Technical Data Sheet

STM8S105C4/6 STM8S105K4/6
STM8S105S4/6
Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbyte Flash,
integrated EEPROM, 10-bit ADC, timers, UART, SPI, I²C
Datasheet - production data
Features
Core
 16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
 Extended instruction set
LQFP48 (7x7 mm)
LQFP44 (10x10 mm)
LQFP32 (7x7 mm)
Memories
 Program memory: up to 32 Kbyte Flash; data
retention 20 years at 55 °C after 10 kcycle
 Data memory: up to 1 Kbyte true data
EEPROM; endurance 300 kcycle
UFQFPN32 (5x5 mm)
SDIP32 400ml
 2x16-bit general purpose timer, with 2+3
CAPCOM channels (IC, OC or PWM)
 RAM: up to 2 Kbyte
 8-bit basic timer with 8-bit prescaler
Clock, reset and supply management
 Auto wake-up timer
 2.95 to 5.5 V operating voltage
 Window watchdog and independent watchdog
timers
 Flexible clock control, 4 master clock sources
– Low power crystal resonator oscillator
– External clock input
– Internal, user-trimmable 16 MHz RC
– Internal low-power 128 kHz RC
 Clock security system with clock monitor
 Power management:
– Low-power modes (wait, active-halt, halt)
– Switch-off peripheral clocks individually
 Permanently active, low-consumption poweron and power-down reset
 Nested interrupt controller with 32 interrupts
 Up to 37 external interrupts on 6 vectors
Timers
 Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-time
insertion and flexible synchronization
This is information on a product in full production.
 UART with clock output for synchronous
operation, SmartCard, IrDA, LIN master mode
 SPI interface up to 8 Mbit/s
 I2C interface up to 400 kbit/s
Analog to digital converter (ADC)
 10-bit, ±1 LSB ADC with up to 10 multiplexed
channels, scan mode and analog watchdog
I/Os
Interrupt management
September 2015
Communication interfaces
 Up to 38 I/Os on a 48-pin package including 
16 high sink outputs
 Highly robust I/O design, immune against
current injection
Unique ID
 96-bit unique key for each device
DocID14771 Rev 15
1/121
www.st.com
Contents
STM8S105x4/6
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 14
4.3
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8
Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10
TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.11
TIM2, TIM3 - 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . 18
4.12
TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13
Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/121
UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14.2
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.14.3
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
6
4.14.1
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.2
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID14771 Rev 15
STM8S105x4/6
Contents
6.2.3
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 42
7
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8
Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1
Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.4
Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.5
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.6
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.3.1
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3.2
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3.3
External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 66
10.3.4
Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 69
10.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.3.6
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.3.7
Typical output level curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.3.8
Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.3.9
SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.3.10 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.1
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2
LQFP44 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.4
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DocID14771 Rev 15
3/121
4
Contents
STM8S105x4/6
11.5
12
13
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 107
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
13.1
14
SDIP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
STM8S105 FASTROM microcontroller option list . . . . . . . . . . . . . . . . . 109
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14.1
Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . .113
14.1.1
14.2
14.3
15
4/121
STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
14.2.1
STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.2.2
C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID14771 Rev 15
STM8S105x4/6
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
STM8S105x4/6 access line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers . . . . . . . . . . . . . . . 16
TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Legend/abbreviations for pin description tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM8S105x4/6 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Flash, data EEPROM and RAM boundary address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Alternate function remapping bits [7:0] of OPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Total current consumption with code execution in run mode at VDD = 5 V. . . . . . . . . . . . . 57
Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 58
Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 59
Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 60
Total current consumption in halt mode at VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 61
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC accuracy with RAIN< 10 k, VDDA = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ADC accuracy with RAIN< 10 k, VDDA = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
DocID14771 Rev 15
5/121
6
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
6/121
STM8S105x4/6
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package 
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package 
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package 
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SDIP32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID14771 Rev 15
STM8S105x4/6
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
STM8S105x4/6 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LQFP44 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
UFQFPN32/LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
SDIP32 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Supply current measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 62
Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 63
Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typ IDD(WFI) vs. VDD HSE external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . 64
Typ IDD(WFI) vs. fCPU HSE external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical HSI accuracy @ VDD = 5 V vs 5 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical HSI frequency variation vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical LSI frequency variation vs VDD@ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typ. VOL @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typ. VOL @ VDD = 5.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VDD - VOH @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 5.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical NRST VIL and VIH vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical NRST pull-up resistance RPU vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . 79
Typical NRST pull-up current Ipu vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 79
Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SPI timing diagram where slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SPI timing diagram where slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 91
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package 
DocID14771 Rev 15
7/121
8
List of figures
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
8/121
STM8S105x4/6
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 94
LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
LQFP44 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat 
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat 
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SDIP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
SDIP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
STM8S105x4/6 access line ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . . 108
DocID14771 Rev 15
STM8S105x4/6
1
Introduction
Introduction
This datasheet contains the description of the device features, pinout, electrical
characteristics, mechanical data and ordering information.

For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S microcontroller family reference manual
(RM0016).

For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash programming manual (PM0051).

For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).

For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
DocID14771 Rev 15
9/121
21
Description
2
STM8S105x4/6
Description
The STM8S105x4/6 access line 8-bit microcontrollers offer from 16 to 32 Kbyte Flash
program memory, plus integrated true data EEPROM. The STM8S microcontroller family
reference manual (RM0016) refers to devices in this family as medium-density. All devices
of the STM8S105x4/6 access line provide the following benefits: reduced system cost,
performance and robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
watchdog and brown-out reset.
Device performance is ensured by a 16 MHz CPU clock frequency and enhanced
characteristics which include robust I/O, independent watchdogs (with a separate clock
source), and a clock security system.
Short development cycles are guaranteed due to application scalability across common
family product architecture with compatible pinout, memory map and modular peripherals.
Product longevity is ensured in the STM8S family thanks to their advanced core which is
made in a state-of-the-art technology for applications with 2.95 V to 5.5 V operating supply.
Full documentation is offered as well as a wide choice of development tools.
10/121
DocID14771 Rev 15
STM8S105x4/6
Description
Table 1. STM8S105x4/6 access line features
Device
STM8S105C6
STM8S105C4
STM8S105S6
STM8S105S4
STM8S105K6
STM8S105K4
Pin count
48
48
44
44
32
32
Maximum
number of
GPIOs
38
38
34
34
25
25
Ext. Interrupt
pins
35
35
31
31
23
23
Timer
CAPCOM
channels
9
9
8
8
8
8
Timer
complementar
y outputs
3
3
3
3
3
3
A/D Converter
channels
10
10
9
9
7
7
High sink I/Os
16
16
15
15
12
12
Medium
density Flash
Program
memory (byte)
32K
16K
32K
16K
32K
16K
Data
EEPROM
(bytes)
1024
1024
1024
1024
1024
1024
2K
2K
2K
2K
2K
2K
RAM (bytes)
Peripheral set
Advanced control timer (TIM1), General-purpose timers (TIM2 and TIM3), Basic timer (TIM4) SPI,
I2C, UART, Window WDG, Independent WDG, ADC
DocID14771 Rev 15
11/121
21
Block diagram
3
STM8S105x4/6
Block diagram
Figure 1. STM8S105x4/6 block diagram
5HVHWEORFN
;7$/0+]
&ORFNFRQWUROOHU
5HVHW
5HVHW
5&LQW0+]
%25
325
'HWHFWRU
5&LQWN+]
&ORFNWRSHULSKHUDOVDQGFRUH
:LQGRZ
:'*
670
FRUH
,QGHSHQGHQW:'*
6LQJOHZLUH
GHEXJLQWHUI
8SWR.E\WH
3URJUDP
)ODVK
'HEXJ6:,0
.ELWV
,&
0ELWV
63,
0DVWHUVODYH
DXWRV\QFKUR
/,1PDVWHU
63,HPXO
$GGUHVVDQGGDWDEXV
.E\WH
GDWD((3520
8SWR.E\WH
5$0
%RRW520
ELWDGYDQFHG
FRQWUROWLPHU70
8SWR&$3&20
FKDQQHOV
FRPSOHPHQWDU\
RXWSXWV
ELWJHQHUDOSXUSRVH
WLPHU7,07,0
8SWR&$3&20
FKDQQHOV
8$57
8SWR
FKDQQHOV
$'&
N+]
EHHS
%HHSHU
ELWEDVLFWLPHU
7,0
$:8WLPHU
06Y9
12/121
DocID14771 Rev 15
STM8S105x4/6
4
Product overview
Product overview
The following section provides an overview of the basic features of the device functional
modules and peripherals.
For more detailed information please refer to the corresponding family reference manual
(RM0016).
4.1
Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers

Harvard architecture,

3-stage pipeline,

32-bit wide program memory bus - single cycle fetching for most instructions,

X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations,

8-bit accumulator,

24-bit program counter - 16-Mbyte linear memory space,

16-bit stack pointer - access to a 64 K-level stack,

8-bit condition code register - 7 condition flags for the result of the last instruction.
Addressing

20 addressing modes,

Indexed indirect addressing mode for look-up tables located anywhere in the address
space,

Stack pointer relative addressing mode for local variables and parameter passing.
Instruction set

80 instructions with 2-byte average instruction size,

Standard data movement and logic/arithmetic functions,

8-bit by 8-bit multiplication,

16-bit by 8-bit and 16-bit by 16-bit division,

Bit manipulation,

Data transfer between stack and accumulator (push/pop) with direct stack access,

Data transfer using the X and Y registers or direct memory-to-memory transfers.
DocID14771 Rev 15
13/121
21
Product overview
4.2
STM8S105x4/6
Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory
programming. The interface can be activated in all device operation modes. The maximum
data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in realtime by means of shadow registers.
4.3
4.4

R/W to RAM and peripheral registers in real-time

R/W access to all resources by stalling the CPU

Breakpoints on all program-memory instructions (software breakpoints)

Two advanced breakpoints, 23 predefined configurations
Interrupt controller

Nested interrupts with three software priority levels,

32 interrupt vectors with hardware priority,

Up to 37 external interrupts on 6 vectors including TLI,

Trap and reset interrupts
Flash program and data EEPROM memory

Up to 32 Kbyte of Flash program single voltage Flash memory,

Up to 1 Kbyte true data EEPROM,

Read while write: writing in data memory possible while executing code in program
memory,

User option byte area.
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to write to
data EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of
memory known as UBC (user boot code). Refer to the figure below.
14/121
DocID14771 Rev 15
STM8S105x4/6
Product overview
The size of the UBC is programmable through the UBC option byte, in increments of 1 page
(512 byte) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:

Main program memory: up to 32 Kbyte minus UBC

User-specific boot code (UBC): Configurable up to 32 Kbyte
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
'DWDPHPRU\DUHD.E\WH
'DWD
((3520
PHPRU\
2SWLRQE\WHV
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
0HGLXPGHQVLW\
)ODVKSURJUDP
PHPRU\
XSWR.E\WH
3URJUDPPDEOHDUHD
IURP.E\WH
ILUVWSDJHVXSWR
.E\WHSDJHVWHS
3URJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
06Y9
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program and data
memory. Even if no protection can be considered as totally unbreakable, the feature
provides a very high level of protection for a general purpose microcontroller.
DocID14771 Rev 15
15/121
21
Product overview
4.5
STM8S105x4/6
Clock controller
The clock controller distributes the system clock (fMASTER) coming from different
oscillators to the core and the peripherals. It also manages clock gating for low power
modes and ensures clock robustness.
Features

Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.

Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.

Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.

Master clock sources: four different clock sources can be used to drive the master
clock:
–
1-16 MHz high-speed external crystal (HSE)
–
Up to 16 MHz high-speed user-external clock (HSE user-ext)
–
16 MHz high-speed internal RC oscillator (HSI)
–
128 kHz low-speed internal RC (LSI)

Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz
clock (HSI/8). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.

Clock security system (CSS): This feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can optionally be generated.

Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit
Peripheral
clock
Bit
Peripheral
clock
Bit
Peripheral
clock
Bit
Peripheral
clock
PCKEN17
TIM1
PCKEN13
UART2
PCKEN27
Reserved
PCKEN23
ADC
PCKEN16
TIM3
PCKEN12
Reserved
PCKEN26
Reserved
PCKEN22
AWU
PCKEN15
TIM2
PCKEN11
SPI
PCKEN25
Reserved
PCKEN21
Reserved
PCKEN14
TIM4
PCKEN10
I2C
PCKEN24
Reserved
PCKEN20
Reserved
16/121
DocID14771 Rev 15
STM8S105x4/6
4.6
Product overview
Power management
For efficient power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between lowest
power consumption, fastest start-up time and available wakeup sources.
4.7

Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.

Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake
up unit (AWU). The main voltage regulator is kept powered on, so current consumption
is higher than in active halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

Active halt mode with regulator off: This mode is the same as active halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time
is slower.

Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application software must refresh the counter before time-out and during a limited time
window.
A reset is generated in two situations:
1.
Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2.
Refresh out of window: The downcounter is refreshed before its value is lower than the
one stored in the window register.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure
DocID14771 Rev 15
17/121
21
Product overview
STM8S105x4/6
The IWDG time base spans from 60 µs to 1 s.
4.8
4.9
Auto wakeup counter

Used for auto wakeup from active halt mode,

Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock,

LSI clock can be internally connected to TIM1 input capture channel 1 for calibration.
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit
AFR7.
4.10
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver
4.11
18/121

16-bit up, down and up/down autoreload counter with 16-bit prescaler

Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output

Synchronization module to control the timer with external signals

Break input to force the timer outputs into a defined state

Three complementary outputs with adjustable dead time

Encoder mode

Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
TIM2, TIM3 - 16-bit general purpose timers

16-bit auto reload (AR) up-counter

15-bit prescaler adjustable to fixed power of 2 ratios 1…32768

Timers with 3 or 2 individually configurable capture/compare channels

PWM mode

Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
DocID14771 Rev 15
STM8S105x4/6
4.12
Product overview
TIM4 - 8-bit basic timer

8-bit auto reload, adjustable prescaler ratio to any power of 2 from 1 to 128

Clock source: CPU clock

Interrupt source: 1 x overflow/update
Table 3. TIM timer features
Counter
size (bits)
Prescaler
Counting
mode
TIM1
16
Any integer
from 1 to
65536
Up/down
4
3
Yes
TIM2
16
Any power
of 2 from 1
to 32768
Up
3
0
No
TIM3
16
Any power
of 2 from 1
to 32768
Up
2
0
No
TIM4
8
Any power
of 2 from 1
to 128
Up
0
0
No
Timer
4.13
CAPCOM Complementary
channels
outputs
Ext.
trigger
Timer
synchronization/
chaining
No
Analog-to-digital converter (ADC1)
The STM8S105x4/6 products contain a 10-bit successive approximation A/D converter
(ADC1) with up to 10 multiplexed input channels and the following main features:
Note:

Input voltage range: 0 to VDD

Conversion time: 14 clock cycles

Single and continuous and buffered continuous conversion modes

Buffer size (n x 10 bits) where n = number of input channels

Scan mode for single and continuous conversion of a sequence of channels

Analog watchdog capability with programmable upper and lower thresholds

Analog watchdog interrupt

External trigger input

Trigger from TIM1 TRGO

End of conversion (EOC) interrupt
Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog.
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.
DocID14771 Rev 15
19/121
21
Product overview
4.14
STM8S105x4/6
Communication interfaces
The following communication interfaces are implemented:
4.14.1

UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode,
IrDA mode, single wire mode, LIN2.1 master capability

SPI: Full and half-duplex, 8 Mbit/s

I²C: Up to 400 kbit/s
UART2
Main features

1 Mbit/s full duplex SCI

SPI emulation

High precision baud rate generator

Smartcard emulation

IrDA SIR encoder decoder

LIN master mode

LIN slave mode
Asynchronous communication (UART mode)

Full duplex communication - NRZ standard format (mark/space)

Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable
of following any standard baud rate regardless of the input frequency

Separate enable bits for transmitter and receiver

Two receiver wakeup modes:
–
Address bit (MSB)
–
Idle line (interrupt)

Transmission error detection with interrupt generation

Parity control
Synchronous communication

Full duplex synchronous transfers

SPI master operation

8-bit data communication

Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)
LIN master mode
20/121

Emission: Generates 13-bit synch. break frame

Reception: Detects 11-bit break frame
DocID14771 Rev 15
STM8S105x4/6
Product overview
LIN slave mode
4.14.2
4.14.3

Autonomous header handling - one single interrupt per valid message header

Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15%

Synch delimiter checking

11-bit LIN synch break detection - break detection always active

Parity check on the LIN identifier field

LIN error management

Hot plugging support
SPI

Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave

Full duplex synchronous transfers

Simplex synchronous transfers on two lines with a possible bidirectional data line

Master or slave operation - selectable by hardware or software

CRC calculation

1 byte Tx and Rx buffer

Slave/master selection input pin
I2C


I²C master features:
–
Clock generation
–
Start and stop generation
I²C slave features:
–
Programmable I2C address detection
–
Stop bit detection

