Datasheet - STMicroelectronics

STM8S103F2 STM8S103F3
STM8S103K3
Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash,
data EEPROM,10-bit ADC, 3 timers, UART, SPI, I²C
Datasheet - production data
Features
Core
 16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
/4)3
[PP
6',3
PLOV
8)4)31
[PP
 Extended instruction set
Memories
 Program memory: 8 Kbytes Flash; data
retention 20 years at 55 °C after 10 kcycles
 Data memory: 640 bytes true data EEPROM;
endurance 300 kcycles
76623
PPERG\
62
PLOV
8)4)31
[PP
06Y9
 RAM: 1 Kbytes
 16-bit general purpose timer, with 3 CAPCOM
channels (IC, OC or PWM)
Clock, reset and supply management
 8-bit basic timer with 8-bit prescaler
 2.95 to 5.5 V operating voltage
 Auto wake-up timer
 Flexible clock control, 4 master clock sources
– Low power crystal resonator oscillator
– External clock input
– Internal, user-trimmable 16 MHz RC
– Internal low-power 128 kHz RC
Communication interfaces
 Clock security system with clock monitor
 SPI interface up to 8 Mbit/s
 Power management:
– Low-power modes (wait, active-halt, halt)
– Switch-off peripheral clocks individually
 Window watchdog and independent watchdog
timers
 UART with clock output for synchronous
operation, SmartCard, IrDA, LIN master mode
 I2C interface up to 400 kbit/s
Analog to digital converter (ADC)
 Permanently active, low consumption poweron and power-down reset
 10-bit, ±1 LSB ADC with up to 5 multiplexed
channels, scan mode and analog watchdog
Interrupt management
I/Os
 Nested interrupt controller with 32 interrupts
 Up to 27 external interrupts on 6 vectors
 Up to 28 I/Os on a 32-pin package including 21
high sink outputs
Timers
 Highly robust I/O design, immune against
current injection
 Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-time
insertion and flexible synchronization
Unique ID
March 2015
This is information on a product in full production.
 96-bit unique key for each device
DocID15441 Rev 12
1/118
www.st.com
Contents
STM8S103F2 STM8S103F3 STM8S103K3
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
4.1
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 13
4.3
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 13
4.5
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8
Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.10
TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.11
TIM2 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.12
TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.13
Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.14
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14.2
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14.3
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1
STM8S103K3 UFQFPN32/LQFP32/SDIP32 pinout and pin
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2
STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3
2/118
4.14.1
5.2.1
STM8S103F2/F3 TSSOP20/SO20 pinout . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2
STM8S103F2/F3 UFQFPN20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
6
Contents
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.2
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.3
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 41
7
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.1
Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3.1
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.3.2
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.3.3
External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 64
10.3.4
Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 67
10.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.3.6
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.3.7
Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.3.8
SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.3.9
I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.1
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DocID15441 Rev 12
3/118
4
Contents
12
13
STM8S103F2 STM8S103F3 STM8S103K3
11.2
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.3
UFQFPN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.4
SDIP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.5
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.6
SO20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.7
UFQFPN recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 105
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.1
14
STM8S103 FASTROM microcontroller option list . . . . . . . . . . . . . . . . . 107
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
14.1
Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 111
14.1.1
14.2
14.3
15
4/118
STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
14.2.1
STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
14.2.2
C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
STM8S103F2/x3 access line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers . . . . . . . . . . . . . . . 15
TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Legend/abbreviations for pin description tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STM8S103K3 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STM8S103F2 and STM8S103F3 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STM8S103K3 alternate function remapping bits for 32-pin devices . . . . . . . . . . . . . . . . . . 47
STM8S103Fx alternate function remapping bits for 20-pin devices . . . . . . . . . . . . . . . . . . 48
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Total current consumption with code execution in run mode at VDD = 5 V. . . . . . . . . . . . . 55
Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 56
Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 58
Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 58
Total current consumption in halt mode at VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 60
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ADC accuracy with RAIN< 10 k, VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADC accuracy with RAIN< 10 k, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DocID15441 Rev 12
5/118
6
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
6/118
STM8S103F2 STM8S103F3 STM8S103K3
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LQFP32 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
UFQFPN20 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SDIP32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
TSSOP20 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SO20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
STM8S103F2/x3 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
STM8S103K3 UFQFPN32/LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM8S103K3 SDIP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STM8S103F2/F3 TSSOP20/SO20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM8S103F2/F3 UFQFPN20-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . 61
Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 61
Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typ IDD(WFI) vs. VDD HSE external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typ IDD(WFI) vs. fCPU HSE external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical HSI frequency variation vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical LSI frequency variation vs VDD@ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typ. VOL @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
VOL @ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VOL @ VDD = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VOL @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VDD - VOH @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typ. VDD - VOH @ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typ. VDD - VOH @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical NRST VIL and VIH vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical NRST pull-up resistance RPU vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . 76
Typical NRST pull-up current Ipu vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 76
Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
SPI timing diagram where slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SPI timing diagram where slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
LQFP2 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat 
DocID15441 Rev 12
7/118
8
List of figures
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
8/118
STM8S103F2 STM8S103F3 STM8S103K3
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat 
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
UFQFPN20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
UFQFPN20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SDIP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SDIP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
TSSOP20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
TSSOP20 recommended package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SO20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SO20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
UFQFPN recommended footprint for on-board emulation . . . . . . . . . . . . . . . . . . . . . . . . 102
UFQFPN recommended footprint without on-board emulation. . . . . . . . . . . . . . . . . . . . . 103
STM8S103F2/x3 access line ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . 106
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
1
Introduction
Introduction
This datasheet contains the description of the device features, pinout, electrical
characteristics, mechanical data and ordering information.

For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S microcontroller family reference manual
(RM0016).

For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash programming manual (PM0051).

For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).

For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
DocID15441 Rev 12
9/118
20
Description
2
STM8S103F2 STM8S103F3 STM8S103K3
Description
The STM8S103F2/x3 access line 8-bit microcontrollers offer 8 Kbytes Flash program
memory, plus integrated true data EEPROM. The STM8S microcontroller family reference
manual (RM0016) refers to devices in this family as low-density. They provide the following
benefits: performance, robustness, and reduced system cost.
Device performance and robustness are ensured by advanced core and peripherals made
in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent
watchdogs with separate clock source, and a clock security system.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
watchdog and brown-out reset.
Full documentation is offered as well as a wide choice of development tools.
Table 1. STM8S103F2/x3 access line features
Device
STM8S103K3
STM8S103F3
STM8S103F2
Pin count
32
20
20
Maximum number of
GPIOs (I/Os)
28
16
16
Ext. interrupt pins
27
16
16
Timer CAPCOM
channels
7
7
7
Timer complementary
outputs
3
2
2
A/D converter channels
4
5
5
High sink I/Os
21
12
12
Low density Flash
program memory
(bytes)
8K
8K
4K
640(1)
640(1)
640(1)
1K
1K
1K
Data EEPROM (bytes)
RAM (bytes)
Peripheral set
1.
10/118
Multipurpose timer (TIM1), SPI, I2C, UART window WDG, independent
WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)
No read-while-write (RWW) capability.
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Block diagram
Figure 1. STM8S103F2/x3 block diagram
5HVHWEORFN
;7$/0+]
&ORFNFRQWUROOHU
5HVHW
5HVHW
5&LQW0+]
%25
325
'HWHFWRU
5&LQWN+]
&ORFNWRSHULSKHUDOVDQGFRUH
:LQGRZ
:'*
670
FRUH
,QGHSHQGHQW:'*
6LQJOHZLUH
GHEXJLQWHUI
.E\WHV
3URJUDP
)ODVK
'HEXJ6:,0
E\WHV
GDWD((3520
.ELWV
,&
0ELWV
63,
/,1PDVWHU
63,HPXO
$GGUHVVDQGGDWDEXV
3
Block diagram
.E\WH
5$0
ELWDGYDQFHG
FRQWUROWLPHU70
8SWR&$3&20
FKDQQHOV
FRPSOHPHQWDU\
RXWSXWV
ELWJHQHUDOSXUSRVH
7LPHU7,0
8SWR&$3&20
FKDQQHOV
8$57
8SWR
FKDQQHOV
$'&
N+]
EHHS
%HHSHU
ELWEDVLFWLPHU
7,0
$:8WLPHU
06Y9
DocID15441 Rev 12
11/118
20
Product overview
4
STM8S103F2 STM8S103F3 STM8S103K3
Product overview
The following section provides an overview of the basic features of the device functional
modules and peripherals.
For more detailed information please refer to the corresponding family reference manual
(RM0016).
4.1
Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers

Harvard architecture

3-stage pipeline

32-bit wide program memory bus - single cycle fetching for most instructions

X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations

8-bit accumulator

24-bit program counter - 16-Mbyte linear memory space

16-bit stack pointer - access to a 64 K-level stack

8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing

20 addressing modes

Indexed indirect addressing mode for look-up tables located anywhere in the address
space

Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
12/118

80 instructions with 2-byte average instruction size

Standard data movement and logic/arithmetic functions

8-bit by 8-bit multiplication

16-bit by 8-bit and 16-bit by 16-bit division

Bit manipulation

Data transfer between stack and accumulator (push/pop) with direct stack access

Data transfer using the X and Y registers or direct memory-to-memory transfers
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
4.2
Product overview
Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory
programming. The interface can be activated in all device operation modes. The maximum
data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in realtime by means of shadow registers.
4.3
4.4

R/W to RAM and peripheral registers in real-time

R/W access to all resources by stalling the CPU

Breakpoints on all program-memory instructions (software breakpoints)

Two advanced breakpoints, 23 predefined configurations
Interrupt controller

Nested interrupts with three software priority levels

32 interrupt vectors with hardware priority

Up to 27 external interrupts on 6 vectors including TLI

Trap and reset interrupts
Flash program and data EEPROM memory

8 Kbytes of Flash program single voltage Flash memory

640 bytes true data EEPROM

User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to write to
data EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of
memory known as UBC (user boot code). Refer to the figure below.
The size of the UBC is programmable through the UBC option byte, in increments of 1 page
(64-byte block) by programming the UBC option byte in ICP mode.
DocID15441 Rev 12
13/118
20
Product overview
STM8S103F2 STM8S103F3 STM8S103K3
This divides the program memory into two areas:

Main program memory: Up to 8 Kbytes minus UBC

User-specific boot code (UBC): Configurable up to 8 Kbytes
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
'DWDPHPRU\DUHDE\WHV
'DWD
((3520
PHPRU\
2SWLRQE\WHV
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
/RZGHQVLW\
)ODVKSURJUDP
PHPRU\
.E\WHV
3URJUDPPDEOHDUHD
IURPE\WHV
SDJHXSWR.E\WHV
LQSDJHVWHSV
3URJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
06Y9
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program and data
memory. Even if no protection can be considered as totally unbreakable, the feature
provides a very high level of protection for a general purpose microcontroller.
14/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
4.5
Product overview
Clock controller
The clock controller distributes the system clock (fMASTER) coming from different
oscillators to the core and the peripherals. It also manages clock gating for low power
modes and ensures clock robustness.
Features

Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.

Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.

Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.

Master clock sources: four different clock sources can be used to drive the master
clock:
–
1-16 MHz high-speed external crystal (HSE)
–
Up to 16 MHz high-speed user-external clock (HSE user-ext)
–
16 MHz high-speed internal RC oscillator (HSI)
–
128 kHz low-speed internal RC (LSI)

Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz
clock (HSI/8). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.

Clock security system (CSS): This feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can optionally be generated.

Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit
Peripheral
clock
Bit
Peripheral
clock
Bit
Peripheral
clock
Bit
Peripheral
clock
PCKEN17
TIM1
PCKEN13
UART1
PCKEN27
Reserved
PCKEN23
ADC
PCKEN16
Reserved
PCKEN12
Reserved
PCKEN26
Reserved
PCKEN22
AWU
PCKEN15
TIM2
PCKEN11
SPI
PCKEN25
Reserved
PCKEN21
Reserved
PCKEN14
TIM4
PCKEN10
I2C
PCKEN24
Reserved
PCKEN20
Reserved
DocID15441 Rev 12
15/118
20
Product overview
4.6
STM8S103F2 STM8S103F3 STM8S103K3
Power management
For efficient power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between lowest
power consumption, fastest start-up time and available wakeup sources.
4.7

Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.

Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake
up unit (AWU). The main voltage regulator is kept powered on, so current consumption
is higher than in active halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

Active halt mode with regulator off: This mode is the same as active halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time
is slower.

Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application software must refresh the counter before time-out and during a limited time
window.
A reset is generated in two situations:
1.
Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2.
Refresh out of window: The downcounter is refreshed before its value is lower than the
one stored in the window register.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure
16/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Product overview
The IWDG time base spans from 60 µs to 1 s.
4.8
4.9
Auto wakeup counter

Used for auto wakeup from active halt mode

Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock

LSI clock can be internally connected to TIM1 input capture channel 1 for calibration
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit
AFR7.
4.10
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver
4.11

16-bit up, down and up/down autoreload counter with 16-bit prescaler

Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output

Synchronization module to control the timer with external signals

Break input to force the timer outputs into a defined state

Three complementary outputs with adjustable dead time

Encoder mode

Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
TIM2 - 16-bit general purpose timer

16-bit auto reload (AR) up-counter

15-bit prescaler adjustable to fixed power of 2 ratios 1…32768

3 individually configurable capture/compare channels

PWM mode

Interrupt sources: 3 x input capture/output compare, 1 x overflow/update
DocID15441 Rev 12
17/118
20
Product overview
4.12
STM8S103F2 STM8S103F3 STM8S103K3
TIM4 - 8-bit basic timer

8-bit auto reload, adjustable prescaler ratio to any power of 2 from 1 to 128

Clock source: CPU clock

Interrupt source: 1 x overflow/update
Table 3. TIM timer features
Counter
size (bits)
Prescaler
Counting
mode
TIM1
16
Any integer
from 1 to
65536
Up/down
4
3
Yes
TIM2
16
Any power
of 2 from 1
to 32768
Up
3
0
No
TIM4
8
Any power
of 2 from 1
to 128
Up
0
0
No
Timer
4.13
CAPCOM Complementary
channels
outputs
Ext.
trigger
Timer
synchronization/
chaining
No
Analog-to-digital converter (ADC1)
The STM8S103F2/x3 family products contain a 10-bit successive approximation A/D
converter (ADC1) with up to 5 external multiplexed input channels and the following main
features:
4.14

