STM8S005K6 STM8S005C6 Value line, 16 MHz STM8S 8-bit MCU, 32 Kbytes Flash, data EEPROM,10-bit ADC, timers, UART, SPI, I²C active, low consumption power-on • Permanently and power-down reset Interrupt management Nested interrupt controller with 32 interrupts • • Up to 37 external interrupts on 6 vectors LQFP48 7x7 LQFP32 7x7 Timers 2x 16-bit general purpose timers, with 2+3 CAPCOM channels (IC, OC or PWM) • control timer: 16-bit, 4 CAPCOM • Advanced channels, 3 complementary outputs, dead-time insertion and flexible synchronization Features Core 16 MHz advanced STM8 core with Harvard architecture and 3-stage pipeline • • Extended instruction set Memories Medium-density Flash/EEPROM: Program memory: 32 Kbytes of Flash memory; data retention 20 years at 55°C after 100 cycles • - Data memory: 128 bytes of true data EEPROM; endurance up to 100 k write/erase cycles • RAM: 2 Kbytes Clock, reset and supply management 2.95 V to 5.5 V operating voltage • clock control, 4 master clock sources: • Flexible Low power crystal resonator oscillator - External clock input - Internal, user-trimmable 16 MHz RC - Internal low power 128 kHz RC • Clock security system with clock monitor management: • Power Low - power modes (wait, active-halt, halt) - Switch-off peripheral clocks individually June 2012 • 8-bit basic timer with 8-bit prescaler • Auto wake-up timer • Window and independent watchdog timers Communications interfaces UART with clock output for synchronous operation, Smartcard, IrDA, LIN • • SPI interface up to 8 Mbit/s • I C interface up to 400 Kbit/s 2 Analog-to-digital converter (ADC) 10-bit, ±1 LSB ADC with up to 10 multiplexed channels, scan mode and analog watchdog • I/Os Up to 38 I/Os on a 48-pin package including 16 high sink outputs • robust I/O design, immune against current • Highly injection Development support Embedded single wire interface module (SWIM) for fast on-chip programming and non intrusive debugging • DocID022186 Rev 3 1/103 www.st.com Contents STM8S005K6 STM8S005C6 Contents 1 2 3 4 Introduction ..............................................................................................................7 Description ...............................................................................................................8 Block diagram ..........................................................................................................9 Product overview ...................................................................................................10 4.1 Central processing unit STM8 .....................................................................................10 4.2 Single wire interface module (SWIM) and debug module (DM) ..................................10 4.3 Interrupt controller .......................................................................................................11 4.4 Flash program and data EEPROM memory ................................................................11 4.5 Clock controller ............................................................................................................12 4.6 Power management ....................................................................................................13 4.7 Watchdog timers ..........................................................................................................14 4.8 Auto wakeup counter ...................................................................................................14 4.9 Beeper ........................................................................................................................14 4.10 TIM1 - 16-bit advanced control timer .........................................................................15 4.11 TIM2, TIM3 - 16-bit general purpose timers ..............................................................15 4.12 TIM4 - 8-bit basic timer ..............................................................................................15 4.13 Analog-to-digital converter (ADC1) ............................................................................16 4.14 Communication interfaces .........................................................................................16 4.14.1 UART2 ...............................................................................................16 4.14.2 SPI .....................................................................................................17 4.14.3 I²C ......................................................................................................18 5 Pinout and pin description ...................................................................................19 5.1 STM8S005 pinouts and pin description .......................................................................20 5.1.1 Alternate function remapping ...............................................................24 6 Memory and register map .....................................................................................25 6.1 Memory map 6.2 Register map 6.2.1 6.2.2 6.2.3 ................................................................................................................25 ...............................................................................................................26 I/O port hardware register map ............................................................26 General hardware register map ...........................................................29 CPU/SWIM/debug module/interrupt controller registers ......................39 7 Interrupt vector mapping ......................................................................................42 8 Option bytes ...........................................................................................................44 9 Electrical characteristics ......................................................................................49 9.1 Parameter conditions ...................................................................................................49 9.1.1 Minimum and maximum values ...........................................................49 9.1.2 Typical values .......................................................................................49 9.1.3 Typical curves ......................................................................................49 2/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Contents 9.1.4 Typical current consumption ................................................................49 9.1.5 Loading capacitor .................................................................................50 9.1.6 Pin input voltage ...................................................................................50 9.2 Absolute maximum ratings ..........................................................................................50 9.3 Operating conditions ...................................................................................................52 9.3.1 VCAP external capacitor ......................................................................54 9.3.2 Supply current characteristics ..............................................................55 9.3.3 External clock sources and timing characteristics ...............................66 9.3.4 Internal clock sources and timing characteristics .................................68 9.3.5 Memory characteristics ........................................................................70 9.3.6 I/O port pin characteristics ...................................................................72 9.3.7 Typical output level curves ...................................................................75 9.3.8 Reset pin characteristics ......................................................................79 9.3.9 SPI serial peripheral interface ..............................................................81 2 9.3.10 I C interface characteristics ...............................................................84 9.3.11 10-bit ADC characteristics ..................................................................86 9.3.12 EMC characteristics ...........................................................................89 10 Package information ...........................................................................................93 10.1 48-pin LQFP package mechanical data ....................................................................93 10.2 32-pin LQFP package mechanical data ....................................................................95 11 Thermal characteristics .......................................................................................97 11.1 Reference document .................................................................................................97 11.2 Selecting the product temperature range ..................................................................97 12 Ordering information ...........................................................................................99 13 STM8 development tools ..................................................................................100 13.1 Emulation and in-circuit debugging tools .................................................................100 13.2 Software tools ..........................................................................................................100 13.2.1 STM8 toolset ....................................................................................101 13.2.2 C and assembly toolchains ..............................................................101 13.3 Programming tools ..................................................................................................101 14 Revision history .................................................................................................102 DocID022186 Rev 3 3/103 List of tables STM8S005K6 STM8S005C6 List of tables Table 1. STM8S005xx value line features ................................................................................................8 Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers ..................................13 Table 3. TIM timer features ...................................................................................................................15 Table 4. Legend/abbreviations for pinout tables ...................................................................................19 Table 5. Pin description for STM8S005 microcontrollers .......................................................................21 Table 6. Flash, Data EEPROM and RAM boundary addresses ............................................................26 Table 7. I/O port hardware register map ................................................................................................26 Table 8. General hardware register map ................................................................................................29 Table 9. CPU/SWIM/debug module/interrupt controller registers ..........................................................39 Table 10. Interrupt mapping ...................................................................................................................42 Table 11. Option bytes ...........................................................................................................................44 Table 12. Option byte description ...........................................................................................................45 Table 13. Description of alternate function remapping bits [7:0] of OPT2 ..............................................47 Table 14. Voltage characteristics ...........................................................................................................50 Table 15. Current characteristics ...........................................................................................................51 Table 16. Thermal characteristics ..........................................................................................................52 Table 17. General operating conditions .................................................................................................53 Table 18. Operating conditions at power-up/power-down ......................................................................54 Table 19. Total current consumption with code execution in run mode at VDD = 5 V .............................55 Table 20. Total current consumption with code execution in run mode at VDD = 3.3 V ..........................66 Table 21. Total current consumption in wait mode at VDD = 5 V ............................................................58 Table 22. Total current consumption in wait mode at VDD = 3.3 V .........................................................58 Table 23. Total current consumption in active halt mode at VDD = 5 V ..................................................59 Table 24. Total current consumption in active halt mode at VDD = 3.3 V ...............................................60 Table 25. Total current consumption in halt mode at VDD = 5 V .............................................................61 Table 26. Total current consumption in halt mode at VDD = 3.3 V ..........................................................61 Table 27. Wakeup times .........................................................................................................................61 Table 28. Total current consumption and timing in forced reset state ....................................................92 Table 29. Peripheral current consumption .............................................................................................63 