Generation and detection of 7-bit/10-bit addressing and general call

Supports different communication speeds:
–
Standard speed (up to 100 kHz)
–
Fast speed (up to 400 kHz)
DocID14771 Rev 15
21/121
21
Pinout and pin description
5
STM8S105x4/6
Pinout and pin description
Table 4. Legend/abbreviations for pin description tables
Type
Level
Output speed
Port and control
configuration
Reset state
22/121
I= Input, O = Output, S = Power supply
Input
CM = CMOS
Output
HS = High sink
O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Input
float = floating,
wpu = weak pull-up
Output
T = True open drain,
OD = Open drain,
PP = Push pull
Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset
phase and after the internal reset release.
DocID14771 Rev 15
STM8S105x4/6
Pinout and pin description
3*
3*
3&+663,B0,62
3&+663,B026,
9'',2B
966,2B
3&+663,B6&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
$,13(
$,13(
>7,0B(75@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
9''$
966$
$,13%
$,13%
>,&B6'$@$,13%
>,&B6&/@$,13%
1567
26&,13$
26&2873$
966,2B
966
9&$3
9''
9'',2B
>7,0B&+@7,0B&+3$
+63$
+63$
+63$
3(+6&/.B&&2
3(7,&B6&/
3(7,&B6'$$
3(7,0B%.,1
3'7/,>7,0B&+@
3'8$57B5;
3'8$57B7;
3'+67,0B&+>%((3@
3'+67,0B&+>$'&B(75@
3'+67,0B&+>7,0B&+@
3'+66:,0
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
Figure 3. LQFP48 pinout
069
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
DocID14771 Rev 15
23/121
30
Pinout and pin description
STM8S105x4/6
3(+6&/.B&&2
3(7,&B6&/
3(7,&B6'$
3'+66:,0
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
3'7/,>7,0B&+@
3'8$57B5;
3'8$57B7;
3'+67,0B&+>%((3@
3'+67,0B&+>$'&B(75@
3'+67,0B&+>7,0B&+@
Figure 4. LQFP44 pinout
1567
26&,13$
26&2873$
966,2B
3*
3*
3&+663,B0,62
3&+663,B026,
966
9&$3
9''
9'',2B
+63$
+63$
+63$
9'',2B
966,2B
3&+663,B6&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
$,13(
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>,&B6&/@$,13%
>7,0B(75@$,13%
>,&B6'$@$,13%
$,13%
$,13%
966$
9''$
069
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
24/121
DocID14771 Rev 15
STM8S105x4/6
Pinout and pin description
3'7/,>7,0B&+@
3'8$57B5;
3'8$57B7;
3'+67,0B&+>%((3@
3'+67,0B&+>$'&B(75@
3'+67,0B&+>7,0B&+@
3'+66:,0
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
Figure 5. UFQFPN32/LQFP32 pinout
1567
26&,13$
26&2873$
966
9&$3
9''
9'',2
$,13)
>,&B6&/@$,13%
>7,0B(75@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
9''$
966$
>,&B6'$@$,13%
3&+663,B0,62
3&+663,B026,
3&+663,B6&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
069
1. (HS) high sink capability.
2. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
DocID14771 Rev 15
25/121
30
Pinout and pin description
STM8S105x4/6
Figure 6. SDIP32 pinout
$'&B(757,0B&++63'
>%((3@7,0B&++63'
8$57B7;3'
8$57B5;3'
>7,0B&+@7/,3'
1567
26&,13$
26&2873$
966
9&$3
9''
9'',2
$,13)
9''$
966$
>,&B6'$@$,13%
3'+67,0B&+>7,0B&+@
3'+66:,0
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
3&+663,B0,62
3&+663,B026,
3&+663,B6&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
3%$,1>7,0B&+1@
3%$,1>7,0B&+1@
3%$,1>7,0B&+1@
3%$,1>7,0B(75@
3%$,1>,&B6&/@
069
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
Table 5. STM8S105x4/6 pin description
wpu
Ext. interrupt
High sink
1
1
6
NRST
I/O
-
X
-
-
2
2
2
7
PA1/ OSC IN
I/O
X
X
-
-
3
3
3
8
PA2/ OSC
OUT
I/O
X
X
-
4
4
-
-
VSSIO_1
S
-
-
5
5
4
9
VSS
S
-
6
6
5
10
VCAP
S
-
26/121
PP
Floating
1
Type
Alternate
Main
function
Default
function
after
alternate
(after
remap
function
reset)
[option
bit]
OD
SDIP32
Pin name
Speed
LQFP32/UFQFPN32
Output
LQFP44
Input
LQFP48
Pin number
-
-
O1
X
X
Port A1
Resonato
r/ crystal
in
-
O1
X
X
Port A1
Resonato
r/ crystal
in
-
-
-
-
-
I/O ground
-
-
-
-
-
-
-
Digital ground
-
-
-
-
-
-
-
1.8 V regulator
capacitor
-
DocID14771 Rev 15
Reset
-
STM8S105x4/6
Pinout and pin description
Table 5. STM8S105x4/6 pin description (continued)
Output
LQFP32/UFQFPN32
SDIP32
Pin name
Floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
Alternate
Main
function
Default
function
after
alternate
(after
remap
function
reset)
[option
bit]
LQFP44
Input
LQFP48
Pin number
7
7
6
11
VDD
S
-
-
-
-
-
-
-
Digital power supply
-
8
8
7
12
VDDIO_1
S
-
-
-
-
-
-
-
I/O power supply
-
9
-
-
-
PA3/ TIM2_CH3
[TIM3_CH1]
I/O
X
X
X
-
O1
X
X
Port A3
Timer 2 channel 3
TIM3_
CH1
[AFR1]
10
9
-
-
PA4
I/O
X
X
X
HS O3
X
X
Port A4
-
-
11
10
-
-
PA5
I/O
X
X
X
HS O3
X
X
Port A5
-
-
12
11
-
-
PA6
I/O
X
X
X
HS O3
X
X
Port A6
-
-
-
-
8
13
PF4/ AIN12(1)
I/O
X
X
-
-
O1
X
X
Port F4
Analog
input
12(2)
-
13
12
9
14
VDDA
S
-
-
-
-
-
-
-
Analog power supply
-
14
13
10
15
VSSA
S
-
-
-
-
-
-
-
Analog ground
-
15
14
-
-
PB7/ AIN7
I/O
X
X
X
-
O1
X
X
Port B7
Analog
input 7
-
16
15
-
-
PB6/ AIN6
I/O
X
X
X
-
O1
X
X
Port B6
Analog
input 6
-
17
16
11
16
PB5/ AIN5
[I2C_ SDA]
I/O
X
X
X
-
O1
X
X
Port B5
Analog
input 5
I
2C_SDA
[AFR6]
18
17
12
17
PB4/ AIN4
[I2C_SCL]
I/O
X
X
X
-
O1
X
X
Port B4
Analog
input 4
I2C_SCL
[AFR6]
19
18
13
18
PB3/ AIN3
[TIM1_ETR]
I/O
X
X
X
-
O1
X
X
Port B3
Analog
input 3
TIM1_ET
R [AFR5]
20
19
14
19
PB2/ AIN2
[TIM1_CH3N]
I/O
X
X
X
-
O1
X
X
Port B2
Analog
input 2
TIM1_CH
3N
[AFR5]
21
20
15
20
PB1/ AIN1
[TIM1_CH2N]
I/O
X
X
X
-
O1
X
X
Port B1
Analog
input 1
TIM1_CH
2N
[AFR5]
22
21
16
21
PB0/ AIN0
[TIM1_CH1N]
I/O
X
X
X
-
O1
X
X
Port B0
Analog
input 0
TIM1_CH
1N
[AFR5]
23
-
-
-
PE7/ AIN8
I/O
X
X
X
-
O1
X
X
Port E7
Analog
input 8
-
Type
DocID14771 Rev 15
27/121
30
Pinout and pin description
STM8S105x4/6
Table 5. STM8S105x4/6 pin description (continued)
25
23
17
PP
PE6/ AIN9
OD
-
Speed
-
High sink
22
Ext. interrupt
SDIP32
24
Type
wpu
LQFP32/UFQFPN32
Pin name
Output
Floating
LQFP44
Input
LQFP48
Pin number
I/O
X
X
X
-
O1
X
X
I/O
Alternate
Main
function
Default
function
after
alternate
(after
remap
function
reset)
[option
bit]
Port E6
Analog
input 9(3)
-
Port E5
SPI
master/
slave
select
-
-
22
PE5/ SPI_NSS
I/O
X
X
X
HS O3
X
X
Port C1
Timer 1 channel
1/ UART2
synchron
ous clock
X
X
X
-
O1
X
X
26
24
18
23
PC1/
TIM1_CH1/
UART2_CK
27
25
19
24
PC2/
TIM1_CH2
I/O
X
X
X
HS O3
X
X
Port C2
Timer 1channel 2
-
28
26
20
25
PC3/
TIM1_CH3
I/O
X
X
X
HS O3
X
X
Port C3
Timer 1 channel 3
-
29
-
21
26
PC4/
TIM1_CH4
I/O
X
X
X
HS O3
X
X
Port C4
Timer 1 channel 4
-
30
27
22
27
PC5/ SPI_SCK
I/O
X
X
HS O3
X
X
Port C5
SPI clock
-
31
28
-
-
VSSIO_2
S
-
-
-
-
-
-
-
I/O ground
-
32
29
-
-
VDDIO_2
S
-
-
-
-
-
-
-
I/O power supply
-
I/O
X
X
X
HS O3
X
X
Port C6
SPI
master
out/slave
in
PC7/ SPI_
MISO
I/O
X
X
X
HS O3
X
X
Port C7
SPI
master in/
slave out
-
-
PG0
I/O
X
X
-
-
O1
X
X
Port G0
-
-
-
-
PG1
I/O
X
X
-
-
O1
X
X
Port G1
-
-
-
-
-
PE3/
TIM1_BKIN
I/O
X
X
X
-
O1
X
X
Port E3
Timer 1 break
input
-
38
34
-
-
PE2/ I 2C_ SDA
I/O
X
-
X
-
O1
(4)
-
Port E2
I 2C data
-
39
35
-
-
PE1/ I2C_ SCL
I/O
X
-
X
-
O1
(4)
-
Port E1
I 2C clock
-
33
30
23
28 PC6/ SPI_MOSI
34
31
24
29
35
32
-
36
33
37
28/121
DocID14771 Rev 15
T
T
-
STM8S105x4/6
Pinout and pin description
Table 5. STM8S105x4/6 pin description (continued)
I/O
X
X
X
I/O
X
X
X
PP
PE0/ CLK_CCO
OD
-
Speed
-
High sink
36
Ext. interrupt
SDIP32
40
Type
wpu
LQFP32/UFQFPN32
Pin name
Output
Floating
LQFP44
Input
LQFP48
Pin number
HS O3
X
X
Alternate
Main
function
Default
function
after
alternate
(after
remap
function
reset)
[option
bit]
Port E0
Configura
ble clock
output
X
Port D0
TIM1_BK
IN
Timer 3 [AFR3]/
channel 2
CLK_CC
O [AFR2]
X
Port D1
SWIM
data
interface
-
41
37
25
30
PD0/
TIM3_CH2
[TIM1_BKIN]
[CLK_CCO]
42
38
26
31
PD1/ SWIM(5)
I/O
X
X
X
43
39
27
32
PD2/
TIM3_CH1
[TIM2_CH3]
I/O
X
X
X
HS O3
X
X
Port D2
Timer 3 - TIM2_CH
channel 1 3 [AFR1]
44
40
28
1
PD3/
TIM2_CH2
[ADC_ETR]
I/O
X
X
X
HS O3
X
X
Port D3
Timer 2 - ADC_ET
channel 2 R [AFR0]
45
41
29
2
PD4/
TIM2_CH1
[BEEP]
I/O
X
X
X
HS O3
X
X
Port D4
Timer 2 channel 1
BEEP
output
[AFR7]
46
42
30
3
PD5/
UART2_TX
I/O
X
X
X
-
O1
X
X
Port D5
UART2
data
transmit
-
47
43
31
4
PD6/
UART2_RX
I/O
X
X
X
-
O1
X
X
Port D6
UART2
data
receive
-
48
44
32
5
PD7/ TLI
[TIM1_CH4
I/O
X
X
X
-
O1
X
X
Port D7
HS O3
X
X
HS O4
-
Top level TIM1_CH
interrupt 4 [AFR4]
1. A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.
2.
AIN12 is not selectable in ADC scan mode or with analog watchdog.
3. In 44-pin package, AIN9 cannot be used by ADC scan mode.
4. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
5. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
DocID14771 Rev 15
29/121
30
Pinout and pin description
5.1
STM8S105x4/6
Alternate function remapping
As shown in the rightmost column of the pin description table, some alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. When the remapping option is active, the default alternate function is no
longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the family reference manual, RM0016).
30/121
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
6
Memory and register map
6.1
Memory map
Figure 7. Memory map
[
5$0
.E\WH
[))
E\WHVWDFN
5HVHUYHG
[
[))
[
[))
[
.E\WHGDWD((3520
5HVHUYHG
2SWLRQE\WHV
[)
[
5HVHUYHG
[)))
[
*3,2DQGSHULSKUHJ
[))
[
5HVHUYHG
[)))
[
[))
[
[())
[)
[)))
[
.E\WHERRW520
5HVHUYHG
&386:,0GHEXJ,7&
UHJLVWHUV
LQWHUUXSWYHFWRUV
[)
[))))
[
)ODVKSURJUDPPHPRU\
WR.E\WH
5HVHUYHG
[)))
06Y9
The following table lists the boundary addresses for each memory size. The top of the stack
is at the RAM end address in each case.
DocID14771 Rev 15
31/121
50
Memory and register map
STM8S105x4/6
Table 6. Flash, data EEPROM and RAM boundary address
Memory area
Flash program memory
Size (byte)
Start address
End address
32 K
0x00 8000
0x00 FFFF
16 K
0x00 8000
0x00 BFFF
2K
0x00 0000
0x00 07FF
1024
0x00 4000
0x00 43FF
RAM
Data EEPROM
6.2
Register map
6.2.1
I/O port hardware register map
Table 7. I/O port hardware register map
Address
Block
Register label
Register name
Reset status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX(1)
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x00
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX(1)
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xXX(1)
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX(1)
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x02
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5002
0x00 5007
0x00 500C
0x00 5011
32/121
Port A
Port B
Port C
Port D
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
Table 7. I/O port hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX(1)
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX(1)
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
0x00 501E
PG_ODR
Port G data output latch register
0x00
0x00 501F
PG_IDR
Port G input pin value register
0xXX(1)
PG_DDR
Port G data direction register
0x00
0x00 5021
PG_CR1
Port G control register 1
0x00
0x00 5022
PG_CR2
Port G control register 2
0x00
0x00 5023
PH_ODR
Port H data output latch register
0x00
0x00 5024
PH_IDR
Port H input pin value register
0xXX(1)
PH_DDR
Port H data direction register
0x00
0x00 5026
PH_CR1
Port H control register 1
0x00
0x00 5027
PH_CR2
Port H control register 2
0x00
0x00 5028
PI_ODR
Port I data output latch register
0x00
0x00 5029
PI_IDR
Port I input pin value register
0xXX(1)
PI_DDR
Port I data direction register
0x00
0x00 502B
PI_CR1
Port I control register 1
0x00
0x00 502C
PI_CR2
Port I control register 2
0x00
0x00 5016
0x00 501B
0x00 5020
0x00 5025
0x00 502A
Port E
Port F
Port G
Port H
Port I
1. Depends on the external circuitry.
DocID14771 Rev 15
33/121
50
Memory and register map
6.2.2
STM8S105x4/6
General hardware register map
Table 8. General hardware register map
Address
0x00 5050 to 0x00 5059
Block
Register label
Register name
Reset status
Reserved area (10 byte)
0x00 505A
FLASH_CR1
Flash control register 1
0x00
0x00 505B
FLASH_CR2
Flash control register 2
0x00
0x00 505C
FLASH_NCR2
Flash complementary control
register 2
0xFF
FLASH _FPR
Flash protection register
0x00
0x00 505E
FLASH _NFPR
Flash complementary
protection register
0xFF
0x00 505F
FLASH _IAPSR
Flash in-application
programming status register
0x00
Flash program memory
unprotection register
0x00
Data EEPROM unprotection
register
0x00
EXTI_CR1
External interrupt control
register 1
0x00
EXTI_CR2
External interrupt control
register 2
0x00
Reset status register
0xXX(1)
CLK_ICKR
Internal clock control register
0x01
CLK_ECKR
External clock control register 0x00
0x00 505D
Flash
0x00 5060 to 0x00 5061
Reserved area (2 byte)
0x00 5062
Flash
0x00 5063
Reserved area (1 byte)
0x00 5064
Flash
0x00 5065 to 0x00 509F
Reserved area (59 byte)
0x00 50A0
FLASH _PUKR
FLASH _DUKR
ITC
0x00 50A1
0x00 50A2 to 0x00 50B2
Reserved area (17 byte)
0x00 50B3
RST
0x00 50B4 to 0x00 50BF
Reserved area (12 byte)
0x00 50C0
0x00 50C1
0x00 50C2
34/121
CLK
RST_SR
Reserved area (1 byte)
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 50C3
CLK_CMSR
Clock master status register
0xE1
0x00 50C4
CLK_SWR
Clock master switch register
0xE1
0x00 50C5
CLK_SWCR
Clock switch control register
0xXX
0x00 50C6
CLK_CKDIVR
Clock divider register
0x18
0x00 50C7
CLK_PCKENR1
Peripheral clock gating
register 1
0xFF
CLK_CSSR
Clock security system register 0x00
0x00 50C9
CLK_CCOR
Configurable clock control
register
0x00
0x00 50CA
CLK_PCKENR2
Peripheral clock gating
register 2
0xFF
0x00 50CC
CLK_HSITRIMR
HSI clock calibration trimming
0x00
register
0x00 50CD
CLK_SWIMCCR
SWIM clock control register
0bXXXX XXX0
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
IWDG_KR
IWDG key register
0xXX(2)
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
AWU_CSR1
AWU control/status register 1
0x00
AWU_APR
AWU asynchronous prescaler
0x3F
buffer register
AWU_TBR
AWU timebase selection
register
0x00
BEEP_CSR
BEEP control/status register
0x1F
0x00 50C8
0x00 50CE to 0x00 50D0
0x00 50D1
0x00 50D2
0x00 50D3 to 00 50DF
CLK
Reserved area (3 byte)
WWDG
Reserved area (13 byte)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
0x00 50E3 to 0x00 50EF
Reserved area (13 byte)
0x00 50F0
0x00 50F1
AWU
0x00 50F2
0x00 50F3
BEEP
0x00 50F4 to 0x00 50FF
Reserved area (12 byte)
0x00 5200
SPI_CR1
SPI control register 1
0x00
0x00 5201
SPI_CR2
SPI control register 2
0x00
0x00 5202
SPI_ICR
SPI interrupt control register
0x00
SPI_SR
SPI status register
0x02
SPI_DR
SPI data register
0x00
0x00 5205
SPI_CRCPR
SPI CRC polynomial register
0x07
0x00 5206
SPI_RXCRCR
SPI Rx CRC register
0xFF
0x00 5207
SPI_TXCRCR
SPI Tx CRC register
0xFF
0x00 5203
0x00 5204
SPI
DocID14771 Rev 15
35/121
50
Memory and register map
STM8S105x4/6
Table 8. General hardware register map (continued)
Address
0x00 5208 to 0x00 520F
Block
Register label
Register name
Reset status
Reserved area (8 byte)
0x00 5210
I2C_CR1
I2C control register 1
0x00
0x00 5211
I2C_CR2
I2C control register 2
0x00
0x00 5212
I2C_FREQR
I2C frequency register
0x00
0x00 5213
I2C_OARL
I2C Own address register low 0x00
0x00 5214
I2C_OARH
I2C Own address register
high
0x00
0x00 5215
Reserved
0x00 5216
I2C_DR
I2C data register
0x00
I2C_SR1
I2C status register 1
0x00
0x00 5218
I2C_SR2
I2C status register 2
0x00
0x00 5219
I2C_SR3
I2C status register 3
0x0X
0x00 521A
I2C_ITR
I2C interrupt control register
0x00
0x00 521B
I2C_CCRL
I2C Clock control register low
0x00
0x00 521C
I2C_CCRH
I2C Clock control register high 0x00
0x00 521D
I2C_TRISER
I2C TRISE register
0x02
0x00 521E
I2C_PECR
I2C packet error checking
register
0x00
0x00 5217
I2C
0x00 521F to 0x00 522F
Reserved area (17 byte)
0x00 5230 to 0x00 523F
Reserved area (6 byte)
0x00 5240
UART2_SR
UART2 status register
0xC0
0x00 5241
UART2_DR
UART2 data register
0xXX
0x00 5242
UART2_BRR1
UART2 baud rate register 1
0x00
0x00 5243
UART2_BRR2
UART2 baud rate register 2
0x00
0x00 5244
UART2_CR1
UART2 control register 1
0x00
UART2_CR2
UART2 control register 2
0x00
UART2_CR3
UART2 control register 3
0x00
0x00 5247
UART2_CR4
UART2 control register 4