Input voltage range: 0 to VDD

Conversion time: 14 clock cycles

Single and continuous and buffered continuous conversion modes

Buffer size (n x 10 bits) where n = number of input channels

Scan mode for single and continuous conversion of a sequence of channels

Analog watchdog capability with programmable upper and lower thresholds

Analog watchdog interrupt

External trigger input

Trigger from TIM1 TRGO

End of conversion (EOC) interrupt
Communication interfaces
The following communication interfaces are implemented:
18/118

UART1: Full feature UART, synchronous mode, SPI master mode, SmartCard mode,
IrDA mode, single wire mode, LIN2.1 master capability

SPI: Full and half-duplex, 8 Mbit/s

I²C: Up to 400 kbit/s
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
4.14.1
Product overview
UART1
Main features

One Mbit/s full duplex SCI

SPI emulation

High precision baud rate generator

SmartCard emulation

IrDA SIR encoder decoder

LIN master mode

Single wire half duplex mode
Asynchronous communication (UART mode)

Full duplex communication - NRZ standard format (mark/space)

Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable
of following any standard baud rate regardless of the input frequency

Separate enable bits for transmitter and receiver

Two receiver wakeup modes:
–
Address bit (MSB)
–
Idle line (interrupt)

Transmission error detection with interrupt generation

Parity control
Synchronous communication

Full duplex synchronous transfers

SPI master operation

8-bit data communication

Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)
LIN master mode
4.14.2

Emission: Generates 13-bit synch. break frame

Reception: Detects 11-bit break frame
SPI

Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave

Full duplex synchronous transfers

Simplex synchronous transfers on two lines with a possible bidirectional data line

Master or slave operation - selectable by hardware or software

CRC calculation

1 byte Tx and Rx buffer

Slave/master selection input pin
DocID15441 Rev 12
19/118
20
Product overview
4.14.3
I2C


20/118
STM8S103F2 STM8S103F3 STM8S103K3
I²C master features:
–
Clock generation
–
Start and stop generation
I²C slave features:
–
Programmable I2C address detection
–
Stop bit detection