Table 30. HSE user external clock characteristics .................................................................................66 Table 31. HSE oscillator characteristics .................................................................................................67 Table 32. HSI oscillator characteristics ..................................................................................................68 Table 33. LSI oscillator characteristics ...................................................................................................70 Table 34. RAM and hardware registers ..................................................................................................70 Table 35. Flash program memory/data EEPROM memory ....................................................................71 Table 36. I/O static characteristics .........................................................................................................72 Table 37. Output driving current (standard ports) ..................................................................................74 Table 38. Output driving current (true open drain ports) ........................................................................74 Table 39. Output driving current (high sink ports) ..................................................................................74 Table 40. NRST pin characteristics ........................................................................................................79 Table 41. SPI characteristics ..................................................................................................................81 2 Table 42. I C characteristics ..................................................................................................................84 Table 43. ADC characteristics ................................................................................................................86 Table 44. ADC accuracy with RAIN < 10 kΩ , VDDA= 5 V .......................................................................87 Table 45. ADC accuracy with RAIN < 10 kΩ RAIN, VDDA = 3.3 V ............................................................88 Table 46. EMS data ................................................................................................................................90 Table 47. EMI data .................................................................................................................................91 4/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 List of tables Table 48. ESD absolute maximum ratings .............................................................................................92 Table 49. Electrical sensitivities .............................................................................................................92 Table 50. 48-pin low profile quad flat package mechanical data ............................................................93 Table 51. 32-pin low profile quad flat package mechanical data .........................................................102 (1) Table 52. Thermal characteristics ......................................................................................................97 Table 53. Document revision history ...................................................................................................102 DocID022186 Rev 3 5/103 List of figures STM8S005K6 STM8S005C6 List of figures Figure 1. STM8S005xx value line block diagram .....................................................................................9 Figure 2. Flash memory organization ....................................................................................................12 Figure 3. LQFP 48-pin pinout .................................................................................................................20 Figure 4. LQFP 32-pin pinout ................................................................................................................21 Figure 5. Memory map ...........................................................................................................................25 Figure 6. Supply current measurement conditions ................................................................................49 Figure 7. Pin loading conditions .............................................................................................................50 Figure 8. Pin input voltage .....................................................................................................................50 Figure 9. fCPUmax versus VDD ................................................................................................................54 Figure 10. External capacitor CEXT .......................................................................................................55 Figure 11. Typ. IDD(RUN) vs. VDD , HSE user external clock, fCPU = 16 MHz ...........................................64 Figure 12. Typ. IDD(RUN) vs. fCPU , HSE user external clock, VDD= 5 V ..................................................64 Figure 13. Typ. IDD(RUN) vs. VDD , HSI RC osc, fCPU = 16 MHz ..............................................................65 Figure 14. Typ. IDD(WFI) vs. VDD , HSE user external clock, fCPU = 16 MHz ............................................65 Figure 15. Typ. IDD(WFI) vs. fCPU, HSE user external clock VDD = 5 V ....................................................65 Figure 16. Typ. IDD(WFI) vs. VDD, HSI RC osc, fCPU = 16 MHz ................................................................66 Figure 17. HSE external clocksource .....................................................................................................67 Figure 18. HSE oscillator circuit diagram ...............................................................................................68 Figure 19. Typical HSI frequency variation vs VDD @ 3 temperatures ..................................................69 Figure 20. Typical LSI frequency variation vs VDD @ 3 temperatures ...................................................70 Figure 21. Typical VIL and VIH vs VDD @ 3 temperatures ......................................................................73 Figure 22. Typical pull-up resistance vs VDD @ 3 temperatures ............................................................73 Figure 23. Typical pull-up current vs VDD @ 3 temperatures .................................................................73 Figure 24. Typ. VOL @ VDD = 5 V (standard ports) ................................................................................75 Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports) .............................................................................76 Figure 26. Typ. VOL @ VDD = 5 V (true open drain ports) ......................................................................76 Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports) ...................................................................76 Figure 28. Typ. VOL @ VDD = 5 V (high sink ports) ................................................................................77 Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports) .............................................................................77 Figure 30. Typ. VDD - VOH @ VDD = 5 V (standard ports) .......................................................................77 Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) ....................................................................78 Figure 32. Typ. VDD - VOH @ VDD = 5 V (high sink ports) ......................................................................78 Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) ...................................................................78 Figure 34. Typical NRST VIL and VIH vs VDD @ 3 temperatures ...........................................................80 Figure 35. Typical NRST pull-up resistance vs VDD @ 3 temperatures .................................................80 Figure 36. Typical NRST pull-up current vs VDD @ 3 temperatures ......................................................80 Figure 37. Recommended reset pin protection ......................................................................................81 Figure 38. SPI timing diagram - slave mode and CPHA = 0 ..................................................................83 (1) Figure 39. SPI timing diagram - slave mode and CPHA = 1 .............................................................83 (1) Figure 40. SPI timing diagram - master mode ...................................................................................84 2 (1) Figure 41. Typical application with I C bus and timing diagram .......................................................85 Figure 42. ADC accuracy characteristics ...............................................................................................89 Figure 43. Typical application with ADC ................................................................................................89 Figure 44. 48-pin low profile quad flat package (7 x 7) ..........................................................................93 Figure 45. 32-pin low profile quad flat package (7 x 7) ..........................................................................95 Figure 46. STM8S005xx value line ordering information scheme .........................................................99 6/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 1 Introduction Introduction This datasheet contains the description of the device features, pinout, electrical characteristics, mechanical data and ordering information. For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016). • information on programming, erasing and protection of the internal Flash memory • For please refer to the STM8S Flash programming manual (PM0051). information on the debug and SWIM (single wire interface module) refer to the STM8 • For SWIM communication protocol and debug module user manual (UM0470). information on the STM8 core, please refer to the STM8 CPU programming manual • For (PM0044). DocID022186 Rev 3 7/103 Description 2 STM8S005K6 STM8S005C6 Description The STM8S005xx value line 8-bit microcontrollers offer 32 Kbytes of Flash program memory, plus 128 bytes of data EEPROM. They are referred to as medium-density devices in the STM8S microcontroller family reference manual (RM0016). All devices of the STM8S005xx value line provide the following benefits: performance, robustness, reduced system cost, and short develoment cycles. Device performance and robustness are ensured by true data EEPROM supporting up to 100 000 write/erase cycles, advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system. The system cost is reduced thanks to high system integration level with internal clock oscillators, watchdog and brown-out reset. Common family product architecture with compatible pinout, memory map and modular peripherals allow application scalability and reduced development cycles. All products operate from a 2.95 to 5.5 V supply voltage. Full documentation is offered as well as a wide choice of development tools. Table 1: STM8S005xx value line features Device STM8S005C6 STM8S005K6 Pin count 48 32 Maximum number of GPIOs 38 25 Ext. Interrupt pins 35 23 Timer CAPCOM channels 9 8 Timer complementary outputs 3 3 A/D Converter channels 10 7 High sink I/Os 16 12 Medium density Flash Program memory (bytes) 32K 32K Data EEPROM (bytes) 128 128 RAM (bytes) 2K 2K Peripheral set Advanced control timer (TIM1), General-purpose timers (TIM2 and TIM3), Basic 2 timer (TIM4) SPI, I C, UART, Window WDG, Independent WDG, ADC 8/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Block diagram Figure 1: STM8S005xx value line block diagram Reset block XTAL 1-16 MHz Clock controller Reset Reset RC int. 16 MHz Detector POR/ PDR BOR RC int. 128 kHz Clock to peripherals and core Window WDG STM8 core Independent WDG Single wire debug interf. Debug/SWIM 32 Kbytes program Flash Master/slave autosynchro LIN master SPI emul. UART2 128 bytes data EEPROM 400 Kbit/s 8 Mbit/s Up to 10 channels 1/2/4 kHz beep 2 I C SPI Address and data bus 3 Block diagram 2 Kbytes RAM Boot ROM 16-bit advanced control timer (TIM1) Up to 4 CAPCOM channels +3 complementary outputs 16-bit general purpose timers (TIM2, TIM3) Up to 5 CAPCOM channels 8-bit basic timer (TIM4) ADC1 Beeper AWU timer DocID022186 Rev 3 9/103 Product overview 4 STM8S005K6 STM8S005C6 Product overview The following section intends to give an overview of the basic features of the device functional modules and peripherals. For more detailed information please refer to the corresponding family reference manual (RM0016). 4.1 Central processing unit STM8 The 8-bit STM8 core is designed for code efficiency and performance. It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions. Architecture and registers Harvard architecture • • 3-stage pipeline • 32-bit wide program memory bus - single cycle fetching for most instructions Y 16-bit index registers - enabling indexed addressing modes with or without offset • Xandandread-modify-write type data manipulations 8-bit accumulator • • 24-bit program counter - 16-Mbyte linear memory space • 16-bit stack pointer - access to a 64 K-level stack • 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing 20 addressing modes • indirect addressing mode for look-up tables located anywhere in the address • Indexed space • Stack pointer relative addressing mode for local variables and parameter passing Instruction set 80 instructions with 2-byte average instruction size • • Standard data movement and logic/arithmetic functions • 8-bit by 8-bit multiplication • 16-bit by 8-bit and 16-bit by 16-bit division • Bit manipulation • Data transfer between stack and accumulator (push/pop) with direct stack access • Data transfer using the X and Y registers or direct memory-to-memory transfers 4.2 Single wire interface module (SWIM) and debug module (DM) The single wire interface module and debug module permits non-intrusive, real-time in-circuit debugging and fast memory programming. 