0x00
0x00 5248
UART2_CR5
UART2 control register 5
0x00
0x00 5249
UART2_CR6
UART2 control register 6
0x00
0x00 524A
UART2_GTR
UART2 guard time register
0x00
0x00 524B
UART2_PSCR
UART2 prescaler register
0x00
0x00 5245
0x00 5246
0x00 524C to 0x00 524F
36/121
UART2
Reserved area (4 byte)
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5250
TIM1_CR1
TIM1 control register 1
0x00
0x00 5251
TIM1_CR2
TIM1 control register 2
0x00
0x00 5252
TIM1_SMCR
TIM1 slave mode control
register
0x00
0x00 5253
TIM1_ETR
TIM1 external trigger register
0x00
0x00 5254
TIM1_IER
TIM1 interrupt enable register 0x00
0x00 5255
TIM1_SR1
TIM1 status register 1
0x00
0x00 5256
TIM1_SR2
TIM1 status register 2
0x00
0x00 5257
TIM1_EGR
TIM1 event generation
register
0x00
0x00 5258
TIM1_CCMR1
TIM1 capture/compare mode
register 1
0x00
0x00 5259
TIM1_CCMR2
TIM1 capture/compare mode
register 2
0x00
0x00 525A
TIM1_CCMR3
TIM1 capture/compare mode
register 3
0x00
0x00 525B
TIM1_CCMR4
TIM1 capture/compare mode
register 4
0x00
0x00 525C
TIM1_CCER1
TIM1 capture/compare enable
0x00
register 1
0x00 525D
TIM1_CCER2
TIM1 capture/compare enable
0x00
register 2
0x00 525E
TIM1_CNTRH
TIM1 counter high
0x00
0x00 525F
TIM1_CNTRL
TIM1 counter low
0x00
0x00 5260
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 5261
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 5262
TIM1_ARRH
TIM1 auto-reload register high 0xFF
0x00 5263
TIM1_ARRL
TIM1 auto-reload register low
0xFF
0x00 5264
TIM1_RCR
TIM1 repetition counter
register
0x00
0x00 5265
TIM1_CCR1H
TIM1 capture/compare
register 1 high
0x00
0x00 5266
TIM1_CCR1L
TIM1 capture/compare
register 1 low
0x00
0x00 5267
TIM1_CCR2H
TIM1 capture/compare
register 2 high
0x00
0x00 5268
TIM1_CCR2L
TIM1 capture/compare
register 2 low
0x00
0x00 5269
TIM1_CCR3H
TIM1 capture/compare
register 3 high
0x00
TIM1
DocID14771 Rev 15
37/121
50
Memory and register map
STM8S105x4/6
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 526A
TIM1_CCR3L
TIM1 capture/compare
register 3 low
0x00
0x00 526B
TIM1_CCR4H
TIM1 capture/compare
register 4 high
0x00
TIM1_CCR4L
TIM1 capture/compare
register 4 low
0x00
0x00 526D
TIM1_BKR
TIM1 break register
0x00
0x00 526E
TIM1_DTR
TIM1 dead-time register
0x00
0x00 526F
TIM1_OISR
TIM1 output idle state register 0x00
0x00 526C
0x00 5270 to 0x00 52FF
38/121
TIM1
Reserved area (147 byte)
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5300
TIM2_CR1
TIM2 control register 1
0x00 5301
TIM2_IER
TIM2 Interrupt enable register 0x00
0x00 5302
TIM2_SR1
TIM2 status register 1
0x00
0x00 5303
TIM2_SR2
TIM2 status register 2
0x00
0x00 5304
TIM2_EGR
TIM2 event generation
register
0x00
0x00 5305
TIM2_CCMR1
TIM2 capture/compare mode
register 1
0x00
0x00 5306
TIM2_CCMR2
TIM2 capture/compare mode
register 2
0x00
0x00 5307
TIM2_CCMR3
TIM2 capture/compare mode
register 3
0x00
0x00 5308
TIM2_CCER1
TIM2 capture/compare enable
0x00
register 1
0x00 5309
TIM2_CCER2
TIM2 capture/compare enable
0x00
register 2
0x00 530A
TIM2_CNTRH
TIM2 counter high
0x00
TIM2_CNTRL
TIM2 counter low
0x00
0x00 530C
TIM2_PSCR
IM2 prescaler register
0x00
0x00 530D
TIM2_ARRH
TIM2 auto-reload register high 0xFF
0x00 530E
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 530F
TIM2_CCR1H
TIM2 capture/compare
register 1 high
0x00
0x00 5310
TIM2_CCR1L
TIM2 capture/compare
register 1 low
0x00
0x00 5311
TIM2_CCR2H
TIM2 capture/compare reg. 2
high
0x00
0x00 5312
TIM2_CCR2L
TIM2 capture/compare
register 2 low
0x00
0x00 5313
TIM2_CCR3H
TIM2 capture/compare
register 3 high
0x00
0x00 5314
TIM2_CCR3L
TIM2 capture/compare
register 3 low
0x00
0x00 530B
0x00 5315 to 0x00 531F
TIM2
0x00
Reserved area (11 byte)
DocID14771 Rev 15
39/121
50
Memory and register map
STM8S105x4/6
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5320
TIM3_CR1
TIM3 control register 1
0x00 5321
TIM3_IER
TIM3 Interrupt enable register 0x00
0x00 5322
TIM3_SR1
TIM3 status register 1
0x00
0x00 5323
TIM3_SR2
TIM3 status register 2
0x00
0x00 5324
TIM3_EGR
TIM3 event generation
register
0x00
0x00 5325
TIM3_CCMR1
TIM3 capture/compare mode
register 1
0x00
0x00 5326
TIM3_CCMR2
TIM3 capture/compare mode
register 2
0x00
0x00 5327
TIM3_CCER1
TIM3 capture/compare enable
0x00
register 1
TIM3_CNTRH
TIM3 counter high
0x00
0x00 5329
TIM3_CNTRL
TIM3 counter low
0x00
0x00 532A
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 532B
TIM3_ARRH
TIM3 auto-reload register high 0xFF
0x00 532C
TIM3_ARRL
TIM3 auto-reload register low
0xFF
0x00 532D
TIM3_CCR1H
TIM3 capture/compare
register 1 high
0x00
0x00 532E
TIM3_CCR1L
TIM3 capture/compare
register 1 low
0x00
0x00 532F
TIM3_CCR2H
TIM3 capture/compare reg. 2
high
0x00
0x00 5330
TIM3_CCR2L
TIM3 capture/compare
register 2 low
0x00
0x00
0x00 5328
0x00 5331 to 0x00 533F
TIM3
0x00
Reserved area (15 byte)
0x00 5340
TIM4_CR1
TIM4 control register 1
0x00 5341
TIM4_IER
TIM4 interrupt enable register 0x00
0x00 5342
TIM4_SR
TIM4 status register
0x00
TIM4_EGR
TIM4 event generation
register
0x00
0x00 5344
TIM4_CNTR
TIM4 counter
0x00
0x00 5345
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 5346
TIM4_ARR
TIM4 auto-reload register
0xFF
ADC data buffer registers
0x00
0x00 5343
TIM4
0x00 5347 to 0x00 53DF
Reserved area (153 byte)
0x00 53E0 to 0x00 53F3
ADC1
0x00 53F4 to 0x00 53FF
Reserved area (12 byte)
40/121
ADC_DBxR
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5400
ADC_CSR
ADC control/status register
0x00
0x00 5401
ADC_CR1
ADC configuration register 1
0x00
0x00 5402
ADC_CR2
ADC configuration register 2
0x00
0x00 5403
ADC_CR3
ADC configuration register 3
0x00
0x00 5404
ADC_DRH
ADC data register high
0xXX
0x00 5405
ADC_DRL
ADC data register low
0xXX
0x00 5406
ADC_TDRH
ADC Schmitt trigger disable
register high
0x00
0x00 5407
ADC_TDRL
ADC Schmitt trigger disable
register low
0x00
0x00 5408
ADC_HTRH
ADC high threshold register
high
0x03
ADC_HTRL
ADC high threshold register
low
0xFF
0x00 540A
ADC_LTRH
ADC low threshold register
high
0x00
0x00 540B
ADC_LTRL
ADC low threshold register
low
0x00
0x00 540C
ADC_AWSRH
ADC analog watchdog status
register high
0x00
0x00 540D
ADC_AWSRL
ADC analog watchdog status
register low
0x00
0x00 540E
ADC _AWCRH
ADC analog watchdog control
0x00
register high
0x00 540F
ADC_AWCRL
ADC analog watchdog control
0x00
register low
0x00 5409
0x00 5410 to 0x00 57FF
ADC1
cont’d
Reserved area (1008 byte)
1. Depends on the previous reset source.
2. Write-only register.
DocID14771 Rev 15
41/121
50
Memory and register map
6.2.3
STM8S105x4/6
CPU/SWIM/debug module/interrupt controller registers
Table 9. CPU/SWIM/debug module/interrupt controller registers
Address
Block
Register label
Register name
Reset
status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
CFG_GCR
Global configuration
register
0x00
0x00 7F70
ITC_SPR1
Interrupt software priority
register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt software priority
register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt software priority
register 3
0xFF
0x00 7F73
ITC_SPR4
Interrupt software priority
register 4
0xFF
0x00 7F74
ITC_SPR5
Interrupt software priority
register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt software priority
register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt software priority
register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt software priority
register 8
0xFF
SWIM control status
register
0x00
0x00 7F04
0x00 7F05
CPU
(1)
0x00 7F0B to 0x00 7F5F
Reserved area (85 byte)
0x00 7F60
CPU
ITC
0x00 7F78 to 0x00 7F79
Reserved area (2 byte)
0x00 7F80
SWIM
0x00 7F81 to 0x00 7F8F
Reserved area (15 byte)
42/121
SWIM_CSR
DocID14771 Rev 15
STM8S105x4/6
Memory and register map
Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)
Address
Block
Register label
Register name
Reset
status
0x00 7F90
DM_BK1RE
DM breakpoint 1 register
extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register
high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register
low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register
extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register
high byte
0xFF
DM_BK2RL
DM breakpoint 2 register
low byte
0xFF
0x00 7F96
DM_CR1
DM debug module control
register 1
0x00
0x00 7F97
DM_CR2
DM debug module control
register 2
0x00
0x00 7F98
DM_CSR1
DM debug module
control/status register 1
0x10
0x00 7F99
DM_CSR2
DM debug module
control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register 0xFF
0x00 7F95
0x00 7F9B to 0x00 7F9F
DM
Reserved area (5 byte)
1. Accessible by debug module only.
DocID14771 Rev 15
43/121
50
Interrupt vector mapping
7
STM8S105x4/6
Interrupt vector mapping
Table 10. Interrupt mapping
IRQ no.
Source block
Wakeup from
halt mode
Description
Wakeup from
active-halt mode
Vector address
-
RESET
Reset
Yes
Yes
0x00 8000
-
TRAP
Software interrupt
-
-
0x00 8004
0
TLI
External top level
interrupt
-
-
0x00 8008
1
AWU
Auto wake up from
halt
Yes
0x00 800C
2
CLK
Clock controller
-
-
0x00 8010
3
EXTI0
Port A external
interrupts
Yes(1)
Yes(1)
0x00 8014
4
EXTI1
Port B external
interrupts
Yes
Yes
0x00 8018
5
EXTI2
Port C external
interrupts
Yes
Yes
0x00 801C
6
EXTI3
Port D external
interrupts
Yes
Yes
0x00 8020
7
EXTI4
Port E external
interrupts
Yes
Yes
0x00 8024
8
Reserved
-
-
-
0x00 8028
9
Reserved
-
-
-
0x00 802C
10
SPI
End of transfer
Yes
Yes
0x00 8030
11
TIM1
TIM1 update/
overflow/
underflow/ trigger/
break
-
-
0x00 8034
12
TIM1
TIM1 capture/
compare
-
-
0x00 8038
13
TIM2
TIM2 update/
overflow
-
-
0x00 803C
14
TIM2
TIM2 capture/
compare
-
-
0x00 8040
15
TIM3
TIM3 update/
overflow
-
-
0x00 8044
16
TIM3
TIM3 capture/
compare
-
-
0x00 8048
17
Reserved
-
-
-
0x00 804C
18
Reserved
-
-
-
0x00 8050
19
I2C
I2C interrupt
Yes
Yes
0x00 8054
44/121
DocID14771 Rev 15
STM8S105x4/6
Interrupt vector mapping
Table 10. Interrupt mapping (continued)
IRQ no.
Source block
Wakeup from
halt mode
Description
Wakeup from
active-halt mode
Vector address
20
UART2
Tx complete
-
-
0x00 8058
21
UART2
Receive register
DATA FULL
-
-
0x00 805C
22
ADC1
ADC1 end of
conversion/ analog watchdog interrupt
-
0x00 8060
23
TIM4
TIM4 update/
overflow
-
-
0x00 8064
24
Flash
EOP/WR_PG_DIS -
-
0x00 8068
0x00 806C to
0x00 807C
Reserved
1. Except PA1.
DocID14771 Rev 15
45/121
50
Option byte
8
STM8S105x4/6
Option byte
Option byte contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option byte can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in the table below.
Option byte can also be modified ‘on the fly’ by the application in IAP mode, except the ROP
option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM
communication protocol and debug module user manual (UM0470) for information on SWIM
programming procedures.
Table 11. Option byte
Addr.
Option
name
Option
byte
no.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
Read-out
0x4800
protection
OPT0
ROP [7:0]
0x00
(ROP)
0x4801
User boot
OPT1
UBC [7:0]
0x00
0x4802
code (UBC)
NOPT1
NUBC [7:0]
0xFF
0x4803
Alternate
OPT2
AFR7
AFR6
AFR5
AFR4
AFR3
AFR2
AFR1
AFR0
0x00
NOPT2
NAFR7
NAFR6
NAFR5
NAFR4
NAFR3
NAFR2
NAFR1
NAFR0
0xFF
IWDG
WWDG
WWDG
_HW
_HW
_HALT
function
0x4804
remapping
(AFR)
0x4805h
OPT3
Reserved
0x4806
NOPT3
Reserved
0x4807
OPT4
Reserved
NOPT4
Reserved
HSI
TRIM
LSI _ EN
0x00
Misc. option
NHSI
NLSI
NIWDG
NWWDG
NWWG
TRIM
_ EN
_HW
_HW
_HALT
PRS C1
PRS C0
0x00
NPRSC1
NPR SC0
0xFF
EXT CLK
CKAWU
SEL
0xFF
Clock option
0x4808
NEXT
NCKA
CLK
WUSEL
0x4809
HSE clock
OPT5
HSECNT [7:0]
0x00
0x480A
startup
NOPT5
NHSECNT [7:0]
0xFF
OPT6
Reserved
0x00
NOPT6
Reserved
0xFF
OPT7
Reserved
0x00
NOPT7
Reserved
0xFF
-
Reserved
-
-
Reserved
-
0x480B
Reserved
0x480C
0x480D
Reserved
0x480E
0x480F
Reserved
0x48FD
46/121
DocID14771 Rev 15
STM8S105x4/6
Option byte
Table 11. Option byte (continued)
Addr.
Option
name
0x487E
Option
byte
no.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
OPTBL
BL[7:0]
0x00
NOPTBL
NBL[7:0]
0xFF
Bootloader
0x487F
Table 12. Option byte description
Option byte no.
Description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Page 0 to 1 defined as UBC, memory write-protected
0x02: Page 0 to 3 defined as UBC, memory write-protected
0x03: Page 0 to 4 defined as UBC, memory write-protected
...
0x3E: Pages 0 to 63 defined as UBC, memory write-protected
Other values: Reserved
Note: Refer to the family reference manual (RM0016) section on Flash write
protection for more details.
OPT2
AFR[7:0]
Refer to the following table for the description of the alternate function
remapping description of bits [7:2].
HSITRIM: High speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
OPT3
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
DocID14771 Rev 15
47/121
50
Option byte
STM8S105x4/6
Table 12. Option byte description (continued)
Option byte no.
Description
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
OPT4
CKAWUSEL: Auto wake-up unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
48/121
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
OPT6
Reserved
OPT7
Reserved
OPTBL
BL[7:0]: Bootloader option byte
For STM8S products, this option is checked by the boot ROM code after
reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000
(reset vector), the CPU jumps to the bootloader or to the reset vector. Refer
to the UM0560 (STM8L/S bootloader manual) for more details.
For STM8L products, the bootloader option bytes are on addresses 0xXXXX
and 0xXXXX+1 (2 byte). These option bytes control whether the bootloader is
active or not. For more details, refer to the UM0560 (STM8L/S bootloader
manual) for more details.
DocID14771 Rev 15
STM8S105x4/6
8.1
Option byte
Alternate function remapping bits
Table 13. Alternate function remapping bits [7:0] of OPT2
Description(1)
Option byte no.
OPT2
AFR7 Alternate function remapping option 7
0: AFR7 remapping option inactive: Default alternate functions.(2)
1: Port D4 alternate function = BEEP.
AFR6 Alternate function remapping option 6
0: AFR6 remapping option inactive: Default alternate function.(2)
1: Port B5 alternate function = I2C_SDA; port B4 alternate function =
I2C_SCL.
AFR5 Alternate function remapping option 5
0: AFR5 remapping option inactive: Default alternate function.(2)
1: Port B3 alternate function = TIM1_ETR; port B2 alternate function =
TIM1_NCC3; port B1 alternate function = TIM1_CH2N; port B0 alternate
function = TIM1_CH1N.
AFR4 Alternate function remapping option 4
0: AFR4 remapping option inactive: Default alternate functions.(2)
1: Port D7 alternate function = TIM1_CH4.
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: Default alternate function.(2)
1: Port D0 alternate function = TIM1_BKIN.
AFR2 Alternate function remapping option 2
0: AFR2 remapping option inactive: Default alternate functions.(2)
1: Port D0 alternate function = CLK_CCO. Note: AFR2 option has priority
over AFR3 if both are activated.
AFR1 Alternate function remapping option 1
0: AFR1 remapping option inactive: Default alternate functions.(2)
1: Port A3 alternate function = TIM3_CH1; port D2 alternate function
TIM2_CH3
AFR0 Alternate function remapping option 0
0: AFR0 remapping option inactive: Default alternate functions.(2)
1: Port D3 alternate function = ADC_ETR.
1. Do not use more than one remapping option in the same port.
2. Refer to STM8S105x4/6 pin descriptions.
DocID14771 Rev 15
49/121
50
Unique ID
9
STM8S105x4/6
Unique ID
The devices feature a 96-bit unique device identifier which provides a reference number that
is unique for any device and in any context. The 96 bits of the identifier can never be altered
by the user.
The unique device identifier can be read in single byte and may then be concatenated using
a custom algorithm.
The unique device identifier is ideally suited:

