. 7. Including supply current of internal reference voltage. Table 28. Current consumption under external reset Symbol IDD(RST) Parameter Conditions Supply current under external reset (1) PB1/PB3/PA5 pins are externally tied to VDD Typ. VDD = 1.8 V 48 VDD = 3 V 80 VDD = 3.6 V 95 Unit µA 1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset. PB1, PB3 and PA5 must be tied externally under reset to avoid the consumption due to their schmitt trigger. 9.3.4 Clock and timing characteristics HSE external clock (HSEBYP = 1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 29. HSE external clock characteristics Symbol fHSE_ext(1) Parameter Conditions External clock source frequency VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage Min. Typ. Max. Unit 1 16 MHz 0.7 x VDD VDD V VSS Cin(HSE)(1) OSC_IN input capacitance ILEAK_HSE OSC_IN input leakage current 0.3 x VDD 2.6 VSS < VIN < VDD pF ±1 µA 1. Guaranteed by design, not tested in production. DocID17943 Rev 7 87/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 LSE external clock (LSEBYP=1 in CLK_ECKCR) The LSE is available on STM8L151xx and STM8L152xx devices only. Subject to general operating conditions for VDD and TA. Table 30. LSE external clock characteristics Symbol Parameter Min. Typ. Max. fLSE_ext(1) External clock source frequency VLSEH(2) OSC32_IN input pin high level voltage 0.7 x VDD VDD VLSEL(2) OSC32_IN input pin low level voltage VSS 0.3 x VDD 32.768 Unit kHz V Cin(LSE)(1) OSC32_IN input capacitance ILEAK_LSE OSC32_IN input leakage current 0.6 pF ±1 µA 1. Guaranteed by design, not tested in production. 2. Data based on characterization results, not tested in production. HSE crystal/ceramic resonator oscillator The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 31. HSE oscillator characteristics Symbol Conditions High speed external oscillator frequency fHSE RF C(1)(2) IDD(HSE) gm tSU(HSE) Parameter Typ. 1 Max. Unit 16 MHz Feedback resistor 200 k Recommended load capacitance 20 pF HSE oscillator power consumption C = 20 pF, fOSC = 16 MHz 2.5 (startup) 0.7 (stabilized)(3) C = 10 pF, fOSC =16 MHz 2.5 (startup) 0.46 (stabilized)(3) Startup time mA 3.5(3) Oscillator transconductance (4) Min. VDD is stabilized mA/V 1 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details 3. Guaranteed by design. Not tested in production. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 88/137 DocID17943 Rev 7 ms STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 21. HSE oscillator circuit diagram I+6(WRFRUH 5P 5) &2 /P &/ 26&B,1 &P JP 5HVRQDWRU &RQVXPSWLRQ FRQWURO 5HVRQDWRU 670 &/ 26&B287 .47 HSE oscillator critical gm formula g mcrit = 2 f HSE 2 R m 2Co + C 2 Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification), Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL1=CL2=C: Grounded external capacitance gm >> gmcrit LSE crystal/ceramic resonator oscillator The LSE is available on STM8L151x6/8 and STM8L152x6/8 devices. The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 32. LSE oscillator characteristics Symbol Parameter fLSE Low speed external oscillator frequency RF Feedback resistor (1)(2) Recommended load capacitance C IDD(LSE) LSE oscillator power consumption Conditions Min. V = 200 mV tSU(LSE)(4) Startup time 1.2 M 8 pF VDD = 3 V 600 nA 750 3(3) VDD is stabilized Unit kHz 450 Oscillator transconductance Max. 32.768 VDD = 1.8 V VDD = 3.6 V gm Typ. µA/V 1 s 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value. Refer to crystal manufacturer for more details. 3. Guaranteed by design. Not tested in production. DocID17943 Rev 7 89/137 120 Electrical parameters 4. STM8L151x6/8 STM8L152x6/8 tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Figure 22. LSE oscillator circuit diagram I/6( 5P 5) &2 /P &/ 26&B,1 &P JP 5HVRQDWRU &RQVXPSWLRQ FRQWURO 5HVRQDWRU 670 26&B287 &/ 069 Internal clock sources Subject to general operating conditions for VDD, and TA. High speed internal RC oscillator (HSI) In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 33. HSI oscillator characteristics Symbol fHSI ACCHSI TRIM Conditions(1) Parameter Frequency Accuracy of HSI oscillator (factory calibrated) HSI user trimming step(3) Min. VDD = 3.0 V Typ. Max. 16 (2) Unit MHz % VDD = 3.0 V, TA = 25 °C -1 VDD = 3.0 V, 0 °C TA 55 °C -1.5 1.5 % VDD = 3.0 V, -10 °C TA 70 °C -2 2 % VDD = 3.0 V, -10 °C TA 85 °C -2.5 2 % VDD = 3.0 V, -10 °C TA 125 °C -4.5 2 % 1.65 V VDD 3.6 V, -40 °C TA 125 °C -4.5 3 % 0.7 % ± 1.5 % Trimming code multiple of 16 1 (2) 0.4 Trimming code = multiple of 16 tsu(HSI) HSI oscillator setup time (wakeup time) 3.7 6 (4) µs IDD(HSI) HSI oscillator power consumption 100 140(4) µA 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. Tested in production. 90/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters 3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details. 4. Guaranteed by design, not tested in production Figure 23. Typical HSI frequency vs. VDD (3)FREQUENCY;-(Z= # # # # 6$$;6= AI Low speed internal RC oscillator (LSI) In the following table, data are based on characterization results, not tested in production. Table 34. LSI oscillator characteristics Symbol fLSI Conditions(1) Parameter Frequency tsu(LSI) LSI oscillator wakeup time D(LSI) LSI oscillator frequency drift(3) Min. Typ. Max. Unit 26 38 56 kHz 200 0 °C TA 85 °C -12 (2) 11 µs % 1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified. 