10/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Product overview SWIM Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms. Debug module The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers. R/W to RAM and peripheral registers in real-time • • R/W access to all resources by stalling the CPU • Breakpoints on all program-memory instructions (software breakpoints) • Two advanced breakpoints, 23 predefined configurations 4.3 Interrupt controller • Nested interrupts with three software priority levels • 32 interrupt vectors with hardware priority • Up to 37 external interrupts on 6 vectors including TLI • Trap and reset interrupts 4.4 Flash program and data EEPROM memory • 32 Kbytes of Flash program single voltage Flash memory • 128 bytes true data EEPROM • Read while write: Writing in data memory possible while executing code in program memory • User option byte area Write protection (WP) Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction. There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes. To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes. A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to the figure below. The size of the UBC is programmable through the UBC option byte, in increments of 1 page (512 bytes) by programming the UBC option byte in ICP mode. This divides the program memory into two areas: Main program memory: 32 Kbytes minus UBC • • User-specific boot code (UBC): Configurable up to 32 Kbytes DocID022186 Rev 3 11/103 Product overview STM8S005K6 STM8S005C6 The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines. Figure 2: Flash memory organization Data EEPROM memory Data memory area ( 128 bytes) Option bytes UBC area Remains write protected during IAP Programmable area from 1 Kbyte (2 first pages) up to 32 Kbytes (1 page steps) Medium density Flash program memory (32 Kbytes) Program memory area Write access possible for IAP Read-out protection (ROP) The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller. 4.5 Clock controller The clock controller distributes the system clock (fMASTER) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. Features Clock prescaler: To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • clock switching: Clock sources can be changed safely on the fly in run mode • Safe through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching. management: To reduce power consumption, the clock controller can stop the • Clock clock to the core, individual peripherals or memory. clock sources: Four different clock sources can be used to drive the master • Master clock: - 1-16 MHz high-speed external crystal (HSE) - Up to 16 MHz high-speed user-external clock (HSE user-ext) 12/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 - Product overview 16 MHz high-speed internal RC oscillator (HSI) 128 kHz low-speed internal RC (LSI) clock: After reset, the microcontroller restarts by default with an internal 2 MHz • Startup clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. security system (CSS): This feature can be enabled by software. If an HSE clock • Clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated. main clock output (CCO): This outputs an external clock for use by the • Configurable application. Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers Bit Peripheral Bit clock Peripheral Bit clock Peripheral Bit clock Peripheral clock PCKEN1 7 TIM1 PCKEN1 3 UART2 PCKEN2 7 Reserved PCKEN2 3 ADC PCKEN1 6 TIM3 PCKEN1 2 Reserved PCKEN2 6 Reserved PCKEN2 2 AWU PCKEN1 5 TIM2 PCKEN1 1 SPI PCKEN2 5 Reserved PCKEN2 1 Reserved PCKEN1 4 TIM4 PCKEN1 0 I C PCKEN2 4 Reserved PCKEN2 0 Reserved 4.6 2 Power management For efficent power management, the application can be put in one of four different low-power modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources. Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset. • halt mode with regulator on: In this mode, the CPU and peripheral clocks are • Active stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset. halt mode with regulator off: This mode is the same as active halt with regulator • Active on, except that the main voltage regulator is powered off, so the wake up time is slower. mode: In this mode the microcontroller uses the least power. The CPU and peripheral • Halt clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset. DocID022186 Rev 3 13/103 Product overview 4.7 STM8S005K6 STM8S005C6 Watchdog timers The watchdog system is based on two independent timers providing maximum security to the applications. Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset. Window watchdog timer The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence. The window function can be used to trim the watchdog behavior to match the application perfectly. The application software must refresh the counter before time-out and during a limited time window. A reset is generated in two situations: 1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up to 64 ms. 2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register. Independent watchdog timer The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures. It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case of a CPU clock failure The IWDG time base spans from 60 µs to 1 s. 4.8 Auto wakeup counter • Used for auto wakeup from active halt mode • Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock • LSI clock can be internally connected to TIM3 input capture channel 1 for calibration 4.9 Beeper The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz. The beeper output port is only available through the alternate function remap option bit AFR7. 14/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 4.10 Product overview TIM1 - 16-bit advanced control timer This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver 16-bit up, down and up/down autoreload counter with 16-bit prescaler • independent capture/compare channels (CAPCOM) configurable as input capture, • Four output compare, PWM generation (edge and center aligned mode) and single pulse mode output • Synchronization module to control the timer with external signals • Break input to force the timer outputs into a defined state • Three complementary outputs with adjustable dead time • Encoder mode • Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break 4.11 TIM2, TIM3 - 16-bit general purpose timers • 16-bit autoreload (AR) up-counter • 15-bit prescaler adjustable to fixed power of 2 ratios 1…32768 • Timers with 3 or 2 individually configurable capture/compare channels • PWM mode • Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update 4.12 TIM4 - 8-bit basic timer • 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128 • Clock source: CPU clock • Interrupt source: 1 x overflow/update Table 3: TIM timer features Timer Counter Prescaler size (bits) Counting CAPCOM Complem. Ext. Timer mode channels outputs trigger synchronization/ chaining TIM1 16 Any integer from 1 to Up/ 65536 down 4 3 Yes TIM2 16 Any power of 2 from 1 to 32768 Up 3 0 No TIM3 16 Any power of 2 from 1 to 32768 Up 2 0 No DocID022186 Rev 3 No 15/103 Product overview STM8S005K6 STM8S005C6 Timer Counter Prescaler size (bits) Counting CAPCOM Complem. Ext. Timer mode channels outputs trigger synchronization/ chaining TIM4 8 Up 4.13 Any power of 2 from 1 to 128 0 0 No Analog-to-digital converter (ADC1) The STM8S105xx products contain a 10-bit successive approximation A/D converter (ADC1) with up to 10 multiplexed input channels and the following main features: Input voltage range: 0 to VDDA • • Conversion time: 14 clock cycles • Single and continuous and buffered continuous conversion modes • Buffer size (n x 10 bits) where n = number of input channels • Scan mode for single and continuous conversion of a sequence of channels • Analog watchdog capability with programmable upper and lower thresholds • Analog watchdog interrupt • External trigger input • Trigger from TIM1 TRGO • End of conversion (EOC) interrupt Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers. 4.14 Communication interfaces The following communication interfaces are implemented: UART2: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA mode, LIN2.1 master/slave capability • • SPI : Full and half-duplex, 8 Mbit/s • I²C: Up to 400 Kbit/s 4.14.1 UART2 Main features One Mbit/s full duplex SCI • • SPI emulation • High precision baud rate generator • Smartcard emulation • IrDA SIR encoder decoder 16/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Product overview • LIN master mode • LIN slave mode Asynchronous communication (UART mode) Full duplex communication - NRZ standard format (mark/space) • transmit and receive baud rates up to 1 Mbit/s (f /16) and capable of • Programmable following any standard baud rate regardless of the input frequency • Separate enable bits for transmitter and receiver receiver wakeup modes: • TwoAddress bit (MSB) Idle line (interrupt) • Transmission error detection with interrupt generation • Parity control CPU Synchronous communication Full duplex synchronous transfers • • SPI master operation • 8-bit data communication • Maximum speed: 1 Mbit/s at 16 MHz (f CPU/16) LIN master mode Emission: Generates 13-bit synch break frame • • Reception: Detects 11-bit break frame LIN slave mode Autonomous header handling - one single interrupt per valid message header • • Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15 % • Synch delimiter checking • 11-bit LIN synch break detection - break detection always active • Parity check on the LIN identifier field • LIN error management • Hot plugging support 4.14.2 SPI • Maximum speed: 8 Mbit/s (f /2) both for master and slave • Full duplex synchronous transfers • Simplex synchronous transfers on two lines with a possible bidirectional data line • Master or slave operation - selectable by hardware or software • CRC calculation • 1 byte Tx and Rx buffer • Slave/master selection input pin MASTER DocID022186 Rev 3 17/103 Product overview 4.14.3 STM8S005K6 STM8S005C6 I²C master features: • I²C Clock generation Start and stop generation slave features: • I²C Programmable I2C address detection Stop bit detection • Generation and detection of 7-bit/10-bit addressing and general call different communication speeds: • Supports Standard speed (up to 100 kHz) - Fast speed (up to 400 kHz) 18/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 5 Pinout and pin description Pinout and pin description Table 4: Legend/abbreviations for pinout tables Type I= Input, O = Output, S = Power supply Level Input CM = CMOS Output HS = High sink Output speed O1 = Slow (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset Port and control configuration Reset state Input float = floating, wpu = weak pull-up Output T = True open drain, OD = Open drain, PP = Push pull Bold X (pin state after internal reset release). Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release. DocID022186 Rev 3 19/103 Pinout and pin description 5.1 STM8S005K6 STM8S005C6 STM8S005 pinouts and pin description PE0 (HS)/CLK_CCO 2 PE1 (T)/I C_SCL 2 PE2 (T)/I C_SDA PE3/TIM1_BKIN PD3 (HS)/TIM2_CH2 [ADC_ETR] PD2 (HS)/TIM3_CH1 [TIM2_CH3] PD1 (HS)/SWIM PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO] PD7/TLI [TIM1_CH4] PD6/UART2_RX PD5/UART2_TX PD4 (HS)/TIM2_CH1 [BEEP] Figure 3: LQFP 48-pin pinout NRST OSCIN/PA1 OSCOUT/PA2 V SSIO_1 1 48 47 46 45 44 43 42 41 40 39 38 37 36 PG1 2 35 PG0 3 34 4 33 VSS VCAP 5 32 6 31 VDD 7 30 VDDIO_1 [TIM3_CH1] TIM2_CH3/PA3 (HS) PA4 (HS) PA5 8 29 9 28 PC7 (HS)/SPI_MISO PC6 (HS)/SPI_MOSI VDDIO_2 VSSIO_2 PC5 (HS)/SPI_SCK PC4 (HS)/TIM1_CH4 PC3 (HS)/TIM1_CH3 10 27 PC2 (HS)/TIM1_CH2 11 12 26 PC1 (HS)/TIM1_CH1/UART2_CK 25 PE5/SPI_NSS (HS) PA6 AIN8/PE7 AIN9/PE6 AIN7/PB7 AIN6/PB6 2 [I C_SDA] AIN5/PB5 2 [I C_SCL] AIN4/PB4 [TIM1_ETR/AIN3/PB3 [TIM1_CH3N] AIN2/PB2 [TIM1_CH2N] AIN1/PB1 [TIM1_CH1N] AIN0/PB0 VDDA VSSA 13 14 15 16 17 18 19 20 21 22 23 24 1. (HS) high sink capability. 2. (T) True open drain (P-buffer and protection diode to VDD not implemented). 3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). 20/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Pinout and pin description PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO] PD1 (HS)/SWIM PD2 (HS)/TIM3_CH1[TIM2_CH3] PD3 (HS)/TIM2_CH2 [ADC_ETR] PD4 (HS)/TIM2_CH1 [BEEP] PD5/UART2_TX PD6/UART2_RX PD7/TLI [TIM1_CH4] Figure 4: LQFP 32-pin pinout 32 31 30 29 28 27 26 25 NRST 1 24 PC7 (HS)/SPI_MISO OSCIN/PA1 2 23 PC6 (HS)/SPI_MOSI OSCOUT/PA2 3 22 PC5 (HS)/SPI_SCK V SS 4 21 PC4 (HS)/TIM1_CH4 VCAP 5 20 PC3 (HS)/TIM1_CH3 6 19 PC2 (HS)/TIM1_CH2 V DDIO 7 18 AIN12/PF4 8 PC1 (HS)/TIM1_CH1/UART2_CK PE5/SPI_NSS V DD 17 [TIM1_CH1N] AIN0/PB0 [TIM1_CH2N] AIN1/PB1 [TIM1_ETR] AIN3/PB3 [TIM1_CH3N] AIN2/PB2 2 [I C_SCL] AIN4/PB4 V DDA VSSA 2 [I C_SDA] AIN5/PB5 9 10 11 12 13 14 15 16 1. (HS) high sink capability. 2. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). Table 5: Pin description for STM8S005 microcontrollers Pin number LQFP48 Pin name Type LQFP32 1 NRST I/O 2 2 PA1/ OSC IN I/O PA2/ OSC OUT I/O 3 Output floating wpu Ext. High interrupt sink 1 3 Input Main function (after reset) Speed OD PP X X Default alternate function Alternate function after remap [option bit] Reset X O1 X X Port A1 Resonator/ crystal in X X X O1 X X Port A2 Resonator/ crystal out 4 - VSSIO_1 S I/O ground 5 4 VSS S Digital ground DocID022186 Rev 3 21/103 Pinout and pin description Pin number LQFP48 Pin name Type LQFP32 STM8S005K6 STM8S005C6 Input Output floating wpu Ext. High interrupt sink Main function (after reset) Speed OD Default alternate function PP 6 5 VCAP S 1.8 V regulator capacitor 7 6 VDD S Digital power supply 8 7 VDDIO_1 S I/O power supply 9 - PA3/ TIM2 _CH3 [TIM3 _CH1] I/O X X X O1 X X Port A3 Timer 2 - Alternate function after remap [option bit] TIM3_ CH1 [AFR1] channel 3 10 - PA4 I/O X X X HS O3 X X Port A4 11 - PA5 I/O X X X HS O3 X X Port A5 12 - PA6 I/O X X X HS O3 X X Port A6 - 8 PF4/ (1) AIN12 I/O X X O1 X X Port F4 13 9 VDDA S Analog power supply 14 10 VSSA S Analog ground 15 - PB7/ AIN7 I/O X X X O1 X X Port B7 Analog input 7 16 - PB6/ AIN6 I/O X X X O1 X X Port B6 Analog input 6 17 11 PB5/ AIN5 2 [I C_ SDA] I/O X X X O1 X X Port B5 Analog input 5 2 I C_SDA [AFR6] 18 12 PB4/ AIN4 2 [I C_ SCL] I/O X X X O1 X X Port B4 Analog input 4 2 I C_SCL [AFR6] 19 13 PB3/ AIN3 [TIM1_ ETR] I/O X X X O1 X X Port B3 Analog input 3 TIM1_ ETR [AFR5] 20 14 PB2/ AIN2 [TIM1_ CH3N] I/O X X X O1 X X Port B2 Analog input 2 TIM1_ CH3N [AFR5] 21 15 PB1/ AIN1 [TIM1_ CH2N] I/O X X X O1 X X Port B1 Analog input 1 TIM1_ CH2N [AFR5] 22 16 PB0/ AIN0 [TIM1_ CH1N] I/O X X X O1 X X Port B0 Analog input 0 TIM1_ CH1N [AFR5] 23 - PE7/ AIN8 I/O X X X O1 X X Port E7 Analog input 8 24 - PE6/ AIN9 I/O X X X O1 X X Port E6 Analog input 9 22/103 DocID022186 Rev 3 Analog input 12 (2) STM8S005K6 STM8S005C6 Pin number LQFP48 Pin name Type LQFP32 Pinout and pin description Input Output floating wpu Ext. High interrupt sink 25 17 PE5/SPI_ NSS I/O X X X 26 18 PC1/ TIM1_ CH1/ UART2_CK I/O X X X PC2/ TIM1_ CH2 I/O PC3/ TIM1_ CH3 I/O PC4/ TIM1_ CH4 I/O 27 28 29 19 20 21 HS Main function (after reset) Speed Default alternate function OD PP O1 X X Port E5 SPI master/slave select O3 X X Port C1 Timer 1 - Alternate function after remap [option bit] channel 1/ UART2 synchronous clock X X X HS O3 X X Port C2 Timer 1channel 2 X X X HS O3 X X Port C3 Timer 1 channel 3 X X X HS O3 X X Port C4 Timer 1 channel 4 30 22 PC5/ SPI_ SCK I/O X X X HS O3 X X Port C5 SPI clock 31 - VSSIO_2 S I/O ground 32 - VDDIO_2 S I/O power supply 33 23 PC6/ SPI_ MOSI I/O X X X HS O3 X X Port C6 SPI master out/slave in 34 24 PC7/ SPI_ MISO I/O X X X HS O3 X X Port C7 SPI master in/ slave out 35 - PG0 I/O X X O1 X X Port G0 36 - PG1 I/O X X O1 X X Port G1 37 - PE3/ TIM1_ BKIN I/O X X X O1 X X Port E3 Timer 1 - break input 38 - 2 PE2/ I C_ SDA I/O X X O1 (3) T Port E2 2 I C data 39 - 2 PE1/ I C_ SCL I/O X X O1 (3) T Port E1 2 I C clock 40 - PE0/ CLK_ CCO I/O X X X HS O3 X X Port E0 Configurable clock output 41 25 PD0/ TIM3_ CH2 [TIM1_ BKIN] [CLK_ CCO] I/O X X X HS O3 X X Port D0 Timer 3 channel 2 DocID022186 Rev 3 TIM1_ BKIN [AFR3]/ CLK_ CCO [AFR2] 23/103 Pinout and pin description Pin number LQFP48 Pin name Type LQFP32 STM8S005K6 STM8S005C6 Input Output floating wpu Ext. High interrupt sink Main function (after reset) Speed OD PP Default alternate function 42 26 PD1/ (4) SWIM I/O X X X HS O4 X X Port D1 SWIM data interface 43 27 PD2/ TIM3_ CH1 [TIM2_ CH3] I/O X X X HS O3 X X Port D2 Timer 3 - PD3/ TIM2_ CH2 [ADC_ ETR] I/O PD4/ TIM2_ CH1 [BEEP] I/O 44 45 28 29 channel 1 X X X HS O3 X X Port D3 Timer 2 channel 2 X X X HS O3 X X Port D4 Timer 2 channel 1 46 30 PD5/ UART2_ TX I/O X X X O1 X X Port D5 UART2 data transmit 47 31 PD6/ UART2_ RX I/O X X X O1 X X Port D6 UART2 data receive 48 32 PD7/ TLI [TIM1_ CH4] I/O X X X O1 X X Port D7 Top level interrupt Alternate function after remap [option bit] TIM2_CH3 [AFR1] ADC_ ETR [AFR0] BEEP output [AFR7] TIM1_ CH4 [AFR4] (1) A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release. (2) AIN12 is not selectable in ADC scan mode or with analog watchdog. (3) In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented). (4) The PD1 pin is in input pull-up during the reset phase and after internal reset release. 5.1.1 Alternate function remapping As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. When the remapping option is active, the default alternate function is no longer available. To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers. Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016). 24/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Memory and register map 6 Memory and register map 6.1 Memory map Figure 5: Memory map 0x00 0000 RAM (2 Kbytes) 0x00 07FF 512 bytes stack Reserved 0x00 4000 0x00 407F 0x00 4080 0x00 47FF 0x00 4800 0x00 487F 0x00 4900 128-byte data EEPROM Reserved Option bytes Reserved 0x00 4FFF 0x00 5000 GPIO and periph. reg. 0x00 57FF 0x00 5800 Reserved 0x00 5FFF 0x00 6000 2 Kbytes boot ROM 0x00 67FF 0x00 6800 Reserved 0x00 7EFF 0x00 7F00 0x00 7FFF 0x00 8000 CPU/SWIM/debug/ITC registers 32 interrupt vectors 0x00 807F Flash program memory (32 Kbytes) 0x00 FFFF 0x01 0000 Reserved 0x02 7FFF The following table lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case. DocID022186 Rev 3 25/103 Memory and register map STM8S005K6 STM8S005C6 Table 6: Flash, Data EEPROM and RAM boundary addresses Memory area Size (bytes) Start address End address Flash program memory 32K 0x00 8000 0x00 FFFF RAM 2K 0x00 0000 0x00 07FF Data EEPROM 128 0x00 4000 0x00 407F 6.2 Register map 6.2.1 I/O port hardware register map Table 7: I/O port hardware register map Address 26/103 Block Register label Register name Reset status 0x00 5000 Port A PA_ODR Port A data output latch register 0x00 0x00 5001 PA_IDR Port A input pin value register 0xXX 0x00 5002 PA_DDR Port A data direction register 0x00 0x00 5003 PA_CR1 Port A control register 1 0x00 0x00 5004 PA_CR2 Port A control register 2 0x00 0x00 5005 Port B PB_ODR Port B data output latch register 0x00 0x00 5006 PB_IDR Port B input pin value register 0xXX 0x00 5007 PB_DDR Port B data direction register 0x00 0x00 5008 PB_CR1 Port B control register 1 0x00 0x00 5009 PB_CR2 Port B control register 2 0x00 0x00 500A Port C PC_ODR Port C data output latch register 0x00 DocID022186 Rev 3 (1) (1) STM8S005K6 STM8S005C6 Address Block Memory and register map Register label Register name Reset status 0x00 500B PC_IDR Port C input pin value register 0xXX 0x00 500C PC_DDR Port C data direction register 0x00 0x00 500D PC_CR1 Port C control register 1 0x00 0x00 500E PC_CR2 Port C control register 2 0x00 0x00 500F Port D PD_ODR Port D data output latch register 0x00 0x00 5010 PD_IDR Port D input pin value register 0xXX 0x00 5011 PD_DDR Port D data direction register 0x00 0x00 5012 PD_CR1 Port D control register 1 0x02 0x00 5013 PD_CR2 Port D control register 2 0x00 0x00 5014 Port E PE_ODR Port E data output latch register 0x00 0x00 5015 PE_IDR Port E input pin value register 0xXX 0x00 5016 PE_DDR Port E data direction register 0x00 0x00 5017 PE_CR1 Port E control register 1 0x00 0x00 5018 PE_CR2 Port E control register 2 0x00 0x00 5019 Port F PF_ODR Port F data output latch register 0x00 0x00 501A PF_IDR Port F input pin value register 0xXX 0x00 501B PF_DDR Port F data direction register 0x00 0x00 501C PF_CR1 Port F control register 1 0x00 0x00 501D PF_CR2 Port F control register 2 0x00 DocID022186 Rev 3 (1) (1) (1) (1) 27/103 Memory and register map Address Register label Register name Reset status 0x00 501E Port G PG_ODR Port G data output latch register 0x00 0x00 501F PG_IDR Port G input pin value register 0xXX 0x00 5020 PG_DDR Port G data direction register 0x00 0x00 5021 PG_CR1 Port G control register 1 0x00 0x00 5022 PG_CR2 Port G control register 2 0x00 0x00 5023 Port H PH_ODR Port H data output latch register 0x00 0x00 5024 PH_IDR Port H input pin value register 0xXX 0x00 5025 PH_DDR Port H data direction register 0x00 0x00 5026 PH_CR1 Port H control register 1 0x00 0x00 5027 PH_CR2 Port H control register 2 0x00 0x00 5028 Port I PI_ODR Port I data output latch register 0x00 0x00 5029 PI_IDR Port I input pin value register 0xXX 0x00 502A PI_DDR Port I data direction register 0x00 0x00 502B PI_CR1 Port I control register 1 0x00 0x00 502C PI_CR2 Port I control register 2 0x00 (1) 28/103 Block STM8S005K6 STM8S005C6 Depends on the external circuitry. DocID022186 Rev 3 (1) (1) (1) STM8S005K6 STM8S005C6 6.2.2 Memory and register map General hardware register map Table 8: General hardware register map Address Block Register label Register name Reset status 0x00 5050 to 0x00 5059 Reserved area (10 bytes) 0x00 505A Flash FLASH_CR1 Flash control register 1 0x00 0x00 505B FLASH_CR2 Flash control register 2 0x00 0x00 505C FLASH_NCR2 Flash complementary control 0xFF register 2 0x00 505D FLASH _FPR Flash protection register 0x00 505E FLASH _NFPR Flash complementary protection register 0xFF 0x00 505F FLASH _IAPSR Flash in-application programming status 0x00 register 0x00 5060 to 0x00 5061 Reserved area (2 bytes) 0x00 5062 Flash 0x00 5063 Reserved area (1 byte) 0x00 5064 Flash 0x00 5065 to 0x00 509F Reserved area (59 bytes) 0x00 50A0 ITC 0x00 50A1 0x00 50A2 to 0x00 50B2 FLASH _PUKR 0x00 Flash program memory unprotection register 0x00 Data EEPROM unprotection register 0x00 EXTI_CR1 External interrupt control register 1 0x00 EXTI_CR2 External interrupt control register 2 0x00 FLASH _DUKR Reserved area (17 bytes) DocID022186 Rev 3 29/103 Memory and register map STM8S005K6 STM8S005C6 Address Block Register label Register name Reset status 0x00 50B3 RST RST_SR Reset status register 0xXX 0x00 50B4 to 0x00 50BF Reserved area (12 bytes) 0x00 50C0 CLK CLK_ICKR Internal clock control register 0x01 CLK_ECKR External clock control register 0x00 CLK_CMSR Clock master status register 0xE1 0x00 50C4 CLK_SWR Clock master switch register 0xE1 0x00 50C5 CLK_SWCR Clock switch control register 0xXX 0x00 50C6 CLK_CKDIVR Clock divider register 0x18 0x00 50C7 CLK_PCKENR1 Peripheral clock gating register 1 0xFF 0x00 50C8 CLK_CSSR Clock security system register 0x00 0x00 50C9 CLK_CCOR Configurable clock control register 0x00 0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF 0x00 50CC CLK_HSITRIMR HSI clock calibration trimming register 0x00 0x00 50CD CLK_SWIMCCR SWIM clock control register 0x00 50C1 0x00 50C2 Reserved area (1 byte) 0x00 50C3 CLK (1) 0bXXXX XXX0 0x00 50CE to 0x00 50D0 Reserved area (3 bytes) 0x00 50D1 WWDG WWDG_CR WWDG control register 0x7F 0x00 50D2 WWDG_WR WWDR window register 0x7F 30/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Memory and register map Address Block Register label Register name Reset status 0x00 50D3 to 0x00 50DF Reserved area (13 bytes) 0x00 50E0 IWDG IWDG_KR IWDG key register 0xXX 0x00 50E1 IWDG_PR IWDG prescaler register 0x00 0x00 50E2 IWDG_RLR IWDG reload register 0xFF AWU_CSR1 AWU control/ status register 1 0x00 0x00 50F1 AWU_APR AWU asynchronous prescaler buffer register 0x3F 0x00 50F2 AWU_TBR AWU timebase selection register 0x00 BEEP_CSR BEEP control/ status register 0x1F SPI_CR1 SPI control register 1 0x00 0x00 5201 SPI_CR2 SPI control register 2 0x00 0x00 5202 SPI_ICR SPI interrupt control register 0x00 0x00 5203 SPI_SR SPI status register 0x02 0x00 5204 SPI_DR SPI data register 0x00 0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07 0x00 5206 SPI_RXCRCR SPI Rx CRC register 0xFF 0x00 5207 SPI_TXCRCR SPI Tx CRC register 0xFF 0x00 50E3 to 0x00 50EF Reserved area (13 bytes) 0x00 50F0 AWU 0x00 50F3 BEEP 0x00 50F4 to 0x00 50FF Reserved area (12 bytes) 0x00 5200 SPI DocID022186 Rev 3 (2) 31/103 Memory and register map STM8S005K6 STM8S005C6 Address Block Register label 0x00 5208 to Reserved area (8 bytes) Register name Reset status 0x00 520F 0x00 5210 2 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x00 2 0x02 2 0x00 I2C_CR1 I C control register 1 0x00 5211 I2C_CR2 I C control register 2 0x00 5212 I2C_FREQR I C frequency register 0x00 5213 I2C_OARL I C Own address register low 0x00 5214 I2C_OARH I C own address register high 0x00 5215 Reserved 0x00 5216 I2C_DR I C data register 0x00 5217 I2C_SR1 I C status register 1 0x00 5218 I2C_SR2 I C status register 2 0x00 5219 I2C_SR3 I C status register 3 0x00 521A I2C_ITR I C interrupt control register 0x00 521B I2C_CCRL I C clock control register low 0x00 521C I2C_CCRH I C clock control register high 0x00 521D I2C_TRISER I C TRISE register 0x00 521E I2C_PECR I C packet error checking register 0x00 521F to I C Reserved area (17 bytes) 0x00 522F 0x00 5230 to 0x00 523F 32/103 Reserved area (6 bytes) DocID022186 Rev 3 STM8S005K6 STM8S005C6 Memory and register map Address Block Register label Register name Reset status 0x00 5240 UART2 UART2_SR UART2 status register 0xC0 0x00 5241 UART2_DR UART2 data register 0xXX 0x00 5242 UART2_BRR1 UART2 baud rate register 1 0x00 0x00 5243 UART2_BRR2 UART2 baud rate register 2 0x00 0x00 5244 UART2_CR1 UART2 control register 1 0x00 0x00 5245 UART2_CR2 UART2 control register 2 0x00 0x00 5246 UART2_CR3 UART2 control register 3 0x00 0x00 5247 UART2_CR4 UART2 control register 4 0x00 0x00 5248 UART2_CR5 UART2 control register 5 0x00 0x00 5249 UART2_CR6 UART2 control register 6 0x00 0x00 524A UART2_GTR UART2 guard time register 0x00 0x00 524B UART2_PSCR UART2 prescaler register 0x00 TIM1_CR1 TIM1 control register 1 0x00 0x00 5251 TIM1_CR2 TIM1 control register 2 0x00 0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00 0x00 5253 TIM1_ETR TIM1 external trigger register 0x00 0x00 5254 TIM1_IER TIM1 interrupt enable register 0x00 0x00 5255 TIM1_SR1 TIM1 status register 1 0x00 0x00 524C to 0x00 524F Reserved area (4 bytes) 0x00 5250 TIM1 DocID022186 Rev 3 33/103 Memory and register map Address