Generation and detection of 7-bit/10-bit addressing and general call

Supports different communication speeds:
–
Standard speed (up to 100 kHz)
–
Fast speed (up to 400 kHz)
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
5
Pinout and pin description
Pinout and pin description
Table 4. Legend/abbreviations for pin description tables
Type
Level
Output speed
Port and control
configuration
Reset state
I= Input, O = Output, S = Power supply
Input
CM = CMOS
Output
HS = High sink
O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Input
float = floating,
wpu = weak pull-up
Output
T = True open drain,
OD = Open drain,
PP = Push pull
Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset
phase and after the internal reset release.
DocID15441 Rev 12
21/118
30
Pinout and pin description
5.1
STM8S103F2 STM8S103F3 STM8S103K3
STM8S103K3 UFQFPN32/LQFP32/SDIP32 pinout and pin
description
3'+67,0B%.,1>&/.B&&2@
3'+66:,0
3'+6>7,0B&+@
3'+67,0B&+$'&B(75
3'+6%((37,0B&+
3'+68$57B7;
3'+68$57B5;
3'+67/,>7,0B&+@
Figure 3. STM8S103K3 UFQFPN32/LQFP32 pinout
1567
3&+663,B0,62
26&,13$
3&+663,B026,
26&2873$
3&+663,B6&.
966
9&$3
3&+67,0B&+&/.B&&2
3&+67,0B&+
3(+663,B166
7,0B&+1$,1+63%
7,0B&+1$,1+63%
7,0B&+1$,1+63%
3&+67,0B&+8$57B&.
3)
7,0B(75$,1+63%
3&+67,0B&+
,&B6&/73%
3%
,&B6'$73%
3%
9''
>63,B166@7,0B&++63$
06Y9
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
22/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Pinout and pin description
Figure 4. STM8S103K3 SDIP32 pinout
>7,0B&+@$'&B(75+63'
%((37,0B&++63'
8$57B7;+63'
8$57B5;+63'
>7,0B&+@7/,+63'
1567
26&,13$
26&2873$
966
9&$3
9''
>63,B166@7,0B&++63$
3)
3%
3%
,&B6'$73%
3'+6>7,0B&+@
3'+66:,0
3'+67,0B%.,1>&/.B&&2@
3&+663,B0,62
3&+663,B026,
3&+663,B6&.
3&+67,0B&+&/.B&&2
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
3%+67,0B&+1$,1
3%+67,0B&+1$,1
3%+67,0B&+1$,1
3%+67,0B(75$,1
3%7,&B6&/
06Y9
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
Pin name
Type
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
6
1
NRST
I/O
-
X
-
-
-
-
-
Reset
7
2
PA1/
OSCIN(2)
I/O
X
X
X
-
O1
X
X
Port A1
Resonator/
crystal in
-
8
3
PA2/
OSCOUT
I/O
X
X
X
-
O1
X
X
Port A2
Resonator/
crystal out
-
9
4
VSS
S
-
-
-
-
-
-
-
Digital ground
-
10
5
VCAP
S
-
-
-
-
-
-
1.8 V regulator capacitor
-
11
6
VDD
S
-
-
-
-
-
-
-
Digital power supply
-
12
7
PA3/
TIM2_CH3
[SPI_NSS]
I/O
X
X
X
HS
O3
X
X
Port A3
Timer 2
channel 3
13
8
PF4
I/O
X
X
-
-
O1
X
X
Port F4
-
-
14
9
PB7
I/O
X
X
X
-
O1
X
X
Port B7
-
-
DocID15441 Rev 12
Main function
(after reset)
Default alternate
function
LQFP/ UFQFP32
Output
SDIP32
Input
Alternate function
after remap
[option bit]
Table 5. STM8S103K3 pin descriptions
-
SPI master/
slave select
[AFR1]
23/118
30
Pinout and pin description
STM8S103F2 STM8S103F3 STM8S103K3
Pin name
Type
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
15
10
PB6
I/O
X
X
X
-
O1
X
X
Port B6
-
-
16
11
PB5/
I2C_SDA
I/O
X
-
X
-
O1
T(3)
-
Port B5
I2C data
-
17
12
PB4/
I2C_SCL
I/O
X
-
X
-
O1
T
-
Port B4
I2C clock
-
18
13
PB3/AIN3/
TIM1_ETR
Port B3
Analog input
3/ Timer 1
external
trigger
-
19
PB2/AIN2/
14
TIM1_CH3N
Port B2
Analog input
2/ Timer 1 inverted
channel 3
-
20
PB1/AIN1/
15
TIM1_CH2N
Port B1
Analog input
1/ Timer 1 inverted
channel 2
-
21
PB0/AIN0/
16
TIM1_CH1N
I/O
X
X
X
HS
O3
X
X
Port B0
Analog input
0/ Timer 1 inverted
channel 1
-
22
17
PE5/SPI_N
SS
I/O
X
X
X
HS
O3
X
X
Port E5
SPI
master/slave
select
23
18
PC1/
TIM1_CH1/
UART1_CK
I/O
X
X
X
HS
O3
X
X
Port C1
Timer 1 channel 1
UART1 clock
-
24
19
PC2/
TIM1_CH2
I/O
X
X
X
HS
O3
X
X
Port C2
Timer 1 channel 2
-
25
20
PC3/
TIM1_CH3
I/O
X
X
X
HS
O3
X
X
Port C3
Timer 1 channel 3
-
26
21
PC4/
TIM1_CH4/
CLK_CCO
I/O
X
X
X
HS
O3
X
X
Port C4
Timer 1 channel 4
/configurable
clock output
-
27
22
PC5/
SPI_SCK
I/O
X
X
X
HS
O3
X
X
Port C5
SPI clock
-
28
23
PC6/
SPI_MOSI
I/O
X
X
X
HS
O3
X
X
Port C6
SPI master
out/slave in
-
24/118
I/O
I/O
I/O
X
X
X
X
X
X
X
X
X
HS
HS
HS
O3
O3
O3
X
X
X
X
X
X
DocID15441 Rev 12
Main function
(after reset)
Default alternate
function
LQFP/ UFQFP32
Output
SDIP32
Input
Alternate function
after remap
[option bit]
Table 5. STM8S103K3 pin descriptions (continued)
STM8S103F2 STM8S103F3 STM8S103K3
Pinout and pin description
Table 5. STM8S103K3 pin descriptions (continued)
Alternate function
after remap
[option bit]
-
X
X
Port D2
-
Port D3
Timer 2 channel
2/ADC
external
trigger
-
X
Port D4
Timer 2 channel
1/BEEP
output
-
X
X
Port D5
UART1 data
transmit
-
O3
X
X
Port D6
UART1 data
receive
-
O3
X
X
Port D7
Top level
interrupt
29
24
PC7/
SPI_MISO
I/O
X
X
X
HS
O3
X
X
30
25
PD0/
TIM1_BKIN
[CLK_CCO]
I/O
X
X
X
HS
O3
X
31
26
PD1/
SWIM(4)
I/O
X
X
X
HS
O4
32
27
PD2
[TIM2_CH3]
I/O
X
X
X
HS
O3
28
PD3/
TIM2_CH2/
ADC_ETR
2
29
PD4/BEEP/
TIM2_CH1
I/O
X
X
X
HS
O3
X
3
30
PD5/
UART1_TX
I/O
X
X
X
HS
O3
4
31
PD6/
UART1_RX
I/O
X
X
X
HS
5
32
PD7/ TLI
[TIM1_CH4]
I/O
X
X
X
HS
1
I/O
X
X
X
HS
O3
X
X
Main function
(after reset)
SWIM data
interface
PP
Port D1
OD
X
Speed
X
High sink(1)
Port D0
Configurabl
e clock
output
[AFR5]
Ext. interrupt
X
Timer 1 break input
wpu
-
floating
SPI master in/
slave out
Pin name
Type
Port C7
LQFP/ UFQFP32
Default alternate
function
Output
SDIP32
Input
Timer 2 channel
3[AFR1]
Timer 1 channel 4
[AFR6]
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the
total driven current must respect the absolute maximum ratings (see Section 10: Electrical characteristics).
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode
if Halt/Active-halt is used in the application.
3. In the open-drain output column, “T” defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented).
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
DocID15441 Rev 12
25/118
30
Pinout and pin description
STM8S103F2 STM8S103F3 STM8S103K3
5.2
STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin
description
5.2.1
STM8S103F2/F3 TSSOP20/SO20 pinout
Figure 5. STM8S103F2/F3 TSSOP20/SO20 pinout
8$57B&.7,0B&+%((3+63'
3'+6$,17,0B&+$'&B(75
8$57B7;$,1+63'
3'+6$,1>7,0B&+@
8$57B5;$,1+63'
3'+66:,0
3&+663,B0,62>7,0B&+@
1567
26&,13$
3&+663,B026,>7,0B&+@
26&2873$
3&+663,B6&.>7,0B&+@
966
3&+67,0B&+&/.B&&2$,1>7,0B&+1@
9&$3
3&+67,0B&+>7/,@>7,0B&+1@
9''
3%7,&B6&/>$'&B(75@
3%7,&B6'$>7,0B%.,1@
>63,B166@7,0B&++63$
06Y9
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function)
26/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
STM8S103F2/F3 UFQFPN20 pinout
3'+6$,1>7,0B&+@
3'+6$,18$57B7;
3'+6%((37,0B&+8$57B&.
3'+6$,17,0B&+$'&B(75
3'+6$,18$57B5;
Figure 6. STM8S103F2/F3 UFQFPN20-pin pinout
3'+66:,0
26&,13$
3&+663,B0,62>7,0B&+@
26&2873$
3&+663,B026,>7,0B&+@
966
3&+663,B6&.>7,0B&+@
9&$3
3&+67,0B&+&/.B&&2$,1>7,0B&+1@
>$'&B(75@,&B6&/73%
>7,0B&+1@>7/,@7,0B&++63&
>7,0B%.,1@,&B6'$73%
>63,B166@7,0B&++63$
1567
9''
5.2.2
Pinout and pin description
06Y9
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
DocID15441 Rev 12
27/118
30
Pinout and pin description
STM8S103F2 STM8S103F3 STM8S103K3
Table 6. STM8S103F2 and STM8S103F3 pin descriptions
Alternate function
after remap
[option bit]
Port D4
Timer 2 channel
1/BEEP output/
UART1 clock
-
Main function
(after reset)
Default alternate
function
Output
X
X
X
HS
O3
X
X
Port D5
Analog input 5/
UART1 data
transmit
-
3
20
PD6/ AIN6/
UART1 _RX
I/O
X
X
X
HS
O3
X
X
Port D6
Analog input 6/
UART1 data
receive
-
4
1
NRST
I/O
-
X
-
-
-
-
-
Reset
5
2
PA1/
OSCIN(2)
I/O
X
X
X
-
O1
X
X
Port A1
6
3
PA2/
OSCOUT
I/O
X
X
X
-
O1
X
X
Port A2
7
4
VSS
S
-
-
-
-
-
-
-
Digital ground
8
5
VCAP
S
-
-
-
-
-
-
-
1.8 V regulator capacitor
9
6
VDD
S
-
-
-
-
-
-
-
Digital power supply
10
7
PA3/ TIM2_
CH3 [SPI_
NSS]
I/O
X
X
X
HS
O3
X
X
Port A3
Timer 2
channel 3
SPI master/
slave select
[AFR1]
11
8
PB5/ I2C_
SDA [TIM1_
BKIN]
I/O
X
-
-
X
O1
T(3)
-
Port B5
I2C data
Timer 1 break input
[AFR4]
9
PB4/ I2C_
SCL
O1
(3)
I2C clock
ADC
external
trigger
[AFR4]
Timer 1 channel 3
Top level
interrupt
[AFR3]
Timer 1 inverted
channel 1
[AFR7]
12
13
28/118
10
PC3/
TIM1_CH3
[TLI] [TIM1_
CH1N]
PP
I/O
OD
PD5/ AIN5/
UART1 _TX
Speed
19
High sink(1)
2
Ext. interrupt
18
wpu
1
PD4/ BEEP/
TIM2_ CH1/
UART1 _CK
floating
Pin name
Type
UFQFPN20
TSSOP/SO20
Input
I/O
X
X
X
HS
O3
X
X
I/O
I/O
X
X
-
X
-
X
X
HS
O3
T
X
-
X
DocID15441 Rev 12
Port B4
Port C3
Resonator/
crystal in
Resonator/
crystal out
-
-
STM8S103F2 STM8S103F3 STM8S103K3
Pinout and pin description
Table 6. STM8S103F2 and STM8S103F3 pin descriptions (continued)
Alternate function
after remap
[option bit]
X
Port C4
15
12
PC5/
SPI_SCK
I/O
[TIM2_ CH1]
X
X
X
HS
O3
X
X
Port C5
SPI clock
Timer 2 channel 1
[AFR0]
16
13
PC6/
SPI_MOSI I/O
[TIM1_ CH1]
X
X
X
HS
O3
X
X
Port C6
SPI master
out/slave in
Timer 1 channel 1
[AFR0]
17
14
PC7/
SPI_MISO I/O
[TIM1_ CH2]
X
X
X
HS
O3
X
X
Port C7
SPI master in/
slave out
Timer 1 channel 2
[AFR0]
18
15
PD1/ SWIM
I/O
X
X
X
HS
O4
X
X
Port D1
SWIM data
interface
19
16
PD2/AIN3/[T
I/O
IM2_ CH3]
X
X
X
HS
O3
X
X
Port D2
Analog input 3
Timer 2 channel 3
[AFR1]
17
PD3/ AIN4/
TIM2_ CH2/
ADC_ ETR
Port D3
Analog input 4/
Timer 2 channel 2/ADC
external trigger
-
20
I/O
X
X
X
HS
O3
X
X
Main function
(after reset)
X
PP
O3
OD
HS
Speed
X
High sink(1)
X
Ext. interrupt
X
wpu
I/O
Timer 1 inverted
channel 2
[AFR7]
floating
11
Configurable
clock
output/Timer 1
- channel
4/Analog input
2
Type
14
PC4/
CLK_CCO/
TIM1_
CH4/AIN2/[
TIM1_
CH2N]
TSSOP/SO20
Pin name
Default alternate
function
Output
UFQFPN20
Input
-
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the
total driven current must respect the absolute maximum ratings.
2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if
halt/active-halt is used in the application.
3. In the open-drain output column, “T” defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDDare
not implemented).1
DocID15441 Rev 12
29/118
30
Pinout and pin description
5.3
STM8S103F2 STM8S103F3 STM8S103K3
Alternate function remapping
As shown in the rightmost column of the pin description table, some alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. When the remapping option is active, the default alternate function is no
longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the family reference manual, RM0016).
30/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Memory and register map
6
Memory and register map
6.1
Memory map
Figure 7. Memory map
[
5$0
.E\WH
[))
[
E\WHVVWDFN
5HVHUYHG
[)))
[
[)
[
[))
[
[$
[%
[
[
[
[
[)))
[
E\WHVGDWD((3520
5HVHUYHG
2SWLRQE\WHV
5HVHUYHG
8QLTXH,'
5HVHUYHG
*3,2DQGSHULSKUHJ
[))
[
5HVHUYHG
[())
[)
[)))
[
[)
[
[)))
[$
&386:,0GHEXJ,7&
UHJLVWHUV
LQWHUUXSWYHFWRUV
)ODVKSURJUDPPHPRU\
.E\WHV
5HVHUYHG
[)))
06Y9
DocID15441 Rev 12
31/118
49
Memory and register map
STM8S103F2 STM8S103F3 STM8S103K3
6.2
Register map
6.2.1
I/O port hardware register map
Table 7. I/O port hardware register map
Address
Block
Register label
Register name
Reset status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX(1)
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x00
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX(1)
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xXX(1)
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX(1)
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x02
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX(1)
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX(1)
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
0x00 5002
0x00 5007
0x00 500C
0x00 5011
0x00 5016
0x00 501B
Port A
Port B
Port C
Port D
Port E
Port F
1. Depends on the external circuitry.
32/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
6.2.2
Memory and register map
General hardware register map
Table 8. General hardware register map
Address
0x00 501E to 0x00 5059
Block
Register label
Register name
Reset status
Reserved area (60 bytes)
0x00 505A
FLASH_CR1
Flash control register 1
0x00
0x00 505B
FLASH_CR2
Flash control register 2
0x00
0x00 505C
FLASH_NCR2
Flash complementary control
register 2
0xFF
FLASH _FPR
Flash protection register
0x00
0x00 505E
FLASH _NFPR
Flash complementary
protection register
0xFF
0x00 505F
FLASH _IAPSR
Flash in-application
programming status register
0x00
Flash program memory
unprotection register
0x00
Data EEPROM unprotection
register
0x00
EXTI_CR1
External interrupt control
register 1
0x00
EXTI_CR2
External interrupt control
register 2
0x00
Reset status register
0xXX(1)
CLK_ICKR
Internal clock control register
0x01
CLK_ECKR
External clock control register 0x00
0x00 505D
Flash
0x00 5060 to 0x00 5061
Reserved area (2 bytes)
0x00 5062
Flash
0x00 5063
Reserved area (1 byte)
0x00 5064
Flash
0x00 5065 to 0x00 509F
Reserved area (59 bytes)
0x00 50A0
FLASH _PUKR
FLASH _DUKR
ITC
0x00 50A1
0x00 50A2 to 0x00 50B2
Reserved area (17 bytes)
0x00 50B3
RST
0x00 50B4 to 0x00 50BF
Reserved area (12 bytes)
0x00 50C0
0x00 50C1
0x00 50C2
CLK
RST_SR
Reserved area (1 byte)
DocID15441 Rev 12
33/118
49
Memory and register map
STM8S103F2 STM8S103F3 STM8S103K3
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 50C3
CLK_CMSR
Clock master status register
0xE1
0x00 50C4
CLK_SWR
Clock master switch register
0xE1
0x00 50C5
CLK_SWCR
Clock switch control register
0xXX
0x00 50C6
CLK_CKDIVR
Clock divider register
0x18
0x00 50C7
CLK_PCKENR1
Peripheral clock gating
register 1
0xFF
CLK_CSSR
Clock security system register 0x00
0x00 50C9
CLK_CCOR
Configurable clock control
register
0x00
0x00 50CA
CLK_PCKENR2
Peripheral clock gating
register 2
0xFF
0x00 50CC
CLK_HSITRIMR
HSI clock calibration trimming
0x00
register
0x00 50CD
CLK_SWIMCCR
SWIM clock control register
0bXXXX XXX0
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
IWDG_KR
IWDG key register
0xXX(2)
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
AWU_CSR1
AWU control/status register 1
0x00
AWU_APR
AWU asynchronous prescaler
0x3F
buffer register
AWU_TBR
AWU timebase selection
register
0x00
BEEP_CSR
BEEP control/status register
0x1F
0x00 50C8
0x00 50CE to 0x00 50D0
0x00 50D1
0x00 50D2
0x00 50D3 to 00 50DF
CLK
Reserved area (3 bytes)
WWDG
Reserved area (13 bytes)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
0x00 50E3 to 0x00 50EF
Reserved area (13 bytes)
0x00 50F0
0x00 50F1
AWU
0x00 50F2
0x00 50F3
BEEP
0x00 50F4 to 0x00 50FF
Reserved area (12 bytes)
0x00 5200
SPI_CR1
SPI control register 1
0x00
0x00 5201
SPI_CR2
SPI control register 2
0x00
0x00 5202
SPI_ICR
SPI interrupt control register
0x00
SPI_SR
SPI status register
0x02
SPI_DR
SPI data register
0x00
0x00 5205
SPI_CRCPR
SPI CRC polynomial register
0x07
0x00 5206
SPI_RXCRCR
SPI Rx CRC register
0xFF
0x00 5207
SPI_TXCRCR
SPI Tx CRC register
0xFF
0x00 5203
0x00 5204
34/118
SPI
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Memory and register map
Table 8. General hardware register map (continued)
Address
0x00 5208 to 0x00 520F
Block
Register label
Register name
Reset status
Reserved area (8 bytes)
0x00 5210
I2C_CR1
I2C control register 1
0x00
0x00 5211
I2C_CR2
I2C control register 2
0x00
0x00 5212
I2C_FREQR
I2C frequency register
0x00
0x00 5213
I2C_OARL
I2C Own address register low 0x00
0x00 5214
I2C_OARH
I2C Own address register
high
0x00
0x00 5215
Reserved
0x00 5216
I2C_DR
I2C data register
0x00
I2C_SR1
I2C status register 1
0x00
0x00 5218
I2C_SR2
I2C status register 2
0x00
0x00 5219
I2C_SR3
I2C status register 3
0x0X
0x00 521A
I2C_ITR
I2C interrupt control register
0x00
0x00 521B