For use as serial numbers

For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.

To activate secure boot processes
Table 14. Unique ID registers (96 bits)
Address
Content
description
Unique ID bits
7
0x48CD
0x48CE
0x48CF
5
4
3
U_ID[7:0]
X co-ordinate on
the wafer
U_ID[15:8]
U_ID[23:16]
0x48D0
Y co-ordinate on
the wafer
U_ID[31:24]
0x48D1
Wafer number
U_ID[39:32]
0x48D2
U_ID[47:40]
0x48D3
U_ID[55:48]
0x48D4
U_ID[63:56]
0x48D5
50/121
6
Lot number
U_ID[71:64]
0x48D6
U_ID[79:72]
0x48D7
U_ID[87:80]
0x48D8
U_ID[95:88]
DocID14771 Rev 15
2
1
0
STM8S105x4/6
Electrical characteristics
10
Electrical characteristics
10.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
10.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C, and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ± 3 Σ).
10.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5.0 V. They are
given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 Σ).
10.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
10.1.4
Typical current consumption
For typical current consumption measurements, VDD, VDDIO and VDDA are connected
together in the configuration shown in the following figure.
Figure 8. Supply current measurement conditions
9RU9
$
9''
9''$
9'',2
966
966$
966,2
06Y9
DocID14771 Rev 15
51/121
90
Electrical characteristics
10.1.5
STM8S105x4/6
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
Figure 9. Pin loading conditions
67063,1
S)
06Y9
10.1.6
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 10. Pin input voltage
67063,1
9,1
06Y9
52/121
DocID14771 Rev 15
STM8S105x4/6
10.2
Electrical characteristics
Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 15. Voltage characteristics
Symbol
Min
Max
Unit
-0.3
6.5
V
VSS - 0.3
6.5
VSS - 0.3
VDD + 0.3
|VDDx - VDD| Variations between different power pins
-
50
|VSSx - VSS|
Variations between all the different ground pins
-
50
VESD
Electrostatic discharge voltage
VDDx - VSS
Ratings
Supply voltage (including VDDA and VDDIO)(1)
Input voltage on true open drain pins (PE1, PE2)(2)
VIN
Input voltage on any other
pin(2)
V
mV
see Absolute maximum ratings
(electrical sensitivity) on
page 89
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
Table 16. Current characteristics
Symbol
Ratings
Max.(1)
Unit
mA
IVDD
Total current into VDD power lines (source)(2)
100
IVSS
(sink)(1)
80
Total current out of VSS ground lines
IIO
ΣIIO
IINJ(PIN)
(4) (5)
Output current sunk by any I/O and control pin
20
Output current source by any I/Os and control pin
-20
Total output current sourced (sum of all I/O and control pins)
for devices with two VDDIO pins(3)
200
Total output current sourced (sum of all I/O and control pins)
for devices with one VDDIO pin(3)
100
Total output current sunk (sum of all I/O and control pins) for
devices with two VSSIO pins(3)
160
Total output current sunk (sum of all I/O and control pins) for
devices with one VSSIO pin(3)
80
Injected current on NRST pin
±4
Injected current on OSCIN pin
Injected current on any other
ΣIINJ(PIN)(4)
pin(6)
Total injected current (sum of all I/O and control pins)(6)
±4
±4
±20
1. Data based on characterization results, not tested in production.
2. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the external
supply.
DocID14771 Rev 15
53/121
90
Electrical characteristics
STM8S105x4/6
3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package
between the VDDIO/VSSIO pins.
4. IINJ(PIN) must never be exceeded. This condition is implicitly insured if VIN maximum is respected. If VIN
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A
positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true opendrain pads, there is no positive injection current allowed and the corresponding VIN maximum must always
be respected.
5. Negative injection disturbs the analog performance of the device. See note in Section: TIM2, TIM3 - 16-bit
general purpose timers.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on characterization
with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.
Table 17. Thermal characteristics
Symbol
10.3
Ratings
Value
Unit
65 to 150
TSTG
Storage temperature range
TJ
Maximum junction temperature
°C
150
Operating conditions
The device must be used in operating conditions that respect the parameters described in
the table below. In addition, full account must be taken of all physical capacitor
characteristics and tolerances.
Table 18. General operating conditions
Symbol
Parameter
Min
Max
Unit
fCPU
Internal CPU clock frequency
-
0
16
MHz
VDD/VDDIO
Standard operating voltage
-
2.95
5.5
V
CEXT: capacitance of external
capacitor
-
470
3300
nF
-
0.3
Ω
-
15
nH
44- and 48-pin
devices, with output
on eight standard
ports, two high sink
ports and two open
drain ports
simultaneously(4)
-
443
32-pin package, with
output on eight
standard ports and
two high sink ports
simultaneously(4)
-
VCAP(1)
ESR of external capacitor
ESL of external capacitor
PD(3)
54/121
Conditions
Power dissipation at TA = 85 °C
for suffix 6 or TA= 125° C for
suffix 3
at 1 MHz(2)
DocID14771 Rev 15
mW
360
STM8S105x4/6
Electrical characteristics
Table 18. General operating conditions (continued)
Symbol
Parameter
Conditions
Min
Max
TA
Ambient temperature for suffix
6 version
Maximum power
dissipation
-40
85
TA
Ambient temperature for suffix
3 version
Maximum power
dissipation
-40
125
TJ
Junction temperature range
Suffix 6 version
-40
105
Suffix 3 version
-40
130
Unit
°C
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
3. To calculate PDmax(TA), use the formula PDmax=(TJmax- TA)/JA (see Section 12: Thermal characteristics)
with the value for TJmax given in the previous table and the value for JA given in Section 12: Thermal
characteristics.
4. See Section 12: Thermal characteristics.
Figure 11. fCPUmax versus VDD
I&380+]
)XQFWLRQDOLW\
QRW
JXDUDQWHHGLQ
ϭϲ
WKLVDUHD
ϭϮ
)XQFWLRQDOLW\JXDUDQWHHG
#7$WRƒ&
ϴ
ϰ
Ϭ
6XSSO\YROWDJH
06Y9
Table 19. Operating conditions at power-up/power-down
Symbol
tVDD
tTEMP
Parameter
Conditions
Min
Typ
Max
VDD rise time rate
-
2(1)
-