Block STM8S005K6 STM8S005C6 Register label Register name Reset status 0x00 5256 TIM1_SR2 TIM1 status register 2 0x00 0x00 5257 TIM1_EGR TIM1 event generation register 0x00 0x00 5258 TIM1_CCMR1 TIM1 capture/ compare mode 0x00 register 1 0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode 0x00 register 2 0x00 525A TIM1_CCMR3 TIM1 capture/ compare mode 0x00 register 3 0x00 525B TIM1_CCMR4 TIM1 capture/compare mode 0x00 register 4 0x00 525C TIM1_CCER1 TIM1 capture/ compare enable 0x00 register 1 0x00 525D TIM1_CCER2 TIM1 capture/compare enable 0x00 register 2 0x00 525E TIM1_CNTRH TIM1 counter high 0x00 0x00 525F TIM1_CNTRL TIM1 counter low 0x00 0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00 0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00 0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF 0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF 0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00 0x00 5265 TIM1_CCR1H TIM1 capture/ compare register 1 high 0x00 34/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Address Block Memory and register map Register label Register name Reset status 0x00 5266 TIM1_CCR1L TIM1 capture/ compare register 1 low 0x00 0x00 5267 TIM1_CCR2H TIM1 capture/ compare register 2 high 0x00 0x00 5268 TIM1_CCR2L TIM1 capture/ compare register 2 low 0x00 0x00 5269 TIM1_CCR3H TIM1 capture/ compare register 3 high 0x00 0x00 526A TIM1_CCR3L TIM1 capture/ compare register 3 low 0x00 0x00 526B TIM1_CCR4H TIM1 capture/ compare register 4 high 0x00 0x00 526C TIM1_CCR4L TIM1 capture/ compare register 4 low 0x00 0x00 526D TIM1_BKR TIM1 break register 0x00 0x00 526E TIM1_DTR TIM1 dead-time register 0x00 0x00 526F TIM1_OISR TIM1 output idle state register 0x00 TIM2_CR1 TIM2 control register 1 0x00 0x00 5301 TIM2_IER TIM2 interrupt enable register 0x00 0x00 5302 TIM2_SR1 TIM2 status register 1 0x00 0x00 5303 TIM2_SR2 TIM2 status register 2 0x00 0x00 5304 TIM2_EGR TIM2 event generation register 0x00 0x00 5305 TIM2_CCMR1 TIM2 capture/ compare mode 0x00 0x00 5270 to 0x00 52FF Reserved area (147 bytes) 0x00 5300 TIM2 register 1 0x00 5306 TIM2_CCMR2 TIM2 capture/ compare mode 0x00 register 2 DocID022186 Rev 3 35/103 Memory and register map Address Block 0x00 5307 STM8S005K6 STM8S005C6 Register label Register name Reset status TIM2_CCMR3 TIM2 capture/ compare mode 0x00 register 3 0x00 5308 TIM2_CCER1 TIM2 capture/ compare enable register 0x00 1 0x00 5309 TIM2_CCER2 TIM2 capture/ compare enable register 0x00 2 0x00 530A TIM2_CNTRH TIM2 counter high 0x00 0x00 530B TIM2_CNTRL TIM2 counter low 0x00 0x00 530C TIM2_PSCR TIM2 prescaler register 0x00 0x00 530D TIM2_ARRH TIM2 auto-reload register high 0xFF 0x00 530E TIM2_ARRL TIM2 auto-reload register low 0xFF 0x00 530F TIM2_CCR1H TIM2 capture/ compare register 1 high 0x00 0x00 5310 TIM2_CCR1L TIM2 capture/ compare register 1 low 0x00 0x00 5311 TIM2_CCR2H TIM2 capture/ compare reg. 2 high 0x00 0x00 5312 TIM2_CCR2L TIM2 capture/ compare register 2 low 0x00 0x00 5313 TIM2_CCR3H TIM2 capture/ compare register 3 high 0x00 0x00 5314 TIM2_CCR3L TIM2 capture/ compare register 3 low 0x00 TIM3_CR1 TIM3 control register 1 0x00 0x00 5321 TIM3_IER TIM3 interrupt enable register 0x00 0x00 5322 TIM3_SR1 TIM3 status register 1 0x00 0x00 5315 to 0x00 531F Reserved area (11 bytes) 0x00 5320 TIM3 36/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Address Block Memory and register map Register label Register name Reset status 0x00 5323 TIM3_SR2 TIM3 status register 2 0x00 0x00 5324 TIM3_EGR TIM3 event generation register 0x00 0x00 5325 TIM3_CCMR1 TIM3 capture/ compare mode 0x00 register 1 0x00 5326 TIM3_CCMR2 TIM3 capture/ compare mode 0x00 register 2 0x00 5327 TIM3_CCER1 TIM3 capture/ compare enable register 0x00 1 0x00 5328 TIM3_CNTRH TIM3 counter high 0x00 0x00 5329 TIM3_CNTRL TIM3 counter low 0x00 0x00 532A TIM3_PSCR TIM3 prescaler register 0x00 0x00 532B TIM3_ARRH TIM3 auto-reload register high 0xFF 0x00 532C TIM3_ARRL TIM3 auto-reload register low 0xFF 0x00 532D TIM3_CCR1H TIM3 capture/ compare register 1 high 0x00 0x00 532E TIM3_CCR1L TIM3 capture/ compare register 1 low 0x00 0x00 532F TIM3_CCR2H TIM3 capture/ compare register 2 high 0x00 0x00 5330 TIM3_CCR2L TIM3 capture/ compare register 2 low 0x00 TIM4_CR1 TIM4 control register 1 0x00 0x00 5341 TIM4_IER TIM4 interrupt enable register 0x00 0x00 5342 TIM4_SR TIM4 status register 0x00 0x00 5331 to 0x00 533F Reserved area (15 bytes) 0x00 5340 TIM4 DocID022186 Rev 3 37/103 Memory and register map Address Block STM8S005K6 STM8S005C6 Register label Register name Reset status 0x00 5343 TIM4_EGR TIM4 event generation register 0x00 0x00 5344 TIM4_CNTR TIM4 counter 0x00 0x00 5345 TIM4_PSCR TIM4 prescaler register 0x00 0x00 5346 TIM4_ARR TIM4 auto-reload register 0xFF ADC data buffer registers 0x00 ADC _CSR ADC control/ status register 0x00 0x00 5401 ADC_CR1 ADC configuration register 1 0x00 0x00 5402 ADC_CR2 ADC configuration register 2 0x00 0x00 5403 ADC_CR3 ADC configuration register 3 0x00 0x00 5404 ADC_DRH ADC data register high 0xXX 0x00 5405 ADC_DRL ADC data register low 0xXX 0x00 5406 ADC_TDRH ADC Schmitt trigger disable 0x00 0x00 5347 to 0x00 53DF Reserved area (153 bytes) 0x00 53E0 to 0x00 53F3 ADC1 0x00 53F4 to 0x00 53FF Reserved area (12 bytes) 0x00 5400 ADC1 ADC _DBxR register high 0x00 5407 ADC_TDRL ADC Schmitt trigger disable 0x00 register low 0x00 5408 ADC_HTRH ADC high threshold register high 0x03 0x00 5409 ADC_HTRL ADC high threshold register low 0xFF 38/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Address Block Memory and register map Register label Register name Reset status 0x00 540A ADC_LTRH ADC low threshold register high 0x00 0x00 540B ADC_LTRL ADC low threshold register low 0x00 0x00 540C ADC_AWSRH ADC analog watchdog status 0x00 register high 0x00 540D ADC_AWSRL ADC analog watchdog status 0x00 register low 0x00 540E ADC _AWCRH ADC analog watchdog control 0x00 register high 0x00 540F ADC_AWCRL ADC analog watchdog control 0x00 register low 0x00 5410 to 0x00 57FF Reserved area (1008 bytes) (1) Depends on the previous reset source. (2) Write only register. 6.2.3 CPU/SWIM/debug module/interrupt controller registers Table 9: CPU/SWIM/debug module/interrupt controller registers Address Block Register label Register name Reset status 0x00 7F00 CPU A Accumulator 0x00 0x00 7F01 PCE Program counter extended 0x00 0x00 7F02 PCH Program counter high 0x00 0x00 7F03 PCL Program counter low 0x00 0x00 7F04 XH X index register high 0x00 (1) DocID022186 Rev 3 39/103 Memory and register map Address STM8S005K6 STM8S005C6 Block Register label Register name Reset status 0x00 7F05 XL X index register low 0x00 0x00 7F06 YH Y index register high 0x00 0x00 7F07 YL Y index register low 0x00 0x00 7F08 SPH Stack pointer high 0x07 0x00 7F09 SPL Stack pointer low 0xFF 0x00 7F0A CCR Condition code register 0x28 0x00 7F0B to Reserved area (85 bytes) 0x00 7F5F 0x00 7F60 CPU CFG_GCR Global configuration register 0x00 0x00 7F70 ITC ITC_SPR1 Interrupt software priority register 1 0xFF 0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF 0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF 0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF 0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF 0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF 0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF 0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF SWIM control status register 0x00 0x00 7F78 to Reserved area (2 bytes) 0x00 7F79 0x00 7F80 40/103 SWIM SWIM_CSR DocID022186 Rev 3 STM8S005K6 STM8S005C6 Address Block Memory and register map Register label Register name Reset status DM_BK1RE DM breakpoint 1 register extended byte 0xFF 0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF 0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF 0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF 0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF 0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF 0x00 7F96 DM_CR1 DM debug module control register 1 0x00 0x00 7F97 DM_CR2 DM debug module control register 2 0x00 0x00 7F98 DM_CSR1 DM debug module control/status 0x00 7F81 to Reserved area (15 bytes) 0x00 7F8F 0x00 7F90 DM 0x10 register 1 0x00 7F99 DM_CSR2 DM debug module control/status 0x00 register 2 0x00 7F9A DM_ENFCTR DM enable function register 0xFF 0x00 7F9B to Reserved area (5 bytes) 0x00 7F9F (1) Accessible by debug module only DocID022186 Rev 3 41/103 Interrupt vector mapping 7 STM8S005K6 STM8S005C6 Interrupt vector mapping Table 10: Interrupt mapping IRQ no. Source block Description Wakeup from halt mode Wakeup from Vector active-halt address mode RESET Reset Yes Yes 0x00 8000 TRAP Software interrupt - - 0x00 8004 0 TLI External top level interrupt - - 0x00 8008 1 AWU Auto wake up from halt - Yes 0x00 800C 2 CLK Clock controller - - 0x00 8010 3 EXTI0 Port A external interrupts Yes Yes 0x00 8014 4 EXTI1 Port B external interrupts Yes Yes 0x00 8018 5 EXTI2 Port C external interrupts Yes Yes 0x00 801C 6 EXTI3 Port D external interrupts Yes Yes 0x00 8020 7 EXTI4 Port E external interrupts Yes Yes 0x00 8024 (1) (1) 8 0x00 8028 9 42/103 Reserved - - 0x00 802C 10 SPI End of transfer Yes Yes 0x00 8030 11 TIM1 TIM1 update/ overflow/ underflow/ trigger/ break - - 0x00 8034 12 TIM1 TIM1 capture/ compare - - 0x00 8038 13 TIM TIM update/ overflow - - 0x00 803C 14 TIM TIM capture/ compare - - 0x00 8040 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Interrupt vector mapping IRQ no. Source block Description Wakeup from halt mode Wakeup from Vector active-halt address mode 15 TIM3 Update/ overflow - - 0x00 8044 16 TIM3 Capture/ compare - - 0x00 8048 17 Reserved - - 0x00 804C 18 Reserved - - 0x00 8050 2 2 19 I C I C interrupt Yes Yes 0x00 8054 20 UART2 Tx complete - - 0x00 8058 21 UART2 Receive register DATA FULL - - 0x00 805C 22 ADC1 ADC1 end of conversion/ analog watchdog interrupt - 0x00 8060 23 TIM TIM update/ overflow - - 0x00 8064 24 Flash EOP/ WR_PG_DIS - - 0x00 8068 Reserved (1) 0x00 806C to 0x00 807C Except PA1 DocID022186 Rev 3 43/103 Option bytes 8 STM8S005K6 STM8S005C6 Option bytes Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Except for the ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for redundancy. Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in the table below. Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP option that can only be modified in ICP mode (via SWIM). Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures. Table 11: Option bytes Addr. Option name Option Option bits byte no. 7 6 5 4 3 2 1 0 Factory default setting 0x4800 Read-out protection (ROP) OPT0 ROP [7:0] 00h 0x4801 User boot code(UBC) OPT1 UBC [7:0] 00h NOPT1 NUBC [7:0] FFh Alternate function remapping (AFR) OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 00h NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 FFh Miscell. option OPT3 Reserved HSI TRIM LSI_ EN IWDG _HW WWDG _HW WWDG _HALT 00h NOPT3 Reserved NHSI TRIM NLSI_ EN NIWDG _HW NWWDG _HW NWW G_HALT FFh OPT4 Reserved EXT CLK CKAWU SEL PRS C1 PRS C0 00h NOPT4 Reserved NEXT CLK NCKA WUSEL NPRSC1 NPR SC0 FFh OPT5 HSECNT [7:0] 00h NOPT5 NHSECNT [7:0] FFh Reserved 00h 0x4802 0x4803 0x4804 0x4805h 0x4806 0x4807 Clock option 0x4808 0x4809 HSE clock startup 0x480A 0x480B 44/103 Reserved OPT6 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Addr. Option name Option Option bits byte no. 7 NOPT6 0x480C 0x480D Reserved OPT7 NOPT7 0x480E 0x487E Option bytes Bootloader OPTBL NOPTBL 0x487F 6 5 4 3 2 1 0 Factory default setting Reserved FFh Reserved 00h Reserved FFh BL[7:0] 00h NBL[7:0] FFh Table 12: Option byte description Option byte no. Description OPT0 ROP[7:0] Memory readout protection (ROP) AAh: Enable readout protection (write access via SWIM protocol) Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details. OPT1 UBC[7:0] User boot code area 0x00: no UBC, no write-protection 0x01: Page 0 to 1 defined as UBC, memory write-protected 0x02: Page 0 to 3 defined as UBC, memory write-protected 0x03: Page 0 to 4 defined as UBC, memory write-protected ... 0x3E: Pages 0 to 63 defined as UBC, memory write-protected Other values: Reserved Note: Refer to the family reference manual (RM0016) section on Flash write protection for more details. OPT2 AFR[7:0] Refer to following table for the alternate function remapping decriptions of bits [7:2]. OPT3 HSITRIM:High speed internal clock trimming register size 0: 3-bit trimming supported in CLK_HSITRIMR register 1: 4-bit trimming supported in CLK_HSITRIMR register DocID022186 Rev 3 45/103 Option bytes Option byte no. STM8S005K6 STM8S005C6 Description LSI_EN:Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source IWDG_HW: Independent watchdog 0: IWDG Independent watchdog activated by software 1: IWDG Independent watchdog activated by hardware WWDG_HW: Window watchdog activation 0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active OPT4 EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN CKAWUSEL:Auto wake-up unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for for AWU PRSC[1:0] AWU clock prescaler 0x: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler OPT5 HSECNT[7:0]:HSE crystal oscillator stabilization time 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles 46/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Option bytes Option byte no. Description OPT6 Reserved OPT7 Reserved OPTBL BL[7:0] Bootloader option byte For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader manual) for more details. Table 13: Description of alternate function remapping bits [7:0] of OPT2 (1) Option byte no. Description OPT2 AFR7 Alternate function remapping option 7 (2) 0: AFR7 remapping option inactive: Default alternate function . 