2. Guaranteed by Design, not tested in production. 3. This is a deviation for an individual part, once the initial frequency has been measured. DocID17943 Rev 7 91/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Figure 24. Typical LSI clock source frequency vs. VDD & & & & 2#+ #HECK -(Z & 6$$ 6 -36 9.3.5 Memory characteristics TA = -40 to 125 °C unless otherwise specified. Table 35. RAM and hardware registers Symbol VRM Parameter Data retention mode (1) Conditions Min. Typ. Max. Unit Halt mode (or Reset) 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production. 92/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Flash memory Table 36. Flash program and data EEPROM memory Symbol VDD Parameter Operating voltage (all modes, read/write/erase) Conditions Min. fSYSCLK = 16 MHz 1.65 - - Programming time for 1 or 128 bytes (block) erase/write cycles (on programmed byte) tprog Iprog tRET(2) 6 Max. (1) Unit 3.6 V ms Programming time for 1 to 128 bytes (block) write cycles (on erased byte) - - TA+25 °C, VDD = 3.0 V - TA+25 °C, VDD = 1.8 V - Data retention (program memory) after 10000 erase/write cycles at TA+85 °C (6 suffix) TRET+85 °C 30(1) - - Data retention (program memory) after 10000 erase/write cycles at TA+125 °C (3 suffix) TRET+125 °C 5(1) - - Programming/ erasing consumption 3 - 0.7 mA - years Data retention (data memory) after 300000 erase/write cycles at TA+85 °C (6 suffix) TRET+85 °C 30(1) - - Data retention (data memory) after 300000 erase/write cycles at TA+125 °C (3 suffix) TRET+125 °C 5(1) - - TA+85 °C (6 suffix), TA+105 °C (7 suffix) or TA+125 °C (3 suffix) 10(1) - - - - Erase/write cycles (program memory) NRW (3) Typ. Erase/write cycles (data memory) 300(1) (4) kcycles 1. Data based on characterization results, not tested in production. 2. Conforming to JEDEC JESD22a117 3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. 4. Data based on characterization performed on the whole data memory. DocID17943 Rev 7 93/137 120 Electrical parameters 9.3.6 STM8L151x6/8 STM8L152x6/8 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.). The test results are given in the following table. Table 37. I/O current injection susceptibility Functional susceptibility Symbol IINJ 9.3.7 Description Negative injection Positive injection Injected current on true open-drain pins -5 +0 Injected current on all 5 V tolerant (FT) pins -5 +0 Injected current on any other pin -5 +5 Unit mA I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. 94/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Table 38. I/O static characteristics Symbol VIL Parameter Input low level voltage(2) Conditions(1) Min. Typ. Max. Input voltage on true open-drain pins (PC0 and PC1) VSS-0.3 - 0.3 x VDD Input voltage on fivevolt tolerant (FT) pins VSS-0.3 - 0.3 x VDD Input voltage on any other pin VSS-0.3 - 0.3 x VDD - 5.2 - 5.5 Input voltage on true open-drain pins (PC0 and PC1) with VDD < 2 V Input voltage on true open-drain pins (PC0 and PC1) with VDD 2 V VIH Input high level voltage (2) Input voltage on fivevolt tolerant (FT) pins with VDD < 2 V Ilkg Input leakage current (4) RPU Weak pull-up equivalent resistor(2)(6) CIO I/O pin capacitance 0.70 x VDD V 5.2 - 5.5 0.70 x VDD - VDD+0.3 Standard I/Os - 200 - True open drain I/Os - 200 - VSSVIN VDD Standard I/Os - - 50 (5) VSSVIN VDD True open drain I/Os - - 200(5) VSSVIN VDD PA0 with high sink LED driver capability - - 200(5) 30 45 60 k - 5 - pF Input voltage on any other pin Schmitt trigger voltage hysteresis (3) V - Input voltage on fivevolt tolerant (FT) pins with VDD 2 V Vhys Unit 0.70 x VDD mV VINVSS - nA 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. Data based on characterization results, not tested in production. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Not tested in production. 6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in Figure 28). DocID17943 Rev 7 95/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Figure 25. Typical VIL and VIH vs. VDD (standard I/Os) # # # # 6),AND6)(;6= 6$$;6= AI Figure 26. Typical VIL and VIH vs. VDD (true open drain I/Os) # # # # 6),AND6)(;6= 6$$;6= AI Figure 27. Typical pull-up resistance RPU vs. VDD with VIN=VSS # # # # 0ULL5PRESISTANCE;K7= 6$$;6= AI 96/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 28. Typical pull-up current Ipu vs. VDD with VIN=VSS # # # # 0ULL5PCURRENT;!= 6$$;6= AI Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. Table 39. Output driving current (high sink ports) I/O Symbol Type Output low level voltage for an I/O pin Standard VOL (1) Parameter VOH (2) Output high level voltage for an I/O pin Conditions Min. Max. IIO = +2 mA, VDD = 3.0 V - 0.45 IIO = +2 mA, VDD = 1.8 V - 0.45 IIO = +10 mA, VDD = 3.0 V - 0.7 Unit V IIO = -2 mA, VDD = 3.0 V VDD-0.45 - IIO = -1 mA, VDD = 1.8 V VDD-0.45 - IIO = -10 mA, VDD = 3.0 V VDD-0.7 - 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. DocID17943 Rev 7 97/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Table 40. Output driving current (true open drain ports) Open drain I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min. Max. IIO = +3 mA, VDD = 3.0 V - 0.45 IIO = +1 mA, VDD = 1.8 V - Unit V 0.45 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Table 41. Output driving current (PA0 with high sink LED driver capability) I/O Symbol Type IR VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min. Max. Unit IIO = +20 mA, VDD = 2.0 V - 0.45 V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Figure 29. Typical VOL @ VDD = 3.0 V (high sink Figure 30. Typical VOL @ VDD = 1.8 V (high sink ports) ports) # # # # 6/, ;6= 6/, ;6= # # # # )/, ;M!