VDD fall time rate
-
2(1)
-

VDD rising
-
-
1.7(1)
Reset release delay
DocID14771 Rev 15
Unit
µs/V
ms
55/121
90
Electrical characteristics
STM8S105x4/6
Table 19. Operating conditions at power-up/power-down (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
VIT+
Power-on reset
threshold
-
2.65
2.8
2.95
VIT-
Brown-out reset
threshold
-
2.58
2.65
2.88
VHYS(BOR)
Brown-out reset
hysteresis
-
-
70
-
V
1. Guaranteed by design, not tested in production.
56/121
Unit
DocID14771 Rev 15
mV
STM8S105x4/6
10.3.1
Electrical characteristics
VCAP external capacitor
The stabilization for the main regulator is achieved by connecting an external capacitor
CEXT to the VCAP pin. CEXT is specified in Table 18. Care should be taken to limit the series
inductance to less than 15 nH.
Figure 12. External capacitor CEXT
(6/
&
(65
5/HDN
06Y9
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.
10.3.2
Supply current characteristics
The current consumption is measured as illustrated in Figure 10: Pin input voltage.
Total current consumption in run mode
Table 20. Total current consumption with code execution in run mode at VDD = 5 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
3.2
-
HSE user ext. clock
(16 MHz)
2.6
3.2
HSI RC osc. (16 MHz)
2.5
3.2
HSE user ext. clock
(16 MHz)
1.6
2.2
HSI RC osc. (16 MHz)
1.3
2.0
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.75
-
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.55
-
HSE crystal osc. (16 MHz)
7.7
-
HSE user ext. clock
(16 MHz)
7.0
8.0
HSI RC osc. (16 MHz)
7.0
8.0
fCPU = fMASTER = 2 MHz
HSI RC osc. (16 MHz/8)(2)
1.5
-
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
1.35
2.0
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.75
-
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.6
-
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from RAM
fCPU = fMASTER /128 = 125 kHz
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from Flash
Unit
mA
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID14771 Rev 15
57/121
90
Electrical characteristics
STM8S105x4/6
Table 21. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
2.8
-
HSE user ext. clock
(16 MHz)
2.6
3.2
HSI RC osc. (16 MHz)
2.5
3.2
HSE user ext. clock
(16 MHz)
1.6
2.2
HSI RC osc. (16 MHz)
1.3
2.0
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.75
-
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.55
-
HSE crystal osc. (16 MHz)
7.3
-
HSE user ext. clock
(16 MHz)
7.0
8.0
7.0
8.0
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from RAM
fCPU = fMASTER /128 = 125 kHz
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from Flash
HSI RC osc. (16 MHz)
(2)
fCPU = fMASTER = 2 MHz
HSI RC osc. (16 MHz/8)
1.5
-
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
1.35
2.0
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.75
-
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.6
-
Unit
mA
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Total current consumption in wait mode
Table 22. Total current consumption in wait mode at VDD = 5 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
2.15
-
HSE user ext. clock
(16 MHz)
1.55
2.0
HSI RC osc. (16 MHz)
1.5
1.9
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
1.3
-
fCPU = fMASTER /s128 =
15.625 kHz
HSI RC osc. (16 MHz/8)(2)
0.7
-
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.5
-
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(WFI)
Supply
current in
wait mode
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
58/121
DocID14771 Rev 15
Unit
mA
STM8S105x4/6
Electrical characteristics
Table 23. Total current consumption in wait mode at VDD = 3.3 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
1.75
-
HSE user ext. clock
(16 MHz)
1.55
2.0
HSI RC osc. (16 MHz)
1.5
1.9
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
1.3
-
fCPU = fMASTER /s128 =
15.625 kHz
HSI RC osc. (16 MHz/8)(2)
0.7
-
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.5
-
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(WFI)
Supply
current in
wait mode
Unit
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Total current consumption in active halt mode
Table 24. Total current consumption in active halt mode at VDD = 5 V
Conditions
Symbol Parameter
IDD(AH)
Supply
current in
active halt
mode
Main
voltage
regulator
(MVR)(2)
On
Off
1.
Typ
Flash mode(3)
Clock source
Max at Max at
Unit
85 °C(1) 85 °C(1)
Operating mode
HSE crystal osc.
(16 MHz)
1080
-
-
Operating mode
LSI RC osc. (128 kHz)
200
320
400
Power down
mode
HSE crystal osc.
(16 MHz)
1030
-
-
Power down
mode
LSI RC osc. (128 kHz)
140
270
350
Operating mode
LSI RC osc. (128 kHz)
68
120
220
Power down
mode
LSI RC osc. (128 kHz)
12
60
150
µA
Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
DocID14771 Rev 15
59/121
90
Electrical characteristics
STM8S105x4/6
Table 25. Total current consumption in active halt mode at VDD = 3.3 V
Conditions
Symbol Parameter
IDD(AH)
Supply
current in
active halt
mode
Main
voltage
regulator
(MVR)(2)
On
Off
1.
Typ
Flash mode(3)
Clock source
Max at Max at
Unit
85 °C(1) 85 °C(1)
Operating mode
HSE crystal osc.
(16 MHz)
680
-
-
Operating mode
LSI RC osc. (128 kHz)
200
320
400
Power down
mode
HSE crystal osc.
(16 MHz)
630
-
-
Power down
mode
LSI RC osc. (128 kHz)
140
270
350
Operating mode
LSI RC osc. (128 kHz)
66
120
220
Power down
mode
LSI RC osc. (128 kHz)
10
60
150
µA
Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Total current consumption in halt mode
Table 26. Total current consumption in halt mode at VDD = 5 V
Symbol
IDD(H)
1.
Parameter
Supply current in halt
mode
Conditions
Typ
Flash in operating mode, HSI
clock after wakeup
62
Flash in power-down mode,
HSI clock after wakeup
6.5
Max at Max at
Unit
85 °C(1) 85 °C(1)
90
150
µA
25
80
Data based on characterization results, not tested in production.
Table 27. Total current consumption in halt mode at VDD = 3.3 V
Symbol
IDD(H)
1.
60/121
Parameter
Supply current in halt
mode
Conditions
Typ
Flash in operating mode, HSI
clock after wakeup
60
Flash in power-down mode,
HSI clock after wakeup
4.5
Data based on characterization results, not tested in production.
DocID14771 Rev 15
Max at Max at
Unit
85 °C(1) 85 °C(1)
90
150
µA
20
80
STM8S105x4/6
Electrical characteristics
Low power mode wakeup times
Table 28. Wakeup times
Typ
Max(1)
-
See note(3)
0.56
-
HSI (after
wakeup)
1(6)
2(6)
Flash in
Wakeup time active halt MVR voltage
operating
(4)
(2)
regulator off
mode to run mode
mode(5)
HSI (after
wakeup)
3(6)
-
tWU(AH)
Flash in
Wakeup time active halt MVR voltage
operating
regulator off(4)
mode to run mode(2)
mode(5)
HSI (after
wakeup)
48(6)
-
tWU(AH)
Flash in
Wakeup time active halt MVR voltage
HSI (after
power-down
(4)
regulator off
wakeup)
mode to run mode(2)
mode(5)
50(6)
-
tWU(H)
Wakeup time from halt
mode to run mode(2)
Flash in operating mode(5)
52
-
tWU(H)
Wakeup time from halt
mode to run mode(2)
Flash in power-down mode(5)
54
-
Symbol
Parameter
tWU(WFI)
Wakeup time from wait
mode to run mode(2)
0 to 16 MHz
tWU(WFI)
Wakeup time from run
mode(2)
fCPU= fMASTER= 16 MHz
tWU(AH)
Flash in
Wakeup time active halt MVR voltage
(4) operating
(2)
regulator on
mode to run mode
mode(5)
tWU(AH)
1.
Conditions
Unit
µs
Data based on characterization results, not tested in production.
2. Measured from interrupt event to interrupt vector fetch
3. tWU(WFI) = 2 x 1/fmaster + 67 x 1/fCPU
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
Total current consumption and timing in forced reset state
Table 29. Total current consumption and timing in forced reset state
Symbol
Parameter
IDD(R)
Supply current in reset
state(2)
tRESETBL
Reset pin release to
vector fetch
Conditions
Typ
Max(1)
VDD = 5 V
500
-
VDD = 3.3 V
400
-
-
-
150
Unit
µA
µs
1. Data guaranteed by design, not tested in production.
2.
Characterized with all I/Os tied to VSS.
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
DocID14771 Rev 15
61/121
90
Electrical characteristics
STM8S105x4/6
HSI internal RC/fCPU= fMASTER = 16 MHz, VDD = 5 V
Table 30. Peripheral current consumption
Symbol
Parameter
Typ
IDD(TIM1)
TIM1 supply current
(1)
230
IDD(TIM2)
TIM2 supply current(1)
115
IDD(TIM3)
TIM3 supply current
(1)
90
TIM4 supply current
(1)
IDD(TIM4)
IDD(UART2)
UART2 supply current
IDD(SPI)
SPI supply current (2)
IDD(I2C)
current(2)
I2C supply
IDD(ADC1)
30
(2)
ADC1 supply current when
110
Unit
µA
45
65
converting(3)
955
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not
tested in production.
3.
Data based on a differential IDD measurement between reset configuration and continuous A/D
conversions. Not tested in production.
Current consumption curves
The following figures show typical current consumption measured with code executing in
RAM.
Figure 13. Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz
62/121
DocID14771 Rev 15
STM8S105x4/6
Electrical characteristics
Figure 14. Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V
Figure 15. Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz
DocID14771 Rev 15
63/121
90
Electrical characteristics
STM8S105x4/6
Figure 16. Typ IDD(WFI) vs. VDD HSE external clock, fCPU = 16 MHz
Figure 17. Typ IDD(WFI) vs. fCPU HSE external clock, VDD = 5 V
64/121
DocID14771 Rev 15
STM8S105x4/6
Electrical characteristics
Figure 18. Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz
DocID14771 Rev 15
65/121
90
Electrical characteristics
10.3.3
STM8S105x4/6
External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Table 31. HSE user external clock characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
MHz
fHSE_ext
User external clock
source frequency
-
0
16
VHSEH(1)
OSCIN input pin high
level voltage
-
0.7 x VDD
VDD + 0.3 V
VHSEL(1)
OSCIN input pin low
level voltage
-
VSS
0.3 x VDD
ILEAK_HSE
OSCIN input leakage
current
VSS < VIN < VDD
-1
+1
V
1. Data based on characterization results, not tested in production.
Figure 19. HSE external clock source
+6(+
+6(/
([WHUQDOFORFN
VRXUFH
I+6(
26&,1
670
069
66/121
DocID14771 Rev 15
µA
STM8S105x4/6
Electrical characteristics
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 32. HSE oscillator characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHSE
External high speed
oscillator frequency
-
1
-
16
MHz
RF
Feedback resistor
-
-
220
-
k
C(1)
Recommended load
capacitance(2)
-
-
-
20
pF
C = 20 pF
fOSC = 16 MHz
-
-
6 (start up)
1.6 (stabilized)(3)
IDD(HSE)
HSE oscillator power
consumption
gm
Oscillator
transconductance
tSU(HSE)(4)
Startup time
mA
C = 10 pF
fOSC = 16 MHz
-
-
6 (start up)
1.2 (stabilized)(3)
-
5
-
-
mA/V
VDD is stabilized
-
1
-
ms
1. C is approximately equivalent to 2 x crystal Cload.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data based on characterization results, not tested in production.
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
DocID14771 Rev 15
67/121
90
Electrical characteristics
STM8S105x4/6
Figure 20. HSE oscillator circuit diagram
5P
/P
I+6(WRFRUH
&2
5)
&/
&P
26&,1
JP
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
5HVRQDWRU
&/
26&287
670
069
HSE oscillator critical gm equation
g mcrit =  2    f HSE  2  R m  2Co + C 
2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1 = CL2 = C: Grounded external capacitance
g m » g mcrit
68/121
DocID14771 Rev 15
STM8S105x4/6
10.3.4
Electrical characteristics
Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Table 33. HSI oscillator characteristics
Symbol
fHSI
Parameter
Conditions
Min
Typ
Max
Unit
-
-
16
-
MHz
-
-
1(2)
VDD V,
TA  25 °C(3)
-1.0
-
1.0
VDD= 5 V, 
-25°C TA  85 °C
-2.0
-
2.0
-3.0(3)
-
3.0(3)
Frequency
User-trimmed with
CLK_HSITRIMR register for
Accuracy of HSI oscillator
given VDD and TA
conditions(1)
ACCHS
HSI oscillator accuracy
(factory calibrated)
2.95 V VDD  5.5 V, 
-40°C TA  125 °C
%
tsu(HSI)
HSI oscillator wakeup
time including calibration
-
-
-
1.0(2)
µs
IDD(HSI)
HSI oscillator power
consumption
-
-
170
250(3)
µA
1. Refer to application note.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 21. Typical HSI accuracy @ VDD = 5 V vs 5 temperatures
DocID14771 Rev 15
69/121
90
Electrical characteristics
STM8S105x4/6
Figure 22. Typical HSI frequency variation vs VDD @ 4 temperatures
70/121
DocID14771 Rev 15
STM8S105x4/6
Electrical characteristics
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 34. LSI oscillator characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fLSI
Frequency
-
110
128
150
kHz
tsu(LSI)
LSI oscillator wakeup time
-
-
-
7(1)
µs
-
-
5
-
µA
IDD(LSI) LSI oscillator power consumption
1. Guaranteed by design, not tested in production.
Figure 23. Typical LSI frequency variation vs VDD@ 4 temperatures
DocID14771 Rev 15
71/121
90
Electrical characteristics
10.3.5
STM8S105x4/6
Memory characteristics
RAM and hardware registers
Table 35. RAM and hardware registers
Symbol
VRM
Parameter
Data retention mode(1)
Conditions
Min
Unit
Halt mode (or reset)
VIT-max(2)
V
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design, not tested in production.
2. Refer to Section 10.3: Operating conditions for the value of VIT-max.
Flash program memory/data EEPROM memory
Table 36. Flash program memory/data EEPROM memory
Symbol
VDD
tprog
terase
NRW
Parameter
Operating voltage 
(all modes, execution/write/erase)
IDD
Min(1) Typ
Max
Unit
V
fCPU≤ 16 MHz
2.95
-
5.5
Standard programming time (including
erase) for byte/word/block 
(1 byte/4 byte/128 byte)
-
-
6
6.6
Fast programming time for 1 block 
(128 byte)
-
-
3
3.33
Erase time for 1 block (128 byte)
-
-
3
3.33
TA = +85 °C
10k
-
-
TA = +125 °C
300k
1M
-
Data retention (program and data
memory) after 10k erase/write cycles
at TA= +55 °C
TRET = 55 °C
20
-
-
Data retention (data memory) after
300k erase/write cycles at 
TA= +125°C
TRET = 85 °C
1
-
-
-
-
2
-
ms
Erase/write cycles 
(program memory)(2)
Erase/write cycles (data
tRET
Conditions
memory)(2)
year
Supply current (Flash programming or
erasing for 1 to 128 byte)
1. Data based on characterization results, not tested in production.
2. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a
write/erase operation addresses a single byte.
72/121
cycle
DocID14771 Rev 15
mA
STM8S105x4/6
10.3.6
Electrical characteristics
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 37. I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage
VIH
Input high level voltage
Vhys
Hysteresis(1)
Rpu
Pull-up resistor
tR, tF
tR, tF
Rise and fall time
(10% - 90%)
Rise and fall time
(10% - 90%)
Conditions
Min
Typ
Max
-0.3 V
-
0.3 x VDD
0.7 x VDD
-
VDD + 0.3 V
-
700
-
mV
VDD = 5 V, VIN = VSS
30
55
80
k
Fast I/Os
Load = 50 pF
-
-
35(2)
VDD = 5 V
Unit
V
ns
Standard and high sink I/Os
Load = 50 pF
-
-
125(2)
Fast I/Os
Load = 20 pF
-
-
20(2)
(2)
ns
Standard and high sink I/Os
Load = 20 pF
-
-
50
Ilkg
Digital input leakage
current
VSS VIN VDD
-
-
±1(3)
µA
Ilkg ana
Analog input leakage
current
VSS VIN VDD
-
-
±250(3)
nA
Ilkg(inj)
Leakage current in
adjacent I/O
Injection current ±4 mA
-
-
±1(3)
µA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
2. Data guaranteed by design.
3. Data based on characterization results, not tested in production
DocID14771 Rev 15
73/121
90
Electrical characteristics
STM8S105x4/6
Figure 24. Typical VIL and VIH vs VDD @ 4
temperatures
Figure 25. Typical pull-up current vs VDD @ 4
temperatures
Figure 26. Typical pull-up resistance vs VDD @ 4 temperatures
Û&
Û&
Û&
3XOOXSUHVLVWDQFH >Ÿ :@
Û&
9''>9@
069
Table 38. Output driving current (standard ports)
Symbol
VOL
VOH
Parameter
Conditions
Min
Max
Output low level with 8
pins sunk
IIO= 10 mA,
VDD = 5 V
-
2.0
Output low level with 4
pins sunk
IIO= 4 mA,
VDD = 3.3 V
-
1.0(1)
Output high level with 8
pins sourced
IIO= 10 mA,
VDD = 5 V
2.4
-
Output high level with 4
pins sourced
IIO= 4 mA,
VDD = 3.3 V
2.0(1)
-
1. Data based on characterization results, not tested in production
74/121
DocID14771 Rev 15
Unit
V
STM8S105x4/6
Electrical characteristics
Table 39. Output driving current (true open drain ports)
Symbol
VOL
VOH
Parameter
Conditions
Min
Max
Output low level with 2
pins sunk
IIO= 10 mA,
VDD = 5 V
-
1.0
Output low level with 2
pins sunk
IIO= 10 mA,
VDD = 3.3 V
-
1.5(1)
Output high level with 2
pins sourced
IIO= 10 mA,
VDD = 5 V
-
2.0(1)
Unit
V
1. Data based on characterization results, not tested in production
Table 40. Output driving current (high sink ports)
Symbol
Parameter
Output low level with 8
pins sunk
VOL
Output low level with 4
pins sunk
Output high level with 8
pins sourced
VOH
Output high level with 4
pins sourced
Conditions
Min
Max
IIO= 10 mA,
VDD = 5 V
-
0.9
IIO= 10 mA,
VDD = 3.3 V
-
1.1(1)
IIO= 20 mA,
VDD = 5 V
-
1.6(1)
IIO= 10 mA,
VDD = 5 V
3.8
-
IIO= 10 mA,
VDD = 3.3 V
1.9(1)
-
IIO= 20 mA,
VDD = 5 V
2.9(1)
-
Unit
V
1. Data based on characterization results, not tested in production.
10.3.7
Typical output level curves
The following figures show the typical output level curves measured with the output on a
single pin.
Figure 27. Typ. VOL @ VDD = 3.3 V (standard
ports)
Figure 28. Typ. VOL @ VDD = 5.0 V (standard
ports)
DocID14771 Rev 15
75/121
90
Electrical characteristics
STM8S105x4/6
Figure 29. Typ. VOL @ VDD = 3.3 V (true open
drain ports)
Figure 30. Typ. VOL @ VDD = 5.0 V (true open
drain ports)
Figure 31. Typ. VOL @ VDD = 3.3 V (high sink
ports)
Figure 32. Typ. VOL @ VDD = 5.0 V (high sink
ports)
76/121
DocID14771 Rev 15
STM8S105x4/6
Electrical characteristics
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V
(standard ports)
Figure 34. Typ. VDD - VOH @ VDD = 5.0 V
(standard ports)
Figure 35. Typ. VDD - VOH @ VDD = 3.3 V (high
sink ports)
Figure 36. Typ. VDD - VOH @ VDD = 5.0 V (high
sink ports)
DocID14771 Rev 15
77/121
90
Electrical characteristics
10.3.8
STM8S105x4/6
Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 41. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level voltage(1)
-
-0.3
-
0.3 x VDD
VIH(NRST)
NRST input high level voltage(1)
IOL= 2 mA
0.7 x VDD
-
VDD+ 0.3
VOL(NRST)
NRST output low level voltage(1)
IOL= 3 mA
-
-
0.5
-
30
55
80
RPU(NRST)
NRST pull-up
resistor(2)
tIFP(NRST)
NRST input filtered pulse(3)
-
-
-
75
tINFP(NRST)
NRST Input not filtered pulse(3)
-
500
-
-
NRST output pulse(3)
-
20
-
-
tOP(NRST)
1. Data based on characterization results, not tested in production.
2. The RPU pull-up equivalent resistor is based on a resistive transistor.
3. Data guaranteed by design, not tested in production.
Figure 37. Typical NRST VIL and VIH vs VDD @ 4 temperatures
78/121
DocID14771 Rev 15
Unit
V
k
ns
µs
STM8S105x4/6
Electrical characteristics
Figure 38. Typical NRST pull-up resistance RPU vs VDD @ 4 temperatures
Figure 39. Typical NRST pull-up current Ipu vs VDD @ 4 temperatures
The reset network shown in Figure 40 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 41:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is
100 nF.
DocID14771 Rev 15
79/121
90
Electrical characteristics
STM8S105x4/6
Figure 40. Recommended reset pin protection
670
9''
538
([WHUQDO
UHVHW
FLUFXLW
1567
)LOWHU
ȝ)
2SWLRQDO
06Y9
10.3.9
SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 42 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 42. SPI characteristics
Symbol
fSCK
1/tc(SCK)
80/121
Conditions(1)
Parameter
SPI clock frequency
Min
Max
Master mode
0
8
Slave mode
0
6
DocID14771 Rev 15
Unit
MHz
STM8S105x4/6
Electrical characteristics
Table 42. SPI characteristics (continued)
Symbol
Conditions(1)
Parameter
Min
Max
-
25
SPI clock rise and fall
time
Capacitive load: 
C = 30 pF
tsu(NSS)(2)
NSS setup time
Slave mode
4 * tMASTER
-
th(NSS)(2)
NSS hold time
Slave mode
70
-
Master mode
tSCK/2 - 15
tSCK/2 + 15
Master mode
5
-
Slave mode
5
-
Master mode
7
-
Slave mode
10
-
Data output access time
Slave mode
-
3* tMASTER
Data output disable time
Slave mode
25
-
tv(SO)(2)
Data output valid time
Slave mode
(after enable edge)
-
73
tv(MO)(2)
Data output valid time
Master mode (after
enable edge)
-
36
Slave mode (after
enable edge)
28
-
Master mode (after
enable edge)
12
-
tr(SCK)
tf(SCK)
(2)
tw(SCKH)
SCK high and low time
tw(SCKL)(2)
tsu(MI)(2)
tsu(SI)(2)
Data input setup time
th(MI)(2)
th(SI)(2)
Data input hold time
ta(SO)
(2)(3)
tdis(SO)
(2)(4)
th(SO)(2)
Data output hold time
th(MO)(2)
Unit
ns
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z.
DocID14771 Rev 15
81/121
90
Electrical characteristics
STM8S105x4/6
Figure 41. SPI timing diagram where slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
&3+$ &32/ W962
WD62
0,62
287387
WU6&.
WI6&.
WK62
06%287
%,7287
06%,1
%,7,1
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 42. SPI timing diagram where slave mode and CPHA = 1
166LQSXW
6&.LQSXW
W68166
&3+$
&32/
&3+$
&32/
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WU6&.
WI6&.
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WK166
WF6&.
06%,1
%,7,1
/6%,1
DLE
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
82/121
DocID14771 Rev 15
STM8S105x4/6
Electrical characteristics
Figure 43. SPI timing diagram - master mode
+LJK
166LQSXW
6&.2XWSXW
&3+$ &32/ 6&.2XWSXW
WF6&.
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
% , 7287
06%287
WY02
/6%287
WK02
DLF
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID14771 Rev 15
83/121
90
Electrical characteristics
10.3.10
STM8S105x4/6
I2C interface characteristics
Table 43. I2C characteristics
Standard mode I2C Fast mode I2C(1)
Symbol
Parameter
Unit
Min(2)
Max(2)
Min(2)
Max(2)
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0(3)
-
0(4)
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
(VDD = 3 to 5.5 V)
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
(VDD = 3 to 5.5 V)
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
tw(STO:STA)
STOP to START condition time 
(bus free)
4.7
-
1.3
-
Cb
Capacitive load for each bus line
-
400
-
400
µs
ns
µs
pF
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)
2. Data based on standard I2C protocol requirement, not tested in production
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
Figure 44. Typical application with I2C bus and timing diagram
9''
NŸ
9''
NŸ
,&EXV
670
Ÿ
6'$
Ÿ
6&/
5HSHDWHG
VWDUW
67$57
WVX67$
WZ67267$
6'$
WI6'$
WU6'$
WVX6'$
WK6'$
67$57
6723
6&/
WK67$
WZ6&/+
WZ6&//
WU6&/
WI6&/
WVX672
06Y9
84/121
DocID14771 Rev 15
STM8S105x4/6
10.3.11
Electrical characteristics
10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise
specified.
Table 44. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VDD= 2.95 to 5.5 V
1
-
4
VDD= 4.5 to 5.5 V
1
-
6
fADC
ADC clock frequency
VDDA
Analog supply
-
3.0
-
5.5
VREF+
Positive reference voltage
-
2.75(1)
-
VDDA
VREF-
Negative reference voltage
-
VSSA
-
0.5(1)
-
VSSA
-
VDDA
Devices with
external
VREF+/VREF-
VREF-
-
VREF+
-
-
3
-
fADC = 4 MHz
-
0.75
-
fADC = 6 MHz
-
0.5
-
-
-
7.0
-
VAIN
Conversion voltage range(2)
CADC
Internal sample and hold
capacitor
tS(2)
Minimum sampling time
tSTAB
Wakeup time from standby
tCONV
Minimum total conversion time
(including sampling time, 10bit resolution)
Unit
MHz
V
V
pF
µs
µs
fADC = 4 MHz
3.5
µs
fADC = 6 MHz
2.33
µs
-
14
1/fADC
1. Data guaranteed by design, not tested in production.
2. During the sample time, the sampling capacitance, CAIN (3 pF max), can be charged/discharged by the
external source. The internal resistance of the analog source must allow the capacitance to reach its final
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no
effect on the conversion result. Values for the sample clock tS depend on programming.
DocID14771 Rev 15
85/121
90
Electrical characteristics
STM8S105x4/6
Table 45. ADC accuracy with RAIN< 10 k, VDDA = 5 V
Symbol
|ET|
|EO|
|EG|
|ED|
|EL|
Parameter
Total unadjusted
Offset
Gain
error(2)
error(2)
error(2)
Differential linearity
Integral linearity
error(2)
error(2)
Conditions
Typ
Max(1)
fADC = 2 MHz
1.0
2.5
fADC = 4 MHz
1.4
3.0
fADC = 6 MHz
1.6
3.5
fADC = 2 MHz
0.6
2.0
fADC = 4 MHz
1.1
2.5
fADC = 6 MHz
1.2
2.5
fADC = 2 MHz
0.2
2.0
fADC = 4 MHz
0.6
2.5
fADC = 6 MHz
0.8
2.5
fADC = 2 MHz
0.7
1.5
fADC = 4 MHz
0.7
1.5
fADC = 6 MHz
0.8
1.5
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.6
1.5
fADC = 6 MHz
0.6
1.5
Unit
LSB
1. Data based on characterization results, not tested in production.
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
Table 46. ADC accuracy with RAIN< 10 k, VDDA = 3.3 V
Symbol
Parameter
|ET|
Total unadjusted error(2)
|EO|
Offset error(2)
|EG|
Gain error(2)
|ED|
Differential linearity error(2)
|EL|
Integral linearity error(2)
Conditions
Typ
Max(1)
fADC = 2 MHz
1.1
2.0
fADC = 4 MHz
1.6
2.5
fADC = 2 MHz
0.7
1.5
fADC = 4 MHz
1.3
2.0
fADC = 2 MHz
0.2
1.5
fADC = 4 MHz
0.5
2.0
fADC = 2 MHz
0.7
1.0
fADC = 4 MHz
0.7
1.0
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.6
1.5
1. Data based on characterization results, not tested in production.
86/121
DocID14771 Rev 15
Unit
LSB
STM8S105x4/6
Electrical characteristics
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
Figure 45. ADC accuracy characteristics
1023
1022
1021
EG
V
–V
DDA
SSA
1LSB
= ----------------------------------------IDEAL
1024
(2)
ET
7
(3)
(1)
6
5
4
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
1021102210231024
VDDA
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 46. Typical application with ADC
s
9$,1
5$,1
&$,1
/Edž
^dDϴ
97
9
97
9
ELW$'
FRQYHUVLRQ
,/
цϭђ
&$'&
06Y9
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
DocID14771 Rev 15
87/121
90
Electrical characteristics
10.3.12
STM8S105x4/6
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.

FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709 (EMC
design guide for STM microcontrollers).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring. See application note AN1015 (Software
techniques for improving microcontroller EMC performance).
Table 47. EMS data
Symbol
88/121
Parameter
Conditions
Level/class
VFESD
VDD 5 V, TA25 °C, 
Voltage limits to be applied on any I/O pin
fMASTER 16 MHz (HSI clock),
to induce a functional disturbance
Conforms to IEC 1000-4-2
2/B(1)
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD 5 V, TA25 °C, 
fMASTER 16 MHz (HSI clock),
Conforms to IEC 1000-4-4
4/A(1)
DocID14771 Rev 15
STM8S105x4/6
Electrical characteristics
1. Data obtained with HSI clock configuration, after applying the hardware recommendations described in
AN2860 (EMC guidelines for STM8S microcontrollers).
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC 61967-2 which specifies the board and the loading of each pin.
Table 48. EMI data
Conditions
Symbol
Parameter
General conditions
SEMI
Peak level
EMI level
VDD 5 V, 
TA 25 °C, 
LQFP48 package.
Conforming to 
IEC 61967-2
Monitored
frequency band
Max fHSE/fCPU(1)
8 MHz/
8 MHz
8 MHz/
16 MHz
0.1 MHz to 30 MHz
13
14
30 MHz to 130 MHz
23
19
130 MHz to 1 GHz
-4.0
-4.0
EMI level
2.0
1.5
Unit
dBµV
-
1. Data based on characterization results, not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD, DLU and LU) using specific measurement methods, the
product is stressed to determine its performance in terms of electrical sensitivity. For more
details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model
can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A
standard. For more details, refer to the application note AN1181.
Table 49. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
Unit
value(1)
VESD(HBM)
Electrostatic discharge voltage
(Human body model)
TA 25°C, conforming to
JESD22-A114
A
2000
VESD(CDM)
Electrostatic discharge voltage
(Charge device model)
TA 25°C, conforming to
SD22-C101
IV
1000
V
1. Data based on characterization results, not tested in production
DocID14771 Rev 15
89/121
90
Electrical characteristics
STM8S105x4/6
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance.

A supply overvoltage (applied to each power supply pin), and

A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 50. Electrical sensitivities
Symbol
Parameter
Conditions
Class(1)
TA 25 °C
LU
TA 85 °C
Static latch-up class
A
TA 125 °C
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
90/121
DocID14771 Rev 15
STM8S105x4/6
11
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
LQFP48 package information
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
3%!4).'
0,!.%
#
C
!
!
!
MM
'!5'%0,!.%
CCC #
$
+
!
$
,
,
$
0).
)$%.4)&)#!4)/.
%
%
B
%
11.1
E
"?-%?6
1. Drawing is not to scale.
DocID14771 Rev 15
91/121
107
Package information
STM8S105x4/6
Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
92/121
DocID14771 Rev 15
STM8S105x4/6
Package information
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
AID
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 49. LQFP48 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ 45.4
$5
'DWHFRGH
6WDQGDUG67ORJR
:
88
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
DocID14771 Rev 15
93/121
107
Package information
STM8S105x4/6
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
11.2
LQFP44 package information
Figure 50. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline
3%!4).'
0,!.%
!
!
!
#
MM
'!5'%0,!.%
#
!
CCC
+
,
$
,
$
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
:@.&
1. Drawing is not to scale.
94/121
DocID14771 Rev 15
STM8S105x4/6
Package information
Table 52. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
11.800
12.000
12.200
0.4646
0.4724
0.4803
D1
9.800
10.000
10.200
0.3858
0.3937
0.4016
D3
-
8.000
-
-
0.3150
-
E
11.800
12.000
12.200
0.4646
0.4724
0.4803
E1
9.800
10.000
10.200
0.3858
0.3937
0.4016
E3
-
8.000
-
-
0.3150
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID14771 Rev 15
95/121
107
Package information
STM8S105x4/6
Figure 51. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
<B)3
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
96/121
DocID14771 Rev 15
STM8S105x4/6
Package information
Figure 52. LQFP44 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
45.4
45$
'DWHFRGH
6WDQGDUG67ORJR
:
88
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID14771 Rev 15
97/121
107
Package information
11.3
STM8S105x4/6
LQFP32 package information
Figure 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC
'!5'%0,!.%
#
+
$
!
,
$
,
$
0).
)$%.4)&)#!4)/.
%
E
1. Drawing is not to scale.
98/121
%
%
B
DocID14771 Rev 15
7@.&@7
STM8S105x4/6
Package information
Table 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID14771 Rev 15
99/121
107
Package information
STM8S105x4/6
Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
6?&0?6
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 55. LQFP32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
45.4
,5$
'DWHFRGH
6WDQGDUG67ORJR
:
88
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
100/121
DocID14771 Rev 15
STM8S105x4/6
11.4
Package information
UFQFPN32 package information
Figure 56. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
'
$
H
'
$
$
GGG &
&
6($7,1*
3/$1(
E
H
(
E
( (
/
3,1,GHQWLILHU
'
/
!"?-%?6
1. Drawing is not to scale.
2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this backside pad to PCB ground.
4. Dimensions are in millimeters.
DocID14771 Rev 15
101/121
107
Package information
STM8S105x4/6
Table 54. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.152
-
-
0.0060
-
b
0.180
0.230
0.280
0.0071
0.0091
0.0110
D
4.900
5.000
5.100
0.1929
0.1969
0.2008
D1
3.400
3.500
3.600
0.1339
0.1378
0.1417
D2
3.400
3.500
3.600
0.1339
0.1378
0.1417
E
4.900
5.000
5.100
0.1929
0.1969
0.2008
E1
3.400
3.500
3.600
0.1339
0.1378
0.1417
E2
3.400
3.500
3.600
0.1339
0.1378
0.1417
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 57. UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
102/121
DocID14771 Rev 15
$%B)3B9
STM8S105x4/6
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 58. UFQFPN32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
4,
'DWHFRGH
:
88
6WDQGDUG67ORJR
5HYLVLRQFRGH
3
3LQLGHQWLILHU
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID14771 Rev 15
103/121
107
Package information
11.5
STM8S105x4/6
SDIP32 package information
Figure 59. SDIP32 package outline
%
%
!
!
"
"
!
,
E
E!
#
E"
$
?-%
Table 55. SDIP32 package mechanical data
inches(1)
mm
Dim.
104/121
Min
Typ
Max
Min
Typ
Max
A
3.556
3.759
5.080
0.1400
0.1480
0.2000
A1
0.508
-
-
0.0200
-
-
A2
3.048
3.556
4.572
0.1200
0.1400
0.1800
B
0.356
0.457
0.584
0.0140
0.0180
0.0230
B1
0.762
1.016
1.397
0.0300
0.0400
0.0550
C
0.203
0.254
0.356
0.0079
0.0100
0.0140
D
27.430
27.940
28.450
1.0799
1.1000
1.1201
E
9.906
10.410
11.050
0.3900
0.4098
0.4350
E1
7.620
8.890
9.398
0.3000
0.3500
0.3700
e
-
1.778
-
-
0.0700
-
eA
-
10.160
-
-
0.4000
-
DocID14771 Rev 15
STM8S105x4/6
Package information
Table 55. SDIP32 package mechanical data (continued)
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
eB
-
-
12.700
-
-
0.5000
L
2.540
3.048
3.810
0.1000
0.1200
0.1500
1. Values in inches are converted from mm and rounded to 4 decimal digits
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 60. SDIP32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ 5HYLVLRQFRGH
45.4,#
3LQLGHQWLILHU
6WDQGDUG67ORJR
3
'DWHFRGH
:88
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID14771 Rev 15
105/121
107
Thermal characteristics
12
STM8S105x4/6
Thermal characteristics
The maximum junction temperature (TJmax) of the device must never exceed the values
specified in Table 18: General operating conditions, otherwise the functionality of the device
cannot be guaranteed.
The maximum junction temperature TJmax, in degrees Celsius, may be calculated using the
following equation:
TJmax = TAmax + (PDmax x JA)
Where:

TAmax is the maximum ambient temperature in C

JA is the package junction-to-ambient thermal resistance in C/W

PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)

PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.

PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = (VOL*IOL) + ((VDD-VOH)*IOH), 
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 56. Thermal characteristics(1)
Symbol
Parameter
Value
Unit
Thermal resistance junction-ambient
LQFP48 - 7x7 mm
Thermal resistance junction-ambient
LQFP44 - 10x10 mm
JA
Thermal resistance junction-ambient
LQFP32 - 7x7 mm
Thermal resistance junction-ambient
UFQFPN32 - 5x5 mm
Thermal resistance junction-ambient
SDIP32 - 400 ml
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
12.1
Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
106/121
DocID14771 Rev 15
°C/W
STM8S105x4/6
12.2
Thermal characteristics
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Section 13: Ordering information).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax= 82°C (measured according to JESD51-2),
IDDmax = 15 mA, VDD = 5.5 V
Maximum 8 standard I/Os used at the same time in output at low level with
IOL = 10 mA, VOL= 2 V
Maximum 4 high sink I/Os used at the same time in output at low level with
IOL = 20 mA, VOL= 1.5 V
Maximum 2 true open drain I/Os used at the same time in output at low level with
IOL = 20 mA, VOL= 2 V
PINTmax = 15 mA x 5.5 V= 82.5 mW
PIOmax = (10 mA x 2 V x 8) + (20 mA x 2 V x 2) + (20 mA x 1.5 V x 4) = 360 mW
This gives: PINTmax = 82.5 mW and PIOmax = 360 mW:
PDmax = 82.5 mW + 360 mW
Thus: PDmax = 443 mW.
Using the values obtained in Table 56: Thermal characteristics TJmax is calculated as
follows:
For LQFP32 60°C/W
TJmax = 82°C + (60°C/W x 443 mW) = 82°C + 27°C = 109 °C
This is within the range of the suffix 6 version parts (-40 < TJ < 131°C).
Parts must be ordered at least with the temperature range suffix 3.
DocID14771 Rev 15
107/121
107
Ordering information
13
STM8S105x4/6
Ordering information
Figure 61. STM8S105x4/6 access line ordering information scheme(1)
STM8
Example:
S
105
K
4
T
6
TR
Product class
STM8 microcontroller
Family type
S = Standard
Sub-family type
10x = Access line
105 sub-family
Pin count
K = 32 pins
S = 44 pins
C = 48 pins
Program memory size
4 = 16 Kbyte
6 = 32 Kbyte
Package type
B = SDIP
T = LQFP
U = UFQFPN
Temperature range
3 = -40 to 125 °C
6 = -40 to 85 °C
Package pitch/thickness
Blank = 0.5 mm
C = 0.8 mm
A = 0.55 mm thickness for UFQFPN32
Packing
No character = Tray or tube
TR = Tape and reel
1. A dedicated ordering information scheme will be released if, in the future, memory programming service
(FastROM) is required The letter “P” will be added after STM8S. Three unique letters identifying the
customer application code will also be visible in the codification. Example: STM8SP103K3MACTR.
For a list of available options (for example memory size, package) and orderable part
numbers or for further information on any aspect of this device, please go to www.st.com or
contact the nearest ST Sales Office.
108/121
DocID14771 Rev 15
STM8S105x4/6
13.1
Ordering information
STM8S105 FASTROM microcontroller option list
(last update: September 2010)
Customer
...............................................................................
Address
...............................................................................
Contact
...............................................................................
Phone number
...............................................................................
FASTROM code reference(1)
...............................................................................
1. The FASTROM code name is assigned by STMicroelectronics.
The preferable format for programing code is .Hex (.s19 is accepted)
If data EEPROM programing is required, a separate file must be sent with the requested
data.
Note:
See the option byte section in the datasheet for authorized option byte combinations and a
detailed explanation.
Device type/memory size/package (check only one option)
FASTROM device
16 Kbyte
32 Kbyte
LQFP32
[ ] STM8S105K4
[ ] STM8S105K6
LQFP44
[ ] STM8S105S4
[ ] STM8S105S6
LQFP48
[ ] STM8S105C4
[ ] STM8S105C6
Conditioning (check only one option)
[ ] Tape and reel or [ ] Tray
Special marking (check only one option)
[ ] No [ ] Yes
Authorized characters are letters, digits, '.', '-', '/' and spaces only. Maximum character
counts are:
LQFP32: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”
LQFP44: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”
LQFP48: 2 lines of 8 characters max: “_ _ _ _ _ _ _ _” and “_ _ _ _ _ _ _ _”
Temperature range
[ ] -40°C to +85°C or [ ] -40°C to +125°C
DocID14771 Rev 15
109/121
115
Ordering information
STM8S105x4/6
Padding value for unused program memory (check only one option)
[ ] 0xFF
Fixed value
[ ] 0x83
TRAP instruction code
[ ] 0x75
Illegal opcode (causes a reset when executed)
OTP0 memory readout protection (check only one option)
[ ] Disable or [ ] Enable
OTP1 user boot code area (UBC)
0x(_ _) fill in the hexadecimal value, referring to the datasheet and the binary format below:
UBC, bit0
[ ] 0: Reset
[ ] 1: Set
UBC, bit1
[ ] 0: Reset
[ ] 1: Set
UBC, bit2
[ ] 0: Reset
[ ] 1: Set
UBC, bit3
[ ] 0: Reset
[ ] 1: Set
UBC, bit4
[ ] 0: Reset
[ ] 1: Set
UBC, bit5
[ ] 0: Reset
[ ] 1: Set
OTP2 alternate function remapping
110/121
AFR0
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D3 alternate function = ADC_ETR
AFR1
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port A3 alternate function = TIM3_CH1, port D2 alternate
function = TIM2_CH3
AFR2
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D0 alternate function = CLK_CCO
Note: if both AFR2 and AFR3 are activated, AFR2 option has
priority over AFR3.
AFR3
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D0 alternate function = TIM1_BKIN
DocID14771 Rev 15
STM8S105x4/6
Ordering information
AFR4
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D7 alternate function = TIM1_CH4
AFR5
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port B3 alternate function = TIM1_ETR, port B2 alternate
function = TIM1_NCC3, port B1 alternate function =
TIM1_CH2N, port B0 alternate function = TIM1_CH1N.
AFR6
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port B5 alternate function = I2C_SDA, port B4 alternate
function = I2C_SCL
AFR6
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D4 alternate function = BEEP.
OPT3 watchdog
WWDG_HALT
(check only one option)
[ ] 0: No reset generated on halt if WWDG active[
[ ] 1: Reset generated on halt if WWDG active
WWDG_HW
(check only one option)
[ ] 0: WWDG activated by software
[ ] 1: WWDG activated by hardware
IWDG_HW
(check only one option)
[ ] 0: IWDG activated by software
[ ] 1: IWDG activated by hardware
LSI_EN
(check only one option)
[ ] 0: LSI clock is not available as CPU clock source
[ ] 1: LSI clock is available as CPU clock source
HSITRIM
(check only one option)
[ ] 0: 3-bit trimming supported in CLK_HSITRIMR register
[ ] 1: 4-bit trimming supported in CLK_HSITRIMR register
OPT4 watchdog
PRSC
(check only one option)
[ ] for 16 MHz to 128 kHz prescaler
[ ] for 8 MHz to 128 kHz prescaler
[ ] for 4 MHz to 128 kHz prescaler
CKAWUSEL
(check only one option)
[ ] LSI clock source selected for AWU
[ ] HSE clock with prescaler selected as clock source for AWU
EXTCLK
(check only one option)
[ ] External crystal connected to OSCIN/OSCOUT
[ ] External signal on OSCIN
DocID14771 Rev 15
111/121
115
Ordering information
STM8S105x4/6
OPT5 crystal oscillator stabilization HSECNT (check only one option)
[ ] 2048 HSE cycles
[ ] 128 HSE cycles
[ ] 8 HSE cycles
[ ] 0.5 HSE cycles
OTP6 is reserved
OTP7 is reserved
OTPBL bootloader option byte (check only one option)
Refer to the UM0560 (STM8L/S bootloader manual) for more details.
[ ] Disable (00h)
[ ] Enable (55h)
Comments:
.........................................................................................
Supply operating range in the application: .........................................................................................
112/121
Notes:
.........................................................................................
Date:
.........................................................................................
Signature:
.........................................................................................
DocID14771 Rev 15
STM8S105x4/6
14
STM8 development tools
STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
14.1
Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in application execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to
order exactly what you need to meet your development requirements and to adapt your
emulation system to support existing and future ST microcontrollers.
14.1.1
STice key features

Occurrence and time profiling and code coverage (new features),

Advanced breakpoints with up to 4 levels of conditions,

Data breakpoints,

Program and data trace recording up to 128 KB records,

Read/write on the fly of memory during emulation,

In-circuit debugging/programming via SWIM protocol,

8-bit probe analyzer,

1 input and 2 output triggers,

Power supply follower managing application voltages between 1.62 to 5.5 V,

Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements.

Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
DocID14771 Rev 15
113/121
115
STM8 development tools
14.2
STM8S105x4/6
Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8, which are available in a free version that outputs up
to 16 Kbytes of code.
14.2.1
STM8 toolset
The STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:

Seamless integration of C and ASM toolsets

Full-featured debugger

Project management

Syntax highlighting editor

Integrated programming interface

Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8
Flash program memory, data EEPROM and option bytes. STVP also offers project mode for
the saving of programming configurations and the automation of programming sequences.
14.2.2
C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of user
applications directly from an easy-to-use graphical interface.
Available toolchains include:
C compiler for STM8
Available in a free version that outputs up to 16 Kbytes of code. For more information, see
www.cosmic-software.com.
STM8 assembler linker
Free assembly toolchain included in the STVD toolset, used to assemble and link the user
application source code.
114/121
DocID14771 Rev 15
STM8S105x4/6
14.3
STM8 development tools
Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on the application board via the SWIM protocol. Additional tools include a
low-cost in-circuit programmer as well as ST socket boards, which provide dedicated
programming platforms with sockets for the STM8 programming.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
DocID14771 Rev 15
115/121
115
Revision history
15
STM8S105x4/6
Revision history
Table 57. Document revision history
Date
Revision
05-Jun-2018
1
Initial release.
2
Corrected the number of high sink outputs to 9 in I/Os in
Features.
Updated part numbers in STM8S105xx access line
features.
3
Updated the part numbers in STM8S105xx access line
features.
USART renamed UART1, LINUART renamed UART2.
Added Table: Pin-to-pin comparison of pin 7 to 12 in 32pin access line devices.
4
Removed STM8S102xx and STM8S104xx root part
numbers corresponding to devices without data
EEPROM.
Updated STM8S103 pinout section
Added low and medium density Flash memory
categories.
Added Note 1 in Section: Current characteristics.
Updated Section: Option bytes.
05-Feb-2009
5
Updated STM8S103 pinout.
Updated number of High Sink I/Os in the pinout section.
TSSOP20 pinout modified (PD4 moved to pin 1 etc.)
Added WFQFN20 package
Updated Section: Option bytes.
Added Section: Memory and register map.
27-Feb-2009
6
Removed STM8S103x products (separate STM8S103
datasheet created).
Updated Section: Electrical characteristics.
23-Jun-2018
12-Aug-2008
17-Sep-2008
116/121
Changes
DocID14771 Rev 15
STM8S105x4/6
Revision history
Table 57. Document revision history (continued)
Date
12-May-2009
10-Jun-2009
Revision
Changes
7
Added SDIP32 silhouette and package to Features and
Section: SDIP32 package mechanical data; updated
Section: Pinout and pin description.
Updated VDD range (2.95 V to 5.5 V) on Features.
Amended name of package VQFPN32.
Added Table 5 on page 22.
Updated Section: Auto wakeup counter.
Updated pins 25, 30, and 31 in Section: Pinout and pin
description.
Removed Table 7: Pin-to-pin comparison of pin 7 to 12
in 32-pin access line devices.
Added Table: Description of alternate function
remapping bits [7:0] of OPT2.
Section: Electrical characteristics: Updated VCAP
specifications; updated Table 15, Table 18, Table 20,
Table 21, Table 22, Table 23, Table 24, Table 25, Table
26, Table 27, Table 29, Table 35, and Table 42; added
current consumption curves; removed Figure 20: typical
HSE frequency vs fcpu @ 4 temperatures; updated
Figure 13, Figure 14, Figure 15, Figure 16 and Figure
17; modified HSI accuracy in Table 33 ; added Figure
44; modified fSCK, tV(SO) and tV(MO) in Table 42; updated
figures and tables of High speed internal RC oscillator
(HSI); replaced Figure 23, Figure 24, Figure 26, and
Figure 39.
Section Package information: updated Section: Thermal
characteristics and removed Table 57: Junction
temperature range. Updated Section: STM8S105xx
access line ordering information scheme.
8
Document status changed from “preliminary data” to
“datasheet”.
Standardized the name of the VFQFPN package.
Removed ‘wpu’ from I2C pins Section: Pinout and pin
description
DocID14771 Rev 15
117/121
120
Revision history
STM8S105x4/6
Table 57. Document revision history (continued)
Date
21-Apr-2010
118/121
Revision
Changes
9
Added UFQFPN32 package silhouette to the title page.
In Features: added unique ID.
Section: Clock controller: updated bit positions for TIM2
and TIM3.
Section: Beeper: added information about availability of
the beeper output port through option bit AFR7.
Section: Analog-to-digital converter (ADC1): added a
note concerning additional AIN12 analog input.
Section: STM8S105 pinouts and pin description: added
UFQFPN32 package details; updated default alternate
function of PB2/AIN2[TIM1_CH3N] pin in the "Pin
description for STM8S105 microcontrollers" table.
Section: Option bytes: added description of STM8L
bootloader option bytes to the option byte description
table.
Added Section: Unique ID
Section: Operating conditions: added introductory text;
removed low power dissipation condition for TA,
replaced "CEXT" by "VCAP", and added ESR and ESL
data in table "general operating conditions".
Section: Total current consumption in halt mode:
replaced max value of IDD(H) at 85 °C from 20 µA to 25
µA for the condition "Flash in powerdown mode, HSI
clock after wakeup in the table "total current
consumption in halt mode at VDD = 5 V.
Section: Low power mode wakeup times: added first
condition (0 to 16 MHz) for the tWU(WFI) parameter in the
table "wakeup times".
Section: Internal clock sources and timing
characteristics: In the table: HSI oscillator
characteristics, replaced min and max values of
ACCHSI factory calibrated parameter and removed
footnote 4 concerning further characterization of results.
Section: Functional EMS (electromagnetic
susceptibility): IEC 1000 replaced with IEC 61000.
Section: Designing hardened software to avoid noise
problems: IEC 1000 replaced with IEC 61000.
Section: Electromagnetic interference (EMI): SAE J
1752/3 replaced with IEC61967-2.
Section: Thermal characteristics: Replaced the thermal
resistance junction ambient temperature of LQFP32 7X7
mm from 59 °C to 60 °C in the thermal characteristics
table.
Added Section: 32-lead UFQFPN package mechanical
data.
Added Section STM8S105 FASTROM microcontroller
option list.
DocID14771 Rev 15
STM8S105x4/6
Revision history
Table 57. Document revision history (continued)
Date
Revision
Changes
10
Table: Legend/Abbreviations for pinout tables: updated
"reset state"; removed "HS", (T), and "[ ]".
Section: Pin description for STM8S105 microcontrollers:
added footnotes to the PF4 and PD1 pins.
Table: I/O port hardware register map: changed reset
status of Px_IDR from 0x00 to 0xXX.
Table: General hardware register map: Standardized all
address and reset state values; updated the reset state
values of the RST_SR, CLK_SWCR, CLK_HSITRIMR,
CLK_SWIMCCR, IWDG_KR, UART2_DR, and
ADC_DRx registers; replaced reserved address "0x00
5248" with the UART2_CR5.
Section: Recommended reset pin protection: replaced
0.01 µF with 0.1 µF
Updated Figure: Typical application with I2C bus and
timing diagram.
Updated Table: ADC accuracy with RAIN < 10 kohm ,
VDDA = 5 V footnote 1 in and Table: ADC accuracy with
RAIN < 10 kohm RAIN, VDDA = 3.3 V.
Section: STM8S105 FASTROM microcontroller option
list: removed bits 6 and 7 from OPT1 user boot code
area (UBC); added "disable" to 00h and "enable" to 55h
of OPTBL bootloader option byte.
Section: VFQFPN Package Mechanical data: replaced
note 1 and added note 2.
04-Apr-2012
11
Removed VFQFPN32 package.
Modified Section: Description.
Remove weak pull-up input for PE1 and PE2 in Table:
Pin description for STM8S105 microcontrollers
Updated Table: Interrupt mapping for TIM2 and TIM4.
Updated notes related to VCAP in xm-replace_text
General operating conditions.
Added values of tR/tF for 50 pF load capacitance, and
updated note in Section: I/O static characteristics.
Updated typical and maximum values of RPU in Table:
I/O static characteristics and Table: RST pin
characteristics.
Changed SCK input to SCK output in Table: SPI serial
peripheral interface.
Added JA for UFQFPN32 and SDIP32 in Table:
Thermal characteristics, and updated Section: Selecting
the product temperature range
28-Jun-2012
12
Added UFQFPN package thickness in Figure:
STM8S105xx access line ordering information scheme
21-Sep-2010
DocID14771 Rev 15
119/121
120
Revision history
STM8S105x4/6
Table 57. Document revision history (continued)
Date
Revision
Changes
13
UART2_CK mapped to correct pin (pin 24) in Figure:
LQFP 44-pin pinout.
Reserved area updated in Table: Option bytes.
Package Information updated in Table: 32-lead ultra thin
fine pitch quad flat no-lead package mechanical data.
01-Jul-2015
14
Added:
– Figure 49: LQFP48 marking example (package top
view),
– Figure 52: LQFP44 marking example (package top
view),
– Figure 55: LQFP32 marking example (package top
view),
– Figure 58: UFQFPN32 marking example (package top
view),
– Figure 60: SDIP32 marking example (package top
view).
Updated:
– Figure 41: SPI timing diagram where slave mode and
CPHA = 0,
– the standard for EMI data in Table 48: EMI data.
23-Sep-2015
15
Added the footnotes related to Figure 56: UFQFPN32 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad
flat package outline.
07-Feb-2014
120/121
DocID14771 Rev 15
STM8S105x4/6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID14771 Rev 15
121/121
121