1: Port D4 alternate function = BEEP. AFR6 Alternate function remapping option 6 (2) 0: AFR6 remapping option inactive: Default alternate functions . 2 1: Port B5 alternate function = I C_SDA; port B4 alternate function 2 = I C_SCL. AFR5 Alternate function remapping option 5 (2) 0: AFR5 remapping option inactive: Default alternate functions . 1: Port B3 alternate function = TIM1_ETR; port B2 alternate function = TIM1_NCC3; port B1 alternate function = TIM1_CH2N; port B0 alternate function = TIM1_CH1N. AFR4 Alternate function remapping option 4 (2) 0: AFR4 remapping option inactive: Default alternate function . 1: Port D7 alternate function = TIM1_CH4. AFR3 Alternate function remapping option 3 (2) 0: AFR3 remapping option inactive: Default alternate function . 1: Port D0 alternate function = TIM1_BKIN. AFR2 Alternate function remapping option 2 DocID022186 Rev 3 47/103 Option bytes STM8S005K6 STM8S005C6 Option byte no. (1) Description (2) 0: AFR2 remapping option inactive: Default alternate function . 1: Port D0 alternate function = CLK_CCO.Note: AFR2 option has priority over AFR3 if both are activated. AFR1 Alternate function remapping option 1 (2) 0: AFR1 remapping option inactive: Default alternate functions . 1: Port A3 alternate function = TIM3_CH1; port D2 alternate function TIM2_CH3. AFR0 Alternate function remapping option 0 (2) 0: AFR0 remapping option inactive: Default alternate function . 1: Port D3 alternate function = ADC_ETR. 48/103 (1) Do not use more than one remapping option in the same port. (2) Refer to pinout description. DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics 9 Electrical characteristics 9.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 9.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ± 3 Σ). 9.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ± 2 Σ). 9.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 9.1.4 Typical current consumption For typical current consumption measurements, VDD, VDDIO and VDDA are connected together in the configuration shown in the following figure. Figure 6: Supply current measurement conditions 5 V or 3.3 V A V DD V DDA V DDIO V SS VSSA VSSIO DocID022186 Rev 3 49/103 Electrical characteristics 9.1.5 STM8S005K6 STM8S005C6 Loading capacitor The loading conditions used for pin parameter measurement are shown in the following figure. Figure 7: Pin loading conditions STM8 PIN 50 pF 9.1.6 Pin input voltage The input voltage measurement on a pin of the device is described in the following figure. Figure 8: Pin input voltage STM8 PIN VIN 9.2 Absolute maximum ratings Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 14: Voltage characteristics 50/103 Symbol Ratings Min Max Unit VDDx - VSS Supply voltage (including VDDA and VDDIO) -0.3 6.5 V VIN Input voltage on true open drain pins (PE1, (2) PE2) VSS - 0.3 6.5 (1) DocID022186 Rev 3 STM8S005K6 STM8S005C6 Symbol Electrical characteristics Ratings (2) Input voltage on any other pin |VDDx VDD| Min Max VSS - 0.3 VDD + 0.3 Variations between different power pins 50 |VSSx - VSS| Variations between all the different ground pins VESD Unit Electrostatic discharge voltage mV 50 see Absolute maximum ratings (electrical sensitivity) (1) All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the external power supply (2) IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VIN maximum must always be respected Table 15: Current characteristics (1) Symbol Ratings IVDD Total current into VDD power lines (source) IVSS IIO ΣIIO Max. Unit (2) 60 mA Total current out of VSS ground lines (sink) (2) 60 Output current sunk by any I/O and control pin 20 Output current source by any I/Os and control pin 20 Total output current sourced (sum of all I/O and control 200 (3) pins) for devices with two VDDIO pins Total output current sourced (sum of all I/O and control 100 (3) pins) for devices with one VDDIO pin Total output current sunk (sum of all I/O and control (3) pins) for devices with two VSSIO pins 160 Total output current sunk (sum of all I/O and control (3) pins) for devices with one VSSIO pin 80 DocID022186 Rev 3 51/103 Electrical characteristics Symbol IINJ(PIN) (4) (5) STM8S005K6 STM8S005C6 (1) Ratings Max. Injected current on NRST pin ±4 Injected current on OSCIN pin ±4 (6) Injected current on any other pin ΣIINJ(PIN) (1) (4) Unit ±4 (6) Total injected current (sum of all I/O and control pins) ±20 Data based on characterization results, not tested in production. (2) All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the external supply. (3) I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package between the VDDIO/VSSIO pins. (4) IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VIN maximum must always be respected (5) Negative injection disturbs the analog performance of the device. See note in I2C interface characteristics. (6) When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. Table 16: Thermal characteristics 9.3 Symbol Ratings Value Unit TSTG Storage temperature range -65 to 150 °C TJ Maximum junction temperature 150 Operating conditions The device must be used in operating conditions that respect the parameters in the table below. In addition, full account must be taken of all physical capacitor characteristics and tolerances. 52/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Table 17: General operating conditions Symbol Parameter fCPU VDD/ VDD_IO VCAP (1) Conditions Min Max Unit Internal CPU clock frequency 0 16 MHz Standard operating voltage 2.95 5.5 V CEXT: capacitance of external capacitor 470 3300 nF 0.3 Ohm ESL of external capacitor 15 nH Power dissipation at 48-pin devices, with TA = 85 °C for suffix 6 output on eight standard ports, two high sink ports and two open drain ports (3) simultaneously 443 mW 32-pin package, with output on eight standard ports and two high sink (3) ports simultaneously 360 ESR of external capacitor PD (2) at 1 MHz (4) TA Ambient temperature for 6 suffix version Maximum power dissipation -40 85 TJ Junction temperature range 6 suffix version -40 105 °C (1) Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range. (2) To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/ΘJA (see Thermal characteristics ) with the value for TJmax given in the current table and the value for ΘJA given in Thermal characteristics. (3) Refer to Thermal characteristics. (4) This frequency of 1 MHz as a condition for VCAP parameters is given by design of the internal regulator. DocID022186 Rev 3 53/103 Electrical characteristics STM8S005K6 STM8S005C6 Figure 9: fCPUmax versus VDD f CPU (MHz) Functionality 16 not guaranteed in this area 12 Functionality guaranteed @TA-40 to 85 °C 8 4 0 2.95 4.0 5.0 5.5 Supply voltage Table 18: Operating conditions at power-up/power-down Symbol Parameter tVDD VDD rise time rate 2.0 VDD fall time rate 2.0 Min Typ Max Unit (1) ∞ µs/V (1) ∞ VDD rising 1.7 (1) tTEMP Reset releasedelay VIT+ Power-on reset threshold 2.65 2.8 2.95 VIT- Brown-out reset threshold 2.58 2.7 2.88 VHYS(BOR) Brown-out reset hysteresis (1) 9.3.1 Conditions 70 ms V mV Guaranteed by design, not tested in production. VCAP external capacitor Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the VCAP pin. CEXT is specified in the Operating conditions section. Care should be taken to limit the series inductance to less than 15 nH. 54/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Figure 10: External capacitor CEXT ESL C ESR RLeak 1. ESR is the equivalent series resistance and ESL is the equivalent inductance. 9.3.2 Supply current characteristics The current consumption is measured as described in Pin input voltage. 9.3.2.1 Total current consumption in run mode Table 19: Total current consumption with code execution in run mode at VDD = 5 V Symbol Parameter (1) Conditions IDD(RUN) Supply fCPU = fMASTER current in run = 16 MHz mode, code executed from RAM HSE crystal osc. Typ Max Unit 3.2 mA (16 MHz) HSE user ext. clock 2.6 3.2 2.5 3.2 1.6 2.2 1.3 2.0 (16 MHz) HSI RC osc. (16 MHz) fCPU = fMASTER/128 = HSE user ext. clock 125 kHz (16 MHz) HSI RC osc. (16 MHz) fCPU = fMASTER/128 = HSI RC osc. 15.625 kHz (16 MH3z/8) 0.75 fCPU = fMASTER LSI RC osc. 0.55 = 128 kHz (128 kHz) DocID022186 Rev 3 55/103 Electrical characteristics Symbol Parameter IDD(RUN) STM8S005K6 STM8S005C6 (1) Conditions Supply fCPU = fMASTER current in run = 16 MHz mode, code executed fromFlash Typ Max HSE crystal osc. Unit 7.7 (16 MHz) HSE user ext. clock 7.0 8.0 7.0 8.0 (16 MHz) HSI RC osc. (16 MHz) fCPU = fMASTER = 2 MHz HSI RC osc. 1.5 (2) (16 MHz/8) fCPU = fMASTER/128 = HSI RC osc. 125 kHz (16 MHz) 1.35 2.0 fCPU = fMASTER/128 = HSI RC osc. 15.625 kHz (16 MHz/8) 0.75 fCPU = fMASTER LSI RC osc. 0.6 = 128 kHz (128 kHz) (1) Data based on characterization results, not tested in production. (2) Default clock configuration measured with all peripherals off. Table 20: Total current consumption with code execution in run mode at VDD = 3.3 V (1) Symbol Parameter Conditions IDD(RUN) Supply fCPU = fMASTER = 16 MHz current in run mode, code executed from RAM HSE crystal osc. Unit 2.8 mA (16 MHz) HSE user ext. clock 2.6 3.2 2.5 3.2 (16 MHz) HSI RC osc. (16 MHz) 56/103 Typ Max DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics (1) Symbol Parameter Conditions Typ Max fCPU = fMASTER/128 HSE user ext. clock = 125 kHz (16 MHz) HSI RC osc. 1.6 2.2 1.3 2.0 Unit (16 MHz) fCPU = fMASTER/128 = 15.625 kHz HSI RC osc. (16 MHz/8) 0.75 fCPU = fMASTER = 128 kHz LSI RC osc. 0.55 (128 kHz) Supply fCPU = fMASTER = 16 MHz current in run mode, code executed from Flash HSE crystal osc. 7.3 (16 MHz) HSE user ext. clock 7.0 8.0 7.0 8.0 (16 MHz) HSI RC osc. (16 MHz) fCPU = fMASTER = 2 MHz HSI RC osc. 1.5 (2) (16 MHz/8) fCPU = fMASTER/128 HSI RC osc. = 125 kHz (16 MHz) fCPU = fMASTER/128 = 15.625 kHz HSI RC osc. fCPU = fMASTER = 128 kHz LSI RC osc. 1.35 2.0 0.75 (16 MHz/8) 0.6 (128 kHz) (1) Data based on characterization results, not tested in production. (2) Default clock configuration measured with all peripherals off. DocID022186 Rev 3 57/103 Electrical characteristics 9.3.2.2 STM8S005K6 STM8S005C6 Total current consumption in wait mode Table 21: Total current consumption in wait mode at VDD = 5 V Symbol Parameter Conditions IDD(WFI) Supply current in wait mode fCPU = fMASTER = 16 MHz (1) HSE crystal osc. Typ Max Unit 2.15 mA (16 MHz) HSE user ext. clock 1.55 2.0 (16 MHz) HSI RC osc. 1.5 1.9 (16 MHz) fCPU = fMASTER/128 = 125 kHz HSI RC osc. fCPU = fMASTER/128 = 15.625 kHz HSI RC osc. 1.3 (16 MHz) 0.7 (2) (16 MHz/8) fCPU = fMASTER = 128 LSI RC osc. kHz (128 kHz) (1) Data based on characterization results, not tested in production. (2) Default clock configuration measured with all peripherals off. 0.5 Table 22: Total current consumption in wait mode at VDD = 3.3 V (1) Symbol Parameter Conditions Typ Max Unit IDD(WFI) Supply current in wait mode fCPU = fMASTER = 16 HSE crystal osc. MHz (16 MHz) 1.75 mA HSE user ext. clock 1.55 2.0 (16 MHz) HSI RC osc. (16 MHz) 58/103 DocID022186 Rev 3 1.5 1.9 STM8S005K6 STM8S005C6 Symbol Parameter 9.3.2.3 Electrical characteristics (1) Conditions Typ Max fCPU = fMASTER/128 = 125 kHz HSI RC osc. fCPU = fMASTER/128 = 15.625 kHz HSI RC osc. fCPU = fMASTER = 128 kHz LSI RC osc. Unit 1.3 (16 MHz) 0.7 (2) (16 MHz/8) 0.5 (128 kHz) (1) Data based on characterization results, not tested in production. (2) Default clock configuration measured with all peripherals off. Total current consumption in active halt mode Table 23: Total current consumption in active halt mode at VDD = 5 V Symbol Parameter Conditions IDD(AH) Supply current in active halt mode Typ (3) Main voltage regulator (2) (MVR) Flash mode Clock source On Operating mode HSE crystal osc. Max at Unit 85 (1) °C 1080 µA (16 MHz) LSI RC osc. 200 320 (128 kHz) Power-down mode HSE crystal osc. 1030 (16 MHz) LSI RC osc. 140 270 (128 kHz) DocID022186 Rev 3 59/103 Electrical characteristics STM8S005K6 STM8S005C6 Symbol Parameter Conditions (3) Main voltage regulator (2) (MVR) Flash mode Off Operating mode LSI RC osc. Typ Max at Unit 85 (1) °C 68 120 12 60 Clock source (128 kHz) Power-down mode (1) Data based on characterization results, not tested in production. (2) Configured by the REGAH bit in the CLK_ICKR register. (3) Configured by the AHALT bit in the FLASH_CR1 register. Table 24: Total current consumption in active halt mode at VDD = 3.3 V Symbol Parameter IDD(AH) Supply current in active halt mode Conditions Typ Main voltage regulator (2) (MVR) Flash mode On Operating mode (3) Clock source HSE crystal osc. 680 Off Operating mode Power-down mode 60/103 DocID022186 Rev 3 µA (16 MHz) LSI RC osc. (128 kHz) Power-down mode Max at Unit 85 (1) °C 200 320 HSE crystal osc. 630 (16 MHz) LSI RC osc. (128 kHz) 140 270 LSI RC osc. (128 kHz) 66 120 10 60 STM8S005K6 STM8S005C6 9.3.2.4 Electrical characteristics (1) Data based on characterization results, not tested in production. (2) Configured by the REGAH bit in the CLK_ICKR register. (3) Configured by the AHALT bit in the FLASH_CR1 register. Total current consumption in halt mode Table 25: Total current consumption in halt mode at VDD = 5 V Symbol Parameter Conditions Typ Max at Unit (1) 85 °C IDD(H) Supply current in Flash in operating mode, HSI halt mode clock after wakeup 62 90 6.5 25 Flash in powerdown mode, HSI clock after wakeup (1) µA Data based on characterization results, not tested in production. Table 26: Total current consumption in halt mode at VDD = 3.3 V Symbol Parameter Conditions Typ Max at Unit (1) 85 °C IDD(H) Supply current in halt mode Flash in operating mode, HSI clock after wakeup 60 90 Flash in powerdown mode, HSI clock after wakeup 4.5 20 (1) 9.3.2.5 µA Data based on characterization results, not tested in production. Low power mode wakeup times Table 27: Wakeup times Symbol Parameter Wakeup time from tWU(WFI) Conditions Typ See (2) note 0 to 16 MHz wait mode to run (3) mode fCPU = fMASTER = 16 MHz DocID022186 Rev 3 (1) Max Unit μs 0.56 61/103 Electrical characteristics Symbol Parameter Conditions Wakeup time active MVR voltage halt mode to run regulator (3) Flash in operating (5) mode MVR voltage Flash in HSI halt mode to run regulator (after (4) Wakeup time active MVR voltage halt mode to run regulator power-down mode (4) Flash in operating (5) mode (after Wakeup time active MVR voltage Flash in HSI halt mode to run regulator (after (6) 3 (6) 48 wakeup) power-down (5) mode off Wakeup time from Flash in operating mode mode (6) 50 wakeup) (5) halt mode to run (3) (6) 2 HSI off mode (6) 1 wakeup) mode (4) Unit wakeup) (5) on (3) 52 (5) Flash in power-down mode (1) Data guaranteed by design, not tested in production. (2) tWU(WFI) = 2 x 1/fmaster + x 1/fCPU. (3) Measured from interrupt event to interrupt vector fetch. (4) Configured by the REGAH bit in the CLK_ICKR register. (5) Configured by the AHALT bit in the FLASH_CR1 register. (6) Plus 1 LSI clock depending on synchronization. 