= )/,;M!= AI AI Figure 31. Typical VOL @ VDD = 3.0 V (true open Figure 32. Typical VOL @ VDD = 1.8 V (true open drain ports) drain ports) # # # # 6/, ;6= 6/, ;6= )/, ;M!= )/, ;M!= BJ AI 98/137 # # # # DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 33. Typical VDD - VOH @ VDD = 3.0 V (high Figure 34. Typical VDD - VOH @ VDD = 1.8 V (high sink ports) sink ports) # # # # # # # # 6$$6/( ;6= 6$$6/( ;6= )/( ;M!= ) /( ;M!= AI BJ NRST pin Subject to general operating conditions for VDD and TA unless otherwise specified. Table 42. NRST pin characteristics Symbol Parameter Conditions Min. Typ. Max. VIL(NRST) NRST input low level voltage (1) - VSS - 0.8 VIH(NRST) NRST input high level voltage (1) - 1.4 - VDD IOL = 2 mA 2.7 V VDD 3.6 V - - IOL = 1.5 mA VDD < 2.7 V - - VOL(NRST) NRST output low level voltage (1) Unit V 0.4 VHYST NRST input hysteresis(3) - 10%VDD(2) - - mV RPU(NRST) NRST pull-up equivalent resistor(1) - 30 45 60 k VF(NRST) NRST input filtered pulse (3) - - 50 VNF(NRST) NRST input not filtered pulse (3) - - - ns 300 1. Data based on characterization results, not tested in production. 2. 200 mV min. 3. Data guaranteed by design, not tested in production. DocID17943 Rev 7 99/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Figure 35. Typical NRST pull-up resistance RPU vs. VDD # # # # 0ULLUPRESISTANCE;K7= 6$$;6= AI Figure 36. Typical NRST pull-up current Ipu vs. VDD # # # # 0ULL5PCURRENT;!= 6$$ ;6= AI The reset network shown in Figure 37 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the VIL max. level specified in Table 42. Otherwise the reset is not taken into account internally. For power consumptionsensitive applications, the capacity of the external reset capacitor can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF. Figure 37. Recommended NRST pin configuration 6$$ 205 567,1 (;7(51$/ 5(6(7 &,5&8,7 &ILTER ).4%2.!,2%3%4 670/ M) 069 100/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 9.3.8 Electrical parameters Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under ambient temperature, fSYSCLK frequency and VDD supply voltage conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 43. SPI1 characteristics Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) tsu(NSS)(2) th(NSS) (2) Parameter Min. Max. Master mode 0 8 Slave mode 0 8 SPI1 clock rise and fall time Capacitive load: C = 30 pF - 30 NSS setup time Slave mode 4 x 1/fSYSCLK - NSS hold time Slave mode 80 - SCK high and low time Master mode, fMASTER = 8 MHz, fSCK= 4 MHz 105 145 Master mode 30 - Slave mode 3 - Master mode 15 - Slave mode 0 - Data output access time Slave mode - 3x 1/fSYSCLK 30 - tsu(MI) (2) tsu(SI)(2) Data input setup time th(MI) (2) th(SI)(2) Data input hold time ta(SO) (2)(3) tdis(SO)(2)(4) Data output disable time Slave mode (2) Data output valid time Slave mode (after enable edge) - 60 tv(MO)(2) Data output valid time Master mode (after enable edge) - 20 Slave mode (after enable edge) 15 - Master mode (after enable edge) 1 - tv(SO) th(SO)(2) th(MO)(2) Unit SPI1 clock frequency (2) tw(SCKH) tw(SCKL)(2) Conditions(1) Data output hold time MHz ns 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Min. time is for the minimum time to drive the output and max. time is for the maximum time to validate the data. 4. Min. time is for the minimum time to invalidate the output and max. time is for the maximum time to put the data in Hi-Z. DocID17943 Rev 7 101/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Figure 38. SPI1 timing diagram - slave mode and CPHA=0 166LQSXW 6&.,QSXW W 68166 &3+$ &32/ W F6&. W K166 W Z6&.+ W Z6&./ &3+$ &32/ W Y62 W D62 0,62 287387 W U6&. W I6&. W K62 06%287 %,7287 06%,1 %,7,1 W GLV62 /6%287 W VX6, 026, ,1387 /6%,1 W K6, DL Figure 39. SPI1 timing diagram - slave mode and CPHA=1 166LQSXW 6&.LQSXW W 68166 &3+$ &32/ &3+$ &32/ W F6&. W Z6&.+ W Z6&./ W Y62 W D62 0,62 287387 06%287 W K62 %,7287 W VX6, 026, ,1387 W K166 W U6&. W I6&. W GLV62 /6%287 W K6, 06%,1 %,7,1 /6%,1 DL 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 102/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 40. SPI1 timing diagram - master mode (IGH .33INPUT 3#+/UTPUT #0(! #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(! #0/, #0(! #0/, TSU-) -)3/ ).0 54 TW3#+( TW3#+, -3 "). TR3#+ TF3#+ ") 4). ,3"). TH-) -/3) /54054 - 3"/54 " ) 4/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID17943 Rev 7 103/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 I2C - Inter IC control interface Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified. The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 44. I2C characteristics Standard mode I2C Symbol Fast mode I2C(1) Parameter Unit Min.