I2C_CCRL
I2C Clock control register low
0x00
0x00 521C
I2C_CCRH
I2C Clock control register high 0x00
0x00 521D
I2C_TRISER
I2C TRISE register
0x02
0x00 521E
I2C_PECR
I2C packet error checking
register
0x00
0x00 5217
0x00 521F to 0x00 522F
I2C
Reserved area (17 bytes)
0x00 5230
UART1_SR
UART1 status register
0xC0
0x00 5231
UART1_DR
UART1 data register
0xXX
0x00 5232
UART1_BRR1
UART1 baud rate register 1
0x00
0x00 5233
UART1_BRR2
UART1 baud rate register 2
0x00
0x00 5234
UART1_CR1
UART1 control register 1
0x00
UART1_CR2
UART1 control register 2
0x00
0x00 5236
UART1_CR3
UART1 control register 3
0x00
0x00 5237
UART1_CR4
UART1 control register 4
0x00
0x00 5238
UART1_CR5
UART1 control register 5
0x00
0x00 5239
UART1_GTR
UART1 guard time register
0x00
0x00 523A
UART1_PSCR
UART1 prescaler register
0x00
0x00 5235
0x00 523B to 0x00 523F
UART1
Reserved area (21 bytes)
DocID15441 Rev 12
35/118
49
Memory and register map
STM8S103F2 STM8S103F3 STM8S103K3
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5250
TIM1_CR1
TIM1 control register 1
0x00
0x00 5251
TIM1_CR2
TIM1 control register 2
0x00
0x00 5252
TIM1_SMCR
TIM1 slave mode control
register
0x00
0x00 5253
TIM1_ETR
TIM1 external trigger register
0x00
0x00 5254
TIM1_IER
TIM1 interrupt enable register 0x00
0x00 5255
TIM1_SR1
TIM1 status register 1
0x00
0x00 5256
TIM1_SR2
TIM1 status register 2
0x00
0x00 5257
TIM1_EGR
TIM1 event generation
register
0x00
0x00 5258
TIM1_CCMR1
TIM1 capture/compare mode
register 1
0x00
0x00 5259
TIM1_CCMR2
TIM1 capture/compare mode
register 2
0x00
0x00 525A
TIM1_CCMR3
TIM1 capture/compare mode
register 3
0x00
0x00 525B
TIM1_CCMR4
TIM1 capture/compare mode
register 4
0x00
0x00 525C
TIM1_CCER1
TIM1 capture/compare enable
0x00
register 1
0x00 525D
TIM1_CCER2
TIM1 capture/compare enable
0x00
register 2
0x00 525E
TIM1_CNTRH
TIM1 counter high
0x00
0x00 525F
TIM1_CNTRL
TIM1 counter low
0x00
0x00 5260
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 5261
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 5262
TIM1_ARRH
TIM1 auto-reload register high 0xFF
0x00 5263
TIM1_ARRL
TIM1 auto-reload register low
0xFF
0x00 5264
TIM1_RCR
TIM1 repetition counter
register
0x00
0x00 5265
TIM1_CCR1H
TIM1 capture/compare
register 1 high
0x00
0x00 5266
TIM1_CCR1L
TIM1 capture/compare
register 1 low
0x00
0x00 5267
TIM1_CCR2H
TIM1 capture/compare
register 2 high
0x00
0x00 5268
TIM1_CCR2L
TIM1 capture/compare
register 2 low
0x00
0x00 5269
TIM1_CCR3H
TIM1 capture/compare
register 3 high
0x00
TIM1
36/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Memory and register map
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 526A
TIM1_CCR3L
TIM1 capture/compare
register 3 low
0x00
0x00 526B
TIM1_CCR4H
TIM1 capture/compare
register 4 high
0x00
TIM1_CCR4L
TIM1 capture/compare
register 4 low
0x00
0x00 526D
TIM1_BKR
TIM1 break register
0x00
0x00 526E
TIM1_DTR
TIM1 dead-time register
0x00
0x00 526F
TIM1_OISR
TIM1 output idle state register 0x00
0x00 526C
0x00 5270 to 0x00 52FF
TIM1
Reserved area (147 bytes)
DocID15441 Rev 12
37/118
49
Memory and register map
STM8S103F2 STM8S103F3 STM8S103K3
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
0x00 5300
TIM2_CR1
0x00 5301
Reserved
0x00 5302
Reserved
0x00 5303
TIM2_IER
TIM2 Interrupt enable register 0x00
0x00 5304
TIM2_SR1
TIM2 status register 1
0x00
0x00 5305
TIM2_SR2
TIM2 status register 2
0x00
0x00 5306
TIM2_EGR
TIM2 event generation
register
0x00
0x00 5307
TIM2_CCMR1
TIM2 capture/compare mode
register 1
0x00
0x00 5308
TIM2_CCMR2
TIM2 capture/compare mode
register 2
0x00
0x00 5309
TIM2_CCMR3
TIM2 capture/compare mode
register 3
0x00
0x00 530A
TIM2_CCER1
TIM2 capture/compare enable
0x00
register 1
TIM2_CCER2
TIM2 capture/compare enable
0x00
register 2
0x00 530C
TIM2_CNTRH
TIM2 counter high
0x00
0x00 530D
TIM2_CNTRL
TIM2 counter low
0x00
0x00 530E
TIM2_PSCR
IM2 prescaler register
0x00
0x00 530F
TIM2_ARRH
TIM2 auto-reload register high 0xFF
0x00 5310
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 5311
TIM2_CCR1H
TIM2 capture/compare
register 1 high
0x00
0x00 5312
TIM2_CCR1L
TIM2 capture/compare
register 1 low
0x00
0x00 5313
TIM2_CCR2H
TIM2 capture/compare reg. 2
high
0x00
0x00 5314
TIM2_CCR2L
TIM2 capture/compare
register 2 low
0x00
0x00 5315
TIM2_CCR3H
TIM2 capture/compare
register 3 high
0x00
0x00 5316
TIM2_CCR3L
TIM2 capture/compare
register 3 low
0x00
0x00 530B
0x00 5317 to 0x00 533F
38/118
TIM2
TIM2 control register 1
Reset status
Reserved area (43 bytes)
DocID15441 Rev 12
0x00
STM8S103F2 STM8S103F3 STM8S103K3
Memory and register map
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
0x00 5340
TIM4_CR1
0x00 5341
Reserved
0x00 5342
Reserved
0x00 5343
TIM4_IER
TIM4 interrupt enable register 0x00
TIM4_SR
TIM4 status register
0x00
0x00 5345
TIM4_EGR
TIM4 event generation
register
0x00
0x00 5346
TIM4_CNTR
TIM4 counter
0x00
0x00 5347
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 5348
TIM4_ARR
TIM4 auto-reload register
0xFF
ADC data buffer registers
0x00
0x00 5344
TIM4
0x00 5349 to 0x00 53DF
Reserved area (153 bytes)
0x00 53E0 to 0x00 53F3
ADC1
0x00 53F4 to 0x00 53FF
Reserved area (12 bytes)
TIM4 control register 1
Reset status
ADC_DBxR
DocID15441 Rev 12
0x00
39/118
49
Memory and register map
STM8S103F2 STM8S103F3 STM8S103K3
Table 8. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
0x00 5400
ADC_CSR
ADC control/status register
0x00
0x00 5401
ADC_CR1
ADC configuration register 1
0x00
0x00 5402
ADC_CR2
ADC configuration register 2
0x00
0x00 5403
ADC_CR3
ADC configuration register 3
0x00
0x00 5404
ADC_DRH
ADC data register high
0xXX
0x00 5405
ADC_DRL
ADC data register low
0xXX
0x00 5406
ADC_TDRH
ADC Schmitt trigger disable
register high
0x00
0x00 5407
ADC_TDRL
ADC Schmitt trigger disable
register low
0x00
0x00 5408
ADC_HTRH
ADC high threshold register
high
0x03
ADC_HTRL
ADC high threshold register
low
0xFF
0x00 540A
ADC_LTRH
ADC low threshold register
high
0x00
0x00 540B
ADC_LTRL
ADC low threshold register
low
0x00
0x00 540C
ADC_AWSRH
ADC analog watchdog status
register high
0x00
0x00 540D
ADC_AWSRL
ADC analog watchdog status
register low
0x00
0x00 540E
ADC _AWCRH
ADC analog watchdog control
0x00
register high
0x00 540F
ADC_AWCRL
ADC analog watchdog control
0x00
register low
0x00 5409
0x00 5410 to 0x00 57FF
ADC1
cont’d
Reserved area (1008 bytes)
1. Depends on the previous reset source.
2. Write-only register.
40/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
6.2.3
Memory and register map
CPU/SWIM/debug module/interrupt controller registers
Table 9. CPU/SWIM/debug module/interrupt controller registers
Address
Block
Register label
Register name
Reset
status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
CFG_GCR
Global configuration
register
0x00
0x00 7F70
ITC_SPR1
Interrupt software priority
register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt software priority
register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt software priority
register 3
0xFF
0x00 7F73
ITC_SPR4
Interrupt software priority
register 4
0xFF
0x00 7F74
ITC_SPR5
Interrupt software priority
register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt software priority
register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt software priority
register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt software priority
register 8
0xFF
SWIM control status
register
0x00
0x00 7F04
0x00 7F05
CPU
(1)
0x00 7F0B to 0x00 7F5F
Reserved area (85 bytes)
0x00 7F60
CPU
ITC
0x00 7F78 to 0x00 7F79
Reserved area (2 bytes)
0x00 7F80
SWIM
0x00 7F81 to 0x00 7F8F
Reserved area (15 bytes)
SWIM_CSR
DocID15441 Rev 12
41/118
49
Memory and register map
STM8S103F2 STM8S103F3 STM8S103K3
Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)
Address
Block
Register label
Register name
Reset
status
0x00 7F90
DM_BK1RE
DM breakpoint 1 register
extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register
high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register
low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register
extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register
high byte
0xFF
DM_BK2RL
DM breakpoint 2 register
low byte
0xFF
0x00 7F96
DM_CR1
DM debug module control
register 1
0x00
0x00 7F97
DM_CR2
DM debug module control
register 2
0x00
0x00 7F98
DM_CSR1
DM debug module
control/status register 1
0x10
0x00 7F99
DM_CSR2
DM debug module
control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register 0xFF
0x00 7F95
0x00 7F9B to 0x00 7F9F
DM
Reserved area (5 bytes)
1. Accessible by debug module only.
42/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
7
Interrupt vector mapping
Interrupt vector mapping
Table 10. Interrupt mapping
IRQ no.
Source block
Wakeup from
halt mode
Description
Wakeup from
active-halt mode
Vector address
-
RESET
Reset
Yes
Yes
0x00 8000
-
TRAP
Software interrupt
-
-
0x00 8004
0
TLI
External top level
interrupt
-
-
0x00 8008
1
AWU
Auto wake up from
halt
Yes
0x00 800C
2
CLK
Clock controller
-
-
0x00 8010
3
EXTI0
Port A external
interrupts
Yes(1)
Yes(1)
0x00 8014
4
EXTI1
Port B external
interrupts
Yes
Yes
0x00 8018
5
EXTI2
Port C external
interrupts
Yes
Yes
0x00 801C
6
EXTI3
Port D external
interrupts
Yes
Yes
0x00 8020
7
EXTI4
Port E external
interrupts
Yes
Yes
0x00 8024
8
Reserved
-
-
-
0x00 8028
9
Reserved
-
-
-
0x00 802C
10
SPI
End of transfer
Yes
Yes
0x00 8030
11
TIM1
TIM1 update/
overflow/
underflow/ trigger/
break
-
-
0x00 8034
12
TIM1
TIM1 capture/
compare
-
-
0x00 8038
13
TIM2
TIM2 update/
overflow
-
-
0x00 803C
14
TIM2
TIM2 capture/
compare
-
-
0x00 8040
15
Reserved
-
-
-
0x00 8044
16
Reserved
-
-
-
0x00 8048
17
UART1
Tx complete
-
-
0x00 804C
18
UART1
Receive register
DATA FULL
-
-
0x00 8050
19
I2C
I2C interrupt
Yes
Yes
0x00 8054
20
Reserved
-
-
-
0x00 8058
DocID15441 Rev 12
43/118
49
Interrupt vector mapping
STM8S103F2 STM8S103F3 STM8S103K3
Table 10. Interrupt mapping (continued)
IRQ no.
Source block
Wakeup from
halt mode
Description
Wakeup from
active-halt mode
Vector address
21
Reserved
-
-
-
0x00 805C
22
ADC1
ADC1 end of
conversion/ analog watchdog interrupt
-
0x00 8060
23
TIM4
TIM4 update/
overflow
-
-
0x00 8064
24
Flash
EOP/WR_PG_DIS -
-
0x00 8068
0x00 806C to
0x00 807C
Reserved
1. Except PA1.
44/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
8
Option bytes
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in the table below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the
ROP option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM
communication protocol and debug module user manual (UM0470) for information on SWIM
programming procedures.
Table 11. Option bytes
Addr.
0x4800
0x4801
0x4802
0x4803
0x4804
0x4805h
0x4806
0x4807
0x4808
0x4809
0x480A
Option
name
Read-out
protection
(ROP)
User boot
code
(UBC)
Option
byte
no.
Option bits
7
Clock
option
HSE clock
startup
5
4
3
2
1
0
OPT0
ROP [7:0]
0x00
OPT1
UBC [7:0]
0x00
NOPT1 NUBC [7:0]
Alternate
OPT2
AFR7
function
remapping NOPT2 NAFR
7
(AFR)
Miscell.
option
6
Factory
default
setting
0xFF
AFR1
AFR0
0x00
NAFR4 NAFR3 NAFR2
NAFR1
NAFR0
0xFF
Reserved
HSI
TRIM
LSI
_ EN
IWDG
_HW
WWDG
_HW
WWDG
_HALT
0x00
NOPT3 Reserved
NHSI
TRIM
NLSI
_ EN
NIWDG NWWDG NWWG
_HW
_HW
_HALT
0xFF
EXT
CLK
CKAWU
PRS C1
SEL
0x00
NEXT
CLK
NCKA
NPRSC1 NPR SC0 0xFF
WUSEL
OPT3
OPT4
AFR6
AFR5
AFR4
NAFR
6
NAFR
5
Reserved
NOPT4 Reserved
OPT5
AFR3
HSECNT [7:0]
AFR2
PRS C0
0x00
NOPT5 NHSECNT [7:0]
0xFF
DocID15441 Rev 12
45/118
49
Option bytes
STM8S103F2 STM8S103F3 STM8S103K3
Table 12. Option byte description
Option byte no.
Description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Page 0 defined as UBC, memory write-protected
Page 0 and 1 contain the interrupt vectors.
...
0x7F: Pages 0 to 126 defined as UBC, memory write-protected
Other values: Pages 0 to 127 defined as UBC, memory write-protected
Note: Refer to the family reference manual (RM0016) section on Flash write
protection for more details.
OPT2
AFR[7:0]
Refer to following section for alternate function remapping descriptions of bits
[7:2] and [1:0] respectively.
HSITRIM: High speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
OPT3
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
46/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Option bytes
Table 12. Option byte description (continued)
Option byte no.
Description
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
OPT4
CKAWUSEL: Auto wake-up unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
8.1
HSECNT[7:0]: HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
Alternate function remapping bits
Table 13. STM8S103K3 alternate function remapping bits for 32-pin devices
Description(1)
Option byte no.
AFR7 Alternate function remapping option 7
Reserved.
AFR6 Alternate function remapping option 6
0: AFR6 remapping option inactive: Default alternate function.(2)
1: Port D7 alternate function = TIM1_CH4.
OPT2
AFR5 Alternate function remapping option 5
0: AFR5 remapping option inactive: Default alternate function.(2)
1: Port D0 alternate function = CLK_CCO.
AFR[4:2] Alternate function remapping options 4:2
Reserved.
AFR1 Alternate function remapping option 1
0: AFR1 remapping option inactive: Default alternate functions.(2)
1: Port A3 alternate function = SPI_NSS; port D2 alternate function =
TIM2_CH3.
AFR0 Alternate function remapping option 0
Reserved.
1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and
AFR0.
2. Refer to pinout description.
DocID15441 Rev 12
47/118
49
Option bytes
STM8S103F2 STM8S103F3 STM8S103K3
Table 14. STM8S103Fx alternate function remapping bits for 20-pin devices
Option byte no.
Description
AFR7 Alternate function remapping option 7
0: AFR7 remapping option inactive: Default alternate functions.(1)
1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function =
TIM1_CH2N.
AFR6 Alternate function remapping option 6
Reserved.
AFR5 Alternate function remapping option 5
Reserved.
AFR4 Alternate function remapping options 4:2
0: AFR4 remapping option inactive: Default alternate functions.(1)
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =
TIM1_BKIN.
OPT2
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: Default alternate function.(1)
1: Port C3 alternate function = TLI.
AFR2 Alternate function remapping option 2
Reserved
AFR1 Alternate function remapping option 1(2)
0: AFR1 remapping option inactive: Default alternate functions.(1)
1: Port A3 alternate function = SPI_NSS; port D2 alternate function =
TIM2_CH3.
AFR0 Alternate function remapping option 0
0: AFR0 remapping option inactive: Default alternate functions.(1)
1: Port C5 alternate function = TIM2_CH1; port C6 alternate function =
TIM1_CH1; port C7 alternate function = TIM1_CH2.
1. Refer to pinout description.
2. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and
AFR0.
48/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
9
Unique ID
Unique ID
The devices feature a 96-bit unique device identifier which provides a reference number that
is unique for any device and in any context. The 96 bits of the identifier can never be altered
by the user.
The unique device identifier can be read in single bytes and may then be concatenated
using a custom algorithm.
The unique device identifier is ideally suited:

For use as serial numbers

For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.

To activate secure boot processes
Table 15. Unique ID registers (96 bits)
Address
Content
description
Unique ID bits
7
0x4865
0x4866
0x4867
6
5
4
3
1
0
U_ID[7:0]
X co-ordinate on
the wafer
U_ID[15:8]
U_ID[23:16]
0x4868
Y co-ordinate on
the wafer
U_ID[31:24]
0x4869
Wafer number
U_ID[39:32]
0x486A
U_ID[47:40]
0x486B
U_ID[55:48]
0x486C
U_ID[63:56]
0x486D
2
Lot number
U_ID[71:64]
0x486E
U_ID[79:72]
0x486F
U_ID[87:80]
0x4870
U_ID[95:88]
DocID15441 Rev 12
49/118
49
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
10
Electrical characteristics
10.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
10.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C, and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ± 3 Σ).
10.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5.0 V. They are
given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 Σ).
10.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
10.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 8.
Figure 8. Pin loading conditions
67063,1
S)
06Y9
50/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
10.1.5
Electrical characteristics
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 9.
Figure 9. Pin input voltage
67063,1
9,1
06Y9
10.2
Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 16. Voltage characteristics
Symbol
Min
Max
Unit
-0.3
6.5
V
VSS - 0.3
6.5
VSS - 0.3
VDD + 0.3
|VDDx - VDD| Variations between different power pins
-
50
|VSSx - VSS|
Variations between all the different ground pins
-
50
VESD
Electrostatic discharge voltage
VDDx - VSS
VIN
Ratings
Supply voltage (including VDDA and VDDIO)(1)
Input voltage on true open drain
pins(2)
Input voltage on any other pin(2)
V
mV
see Absolute maximum ratings
(electrical sensitivity) on
page 86
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
DocID15441 Rev 12
51/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Table 17. Current characteristics
Symbol
Max.(1)
Ratings
IVDDI
Total current into VDDIO power lines (source)(2)
100
IVSSIO
Total current out of VSS IO ground lines (sink)(1)
80
Output current sunk by any I/O and control pin
20
Output current source by any I/Os and control pin
-20
Injected current on any pin
±4
IIO
IINJ(PIN) (3) (4)
Injected current on OSCIN pin
mA
±4
(5)
Injected current on any other pin
ΣIINJ(TOT)(3)
Unit
Total injected current (sum of all I/O and control
±4
pins)(5)
±20
1. Data based on characterization results, not tested in production.
2. All power (VDD) and ground (VSS) pins must always be connected to the external supply.
3. IINJ(PIN) must never be exceeded. This condition is implicitly insured if VIN maximum is respected. If VIN
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A
positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true opendrain pads, there is no positive injection current allowed and the corresponding VIN maximum must always
be respected.
4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on characterization
with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.
Table 18. Thermal characteristics
Symbol
52/118
Ratings
TSTG
Storage temperature range
TJ
Maximum junction temperature
DocID15441 Rev 12
Value
65 to 150
150
Unit
°C
STM8S103F2 STM8S103F3 STM8S103K3
10.3
Electrical characteristics
Operating conditions
Table 19. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fCPU
Internal CPU clock frequency
-
0
16
MHz
VDD/VDDIO
Standard operating voltage
-
2.95
5.5
V
CEXT: capacitance of external
capacitor
-
470
3300
nF
-
0.3
Ω
-
15
nH
TSSOP20
-
238
SO20W
-
220
UFQFPN20
-
220
LQFP32
-
330
UFQFPN32
-
526
SDIP32
-
330
TSSOP20
-
59
SO20W
-
55
UFQFPN20
-
55
LQFP32
-
83
UFQFPN32
-
132
SDIP32
-
83
VCAP(1)
ESR of external capacitor
ESL of external capacitor
PD(3)
PD(3)
Power dissipation 
at TA = 75 °C for suffix 6
Power dissipation 
at TA = 125 °C for suffix 3
at 1 MHz(2)
TA
Ambient temperature for suffix
6 version
Maximum power
dissipation
-40
85
TA
Ambient temperature for suffix
3 version
Maximum power
dissipation
-40
125
TJ
Junction temperature range
Suffix 6 version
-40
105
Suffix 3 version
-40
130
mW
mW
°C
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
3. To calculate PDmax(TA), use the formula PDmax=(TJmax- TA)/JA (see Section 12: Thermal characteristics)
with the value for TJmax given in the previous table and the value for JA given in Section 12: Thermal
characteristics
DocID15441 Rev 12
53/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Figure 10. fCPUmax versus VDD
I&380+]
)XQFWLRQDOLW\
QRW
JXDUDQWHHGLQ
ϭϲ
WKLVDUHD
ϭϮ
)XQFWLRQDOLW\JXDUDQWHHG
#7$WRƒ&
ϴ
ϰ
Ϭ
6XSSO\YROWDJH
06Y9
Table 20. Operating conditions at power-up/power-down
Symbol
tVDD
Parameter
VDD rise time rate
VDD fall time
rate(1)
Conditions
Min
Typ
Max
-
2
-