9.3.2.6 (after Wakeup time active mode (1) Max HSI on (3) tWU(H) (4) Typ mode (3) tWU(AH) STM8S005K6 STM8S005C6 54 Total current consumption and timing in forced reset state Table 28: Total current consumption and timing in forced reset state Symbol Parameter Conditions Typ IDD(R) Supply current in reset (2) state VDD = 5 V 500 VDD = 3.3 V 400 62/103 (1) Max Unit μA DocID022186 Rev 3 STM8S005K6 STM8S005C6 Symbol Parameter tRESETBL Reset pin release to vector fetch Electrical characteristics Conditions Typ (1) Data guaranteed by design, not tested in production. (2) Characterized with all I/Os tied to VSS. 9.3.2.7 (1) Max Unit 150 μs Current consumption of on-chip peripherals Subject to general operating conditions for VDD and TA. HSI internal RC/fCPU = fMASTER = 16 MHz. Table 29: Peripheral current consumption Symbol Parameter Typ. IDD(TIM1) TIM1 supply current IDD(TIM2) TIM2 supply current IDD(TIM3) TIM3 timer supply current (1) 90 IDD(TIM4) TIM4 timer supply current (1) 30 (1) Unit 230 (1) 115 µA (2) IDD(UART2) UART2 supply current IDD(SPI) SPI supply current IDD(I 2 2 C) IDD(ADC1) I C supply current 110 (2) 45 (2) 65 (3) ADC1 supply current when converting 955 (1) Data based on a differential IDD measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production. (2) Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production. (3) Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. Not tested in production. DocID022186 Rev 3 63/103 Electrical characteristics 9.3.2.8 STM8S005K6 STM8S005C6 Current consumption curves The following figures show typical current consumption measured with code executing in RAM. Figure 11: Typ. IDD(RUN) vs. VDD , HSE user external clock, fCPU = 16 MHz -40°C 3 25°C 2.95 85°C 2.9 IDD(RUN)HSE [mA] 2.85 2.8 2.75 2.7 2.65 2.6 2.55 2.5 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10235 Figure 12: Typ. IDD(RUN) vs. fCPU , HSE user external clock, VDD= 5 V -40°C 5 25°C 4.5 85°C 4 IDD(RUN)HSE [mA] 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 fcpu [MHz] 20 25 30 IID10236 64/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Figure 13: Typ. IDD(RUN) vs. VDD , HSI RC osc, fCPU = 16 MHz -40°C 3 25°C 2.9 85°C 2.8 IDD(RUN)HSI [mA] 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10237 Figure 14: Typ. IDD(WFI) vs. VDD , HSE user external clock, fCPU = 16 MHz -40°C 2.4 25°C 2.2 85°C IDD(WFI)HSE [mA] 2 1.8 1.6 1.4 1.2 1 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10238 Figure 15: Typ. IDD(WFI) vs. fCPU, HSE user external clock VDD = 5 V IDD(WFI)HSE [mA] -40°C 3 25°C 2.5 85°C 2 1.5 1 0.5 0 0 5 10 15 fcpu [MHz] 20 25 30 IID10239 DocID022186 Rev 3 65/103 Electrical characteristics STM8S005K6 STM8S005C6 Figure 16: Typ. IDD(WFI) vs. VDD, HSI RC osc, fCPU = 16 MHz -40°C 2 25°C 1.9 85°C 1.8 IDD(WFI)HSI [mA] 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10240 9.3.3 External clock sources and timing characteristics HSE user external clock Subject to general operating conditions for VDD and TA. Table 30: HSE user external clock characteristics Symbol Parameter fHSE_ext VHSEH (1) VHSEL (1) ILEAK_HSE (1) Conditions Min Max Unit User external clock source frequency 0 16 MHz OSCIN input pin high level voltage 0.7 x VDD VDD + 0.3 V V OSCIN input pin low level voltage OSCIN input leakage current VSS < VIN < VDD VSS 0.3 x VDD -1 +1 Data based on characterization results, not tested in production. 66/103 DocID022186 Rev 3 μA STM8S005K6 STM8S005C6 Electrical characteristics Figure 17: HSE external clocksource V HSEH V HSEL External clock source fHSE OSCIN STM8 HSE crystal/ceramic resonator oscillator The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 31: HSE oscillator characteristics Symbol Parameter Conditions fHSE External high speed Feedback resistor (1) C Typ 1 oscillator frequency RF Min Max Unit 16 MHz 220 kΩ Recommended load 20 (2) capacitance IDD(HSE) HSE oscillator power consumption pF C = 20 pF, 6 (startup) fOSC = 16 MHz 1.6 (stabilized) (3) mA gm C = 10 pF, 6 (startup) fOSC =16 MHz 1.2 (stabilized) Oscillator 5 transconductance tSU(HSE) (1) (3) (4) Startup time VDD is stabilized mA/V 1 ms C is approximately equivalent to 2 x crystal Cload. DocID022186 Rev 3 67/103 Electrical characteristics STM8S005K6 STM8S005C6 (2) The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details (3) Data based on characterization results, not tested in production. (4) tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Figure 18: HSE oscillator circuit diagram Rm f HSE to core Lm CO RF CL1 Cm OSCIN gm Resonator Consumption control Resonator OSCOUT CL2 STM8 HSE oscillator critical g m equation 2 2 gmcrit= (2 × Π × fHSE) × Rm(2Co + C) Rm: Notional resistance (see crystal specification) Lm: Notional inductance (see crystal specification) Cm: Notional capacitance (see crystal specification) Co: Shunt capacitance (see crystal specification) CL1= CL2 = C: Grounded external capacitance gm >> gmcrit 9.3.4 Internal clock sources and timing characteristics Subject to general operating conditions for VDD and TA. High speed internal RC oscillator (HSI) Table 32: HSI oscillator characteristics Symbol Parameter fHSI 68/103 Conditions Frequency Min Typ 16 DocID022186 Rev 3 Max Unit MHz STM8S005K6 STM8S005C6 Electrical characteristics Symbol Parameter Conditions Min ACCHSI Accuracy of HSI oscillator User-trimmed with CLK_HSITRIMR register for given VDD and TA (1) conditions Typ (2) 1.0 (3) Accuracy of HSI oscillator (factory calibrated) Max VDD = 5 V, TA = 25°C Unit % 5.0 -5.0 VDD = 5 V, 5.0 -40 °C ≤ TA ≤ 85 °C tsu(HSI) (2) HSI oscillator wakeup time including calibration 1.0 IDD(HSI) HSI oscillator power consumption 170 (1) Refer to application note. (2) Guaranteed by design, not tested in production. (3) Data based on characterization results, not tested in production. (3) 250 µs µA Figure 19: Typical HSI frequency variation vs VDD @ 3 temperatures -40°C 16.5 25°C 16.4 85°C HSI frequency [MHz] 16.3 16.2 16.1 16 15.9 15.8 15.7 15.6 15.5 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10241 Low speed internal RC oscillator (LSI) Subject to general operating conditions for VDD and TA. DocID022186 Rev 3 69/103 Electrical characteristics STM8S005K6 STM8S005C6 Table 33: LSI oscillator characteristics Symbol Parameter fLSI Frequency tsu(LSI) LSI oscillator wakeup time IDD(LSI) LSI oscillator power consumption (1) Min Typ Max Unit 128 kHz (1) 7 µs 5 µA Guaranteeed by design, not tested in production. Figure 20: Typical LSI frequency variation vs VDD @ 3 temperatures -40°C 150 25°C 145 85°C LSI frequency [MHz] 140 135 130 125 120 115 110 105 100 2.5 3 3.5 4 VDD [V] 4.5 5 5.5 6 IID10242 9.3.5 Memory characteristics RAM and hardware registers Table 34: RAM and hardware registers Symbol Parameter VRM Data retention mode (1) Conditions Min Halt mode (or reset) VIT-max (1) Unit (2) V Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production. refer to Operating conditions for the value of VIT-max (2) Refer to the Operating conditions section for the value of VIT-max Flash program memory/data EEPROM memory General conditions: TA = -40 to 85°C. 70/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Table 35: Flash program memory/data EEPROM memory (1) Symbol Parameter Conditions Min VDD Operating voltage (all modes, execution/write/erase) fCPU ≤ 16 MHz 2.95 tprog Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes) Max Unit 5.5 V 6.0 6.6 ms Fast programming time for 1 block (128 bytes) 3.0 3.3 ms terase Erase time for 1 block (128 bytes) 3.0 3.3 ms NRW Erase/write cycles (program memory) (2) (2) Erase/write cycles(data memory) tRET IDD (1) TA = 85 °C 100 TA = 85 ° C 100 k Data retention (program memory) TRET = 55° C after 100 erase/write cycles at TA = 85 °C 20 Data retention (data memory) after 10 k erase/write cycles at TA = 85 °C 20 Data retention (data memory) after TRET = 85° C 100 k erase/write cyclesat TA = 85 °C 1 Supply current (Flash programming or erasing for 1 to 128 bytes) Typ cycles years 2.0 mA Data based on characterization results, not tested in production. (2) The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. DocID022186 Rev 3 71/103 Electrical characteristics 9.3.6 STM8S005K6 STM8S005C6 I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Table 36: I/O static characteristics Symbol Parameter Conditions Min VIL Input low level voltage VDD = 5 V VIH Input high level voltage Vhys Hysteresis Max Unit -0.3 0.3 x VDD V 0.7 x VDD VDD + 0.3 V V Rpu Pull-up resistor tR, tF Rise and fall Fast I/Os load = 50 pF time(10 % - 90 %) (1) Typ 700 VDD = 5 V, VIN = VSS 30 55 mV 80 35 kΩ (3) Standard and high sink I/OsLoad = 50 pF 125 (3) (2) Ilkg Input leakage current, analog and digital VSS ≤ VIN ≤ VDD ±1.0 Ilkg ana Analog input leakage current VSS ≤ VIN ≤ VDD ±250 Ilkg(inj) Leakage current in Injection current ±4 mA (2) adjacent I/O (1) ns (2) (2) ±1.0 ns µA nA µA Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production. (2) Data based on characterization results, not tested in production. (3) Data guaranteed by design, not tested in production. 72/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Figure 21: Typical VIL and VIH vs VDD @ 3 temperatures -40°C 6 25°C 85°C 5 VIL / VIH [V] 4 3 2 1 0 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10243 Figure 22: Typical pull-up resistance vs VDD @ 3 temperatures -40°C 60 25°C 85°C Pull-Up resistance [kW] 55 50 45 40 35 30 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10244 Figure 23: Typical pull-up current vs VDD @ 3 temperatures 140 Pull-Up current [µA] 120 100 80 -40°C 60 25°C 40 85°C 20 0 0 1 2 3 VDD [V] 4 5 6 IID10245 1. The pull-up is a pure resistor (slope goes through 0). DocID022186 Rev 3 73/103 Electrical characteristics STM8S005K6 STM8S005C6 Table 37: Output driving current (standard ports) Symbol Parameter VOL VOH (1) Conditions Min Max Output low level with four pins IIO = 4 mA, sunk VDD = 3.3 V 1.0 Output low level with eight pins sunk IIO= 10 mA, 2.0 Output high level with four pins sourced IIO = 4 mA, Output high level with eight pins sourced IIO = 10 mA, Unit (1) V VDD = 5 V (1) 2.0 V VDD = 3.3 V 2.4 VDD = 5 V Data based on characterization results, not tested in production Table 38: Output driving current (true open drain ports) Symbol Parameter Conditions Max VOL IIO = 10 mA, VDD = 3.3 V 1.5 IIO = 10 mA, VDD = 5 V 1.0 IIO = 20 mA, VDD = 5 V 2.0 (1) Output low level with two pins sunk Unit (1) V (1) Data based on characterization results, not tested in production Table 39: Output driving current (high sink ports) 74/103 Symbol Parameter Conditions VOL Output low level with four pins sunk IIO = 10 mA, Output low level with eight pins sunk IIO = 10 mA, Min Max (1) 1.1 VDD = 3.3 V VDD = 5 V DocID022186 Rev 3 0.9 Unit V STM8S005K6 STM8S005C6 Electrical characteristics Symbol Parameter VOH (1) Output low level with four pins sunk IIO = 20 mA, Output high level with four pins sourced IIO = 10 mA, Min Max Unit (1) 1.6 VDD = 5 V (1) 1.9 VDD = 3.3 V Output high level with eight pins IIO = 10 mA, sourced VDD = 5 V 3.8 Output high level with four pins sourced 2.9 (1) IIO = 20 mA, VDD = 5 V Data based on characterization results, not tested in production Typical output level curves The following figures show typical output level curves measured with output on a single pin. Figure 24: Typ. VOL @ VDD = 5 V (standard ports) -40°C 1.5 25°C 1.25 85°C 1 VOL [V] 9.3.7 Conditions 0.75 0.5 0.25 0 0 2 4 6 IOL [mA] 8 10 12 IID10224 DocID022186 Rev 3 75/103 Electrical characteristics STM8S005K6 STM8S005C6 Figure 25: Typ. VOL @ VDD = 3.3 V (standard ports) -40°C 1.5 25°C 1.25 85°C VOL [V] 1 0.75 0.5 0.25 0 0 1 2 3 4 5 6 7 IOL [mA] IID10225 Figure 26: Typ. VOL @ VDD = 5 V (true open drain ports) -40°C 2 1.75 25°C 1.5 85°C VOL [V] 1.25 1 0.75 0.5 0.25 0 0 5 10 15 20 25 IOL [mA] IID10226 Figure 27: Typ. VOL @ VDD = 3.3 V (true open drain ports) -40°C 2 1.75 25°C 1.5 85°C VOL [V] 1.25 1 0.75 0.5 0.25 0 0 2 4 6 8 10 12 14 IOL [mA] IID10227 76/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Figure 28: Typ. VOL @ VDD = 5 V (high sink ports) -40°C 1.5 25°C 1.25 85°C VOL [V] 1 0.75 0.5 0.25 0 0 5 10 15 20 25 IOL [mA] IID10228 Figure 29: Typ. VOL @ VDD = 3.3 V (high sink ports) -40°C 1.5 25°C 1.25 85°C VOL [V] 1 0.75 0.5 0.25 0 0 2 4 6 8 10 12 14 IOL [mA] IID10229 Figure 30: Typ. VDD - VOH @ VDD = 5 V (standard ports) -40°C VDD - VOH [V] 2 1.75 25°C 1.5 85°C 