(2) Max. (2) Min. (2) Max. (2) tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 - 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - s STOP to START condition time (bus free) 4.7 - 1.3 - s - 400 - 400 pF tw(STO:STA) Cb Capacitive load for each bus line 1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). 2. Data based on standard I2C protocol requirement, not tested in production. Note: 104/137 For speeds around 200 kHz, the achieved speed can have a 5% tolerance. For other speed ranges, the achieved speed can have a 2% tolerance. The above variations depend on the accuracy of the external components used. DocID17943 Rev 7 s ns s STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 41. Typical application with I2C bus and timing diagram 9'' N ,& 9'' N %86 6'$ 6&/ 670/ 5(3($7(' 67$57 67$57 WVX67$ WZ67267$ 67$57 6'$ WU6'$ WI6'$ WVX6'$ WK6'$ WU6&/ WI6&/ 6723 6&/ WK67$ WZ6&/+ WZ6&// WVX672 069 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD DocID17943 Rev 7 105/137 120 Electrical parameters 9.3.9 STM8L151x6/8 STM8L152x6/8 LCD controller (STM8L152x6/8 only) In the following table, data are guaranteed by Design, not tested in production. Table 45. LCD characteristics Symbol Parameter Min. VLCD LCD external voltage - VLCD0 LCD internal reference voltage 0 - 2.6 - VLCD1 LCD internal reference voltage 1 - 2.7 - VLCD2 LCD internal reference voltage 2 - 2.8 - VLCD3 LCD internal reference voltage 3 - 3.0 - VLCD4 LCD internal reference voltage 4 - 3.1 - VLCD5 LCD internal reference voltage 5 - 3.2 - VLCD6 LCD internal reference voltage 6 - 3.4 - VLCD7 LCD internal reference voltage 7 - 3.5 - CEXT VLCD external capacitance 0.1 1 2 - 3 - - 3 - Supply IDD current(1) at VDD = 1.8 V (1) Supply current at VDD = 3 V Typ. Max. Unit 3.6 V µF µA RHN(2) High value resistive network (low drive) - 6.6 - M (3) Low value resistive network (high drive) - 240 - k V33 Segment/Common higher level voltage - V34 Segment/Common 3/4 level voltage - 3/4VLCDx - V23 Segment/Common 2/3 level voltage - 2/3VLCDx - V12 Segment/Common 1/2 level voltage - 1/2VLCDx - V13 Segment/Common 1/3 level voltage - 1/3VLCDx - V14 Segment/Common 1/4 level voltage - 1/4VLCDx - V0 Segment/Common lowest level voltage 0 - - RLN VLCDx V 1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected. 2. RHN is the total high value resistive network. 3. RLN is the total low value resistive network. VLCD external capacitor (STM8L152x6/8 only) The application can achieve a stabilized LCD reference voltage by connecting an external capacitor CEXT to the VLCD pin. CEXT is specified in Table 45. 106/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 9.3.10 Electrical parameters Embedded reference voltage In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 46. Reference voltage characteristics Symbol Parameter Conditions Min. Typ. IREFINT Internal reference voltage consumption - - 1.4 TS_VREFINT(1)(2) ADC sampling time when reading the internal reference voltage - - 5 10 µs IBUF(1) Internal reference voltage buffer consumption (used for ADC) - - 13.5 25 µA VREFINT out Reference voltage output - ILPBUF(1) Internal reference voltage low-power buffer consumption (used for comparators or output) IREFOUT(1)(4) 1.202 (3) 1.224 - - 730 Buffer output current - CREFOUT Reference voltage output load tVREFINT(1) Max. Unit µA 1.242 (3) V 1200 nA - 1 µA - - 50 pF Internal reference voltage startup time - - 3 ms tBUFEN(1)(2) Internal reference voltage buffer startup time once enabled - - 10 µs ACCVREFINT(5) Accuracy of VREFINT stored in the VREFINT_Factory_CONV byte - - ±5 mV Stability of VREFINT over temperature -40 °C TA 125 °C - 20 50 ppm/°C Stability of VREFINT over temperature 0 °C TA 50 °C - - 20 ppm/°C Stability of VREFINT after 1000 hours - - - 1000 ppm STABVREFINT STABVREFINT 2 1. Guaranteed by design, not tested in production 2. Defined when ADC output reaches its final value ±1/2LSB 3. Tested in production at VDD = 3 V ±10 mV. 4. To guarantee less than 1% VREFOUT deviation 5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy. DocID17943 Rev 7 107/137 120 Electrical parameters 9.3.11 STM8L151x6/8 STM8L152x6/8 Temperature sensor In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 47. TS characteristics Symbol Parameter Min. Typ. Max. Unit V90 (1) Sensor reference voltage at 90°C ±5 °C, 0.580 0.597 0.614 V - ±1 ±2 °C TL VSENSOR linearity with temperature (2) Average slope 1.59 1.62 1.65 mV/°C (2) Consumption - 3.4 6 µA TSTART(2)(3) Temperature sensor startup time - - 10 µs TS_TEMP(2) ADC sampling time when reading the temperature sensor - 5 10 µs Avg_slope IDD(TEMP) 1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V90 ADC conversion result are stored in the TS_Factory_CONV_V90 byte. 2. Guaranteed by design, not tested in production. 3. Defined for ADC output reaching its final value ±1/2LSB. 9.3.12 Comparator characteristics In the following tables, data are guaranteed by design, not tested in production. Table 48. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 1.65 - 3.6 V VDDA Analog supply voltage R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 - - 3 10 - - 3 10 mV 0 1.5 10 mV/1000 h - 160 260 nA VIN tSTART td Propagation delay Voffset Comparator offset dVoffset/dt ICOMP1 k (2) Comparator offset variation in worst voltage stress conditions Current consumption(3) V µs VDDA 3.6 V VIN+ 0 V VIN- VREFINT TA = 25 C - 1. Based on characterization, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. 108/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Table 49. Comparator 2 characteristics Symbol VDDA VIN tSTART td slow td fast Voffset dThreshold/dt ICOMP2 Conditions Min Typ Max(1) Unit Analog supply voltage - 1.65 3.6 V Comparator 2 input voltage range - 0 VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V VDDA 2.7 V - 1.8 3.5 2.7 V VDDA 3.6 V - 2.5 6 1.65 V VDDA 2.7 V - 0.8 2 2.7 V VDDA 3.6 V - 1.2 4 - - 4 20 mV VDDA 3.3V TA = 0 to 50 C V- = VREF+, 3/4 VREF+, 1/2 VREF+, 1/4 VREF+. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 Parameter Comparator startup time Propagation delay(2) in slow mode Propagation delay(2) in fast mode Comparator offset error Threshold voltage temperature coefficient Current consumption(3) µs µA 1. Based on characterization, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. DocID17943 Rev 7 109/137 120 Electrical parameters 9.3.13 STM8L151x6/8 STM8L152x6/8 12-bit DAC characteristics In the following table, data are guaranteed by design, not tested in production. Table 50. DAC characteristics Symbol Parameter Conditions Min. Typ. Max. VDDA Analog supply voltage - 1.8 - 3.6 VREF+ Reference supply voltage - 1.8 - VDDA VREF+ = 3.3 V, no load, middle code (0x800) - 130 220 IVREF Current consumption on VREF+ supply VREF+ = 3.3 V, no load, worst code (0x000) - 220 350 Unit V µA IVDDA TA RL(1) (2) Current consumption on VDDA supply VDDA = 3.3 V, no load, middle code (0x800) - 210 320 VDDA = 3.3 V, no load, worst code (0x000) - 320 520 -40 - 125 °C Temperature range Resistive load DACOUT buffer ON 5 - - k Output impedance DACOUT buffer OFF - 8 10 k - - 50 pF DACOUT buffer ON 0.2 - VDDA - 0.2 V DACOUT buffer OFF 0 - VREF+ -1 LSB V Settling time (full scale: for a 12bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB) RL 5 k, CL50 pF - 7 12 µs Max frequency for a correct DAC_OUT (@95%) change Update rate when small variation of the input code (from code i to i+1LSB). RL 5 k, CL 50 pF - - 1 Msps RO CL(3) DAC_OUT (4) tsettling Capacitive load DAC_OUT voltage tWAKEUP Wakeup time from OFF state. Input code between lowest and highest possible codes. RL 5 k, CL50 pF - 9 15 µs PSRR+ Power supply rejection ratio (to VDDA) (static DC measurement) RL5 k, CL50 pF - -60 -35 dB 1. Resistive load between DACOUT and GNDA 2. Output on PF0 or PF1 3. Capacitive load at DACOUT pin 4. It gives the output excursion of the DAC 110/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters In the following table, data based on characterization results, not tested in production. Table 51. DAC accuracy Symbol Parameter Conditions Typ. Max. 1.5 3 1.5 3 2 4 2 4 ±10 ±25 No load DACOUT buffer OFF ±5 ±8 DACOUT buffer OFF ±1.5 ±5 RL 5 k, CL50 pF DNL Differential non linearity DACOUT buffer ON(2) (1) No load DACOUT buffer OFF RL 5 k, CL50 pF INL Integral non linearity DACOUT buffer ON(2) (3) No load DACOUT buffer OFF RL 5 k, CL50 pF Offset Offset1 DACOUT buffer ON(2) (4) Offset error Offset error at Code 1 (5) RL 5 k, CL50 pF Gain error DACOUT buffer ON(2) Gain error(6) No load DACOUT buffer OFF RL 5 k, CL50 pF TUE DACOUT buffer ON(2) Total unadjusted error No load -DACOUT buffer OFF Unit 12-bit LSB +0.1/-0.2 +0.2/-0.5 % +0/-0.2 +0/-0.4 12 30 8 12 12-bit LSB 1. Difference between two consecutive codes - 1 LSB. 2. In 48-pin package devices the DAC2 output buffer must be kept off and no load must be applied on the DAC_OUT2 output. 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023. 4. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2. 5. Difference between the value measured at Code (0x001) and the ideal value. 6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF. In the following table, data are guaranteed by design, not tested in production. Table 52. DAC output on PB4-PB5-PB6(1) Symbol Rint Parameter Internal resistance between DAC output and PB4-PB5-PB6 output Conditions Max 2.7 V < VDD < 3.6 V 1.4 2.4 V < VDD < 3.6 V 1.6 2.0 V < VDD < 3.6 V 3.2 1.8 V < VDD < 3.6 V 8.2 Unit k 1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers. DocID17943 Rev 7 111/137 120 Electrical parameters 9.3.14 STM8L151x6/8 STM8L152x6/8 12-bit ADC1 characteristics In the following table, data are guaranteed by design, not tested in production. Table 53. ADC1 characteristics Symbol Parameter VDDA Analog supply voltage VREF+ Reference supply voltage VREF- Conditions Min. Typ. - 1.8 3.6 2.4 V VDDA3.6 V 2.4 VDDA 1.8 VVDDA 2.4 V VDDA Lower reference voltage - VSSA IVDDA Current on the VDDA input pin - - - - IVREF+ Current on the VREF+ input pin 1000 Max. Unit V 1450 700 (peak)(1) µA 400 - - 450 (average)(1) VAIN Conversion voltage range - 0(2) - VREF+ TA Temperature range - -40 - 125 °C on PF0/1/2/3 fast channels - - 50(3) k on all other channels - on PF0/1/2/3 fast channels - on all other channels - 2.4 VVDDA3.6 V without zooming 0.320 - 16 1.8 VVDDA2.4 