-
2
-

VDD rising
-
-
1.7
2.6
2.7
2.85
tTEMP
Reset release delay
VIT+
Power-on reset
threshold
-
VIT-
Brown-out reset
threshold
-
2.5
2.65
2.8
VHYS(BOR)
Brown-out reset
hysteresis
-
-
70
-
µs/V
ms
V
1. Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the
minimum operating voltage (VDD min) when the tTEMP delay has elapsed.
54/118
Unit
DocID15441 Rev 12
mV
STM8S103F2 STM8S103F3 STM8S103K3
10.3.1
Electrical characteristics
VCAP external capacitor
The stabilization for the main regulator is achieved by connecting an external capacitor
CEXT to the VCAP pin. CEXT is specified in Table 19. Care should be taken to limit the series
inductance to less than 15 nH.
Figure 11. External capacitor CEXT
(6/
&
(65
5/HDN
06Y9
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.
10.3.2
Supply current characteristics
The current consumption is measured as illustrated in Figure 9: Pin input voltage.
Supply current consumption in run mode
The MCU is placed under the following conditions:

All I/O pins in input mode with a static value at VDD or VSS (no load)

All peripherals are disabled (clock stopped by peripheral clock gating registers) except
if explicitly mentioned.
Subject to general operating conditions for VDD and TA.
Table 21. Total current consumption with code execution in run mode at VDD = 5 V
Symbol
Typ
Max(1)
2.3
-
2
2.35
HSI RC osc. (16 MHz)
1.7
2
HSE user ext. clock
(16 MHz)
0.86
-
HSI RC osc. (16 MHz)
0.7
0.87
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.46
0.58
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.41
0.55
Parameter
Conditions
HSE crystal osc. (16 MHz)
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from RAM
fCPU = fMASTER /128 = 125 kHz
HSE user ext. clock
(16 MHz)
DocID15441 Rev 12
Unit
mA
55/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Table 21. Total current consumption with code execution in run mode at VDD = 5 V (continued)
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
4.5
-
HSE user ext. clock
(16 MHz)
4.3
4.75
HSI RC osc. (16 MHz)
3.7
4.5
fCPU = fMASTER = 2 MHz
HSI RC osc. (16 MHz/8)(2)
0.84
1.05
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
0.72
0.9
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.46
0.58
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.42
0.57
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from Flash
Unit
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 22. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol
Typ
Max(1)
1.8
-
2
2.35
HSI RC osc. (16 MHz)
1.5
2
HSE user ext. clock
(16 MHz)
0.81
-
HSI RC osc. (16 MHz)
0.7
0.87
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.46
0.58
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.41
0.55
4
-
HSE user ext. clock
(16 MHz)
4.3
4.75
HSI RC osc. (16 MHz)
3.9
4.7
fCPU = fMASTER = 2 MHz
HSI RC osc. (16 MHz/8)(2)
0.84
1.05
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
0.72
0.9
fCPU = fMASTER /128 =
15.625 kHz
HSI RC osc. (16 MHz/8)
0.46
0.58
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.42
0.57
Parameter
Conditions
HSE crystal osc. (16 MHz)
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from RAM
fCPU = fMASTER /128 = 125 kHz
HSE user ext. clock
(16 MHz)
HSE crystal osc. (16 MHz)
fCPU = fMASTER = 16 MHz
IDD(RUN)
Supply
current in
Run mode,
code
executed
from Flash
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
56/118
DocID15441 Rev 12
Unit
mA
mA
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Total current consumption in wait mode
Table 23. Total current consumption in wait mode at VDD = 5 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
1.6
-
HSE user ext. clock
(16 MHz)
1.1
1.3
HSI RC osc. (16 MHz)
0.89
1.1
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
0.7
0.88
fCPU = fMASTER /s128 =
15.625 kHz
HSI RC osc. (16 MHz/8)(2)
0.45
0.57
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.4
0.54
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(WFI)
Supply
current in
wait mode
Unit
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 24. Total current consumption in wait mode at VDD = 3.3 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
1.1
-
HSE user ext. clock
(16 MHz)
1.1
1.3
HSI RC osc. (16 MHz)
0.89
1.1
fCPU = fMASTER /128 = 125 kHz
HSI RC osc. (16 MHz)
0.7
0.88
fCPU = fMASTER /s128 =
15.625 kHz
HSI RC osc. (16 MHz/8)(2)
0.45
0.57
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.4
0.54
Parameter
Conditions
fCPU = fMASTER = 16 MHz
IDD(WFI)
Supply
current in
wait mode
Unit
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID15441 Rev 12
57/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Total current consumption in active halt mode
Table 25. Total current consumption in active halt mode at VDD = 5 V
Conditions
Symbol Parameter
IDD(AH)
Supply
current in
active halt
mode
Main
voltage
regulator
(MVR)(2)
On
Off
1.
Typ
Flash mode(3)
Clock source
Max at Max at
Unit
85 °C(1) 85 °C(1)
Operating mode
HSE crystal osc.
(16 MHz)
1030
-
-
Operating mode
LSI RC osc. (128 kHz)
200
260
300
Power down
mode
HSE crystal osc.
(16 MHz)
970
-
-
Power down
mode
LSI RC osc. (128 kHz)
150
200
230
Operating mode
LSI RC osc. (128 kHz)
66
85
110
Power down
mode
LSI RC osc. (128 kHz)
10
20
40
µA
Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Table 26. Total current consumption in active halt mode at VDD = 3.3 V
Conditions
Symbol Parameter
IDD(AH)
Supply
current in
active halt
mode
Main
voltage
regulator
(MVR)(2)
On
Off
1.
Typ
Flash mode(3)
Clock source
Operating mode
HSE crystal osc.
(16 MHz)
550
-
-
Operating mode
LSI RC osc. (128 kHz)
200
260
290
Power down
mode
HSE crystal osc.
(16 MHz)
970
-
-
Power down
mode
LSI RC osc. (128 kHz)
150
200
230
Operating mode
LSI RC osc. (128 kHz)
66
80
105
Power down
mode
LSI RC osc. (128 kHz)
10
18
35
Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
58/118
Max at Max at
Unit
85 °C(1) 85 °C(1)
DocID15441 Rev 12
µA
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Total current consumption in halt mode
Table 27. Total current consumption in halt mode at VDD = 5 V
Symbol
IDD(H)
1.
Parameter
Supply current in halt
mode
Max at Max at
Unit
85 °C(1) 85 °C(1)
Conditions
Typ
Flash in operating mode, HSI
clock after wakeup
63
75
105
Flash in power-down mode,
HSI clock after wakeup
6.0
20
55
µA
Data based on characterization results, not tested in production.
Table 28. Total current consumption in halt mode at VDD = 3.3 V
Symbol
IDD(H)
1.
Parameter
Supply current in halt
mode
Conditions
Typ
Flash in operating mode, HSI
clock after wakeup
60
Flash in power-down mode,
HSI clock after wakeup
4.5
Max at Max at
Unit
85 °C(1) 85 °C(1)
75
100
µA
17
30
Data based on characterization results, not tested in production.
Low power mode wakeup times
Table 29. Wakeup times
Typ
Max(1)
-
See note(3)
0.56
-
HSI (after
wakeup)
1(6)
2(6)
Flash in
Wakeup time active halt MVR voltage
operating
(4)
(2)
regulator off
mode to run mode
mode(5)
HSI (after
wakeup)
3(6)
-
tWU(AH)
Flash in
Wakeup time active halt MVR voltage
operating
(4)
(2)
regulator off
mode to run mode
mode(5)
HSI (after
wakeup)
48(6)
-
tWU(AH)
Flash in
Wakeup time active halt MVR voltage
HSI (after
power-down
regulator off(4)
wakeup)
mode to run mode(2)
(5)
mode
50(6)
-
tWU(H)
Wakeup time from halt
mode to run mode(2)
Flash in operating mode(5)
52
-
tWU(H)
Wakeup time from halt
mode to run mode(2)
Flash in power-down mode(5)
54
-
Symbol
Parameter
tWU(WFI)
Wakeup time from wait
mode to run mode(2)
0 to 16 MHz
tWU(WFI)
Wakeup time from run
mode(2)
fCPU= fMASTER= 16 MHz
tWU(AH)
Flash in
Wakeup time active halt MVR voltage
operating
(4)
regulator on
mode to run mode(2)
mode(5)
tWU(AH)
1.
Conditions
Unit
µs
Data based on characterization results, not tested in production.
DocID15441 Rev 12
59/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
2. Measured from interrupt event to interrupt vector fetch
3. tWU(WFI) = 2 x 1/fmaster + 67 x 1/fCPU
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
Total current consumption and timing in forced reset state
Table 30. Total current consumption and timing in forced reset state
Symbol
Parameter
IDD(R)
Supply current in reset
state(2)
tRESETBL
Reset pin release to
vector fetch
Conditions
Typ
Max(1)
VDD = 5 V
400
-
VDD = 3.3 V
300
-
-
-
150
µs
Typ
Unit
Unit
µA
1. Data guaranteed by design, not tested in production.
2.
Characterized with all I/Os tied to VSS.
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/fCPU= fMASTER = 16 MHz, VDD = 5 V
Table 31. Peripheral current consumption
Symbol
Parameter
IDD(TIM1)
TIM1 supply current(1)
210
IDD(TIM2)
TIM2 supply
current(1)
130
IDD(TIM4)
TIM4 supply current(1)
50
IDD(UART1)
IDD(SPI)
UART1 supply
SPI supply
current(1)
120
current(1)
45
(1)
65
IDD(I2C)
I2C supply current
IDD(ADC1)
ADC1 supply current when converting(1)
µA
1000
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
Current consumption curves
The following figures show typical current consumption measured with code executing in
RAM.
60/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Figure 12. Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz
Figure 13. Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V
DocID15441 Rev 12
61/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Figure 14. Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz
Figure 15. Typ IDD(WFI) vs. VDD HSE external clock, fCPU = 16 MHz
62/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Figure 16. Typ IDD(WFI) vs. fCPU HSE external clock, VDD = 5 V
Figure 17. Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz
DocID15441 Rev 12
63/118
87
Electrical characteristics
10.3.3
STM8S103F2 STM8S103F3 STM8S103K3
External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Table 32. HSE user external clock characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
MHz
fHSE_ext
User external clock
source frequency
-
0
16
VHSEH(1)
OSCIN input pin high
level voltage
-
0.7 x VDD
VDD + 0.3 V
VHSEL(1)
OSCIN input pin low
level voltage
-
VSS
0.3 x VDD
ILEAK_HSE
OSCIN input leakage
current
VSS < VIN < VDD
-1
+1
V
µA
1. Data based on characterization results, not tested in production.
Figure 18. HSE external clock source
9
+6(+
9 +6(/
([WHUQDOFORFN
VRXUFH
I+6(
26&,1
670
069
64/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 16 MHz.
All the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 33. HSE oscillator characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHSE
External high speed
oscillator frequency
-
1
-
16
MHz
RF
Feedback resistor
-
-
220
-
k
C(1)
Recommended load
capacitance(2)
-
-
-
20
pF
C = 20 pF
fOSC = 16 MHz
-
-
6 (start up)
1.6 (stabilized)(3)
IDD(HSE)
HSE oscillator power
consumption
gm
Oscillator
transconductance
tSU(HSE)(4)
Startup time
mA
C = 10 pF
fOSC = 16 MHz
-
-
6 (start up)
1.2 (stabilized)(3)
-
5
-
-
mA/V
VDD is stabilized
-
1
-
ms
1. C is approximately equivalent to 2 x crystal Cload.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data based on characterization results, not tested in production.
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
DocID15441 Rev 12
65/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Figure 19. HSE oscillator circuit diagram
5P
I +6( WRFRUH
&2
/P
5)
& /
&P
26&,1
JP
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
5HVRQDWRU
& /
26&287
670
069
HSE oscillator critical gm equation
g mcrit =  2    f HSE  2  R m  2Co + C 
2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1 = CL2 = C: Grounded external capacitance
g m » g mcrit
66/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
10.3.4
Electrical characteristics
Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Table 34. HSI oscillator characteristics
Symbol
fHSI
Parameter
Conditions
Min
Typ
Max
Unit
-
-
16
-
MHz
-
-
1(2)
VDD V,
TA  25 °C(3)
-1.0
-
1.0
VDD= 5 V, 
-25°C TA  85 °C
-2.0
-
2.0
-3.0(3)
-
3.0(3)
Frequency
User-trimmed with
CLK_HSITRIMR register for
Accuracy of HSI oscillator
given VDD and TA
conditions(1)
ACCHS
HSI oscillator accuracy
(factory calibrated)
2.95 V VDD  5.5 V, 
-40°C TA  125 °C
%
tsu(HSI)
HSI oscillator wakeup
time including calibration
-
-
-
1.0(2)
µs
IDD(HSI)
HSI oscillator power
consumption
-
-
170
250(3)
µA
1. Refer to application note.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 20. Typical HSI frequency variation vs VDD @ 4 temperatures
DocID15441 Rev 12
67/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 35. LSI oscillator characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fLSI
Frequency
-
110
128
150
kHz
tsu(LSI)
LSI oscillator wakeup time
-
-
-
7
µs
-
-
5
-
µA
IDD(LSI) LSI oscillator power consumption
Figure 21. Typical LSI frequency variation vs VDD@ 4 temperatures
68/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
10.3.5
Electrical characteristics
Memory characteristics
RAM and hardware registers
Table 36. RAM and hardware registers
Symbol
VRM
Parameter
Data retention mode(1)
Conditions
Min
Unit
Halt mode (or reset)
VIT-max(2)
V
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design, not tested in production.
2. Refer to Section 10.3: Operating conditions for the value of VIT-max.
Flash program memory/data EEPROM memory
Table 37. Flash program memory/data EEPROM memory
Symbol
VDD
tprog
terase
NRW
Parameter
Operating voltage 
(all modes, execution/write/erase)
IDD
Min(1) Typ
Max
Unit
V
fCPU≤ 16 MHz
2.95
-
5.5
Standard programming time (including
erase) for byte/word/block 
(1 byte/4 bytes/64 bytes)
-
-
6
6.6
Fast programming time for 1 block 
(64 bytes)
-
-
3
3.33
Erase time for 1 block (64 bytes)
-
-
3
3.33
TA = +85 °C
100k
-
-
TA = +125 °C
300k
1M
-
Data retention (program and data
memory) after 10k erase/write cycles
at TA= +55 °C
TRET = 55 °C
20
-
-
Data retention (data memory) after
300k erase/write cycles at 
TA= +125°C
TRET = 85 °C
1
-
-
-
-
2
-
ms
Erase/write cycles 
(program memory)(2)
Erase/write cycles (data
tRET
Conditions
memory)(2)
cycles
year
Supply current (Flash programming or
erasing for 1 to 128 bytes)
mA
1. Data based on characterization results, not tested in production.
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a
write/erase operation addresses a single byte.
DocID15441 Rev 12
69/118
87
Electrical characteristics
10.3.6
STM8S103F2 STM8S103F3 STM8S103K3
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 38. I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage
VIH
Input high level voltage
Vhys
Hysteresis(1)
Rpu
Pull-up resistor
tR, tF
tR, tF
Rise and fall time
(10% - 90%)
Rise and fall time
(10% - 90%)
Conditions
Min
Typ
Max
-0.3 V
-
0.3 x VDD
0.7 x VDD
-
VDD + 0.3 V
-
700
-
mV
VDD = 5 V, VIN = VSS
30
55
80
k
Fast I/Os
Load = 50 pF
-
-
35(2)
VDD = 5 V
Unit
V
ns
Standard and high sink I/Os
Load = 50 pF
-
-
125(2)
Fast I/Os
Load = 20 pF
-
-
20(2)
(2)
ns
Standard and high sink I/Os
Load = 20 pF
-
-
50
Ilkg
Digital input leakage
current
VSS VIN VDD
-
-
±1(2)
µA
Ilkg ana
Analog input leakage
current
VSS VIN VDD
-
-
±250(2)
nA
Ilkg(inj)
Leakage current in
adjacent I/O
Injection current ±4 mA
-
-
±1(2)
µA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
2. Data based on characterization results, not tested in production
70/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Figure 22. Typical VIL and VIH vs VDD @ 4
temperatures
Figure 23. Typical pull-up current vs VDD @ 4
temperatures
Figure 24. Typical pull-up resistance vs VDD @ 4 temperatures
Û&
Û&
Û&
3XOOXSUHVLVWDQFH >Ÿ :@
Û&
9''>9@
069
Table 39. Output driving current (standard ports)
Symbol
VOL
VOH
Parameter
Conditions
Min
Max
Output low level with 8
pins sunk
IIO= 10 mA,
VDD = 5 V
-
2.0
Output low level with 4
pins sunk
IIO= 4 mA,
VDD = 3.3 V
-
1.0(1)
Output high level with 8
pins sourced
IIO= 10 mA,
VDD = 5 V
2.8
-
Output high level with 4
pins sourced
IIO= 4 mA,
VDD = 3.3 V
2.1(1)
-
Unit
V
1. Data based on characterization results, not tested in production
DocID15441 Rev 12
71/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Table 40. Output driving current (true open drain ports)
Symbol
VOL
VOH
Parameter
Conditions
Min
Max
Output low level with 2
pins sunk
IIO= 10 mA,
VDD = 5 V
-
1.0
Output low level with 2
pins sunk
IIO= 10 mA,
VDD = 3.3 V
-
1.5(1)
Output high level with 2
pins sourced
IIO= 10 mA,
VDD = 5 V
-
2.0(1)
Unit
V
1. Data based on characterization results, not tested in production
Table 41. Output driving current (high sink ports)
Symbol
Parameter
Output low level with 8
pins sunk
VOL
Output low level with 4
pins sunk
Output high level with 8
pins sourced
VOH
Output high level with 4
pins sourced
Conditions
Min
Max
IIO= 10 mA,
VDD = 5 V
-
0.8
IIO= 10 mA,
VDD = 3.3 V
-
1.0(1)
IIO= 20 mA,
VDD = 5 V
-
1.5(1)
IIO= 10 mA,
VDD = 5 V
4.0
-
IIO= 10 mA,
VDD = 3.3 V
2.1(1)
-
IIO= 20 mA,
VDD = 5 V
3.3(1)
-
Unit
V
1. Data based on characterization results, not tested in production
Figure 25. Typ. VOL @ VDD = 3.3 V (standard
ports)
72/118
Figure 26. VOL @ VDD = 5.0 V (standard ports)
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Figure 27. Typ. VOL @ VDD = 3.3 V (true open
drain ports)
Figure 28. Typ. VOL @ VDD = 5.0 V (true open
drain ports)
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink
ports)
Figure 30. Typ. VOL @ VDD = 5.0 V (high sink
ports)
DocID15441 Rev 12
73/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V
(standard ports)
Figure 32. Typ. VDD - VOH @ VDD = 5.0 V
(standard ports)
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high
sink ports)
Figure 34. Typ. VDD - VOH @ VDD = 5.0 V (high
sink ports)
74/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
10.3.7
Electrical characteristics
Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 42. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level voltage(1)
-
-0.3
-
0.3 x VDD
VIH(NRST)
NRST input high level voltage(1)
IOL= 2 mA
0.7 x VDD
-
VDD+ 0.3
VOL(NRST)
NRST output low level voltage(1)
IOL= 3 mA
-
-
0.5
-
30
55
80
RPU(NRST)
NRST pull-up
resistor(2)
tIFP(NRST)
NRST input filtered pulse(3)
-
-
-
75
tINFP(NRST)
NRST Input not filtered pulse(3)
-
500
-
-
NRST output pulse(3)
-
20
-
-
tOP(NRST)
Unit
V
k
ns
µs
1. Data based on characterization results, not tested in production.
2. The RPU pull-up equivalent resistor is based on a resistive transistor.
3. Data guaranteed by design, not tested in production.
Figure 35. Typical NRST VIL and VIH vs VDD @ 4 temperatures
DocID15441 Rev 12
75/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Figure 36. Typical NRST pull-up resistance RPU vs VDD @ 4 temperatures
Figure 37. Typical NRST pull-up current Ipu vs VDD @ 4 temperatures
The reset network shown in Figure 38 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 42:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is
100 nF.
76/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Figure 38. Recommended reset pin protection
670
9''
538
([WHUQDO
UHVHW
FLUFXLW
1567
)LOWHU
ȝ)
2SWLRQDO
06Y9
10.3.8
SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 43. SPI characteristics
Symbol
fSCK
1/tc(SCK)
Conditions(1)
Parameter
SPI clock frequency
Min
Max
Master mode
0
8
Slave mode
0
7
DocID15441 Rev 12
Unit
MHz
77/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Table 43. SPI characteristics (continued)
Symbol
Conditions(1)
Parameter
Min
Max
-
25
SPI clock rise and fall
time
Capacitive load: 
C = 30 pF
tsu(NSS)(2)
NSS setup time
Slave mode
4 * tMASTER
-
th(NSS)(2)
NSS hold time
Slave mode
70
-
Master mode
tSCK/2 - 15
tSCK/2 + 15
Master mode
5
-
Slave mode
5
-
Master mode
7
-
Slave mode
10
-
Data output access time
Slave mode
-
3* tMASTER
Data output disable time
Slave mode
25
-
tv(SO)(2)
Data output valid time
Slave mode
(after enable edge)
-
65(5)
tv(MO)(2)
Data output valid time
Master mode (after
enable edge)
-
30
Slave mode (after
enable edge)
27(5)
-
Master mode (after
enable edge)
11(5)
-
tr(SCK)
tf(SCK)
(2)
tw(SCKH)
SCK high and low time
tw(SCKL)(2)
tsu(MI)(2)
tsu(SI)(2)
Data input setup time
th(MI)(2)
th(SI)(2)
Data input hold time
ta(SO)
(2)(3)
tdis(SO)
(2)(4)
th(SO)(2)
Data output hold time
th(MO)(2)
Unit
ns
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z.
5. Data characterization in progress.
78/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Figure 39. SPI timing diagram where slave mode and CPHA = 0
E^^ŝŶƉƵƚ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W,сϬ
WK>сϬ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
W,сϬ
WK>сϭ
ƚĂ;^KͿ
D/^K
KhdW hd
ƚǀ;^KͿ
ƚŚ;^KͿ
D^ K hd
/dϲ Khd
D^ /E
/ dϭ /E
ƚƌ;^<Ϳ
ƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
>^ Khd
ƚƐƵ;^/Ϳ
DK^/
/EWhd
>^ /E
ƚŚ;^/Ϳ
DLF
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 40. SPI timing diagram where slave mode and CPHA = 1
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WF6&.
WZ6&.+
WZ6&./
WY62
WD62
0,62
287 3 87
WK62
06 % 2 87
WVX6,
026,
, 1387
WK166
%, 7 287
WU6&.
WI6&.
WGLV62
/6% 287
WK6,
% , 7 ,1
0 6% ,1
/6% ,1
DL
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID15441 Rev 12
79/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Figure 41. SPI timing diagram - master mode
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TSU-)
-)3/
).0 54
TW3#+(
TW3#+,
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
" ) 4/54
- 3"/54
TV-/
,3"/54
TH-/
AI6
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
80/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
10.3.9
Electrical characteristics
I2C interface characteristics
Table 44. I2C characteristics
Standard mode I2C Fast mode I2C(1)
Symbol
Parameter
Unit
Min(2)
Max(2)
Min(2)
Max(2)
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0(3)
-
0(4)
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
(VDD = 3 to 5.5 V)
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
(VDD = 3 to 5.5 V)
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
tw(STO:STA)
STOP to START condition time 
(bus free)
4.7
-
1.3
-
Cb
Capacitive load for each bus line
-
400
-
400
µs
ns
µs
pF
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)
2. Data based on standard I2C protocol requirement, not tested in production
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
Figure 42. Typical application with I2C bus and timing diagram
9''
NŸ
9''
NŸ
,&EXV
6706
Ÿ
6'$
Ÿ
6&/
5HSHDWHG
VWDUW
67$57
WVX67$
WZ67267$
67$57
6'$
WI6'$
WU6'$
WVX6'$
WK6'$
6723
6&/
WK67$
WZ6&/+
WZ6&//
WU6&/
WI6&/
WVX672
06Y9
DocID15441 Rev 12
81/118
87
Electrical characteristics
10.3.10
STM8S103F2 STM8S103F3 STM8S103K3
10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise
specified.
Table 45. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VDD= 2.95 to 5.5 V
1
-
4
VDD= 4.5 to 5.5 V
1
-
6
Unit
fADC
ADC clock frequency
VAIN
Conversion voltage range(1)
-
VSS
-
VDD
V
CADC
Internal sample and hold
capacitor
-
-
3
-
pF
tS(1)
Minimum sampling time
fADC = 4 MHz
-
0.75
-
fADC = 6 MHz
-
0.5
-
tSTAB
Wakeup time from standby
-
-
7
-
tCONV
Minimum total conversion time
(including sampling time, 10bit resolution)
MHz
µs
µs
fADC = 4 MHz
3.5
µs
fADC = 6 MHz
2.33
µs
-
14
1/fADC
1. During the sample time, the sampling capacitance, CAIN (3 pF max), can be charged/discharged by the
external source. The internal resistance of the analog source must allow the capacitance to reach its final
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no
effect on the conversion result. Values for the sample clock tS depend on programming.
82/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
Table 46. ADC accuracy with RAIN< 10 k, VDD = 5 V
Symbol
|ET|
|EO|
|EG|
|ED|
|EL|
Parameter
Total unadjusted
Offset
Gain
error(2)
error(2)
error(2)
Differential linearity
Integral linearity
error(2)
error(2)
Conditions
Typ
Max(1)
fADC = 2 MHz
1.6
3.5
fADC = 4 MHz
2.2
4
fADC = 6 MHz
2.4
4.5
fADC = 2 MHz
1.1
2.5
fADC = 4 MHz
1.5
3
fADC = 6 MHz
1.8
3
fADC = 2 MHz
1.5
3
fADC = 4 MHz
2.1
3
fADC = 6 MHz
2.2
4
fADC = 2 MHz
0.7
1.5
fADC = 4 MHz
0.7
1.5
fADC = 6 MHz
0.7
1.5
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.8
2
fADC = 6 MHz
0.8
2
Unit
LSB
1. Data based on characterization results, not tested in production.
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
Table 47. ADC accuracy with RAIN< 10 k, VDD = 3.3 V
Symbol
Parameter
|ET|
Total unadjusted error(2)
|EO|
Offset error(2)
|EG|
Gain error(2)
|ED|
Differential linearity error(2)
|EL|
Integral linearity error(2)
Conditions
Typ
Max(1)
fADC = 2 MHz
1.6
3.5
fADC = 4 MHz
1.9
4
fADC = 2 MHz
1
2.5
fADC = 4 MHz
1.5
2.5
fADC = 2 MHz
1.3
3
fADC = 4 MHz
2
3
fADC = 2 MHz
0.7
1
fADC = 4 MHz
0.7
1.5
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.8
2
Unit
LSB
1. Data based on characterization results, not tested in production.
DocID15441 Rev 12
83/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
Figure 43. ADC accuracy characteristics
1023
1022
1021
EG
V
–V
DDA
SSA
1LSB
= ----------------------------------------IDEAL
1024
(2)
ET
7
(3)
(1)
6
5
4
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
1021102210231024
VDDA
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 44. Typical application with ADC
VDD
VAIN
STM8A
VT
0.6V
RAIN
Rswitch
AINx
CAIN
Ts
VT
0.6V
IL
10-bit A/D
conversion
Csamp
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
84/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
10.3.11
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.

FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709 (EMC
design guide for STM microcontrollers).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring. See application note AN1015 (Software
techniques for improving microcontroller EMC performance).
Table 48. EMS data
Symbol
VFESD
VEFTB
Parameter
Conditions
Level/class
VDD 3.3 V, TA25 °C, 
Voltage limits to be applied on any I/O pin fMASTER 16 MHz (HSI clock),
Conforms to IEC 61000-4-2
to induce a functional disturbance
2/B(1)
VDD 3.3 V, TA25 °C, 
fMASTER 16 MHz (HSI clock),
Conforms to IEC 61000-4-4
4/A(1)
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
1. Data obtained with HSI clock configuration, after applying the hardware recommendations described in
AN2860 (EMC guidelines for STM8S microcontrollers).
DocID15441 Rev 12
85/118
87
Electrical characteristics
STM8S103F2 STM8S103F3 STM8S103K3
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm SAE IEC 61967-2 which specifies the board and the loading of each pin.
Table 49. EMI data
Conditions
Symbol
Parameter
General conditions
SEMI
Peak level
SAE EMI level
VDD 5 V, 
TA 25 °C, 
LQFP32 package.
Conforming to SAE
IEC 61967-2
Monitored
frequency band
Max fCPU(1)
Unit
16 MHz/ 16 MHz/
8 MHz 16 MHz
0.1 MHz to 30 MHz
5
5
30 MHz to 130 MHz
4
5
130 MHz to 1 GHz
5
5
SAE EMI level
2.5
2.5
dBµV
-
1. Data based on characterization results, not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD, DLU and LU) using specific measurement methods, the
product is stressed to determine its performance in terms of electrical sensitivity. For more
details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model
can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A
standard. For more details, refer to the application note AN1181.
Table 50. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
A
VESD(HBM)
Electrostatic discharge voltage
(Human body model)
TA 25°C, conforming to
JESD22-A114
VESD(CDM)
Electrostatic discharge voltage
(Charge device model)
TA 25°C, conforming to
SD22-C101
LQFP32 package
Maximum
Unit
value(1)
4000
V
IV
1000
1. Data based on characterization results, not tested in production
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance.
86/118

A supply overvoltage (applied to each power supply pin), and

A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Electrical characteristics
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 51. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
Conditions
Class(1)
TA 25 °C
A
TA 85 °C
A
TA 125 °C
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
DocID15441 Rev 12
87/118
87
Package information
11
STM8S103F2 STM8S103F3 STM8S103K3
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
11.1
LQFP32 package information
Figure 45. LQFP2 package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC
'!5'%0,!.%
#
+
$
!
,
$
,
$
0).
)$%.4)&)#!4)/.
%
E
88/118
%
%
B
DocID15441 Rev 12
7@.&@7
STM8S103F2 STM8S103F3 STM8S103K3
Package information
Table 52. LQFP32 package mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits
Figure 46. LQFP32 recommended footprint
6?&0?6
1. Dimensions are expressed in millimeters.
DocID15441 Rev 12
89/118
105
Package information
STM8S103F2 STM8S103F3 STM8S103K3
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 47. LQFP32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
45.4
,5$
'DWHFRGH
6WDQGDUG67ORJR
: 88
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
90/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
11.2
Package information
UFQFPN32 package information
Figure 48. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
'
$
H
'
$
$
GGG &
&
6($7,1*
3/$1(
E
H
(
E
( (
/
3,1,GHQWLILHU
'
/
!"?-%?6
1. Drawing is not to scale.
DocID15441 Rev 12
91/118
105
Package information
STM8S103F2 STM8S103F3 STM8S103K3
Table 53. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.152
-
-
0.0060
-
b
0.180
0.230
0.280
0.0071
0.0091
0.0110
D
4.900
5.000
5.100
0.1929
0.1969
0.2008
D1
3.400
3.500
3.600
0.1339
0.1378
0.1417
D2
3.400
3.500
3.600
0.1339
0.1378
0.1417
E
4.900
5.000
5.100
0.1929
0.1969
0.2008
E1
3.400
3.500
3.600
0.1339
0.1378
0.1417
E2
3.400
3.500
3.600
0.1339
0.1378
0.1417
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 49. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint
$%B)3B9
1. Dimensions are expressed in millimeters.
Section 11.7: UFQFPN recommended footprint shows the recommended footprints for
UFQFPN with and without on-board emulation.
92/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 50. UFQFPN32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
4,
'DWHFRGH
:
88
5HYLVLRQFRGH
3
6WDQGDUG67ORJR
'RWSLQ
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID15441 Rev 12
93/118
105
Package information
11.3
STM8S103F2 STM8S103F3 STM8S103K3
UFQFPN20 package information
Figure 51. UFQFPN20 package outline
$
%
0IN
4/06)%7
,
$
DDD
,
E
!
,
,
E
B
%
,
!
!
"/44/-6)%7
3)$%6)%7
!!?-%?6
1. Drawing is not to scale.
Table 54. UFQFPN20 package mechanical data
inches(1)
mm
Dim.
94/118
Min
Typ
Max
Min
Typ
Max
D
-
3.000
-
-
0.1181
-
E
-
3.000
-
-
0.1181
-
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.152
-
-
0.0060
-
e
-
0.500
-
-
0.0197
-
L1
0.500
0.550
0.600
0.0197
0.0217
0.0236
L2
0.300
0.350
0.400
0.0118
0.0138
0.0157
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Package information
Table 54. UFQFPN20 package mechanical data (continued)
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
L3
-
0.375
-
-
0.0148
-
L4
-
0.200
-
-
0.0079
-
L5
-
0.150
-
-
0.0059
-
b
0.180
0.250
0.300
0.0071
0.0098
0.0118
-
0.050
-
-
0.0020
-
ddd
1. Values in inches are converted from mm and rounded to 4 decimal digits
Section 11.7: UFQFPN recommended footprint shows the recommended footprints for
UFQFPN with and without on-board emulation.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 52. UFQFPN20 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
4
5HYLVLRQFRGH
'DWHFRGH
'RWSLQ
:
88
3
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID15441 Rev 12
95/118
105
Package information
11.4
STM8S103F2 STM8S103F3 STM8S103K3
SDIP32 package information
Figure 53. SDIP32 package outline
%
%
!
!
"
"
!
,
E
E!
#
E"
$
?-%
Table 55. SDIP32 package mechanical data
inches(1)
mm
Dim.
96/118
Min
Typ
Max
Min
Typ
Max
A
3.556
3.759
5.080
0.1400
0.1480
0.2000
A1
0.508
-
-
0.0200
-
-
A2
3.048
3.556
4.572
0.1200
0.1400
0.1800
B
0.356
0.457
0.584
0.0140
0.0180
0.0230
B1
0.762
1.016
1.397
0.0300
0.0400
0.0550
C
0.203
0.254
0.356
0.0079
0.0100
0.0140
D
27.430
27.940
28.450
1.0799
1.1000
1.1201
E
9.906
10.410
11.050
0.3900
0.4098
0.4350
E1
7.620
8.890
9.398
0.3000
0.3500
0.3700
e
-
1.778
-
-
0.0700
-
eA
-
10.160
-
-
0.4000
-
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Package information
Table 55. SDIP32 package mechanical data (continued)
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
eB
-
-
12.700
-
-
0.5000
L
2.540
3.048
3.810
0.1000
0.1200
0.1500
1. Values in inches are converted from mm and rounded to 4 decimal digits
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 54. SDIP32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
45.4,#
3LQLGHQWLILHU
6WDQGDUG67ORJR
5HYLVLRQFRGH
'DWHFRGH
3
: 88
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID15441 Rev 12
97/118
105
Package information
11.5
STM8S103F2 STM8S103F3 STM8S103K3
TSSOP20 package information
Figure 55. TSSOP20 package outline
$
C
% %
3%!4).'
0,!.%
#
MM
'!'%0,!.%
0).
)$%.4)&)#!4)/.
K
AAA #
!
!
!
B
,
,
E
9!?-%?6
Table 56. TSSOP20 package mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
0.090
-
0.200
0.0035
-
0.0079
D
6.400
6.500
6.600
0.2520
0.2559
0.2598
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1(3)
4.300
4.400
4.500
0.1693
0.1732
0.1772
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
0.0°
-
8.0°
0.0°
-
8.0°
-
-
0.100
-
-
0.0039
c
(2)
k
aaa
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15mm per side.
98/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Package information
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25mm per side.
Figure 56. TSSOP20 recommended package footprint
9!?&0?6
1. Dimensions are expressed in millimeters.
DocID15441 Rev 12
99/118
105
Package information
STM8S103F2 STM8S103F3 STM8S103K3
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 57. TSSOP20 marking example (package top view)
6WDQGDUG67ORJR
3URGXFW
LGHQWLILFDWLRQ
4'1
'DWHFRGH
3LQLGHQWLILHU
:
88
5HYLVLRQFRGH
3
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
11.6
SO20 package information
Figure 58. SO20 package outline
'
K[ƒ
&
(
+
PP
*$8*(3/$1(
N
$
$
%
H
$
/
GGG
:?-%?6
100/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Package information
Table 57. SO20 mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
2.350
-
2.650
0.0925
-
0.1043
A1
0.100
-
0.300
0.0039
-
0.0118
B
0.330
-
0.510
0.013
-
0.0201
C
0.230
-
0.320
0.0091
-
0.0126
D
12.600
-
13.000
0.4961
-
0.5118
E
7.400
-
7.600
0.2913
-
0.2992
e
-
1.270
-
-
0.0500
-
H
10.000
-
10.650
0.3937
-
0.4193
h
0.250
-
0.750
0.0098
-
0.0295
L
0.400
-
1.270
0.0157
-
0.0500
k
0.0°
-
8.0°
0.0°
-
8.0°
-
-
0.100
-
-
0.0039
ddd
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 59. SO20 marking example (package top view)
6WDQGDUG67ORJR
5HYLVLRQFRGH
3
3URGXFW
LGHQWLILFDWLRQ
45.4'.
'DWHFRGH
3LQLGHQWLILHU
: 88
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID15441 Rev 12
101/118
105
Package information
11.7
STM8S103F2 STM8S103F3 STM8S103K3
UFQFPN recommended footprint
Figure 60. UFQFPN recommended footprint for on-board emulation
PP
PP
>@
PP
>@
PP
PP >@
PP
>@
PP>@
PP>@
%RWWRPYLHZ
DL
102/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Package information
Figure 61. UFQFPN recommended footprint without on-board emulation
069
DocID15441 Rev 12
103/118
105
Thermal characteristics
12
STM8S103F2 STM8S103F3 STM8S103K3
Thermal characteristics
The maximum junction temperature (TJmax) of the device must never exceed the values
specified in Table 19: General operating conditions, otherwise the functionality of the device
cannot be guaranteed.
The maximum junction temperature TJmax, in degrees Celsius, may be calculated using the
following equation:
TJmax = TAmax + (PDmax x JA)
Where:

TAmax is the maximum ambient temperature in C

JA is the package junction-to-ambient thermal resistance in C/W

PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)

PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.

PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = (VOL*IOL) + ((VDD-VOH)*IOH), 
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 58. Thermal characteristics(1)
Symbol
Parameter
Value
Unit
JA
Thermal resistance junction-ambient
TSSOP20 - 4.4mm
84
°C/W
JA
Thermal resistance junction-ambient
SO20W (300 mils)
91
°C/W
JA
Thermal resistance junction-ambient
UFQFPN20 - 3 x 3 mm
90
°C/W
JA
Thermal resistance junction-ambient
LQFP32 - 7 x 7 mm
60
°C/W
JA
Thermal resistance junction-ambient
UFQFPN32 - 5 x 5 mm
38
°C/W
JA
Thermal resistance junction-ambient
SDIP32 - 400 mils
60
°C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
12.1
Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
104/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
12.2
Thermal characteristics
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Section 13: Ordering information).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax= 75°C (measured according to JESD51-2),
IDDmax = 8 mA, VDD = 5 V, maximum 20 I/Os used at the same time in output at low
level with
IOL = 8 mA, VOL= 0.4 V
PINTmax = 8 mA x 5 V= 400 mW
PIOmax = 20 x 8 mA x 0.4 V = 64 mW
This gives: PINTmax = 400 mW and PIOmax 64 mW:
PDmax = 400 mW + 64 mW
Thus: PDmax = 464 mW.
Using the values obtained in Table 58: Thermal characteristics on page 104 TJmax is
calculated as follows:
For LQFP32 60 °C/W
TJmax = 75 °C + (60 °C/W x 464 mW) = 75 °C + 27.8 °C = 102.8 °C
This is within the range of the suffix 6 version parts (-40 < TJ < 105 °C).
Parts must be ordered at least with the temperature range suffix 6.
DocID15441 Rev 12
105/118
105
Ordering information
13
STM8S103F2 STM8S103F3 STM8S103K3
Ordering information
Figure 62. STM8S103F2/x3 access line ordering information scheme(1)
STM8
Example:
S
103
K
3
T
6
Product class
STM8 microcontroller
Family type
S = Standard
Sub-family type
10x = Access line
103 sub-family
Pin count
K = 32 pins
F= 20 pins
Program memory size
3 = 8 Kbytes
2 = 4 Kbytes
Package type
B = SDIP
T = LQFP
U = VFQFPN
P = TSSOP
M = SO
Temperature range
3 = -40 to 125 °C
6 = -40 to 85 °C
Package pitch
Blank = 0.5 to 0.65 mm(2)
C = 0.8 mm(3)
Packing
No character = Tray or tube
TR = Tape and reel
1. A dedicated ordering information scheme will be released if, in the future, memory programming service
(FastROM) is required The letter “P” will be added after STM8S. Three unique letters identifying the
customer application code will also be visible in the codification. Example: STM8SP103K3MACTR.
2. UFQFPN, TSSOP, and SO packages.
3. LQFP package.
106/118
DocID15441 Rev 12
TR
STM8S103F2 STM8S103F3 STM8S103K3
Ordering information
For a list of available options (for example memory size, package) and orderable part
numbers or for further information on any aspect of this device, please go to www.st.com or
contact the ST Sales Office nearest to you.
13.1
STM8S103 FASTROM microcontroller option list
(last update: April 2010)
Customer
...............................................................................
Address
...............................................................................
Contact
...............................................................................
Phone number
...............................................................................
FASTROM code reference(1)
...............................................................................
1. The FASTROM code name is assigned by STMicroelectronics.
The preferable format for programing code is .hex (.s19 is accepted)
If data EEPROM programing is required, a separate file must be sent with the requested
data.
Note:
See the option byte section in the datasheet for authorized option byte combinations and a
detailed explanation. Do not use more than one remapping option in the same port. It is
forbidden to enable both AFR1 and AFR0.
Device type/memory size/package (check only one option)
FASTROM device
4 Kbyte
8 Kbyte
LQFP32
-
[ ] STM8S103K3
UFQFPN20
[ ] STM8S103F2
[ ] STM8S103F3
UFQFPN32
-
[ ] STM8S103K3
TSSOP20
[ ] STM8S103F2
[ ] STM8S103F3
SO20W
[ ] STM8S103F2
[ ] STM8S103F3
Conditioning (check only one option)
[ ] Tape and reel or [ ] Tray
Special marking (check only one option)
[ ] No [ ] Yes
Authorized characters are letters, digits, '.', '-', '/' and spaces only. Maximum character
counts are:
UFQFPN20: 1 line of 4 characters max: “_ _ _ _”
UFQFPN32: 1 line of 7 characters max: “_ _ _ _ _ _ _”
LQFP32: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”
TSSOP20/SO20: 1 line of 10 characters max: “_ _ _ _ _ _ _ _ _ _”
Three characters are reserved for code identification.
DocID15441 Rev 12
107/118
113
Ordering information
STM8S103F2 STM8S103F3 STM8S103K3
Temperature range
[ ] -40°C to +85°C or [ ] -40°C to +125°C
Padding value for unused program memory (check only one option)
[ ] 0xFF
Fixed value
[ ] 0x83
TRAP instruction code
[ ] 0x75
Illegal opcode (causes a reset when executed)
OTP0 memory readout protection (check only one option)
[ ] Disable or [ ] Enable
OTP1 user boot code area (UBC)
0x(_ _) fill in the hexadecimal value, referring to the datasheet and the binary format below:
UBC, bit0
[ ] 0: Reset
[ ] 1: Set
UBC, bit1
[ ] 0: Reset
[ ] 1: Set
UBC, bit2
[ ] 0: Reset
[ ] 1: Set
UBC, bit3
[ ] 0: Reset
[ ] 1: Set
UBC, bit4
[ ] 0: Reset
[ ] 1: Set
UBC, bit5
[ ] 0: Reset
[ ] 1: Set
UBC, bit6
[ ] 0: Reset
[ ] 1: Set
UBC, bit7
[ ] 0: Reset
[ ] 1: Set
OTP0 memory readout protection (check only one option)
[ ] Disable or [ ] Enable
OTP2 alternate function remapping for STM8S103K
Do not use more than one remapping option in the same port. It is forbidden to enable both
AFR1 and AFR0.
108/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Ordering information
AFR0
Reserved
AFR1
(check only one option)
[ ] 1: Port A3 alternate function = SPI_NSS and port D2
alternate function = TIM2_CH3
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
AFR2
Reserved
AFR3
Reserved
AFR4
Reserved
AFR5
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D0 alternate function = CLK_CCO
AFR6
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D7 alternate function = TIM1_CH4
AFR7
Reserved
OPT3 watchdog
WWDG_HALT
(check only one option)
[ ] 0: No reset generated on halt if WWDG active[
[ ] 1: Reset generated on halt if WWDG active
WWDG_HW
(check only one option)
[ ] 0: WWDG activated by software
[ ] 1: WWDG activated by hardware
IWDG_HW
(check only one option)
[ ] 0: IWDG activated by software
[ ] 1: IWDG activated by hardware
LSI_EN
(check only one option)
[ ] 0: LSI clock is not available as CPU clock source
[ ] 1: LSI clock is available as CPU clock source
HSITRIM
(check only one option)
[ ] 0: 3-bit trimming supported in CLK_HSITRIMR register
[ ] 1: 4-bit trimming supported in CLK_HSITRIMR register
OPT4 watchdog
PRSC
(check only one option)
[ ] for 16 MHz to 128 kHz prescaler
[ ] for 8 MHz to 128 kHz prescaler
[ ] for 4 MHz to 128 kHz prescaler
CKAWUSEL
(check only one option)
[ ] LSI clock source selected for AWU
[ ] HSE clock with prescaler selected as clock source for AWU
EXTCLK
(check only one option)
[ ] External crystal connected to OSCIN/OSCOUT
[ ] External signal on OSCIN
DocID15441 Rev 12
109/118
113
Ordering information
STM8S103F2 STM8S103F3 STM8S103K3
OPT5 crystal oscillator stabilization HSECNT (check only one option)
[ ] 2048 HSE cycles
[ ] 128 HSE cycles
[ ] 8 HSE cycles
[ ] 0.5 HSE cycles
OTP6 is reserved
Comments:
.........................................................................................
Supply operating range in the application: .........................................................................................
110/118
Notes:
.........................................................................................
Date:
.........................................................................................
Signature:
.........................................................................................
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
14
STM8 development tools
STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
14.1
Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in application execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to
order exactly what you need to meet your development requirements and to adapt your
emulation system to support existing and future ST microcontrollers.
14.1.1
STice key features

Occurrence and time profiling and code coverage (new features),

Advanced breakpoints with up to 4 levels of conditions,

Data breakpoints,

Program and data trace recording up to 128 KB records,

Read/write on the fly of memory during emulation,

In-circuit debugging/programming via SWIM protocol,

8-bit probe analyzer,

1 input and 2 output triggers,

Power supply follower managing application voltages between 1.62 to 5.5 V,

Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements.

Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
DocID15441 Rev 12
111/118
113
STM8 development tools
14.2
STM8S103F2 STM8S103F3 STM8S103K3
Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8, which are available in a free version that outputs up
to 16 Kbytes of code.
14.2.1
STM8 toolset
The STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:

Seamless integration of C and ASM toolsets

Full-featured debugger

Project management

Syntax highlighting editor

Integrated programming interface

Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8
Flash program memory, data EEPROM and option bytes. STVP also offers project mode for
the saving of programming configurations and the automation of programming sequences.
14.2.2
C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of user
applications directly from an easy-to-use graphical interface.
Available toolchains include:
C compiler for STM8
Available in a free version that outputs up to 16 Kbytes of code. For more information, see
www.cosmic-software.com.
STM8 assembler linker
Free assembly toolchain included in the STVD toolset, used to assemble and link the user
application source code.
112/118
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
14.3
STM8 development tools
Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on the application board via the SWIM protocol. Additional tools include a
low-cost in-circuit programmer as well as ST socket boards, which provide dedicated
programming platforms with sockets for the STM8 programming.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
DocID15441 Rev 12
113/118
113
Revision history
15
STM8S103F2 STM8S103F3 STM8S103K3
Revision history
Table 59. Document revision history
Date
Revision
02-Mar-2009
1
Initial release.
2
Added Table 2: Peripheral clock gating bit assignments in
CLK_PCKENR1/2 registers.
Updated Section 4.8: Auto wakeup counter.
Modified the description of PB4 and PB5 (removed X in PP column)
and added footnote concerning HS I/Os in Section 5.1: STM8S103K3
UFQFPN32/LQFP32/SDIP32 pinout and pin description and
Section 5.2: STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout
and pin description.
Removed TIM3 and UART from Table 10: Interrupt mapping.
Updated VCAP specifications in Section 10.3.1: VCAP external
capacitor
Corrected the block size in Table 37: Flash program memory/data
EEPROM memoryt
Updated Section 10: Electrical characteristics.
Updated Section 12: Thermal characteristics.
3
Document status changed from “preliminary data” to “datasheet”.
Replaced WFQFPN20 package with UFQFPN package.
Replaced ‘VFQFN’ with ‘VFQFPN’.
Added bullet point on the unique identifier to Features.
Updated Section 4.8: Auto wakeup counter.
Updated wpu and PP status of PB5/12C_SDA and PB4/12C_SCL
pins in Section 5.1: STM8S103K3 UFQFPN32/LQFP32/SDIP32
pinout and pin description and Section 5.2: STM8S103F2/F3
TSSOP20/SO20/UFQFPN20 pinout and pin description.
Removed Table 7: Pin-to-pin comparison of pin 7 to 12 in 32-pin
access line devices.
Updated Section 6.1: Memory map.
Updated reset status of port D CR1 register in Table 7: I/O port
hardware register map.
Updated alternate function remapping descriptions in Table 13:
STM8S103K3 alternate function remapping bits for 32-pin devices
and Table 14: STM8S103Fx alternate function remapping bits for 20pin devices.
Added Section 9: Unique ID.
Updated Section 10.3: Operating conditions.
Updated the caption of Figure 20: Typical HSI frequency variation vs
VDD @ 4 temperatures.
Updated Table 43: SPI characteristics and added TBD occurrences.
Added max values to Table 46: ADC accuracy with RAIN< 10 kW,
VDD = 5 V and Table 47: ADC accuracy with RAIN< 10 kW, VDD =
3.3 V.
Updated Section 10.3.11: EMC characteristics.
10-Apr-2009
10-Jun-1999
114/118
Changes
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Revision history
Table 59. Document revision history
Date
16-Oct-1999
22-Apr-2010
Revision
Changes
4
Replaced VFQFPN32 package by UFQFPN32 package.
– Section 4.5: Clock controller: replaced TIM2 and TIM3 with reserved
and TIM2 respectively in Table 2: Peripheral clock gating bit
assignments in CLK_PCKENR1/2 registers
– Total current consumption in halt mode: changed the maximum
current consumption limit at 125 °C (and VDD= 5 V) from 35 µA to
55 µA.
– Functional EMS (electromagnetic susceptibility): renamed ESD as
FESD (functional); added name of AN1709; replaced EC 1000 with
IEC 61000.
– Designing hardened software to avoid noise problems: replaced
IEC 1000 with IEC 61000, added title of AN1015, and added
footnote to EMS data table.
– Electromagnetic interference (EMI): replaced J 1752/3 with IEC
61967-2 and updated data of the EMI data table.
– Section 12.2: Selecting the product temperature range: changed the
value of LQFP32 7x7 mm thermal resistance from 59 °C/W to 60
°C/W.
Added Section 13.1: STM8S103 FASTROM microcontroller option list.
5
Added VFQFPN32 and SO20 packages.
Updated Px_IDR reset value in Table 7: I/O port hardware register
map.
– Section 10.3: Operating conditions: updated VCAP and ESR low
limit, added ESL parameter, and Note 1 below Table 19: General
operating conditions
Updated ACCHSI in Table 34: HSI oscillator characteristics. Modified
IDD(H)inand. Removed note 3 related to Accuracy of HSI oscillator.
Updated maximum power dissipation in Table 19: General operating
conditions.
Updated Section 12: Thermal characteristics
Replaced package pitch digit by VFQFPN/UFQFPN package digit in
Figure 62: STM8S103F2/x3 access line ordering information
scheme(1), and removed note 1.
DocID15441 Rev 12
115/118
117
Revision history
STM8S103F2 STM8S103F3 STM8S103K3
Table 59. Document revision history
Date
09-Sep-2010
12-Jul-2011
116/118
Revision
Changes
6
Removed VFQFPN32 package.
Removed internal reference voltage from Section 4.13: Analog-todigital converter (ADC1).
Updated the reset state information in Table 4: Legend/abbreviations
for pin description tables in Section 5: Pinout and pin description.
Added footnote to PD1/SWIM pin in Table 5: STM8S103K3 pin
descriptions.
Updated pins 14 and 19 (TSSOP20/SO20) / pins 11 and 16
(UFQFPN20) in Table 6: STM8S103F2 and STM8S103F3 pin
descriptions.
Standardized all reset state values; updated the reset state values of
the RST_SR, CLK_SWCR, CLK_HSITRIMR, CLK_SWIMCCR,
IWDG_KR, and ADC_DRx registers in Table 8: General hardware
register map.
Updated AFR2 description of OPT 2 in Table 14: STM8S103Fx
alternate function remapping bits for 20-pin devicess.
Replaced 0.01 µF with 0.1 µf in Figure 38: Recommended reset pin
protection.
Added Figure 42: Typical application with I2C bus and timing diagram
and Table 44: I2C characteristics.
Updated footnote 1 in Table 46: ADC accuracy with RAIN< 10 kW,
VDD = 5 V and Table 47: ADC accuracy with RAIN< 10 kW, VDD =
3.3 V.
Updated the Special marking section in Section 13.1: STM8S103
FASTROM microcontroller option list:
Updated AFR2 description of OTP2 in Table 14: STM8S103Fx
alternate function remapping bits for 20-pin devices
Updated existing footnote and added three additional footnotes to
Table 53: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine
pitch quad flat package mechanical data
7
Updated the note related to true open-drain outputs in Table 6:
STM8S103F2 and STM8S103F3 pin descriptions
Removed CLK_CANCCR register from Table 8: General hardware
register map.
Added note for Px_IDR registers in Table 7: I/O port hardware register
map.
Added recommendation concerning NRST pin level, and power
consumption sensitive applications, above Figure 38: Recommended
reset pin protection.
Removed typical HSI accuracy curve in Section 10.3.4: Internal clock
sources and timing characteristics.
Renamed package type 2 into package pitch and added pitch code
“C” in Figure 62: STM8S103F2/x3 access line ordering information
scheme(1) and added UFQFPN20 in Section 13.1: STM8S103
FASTROM microcontroller option list.
Updated the disclaimer.
DocID15441 Rev 12
STM8S103F2 STM8S103F3 STM8S103K3
Revision history
Table 59. Document revision history
Date
Revision
Changes
04-Apr-2012
8
Updated notes related to VCAP in Table 19: General operating
conditions.
Added values of tR/tF for 50 pF load capacitance, and updated note in
Table 38: I/O static characteristics.
Updated typical and maximum values of RPU in Table 38: I/O static
characteristics and Table 42: NRST pin characteristics.
Changed SCK input to SCK output in Section 10.3.8: SPI serial
peripheral interface
Modified Figure 51: UFQFPN20 package outline to add package top
view.
26-Jun-2012
9
Added Section 11.4: SDIP32 package information.
04-Feb-2015
10
Updated Section 11.5: TSSOP20 package information and
Section 11.3: UFQFPN20 package information.
10-Mar-2015
11
Updated:
– Table 34: HSI oscillator characteristics: corrected HSI oscillator
accuracy (factory calibrated) for VDD = 5 V and TA = 25 °C.
– Table 38: I/O static characteristics: corrected the max. value for
TR/TF, Fast I/Os, Load = 50 pF.
Added:
– Figure 23: Typical pull-up current vs VDD @ 4 temperatures,
– the rows for TR/TF, Fast I/Os, Load = 20 pF in Table 38: I/O static
characteristics,
– Figure 47: LQFP32 marking example (package top view),
– Figure 50: UFQFPN32 marking example (package top view),
– Figure 52: UFQFPN20 marking example (package top view),
– Figure 54: SDIP32 marking example (package top view),
– Figure 57: TSSOP20 marking example (package top view),
– Figure 59: SO20 marking example (package top view).
26-Mar-2015
12
Corrected the values for “b” dimensions in Table 53: UFQFPN32 - 32pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package
mechanical data.
DocID15441 Rev 12
117/118
117
STM8S103F2 STM8S103F3 STM8S103K3
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
118/118
DocID15441 Rev 12