V with zooming 0.320 - 8 VAIN on PF0/1/2/3 fast channels - - 1(3)(4) VAIN on all other channels - - 760(3)(4) kHz RAIN CADC fADC fCONV External resistance on VAIN Internal sample and hold capacitor ADC sampling clock frequency 16 pF - MHz 12-bit conversion rate fTRIG External trigger frequency - - - tconv 1/fADC tLAT External trigger latency - - - 3.5 1/fSYSCLK 112/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Table 53. ADC1 characteristics (continued) Symbol tS Parameter Sampling time Conditions Min. Typ. Max. VAIN PF0/1/2/3 fast channels VDDA < 2.4 V 0.43(3)(4) - - VAIN PF0/1/2/3 fast channels 2.4 V VDDA3.6 V 0.22(3)(4) - - VAIN on slow channels VDDA < 2.4 V 0.86(3)(4) - - VAIN on slow channels 2.4 V VDDA3.6 V 0.41(3)(4) - - Unit µs - 12 + tS 1/fADC 16 MHz 1(3) µs tconv 12-bit conversion time tWKUP Wakeup time from OFF state - - - 3 µs tIDLE(5) Time before a new conversion - - - s tVREFINT Internal reference voltage startup time - - - refer to Table 46 ms 1. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. VREF- must be tied to ground. 3. Minimum sampling and conversion time is reached for maximum RAIN= 0.5 k 4. Value obtained for continuous conversion on fast channel. 5. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE. DocID17943 Rev 7 113/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 In the following three tables, data are guaranteed by characterization result, not tested in production. Table 54. ADC1 accuracy with VDDA = 3.3 V to 2.5 V Symbol Parameter Conditions Typ. Max. 1 1.6 Differential non linearity fADC = 8 MHz 1 1.6 fADC = 4 MHz 1 1.5 fADC = 16 MHz 1.2 2 fADC = 8 MHz 1.2 1.8 fADC = 4 MHz 1.2 1.7 fADC = 16 MHz 2.2 3.0 fADC = 8 MHz 1.8 2.5 fADC = 4 MHz 1.8 2.3 fADC = 16 MHz 1.5 2 fADC = 8 MHz 1 1.5 fADC = 4 MHz 0.7 1.2 1 1.5 fADC = 16 MHz DNL INL Integral non linearity TUE Total unadjusted error Offset Offset error Unit LSB fADC = 16 MHz Gain Gain error fADC = 8 MHz fADC = 4 MHz Table 55. ADC1 accuracy with VDDA = 2.4 V to 3.6 V Symbol Parameter Typ. Max. 1 2 1.7 3 DNL Differential non linearity INL Integral non linearity TUE Total unadjusted error 2 4 Offset Offset error 1 2 Gain Gain error 1.5 3 Unit LSB Table 56. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V Symbol 114/137 Parameter Typ. Max. DNL Differential non linearity 1 2 INL Integral non linearity 2 3 TUE Total unadjusted error 3 5 Offset Offset error 2 3 Gain Gain error 2 3 DocID17943 Rev 7 Unit LSB STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 42. ADC1 accuracy characteristics 9''$ 95() >/6%,'($/ RUGHSHQGLQJRQSDFNDJH@ (* (7 (2 (/ (' ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QGSRLQWFRUUHODWLRQOLQH (7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKHILUVWLGHDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDOOLQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH /6%,'($/ 966$ 9''$ DLE Figure 43. Typical connection diagram using the ADC 670/[[[ 9 '' 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$,1 5$'& $,1[ 9$,1 & SDUDVLWLF 97 9 ELW FRQYHUWHU &$'& ,/ Q$ DLF 1. Refer to Table 53 for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. DocID17943 Rev 7 115/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Figure 44. Maximum dynamic current consumption on VREF+ supply pin during ADC conversion 6DPSOLQJQF\FOHV &RQYHUVLRQF\FOHV $'&FORFN ,UHI $ $ 069 Table 57. RAIN max for fADC = 16 MHz(1) RAIN max (kohm) Ts (cycles) Ts (µs) Slow channels Fast channels 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V 4 0.25 Not allowed Not allowed 0.7 Not allowed 9 0.5625 0.8 Not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 1. Guaranteed by design, not tested in production. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 45 or Figure 46, depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip. 116/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Electrical parameters Figure 45. Power supply and reference decoupling (VREF+ not connected to VDDA) 670/ 95() )Q) 9''$ )Q) 9''$95() DL Figure 46. Power supply and reference decoupling (VREF+ connected to VDDA) 670/ 95()9''$ )Q) 95()966$ DL DocID17943 Rev 7 117/137 120 Electrical parameters 9.3.15 STM8L151x6/8 STM8L152x6/8 EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard. FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 58. EMS data 118/137 Symbol Parameter Conditions VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VEFTB Fast transient voltage burst limits VDD 3.3 V, TA +25 °C, Using HSI to be applied through 100 pF on fCPU 16 MHz, VDD and VSS pins to induce a conforms to IEC 61000 Using HSE functional disturbance VDD 3.3 V, TA +25 °C, fCPU16 MHz, conforms to IEC 61000 DocID17943 Rev 7 Level/ Class 2B 4A 2B STM8L151x6/8 STM8L152x6/8 Electrical parameters Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. Table 59. EMI data (1) Symbol SEMI Parameter Peak level Monitored frequency band Conditions VDD 3.6 V, TA +25 °C, LQFP80 conforming to IEC61967-2 Max vs. Unit 16 MHz 0.1 MHz to 30 MHz 10 30 MHz to 130 MHz 4 130 MHz to 1 GHz 1 SAE EMI Level 1.5 dBV - 1. Not tested in production. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard. Table 60. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Electrostatic discharge voltage (human body model) Electrostatic discharge voltage VESD(CDM) (charge device model) Conditions Maximum value (1) Unit 2000 TA +25 °C V 750 1. Data based on characterization results, not tested in production. Static latch-up LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. DocID17943 Rev 7 119/137 120 Electrical parameters STM8L151x6/8 STM8L152x6/8 Table 61. Electrical sensitivities Symbol LU 9.4 Parameter Class Static latch-up class II Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 18: General operating conditions on page 68. The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x JA) Where: TAmax is the maximum ambient temperature in C JA is the package junction-to-ambient thermal resistance in C/W PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax) PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/Omax represents the maximum power dissipation on output pins Where: PI/Omax = (VOL*IOL) + ((VDD-VOH)*I OH), taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in the application. Table 62. Thermal characteristics(1) Symbol Parameter Value Unit JA Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm 65 °C/W JA Thermal resistance junction-ambient UFQFPN 48 - 7 x 7mm 32 °C/W JA Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm 48 °C/W JA Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm 38 °C/W 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. 120/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 10 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. LQFP80 package information Figure 47. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline 3%!4).' 0,!.% # C ! ! ! MM '!5'%0,!.% # ! CCC , $ K , $ $ 0). )$%.4)&)#!4)/. % % % B 10.1 E 3?-% DocID17943 Rev 7 121/137 133 Package information STM8L151x6/8 STM8L152x6/8 Table 63. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data(1) millimeters inches Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.220 0.320 0.380 0.0087 0.0126 0.0150 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.350 - - 0.4862 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.350 - - 0.4862 - e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 48. LQFP80 14 x 14 mm low-profile quad flat package footprint 4@'1 1. Dimensions are in millimeters. 122/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Package information Device marking The following figure shows the marking for the LQFP80 package. Figure 49. LQFP80 marking example (package top view) 2SWLRQDOJDWHPDUN 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ 3 45.- .5 3LQLGHQWLILFDWLRQ 'DWHFRGH : 88 069 DocID17943 Rev 7 123/137 133 Package information 10.2 STM8L151x6/8 STM8L152x6/8 LQFP64 package information Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( ( E H :B0(B9 1. Drawing is not to scale. Table 64. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 124/137 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Package information Table 64. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 - 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 51. LQFP64, 10 x 10 mm low-profile quad flat package footprint AIC 1. Dimensions are in millimeters. DocID17943 Rev 7 125/137 133 Package information STM8L151x6/8 STM8L152x6/8 Device marking The following figure shows the marking for the LQFP64 package. Figure 52. LQFP64 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 45.- 35 'DWHFRGH : 88 6WDQGDUG67ORJR 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 126/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 LQFP48 package information Figure 53. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline 3%!4).' 0,!.% # C ! ! ! MM '!5'%0,!.% CCC # $ + ! $ , , $ % % B % 10.3 Package information 0). )$%.4)&)#!4)/. E "?-%?6 1. Drawing is not to scale. Table 65. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - DocID17943 Rev 7 127/137 133 Package information STM8L151x6/8 STM8L152x6/8 Table 65. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 54. LQFP48, 7 x 7 mm low-profile quad flat package footprint AID 1. Dimensions are in millimeters. 128/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Package information Device marking The following figure shows the marking for the LQFP48 package. Figure 55. LQFP48 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 45.- $5 'DWHFRGH : 6WDQGDUG67ORJR 88 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID17943 Rev 7 129/137 133 Package information 10.4 STM8L151x6/8 STM8L152x6/8 UFQFPN48 package information Figure 56. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < ' / &[ SLQFRUQHU 5W\S 'HWDLO= ( = $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. Table 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol 130/137 Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Package information Table 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 57. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package footprint !"?&0?6 1. Dimensions are in millimeters. DocID17943 Rev 7 131/137 133 Package information STM8L151x6/8 STM8L152x6/8 Device marking The following figure shows the marking for the UFQFPN48 package. Figure 58. UFQFPN48 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 45.- $6 'DWHFRGH : 88 6WDQGDUG67ORJR 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 132/137 DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 11 Ordering information scheme Ordering information scheme Table 67. Ordering information scheme Example: STM8 L 152 C 8 T 6 D xx Device family STM8 microcontroller Product type L = Low power Device subfamily 151: Devices without LCD 152: Devices with LCD Pin count C = 48 pins R = 64 pins M = 80 pins Program memory size 8 = 64 Kbytes of Flash memory 6 = 32 Kbytes Package T = LQFP U= UFQFPN Temperature range 3 = Industrial temperature range, – 40 to 125 °C 7 = Industrial temperature range, – 40 to 105 °C 6 = Industrial temperature range, – 40 to 85 °C Option Blank = VDD range from 1.8 to 3.6 V and BOR enabled D = VDD range from 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to you. DocID17943 Rev 7 133/137 133 Revision history 12 STM8L151x6/8 STM8L152x6/8 Revision history Table 68. Document revision history Date Revision 13-Sep-2010 1 Initial release. 20-Dec-2010 2 Updated Section 9.3.3: Supply current characteristics Updated Section 9.3.2: Embedded reset and power control block characteristics. Updated Section 9.3.3: Supply current characteristics Updated Section 9.3.13: 12-bit DAC characteristics Updated Section 9.3.14: 12-bit ADC1 characteristics Updated Section 9.3.15: EMC characteristics 17-Jan-2011 3 Removed references to STM8L150M8 devices. 4 Updated Table 1: Device summary. Table 5: High-density and medium+ density STM8L15x pin description: updated PB4/43&35, PB4/28, PC1, PI3, and pins 33 to 36 of LQFP80; updated footnotes. TIMx_TRIG changed to TIMx_ETR and “Standard port” changed to “high sink port”. Table 15: Voltage characteristics: updated Table 16: Current characteristics: updated Table 35: RAM and hardware registers: updated VRM data min. retention. Added Table 9.3.6: I/O current injection characteristics. Table 38: I/O static characteristics: updated Table 45: LCD characteristics: updated 11-Mar-2011 134/137 Changes DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 Revision history Table 68. Document revision history (continued) Date Revision Changes Updated capacitive sensing channels and “Dynamic consumption” in Features Updated LCD feature in Table 2: High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts Updated Halt mode definition in Section 3.1: Low-power modes Added Bootloader Updated Section 3.12: System configuration controller and routing interface Added Section 3.13: Touch sensing Table 5: High-density and medium+ density STM8L15x pin description: updated NRST/PA1, PI0, PI1, PI2, PE0, PE1, PE2, PF4, PF5, PF6, PF7, footnote 1. and added Note: 03-Apr-2013 31-Jul-2013 5 6 Updated ‘0x00 502E to 0x00 5049’ reserved area in Table 9: General hardware register map Updated reference to SWIM/DEBUG manual in Section 7: Option bytes Updated BOR factory default settings to 0x00 in Table 12: Option byte addresses Corrected ROP option byte value in Table 12: Option byte addresses Added Figure 44: Maximum dynamic current consumption on VREF+ supply pin during ADC conversion Updated STABVREFINT max value in Table 46: Reference voltage characteristics Updated Figure 40: SPI1 timing diagram - master mode Added Table 57: RAIN max for fADC = 16 MHz Updated Max DAC_OUT in Table 50: DAC characteristics Updated Section 9.3.12: Comparator characteristics Added ‘Top view’ footnotes under the pinout figures in Section 4: Pin description Updated the PF4-PF7 pins for the LQFP80 in Table 5: High-density and medium+ density STM8L15x pin description Updated all packages: Updated Figure 56: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline and Table 65: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data Added Figure 47: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline Added ‘tape and reel’ in Table 67: Ordering information scheme DocID17943 Rev 7 135/137 136 Revision history STM8L151x6/8 STM8L152x6/8 Table 68. Document revision history (continued) Date 19-Feb-2015 136/137 Revision Changes 7 Updated – Table 63: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data – Figure 47: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline – Figure 48: LQFP80 14 x 14 mm low-profile quad flat package footprint – Table 64: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data – Figure 50: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline – Figure 51: LQFP64, 10 x 10 mm low-profile quad flat package footprint – Table 65: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data – Figure 54: LQFP48, 7 x 7 mm low-profile quad flat package footprint – Table 66: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data – Figure 56: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline – Figure 57: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package footprint Added: – Figure 49: LQFP80 marking example (package top view) – Figure 52: LQFP64 marking example (package top view) – Figure 55: LQFP48 marking example (package top view) – Figure 58: UFQFPN48 marking example (package top view) DocID17943 Rev 7 STM8L151x6/8 STM8L152x6/8 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID17943 Rev 7 137/137 137