1.25 1 0.75 0.5 0.25 0 0 2 4 6 IOH [mA] 8 10 12 IID10230 DocID022186 Rev 3 77/103 Electrical characteristics STM8S005K6 STM8S005C6 Figure 31: Typ. VDD - VOH @ VDD = 3.3 V (standard ports) -40°C VDD - VOH [V] 2 1.75 25°C 1.5 85°C 1.25 1 0.75 0.5 0.25 0 0 1 2 3 4 5 6 7 IOH [mA] IID10231 Figure 32: Typ. VDD - VOH @ VDD = 5 V (high sink ports) -40°C VDD - VOH [V] 2 1.75 25°C 1.5 85°C 1.25 1 0.75 0.5 0.25 0 0 5 10 15 20 25 IOH [mA] IID10232 Figure 33: Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) -40°C VDD - VOH [V] 2 1.75 25°C 1.5 85°C 1.25 1 0.75 0.5 0.25 0 0 2 4 6 8 10 12 14 IOH [mA] IID10233 78/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 9.3.8 Electrical characteristics Reset pin characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. Table 40: NRST pin characteristics Symbol Parameter Conditions VIL(NRST) NRST input low Min (1) Typ -0.3 0.3 x VDD 0.7 x VDD VDD + 0.3 level voltage VIH(NRST) NRST input high (1) level voltage VOL(NRST) NRST output low Unit V 0.5 (1) level voltage RPU(NRST) IOL=2 mA Max NRST pull-up 30 (2) 55 80 kΩ resistor tI FP(NRST) NRST input filtered 75 (3) pulse ns tIN FP(NRST) NRST input not 500 (3) filtered pulse tOP(NRST) NRST output pulse 15 (3) (1) Data based on characterization results, not tested in production. (2) The RPU pull-up equivalent resistor is based on a resistive transistor (3) Data guaranteed by design, not tested in production. DocID022186 Rev 3 μs 79/103 Electrical characteristics STM8S005K6 STM8S005C6 Figure 34: Typical NRST VIL and VIH vs VDD @ 3 temperatures -40°C 6 5.5 25°C 5 85°C 4.5 VIL / VIH [V] 4 3.5 3 2.5 2 1.5 1 0.5 0 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10248 Figure 35: Typical NRST pull-up resistance vs VDD @ 3 temperatures -40°C NRESET Pull-Up resistance [kW] 60 25°C 85°C 55 50 45 40 35 30 2.5 3 3.5 4 4.5 5 5.5 6 VDD [V] IID10234 Figure 36: Typical NRST pull-up current vs VDD @ 3 temperatures 140 NRESET Pull-Up current [µA] 120 100 80 -40°C 60 25°C 40 85°C 20 0 2 2.5 3 3.5 4 VDD [V] 4.5 5 5.5 6 IID10246 80/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics The reset network shown in the following figure protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below VIL(NRST) max. (see Table 40: NRST pin characteristics ), otherwise the reset is not taken into account internally. For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry, attention must be taken to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. Minimum recommended capacity is 100 nF. Figure 37: Recommended reset pin protection STM8 VDD RPU External reset circuit NRST Filter Internal reset 0.1 μF (optional) 9.3.9 SPI serial peripheral interface Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, fMASTER frequency and VDD supply voltage conditions. tMASTER = 1/fMASTER. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 41: SPI characteristics Symbol Parameter Conditions Min Max Unit fSCK1 SPI clock frequency Master mode 0 8 MHz Slave mode 0 6 tc(SCK) tr(SCK) SPI clock rise and fall time tf(SCK) tsu(NSS) th(NSS) (1) (1) Capacitive load: C = 30 pF 25 ns NSS setup time Slave mode 4x tMASTER ns NSS hold time 70 ns Slave mode DocID022186 Rev 3 81/103 Electrical characteristics Symbol tw(SCKH) (1) tw(SCKL) (1) (1) tsu(MI) tsu(SI) (1) th(MI) th(SI) (1) (1) ta(SO) (1) (2) tdis(SO) tv(SO) tv(MO) th(SO) th(MO) (1) (3) (1) (1) (1) (1) STM8S005K6 STM8S005C6 Parameter Conditions Min Max SCK high and low time Master mode tSCK/2 15 tSCK/2 + 15 Data input setup time Master mode 5 Data input setup time Slave mode 5 Data input hold time Master mode 7 Data input hold time Slave mode 10 Data output access time Slave mode Data output disable time Slave mode Data output valid time Slave mode Data output valid time Master mode Data output hold time Slave mode ns ns ns 25 (after enable edge) 36 (after enable edge) Master mode (after enable edge) 12 ns ns 73 28 ns ns 3x tMASTER (after enable edge) Unit ns ns ns ns (1) Values based on design simulation and/or characterization results, and not tested in production. (2) Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. (3) Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. 82/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Figure 38: SPI timing diagram - slave mode and CPHA = 0 NSS input SCK Input tSU(NSS) CPHA= 0 CPOL=0 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT M SB IN B I T1 IN LSB IN th(SI) ai14134 (1) Figure 39: SPI timing diagram - slave mode and CPHA = 1 NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) M SB IN B I T1 IN LSB IN ai14135 1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD. DocID022186 Rev 3 83/103 Electrical characteristics STM8S005K6 STM8S005C6 (1) Figure 40: SPI timing diagram - master mode High NSS input SCK intput SCK output tc(SCK) CPHA= 0 CPOL=0 CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) MS BIN BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136b 1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD. 9.3.10 2 I C interface characteristics 2 Table 42: I C characteristics Symbol Parameter 2 Standard mode I C (2) Min (2) Max 2 (1) Fast mode I C (2) Min Unit (2) Max tw(SCLL) SCL clock low time 4.7 1.3 μs tw(SCLH) SCL clock high time 4.0 0.6 μs tsu(SDA) SDA setup time 250 100 ns th(SDA) SDA data hold time 0 tr(SDA) tr(SCL) tf(SDA) tf(SCL) 84/103 (3) (4) 0 (3) 900 ns SDA and SCL rise time 1000 300 ns SDA and SCL fall time 300 300 ns DocID022186 Rev 3 STM8S005K6 STM8S005C6 Symbol Electrical characteristics 2 Parameter Standard mode I C (2) (2) Min th(STA) START condition hold time tsu(STA) Repeated START condition setup time tsu(STO) STOP condition setup time tw(STO:STA) STOP to START condition time (bus free) Cb Max 2 (1) Fast mode I C (2) Unit (2) Min Max 4.0 0.6 μs 4.7 0.6 μs 4.0 0.6 μs 4.7 1.3 μs Capacitive load for each bus line 400 400 (1) fMASTER, must be at least 8 MHz to achieve max fast I C speed (400kHz). (2) Data based on standard I C protocol requirement, not tested in production. pF 2 2 (3) The maximum hold time of the start condition has only to be met if the interface does not stretch the low time. (4) The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 2 Figure 41: Typical application with I C bus and timing diagram VDD (1) VDD STM8Sx05xx SDA I²C bus SCL S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) th(STA) SCL tw(SCLH) tsu(SDA) tw(SCLL) tr(SCL) th(SDA) tf(SCL) S TOP tsu(STA:STO) tsu(STO) ai15385b 1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD DocID022186 Rev 3 85/103 Electrical characteristics 9.3.11 STM8S005K6 STM8S005C6 10-bit ADC characteristics Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise specified. Table 43: ADC characteristics Symbol Parameter Conditions fADC ADC clock frequency Min Typ Max Unit VDDA =2.95 to 5.5 V 1.0 4.0 MHz VDDA =4.5 to 5.5 V 1.0 6.0 5.5 V VDDA Analog supply 3.0 VREF+ Positive reference voltage 2.75 VDDA V VREF- Negative reference voltage (1) V SSA 0.5 V VAIN Conversion voltage range V SSA V DDA V VREF- VREF+ V (1) (2) Devices with external VREF+/VREF- pins CADC tS (2) Internal sample and hold capacitor Sampling time tSTAB Wakeup time from standby tCONV Total conversion time (including sampling time, 10-bit resolution) (1) 3.0 fADC = 4 MHz 0.75 fADC = 6 MHz 0.5 pF µs 7.0 µs fADC = 4 MHz 3.5 µs fADC = 6 MHz 2.33 µs 14 1/fADC Data guaranteed by design, not tested in production.. (2) During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, 86/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. Table 44: ADC accuracy with RAIN < 10 kΩ , VDDA= 5 V Symbol Parameter |ET| Total unadjusted error |EO| |EG| |ED| |EL| (1) (2) (2) Offset error (2) Gain error (2) Differential linearity error (2) Integral linearity error (1) Conditions Typ Max Unit fADC = 2 MHz 1.0 2.5 LSB fADC = 4 MHz 1.4 3.0 fADC = 6 MHz 1.6 3.5 fADC = 2 MHz 0.6 2.0 fADC = 4 MHz 1.1 2.5 fADC = 6 MHz 1.2 2.5 fADC = 2 MHz 0.2 2.0 fADC = 4 MHz 0.6 2.5 fADC = 6 MHz 0.8 2.5 fADC = 2 MHz 0.7 1.5 fADC = 4 MHz 0.7 1.5 fADC = 6 MHz 0.8 1.5 fADC = 2 MHz 0.6 1.5 fADC = 4 MHz 0.6 1.5 fADC = 6 MHz 0.6 1.5 Data based on characterisation results, not tested in production. (2) ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. DocID022186 Rev 3 87/103 Electrical characteristics STM8S005K6 STM8S005C6 Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy. Table 45: ADC accuracy with RAIN < 10 kΩ RAIN, VDDA = 3.3 V Symbol Parameter |ET| Total unadjusted error |EO| |EG| |ED| |EL| (1) (2) (2) Offset error Gain error (2) (2) Differential linearity error (2) Integral linearity error (1) Conditions Typ Max Unit fADC = 2 MHz 1.1 2.0 LSB fADC = 4 MHz 1.6 2.5 fADC = 2 MHz 0.7 1.5 fADC = 4 MHz 1.3 2.0 fADC = 2 MHz 0.2 1.5 fADC = 4 MHz 0.5 2.0 fADC = 2 MHz 0.7 1.0 fADC = 4 MHz 0.7 1.0 fADC = 2 MHz 0.6 1.5 fADC = 4 MHz 0.6 1.5 Data based on characterisation results, not tested in production. (2) ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in I/O port pin characteristics does not affect the ADC accuracy. 88/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics Figure 42: ADC accuracy characteristics 1. Example of an actual transfer curve. 2. The ideal transfer curve 3. End point correlation line ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. EO = Offset error: deviation between the first actual transition and the first ideal one. EG = Gain error: deviation between the last ideal transition and the last actual one. ED = Differential linearity error: maximum deviation between actual steps and the ideal one. EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation line. Figure 43: Typical application with ADC VDD VAIN RAIN CAIN 9.3.12 AINx STM8 VT 0.6 V 10-bit A/D conversion VT 0.6 V IL ± 1 µA CADC EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. DocID022186 Rev 3 89/103 Electrical characteristics 9.3.12.1 STM8S005K6 STM8S005C6 Functional EMS (electromagnetic susceptibility) While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). FESD: Functional electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard. • A burst of fast transient voltage (positive and negative) is applied to V and V • FTB: through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with DD SS the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709 (EMC design guide for STMicrocontrollers). 9.3.12.2 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: Corrupted program counter • • Unexpected reset • Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques for improving microcontroller EMC performance). Table 46: EMS data Symbol Parameter Conditions Level/ class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 5 V, TA = 25 °C, fMASTER = 16 MHz, conforming to IEC 1000-4-2 2/B VEFTB 90/103 (1) Fast transient voltage burst limits to be applied through 100 VDD= 5 V, TA = 25 °C ,fMASTER = 16 MHz,conforming (1) 4/A pF on VDD and VSS pins to to IEC 1000-4-4 induce a functional disturbance DocID022186 Rev 3 STM8S005K6 STM8S005C6 Electrical characteristics (1) Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 (EMC guidelines for STM8S microcontrollers). 9.3.12.3 Electromagnetic interference (EMI) Emission tests conform to the IEC61967-2 standard for test software, board layout and pin loading. Table 47: EMI data Symbol Parameter Conditions General conditions SEMI Peak level VDD = 5 V, TA = +25 °C, LQFP48 package conforming to IEC61967-2 Unit Max fHSE/fCPU 8 MHz/ 8 MHz 8 MHz/ 16 MHz 0.1 MHz to 30 MHz 13 14 30 MHz to 130 MHz 23 19 130 MHz to 1 -4.0 GHz SAE EMI level (1) 9.3.12.4 (1) Monitored frequency band 2.0 dBµV -4.0 1.5 — Data based on characterization results, not tested in production. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. 9.3.12.5 Electrostatic discharge (ESD) Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181. DocID022186 Rev 3 91/103 Electrical characteristics STM8S005K6 STM8S005C6 Table 48: ESD absolute maximum ratings Symbol Ratings Conditions VESD(HBM) Electrostatic discharge TA = +25°C, voltage (Human body model) conforming to JESD22-A114 VESD(CDM) Electrostatic discharge voltage (Charge device model) (1) 9.3.12.6 Class Maximum Unit (1) value A 2000 V TA=+25°C, conforming IV to JESD22-C101 1000 V Data based on characterization results, not tested in production Static latch-up Two complementary static tests are required on 10 parts to assess the latch-up performance: A supply overvoltage (applied to each power supply pin) • injection (applied to each input, output and configurable I/O pin) are performed • Aoncurrent each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 49: Electrical sensitivities (1) Symbol Parameter Conditions Class LU Static latch-up class TA = +25 °C A TA = +85 °C A (1) Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard). 92/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 10 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ® ® ECOPACK packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 10.1 48-pin LQFP package mechanical data Figure 44: 48-pin low profile quad flat package (7 x 7) D ccc C D1 D3 A A2 25 36 24 37 L1 b E3 E1 E 48 Pin 1 identification 13 1 L A1 K c 12 5B_ME Table 50: 48-pin low profile quad flat package mechanical data Dim. (1) mm Min inches Typ A Max Min Typ 1.600 A1 0.050 A2 1.350 b 0.170 c 0.090 D 8.800 Max 0.0630 0.150 0.0020 1.400 1.450 0.0531 0.0551 0.0571 0.220 0.270 0.0067 0.0087 0.0106 0.200 0.0035 9.200 0.3465 9.000 DocID022186 Rev 3 0.0059 0.0079 0.3543 0.3622 93/103 Package information Dim. D1 STM8S005K6 STM8S005C6 inches Min Typ Max Min Typ Max 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 5.500 0.2165 E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 5.500 0.2165 e 0.500 0.0197 L 0.450 L1 0° ccc (1) 0.600 0.750 0.0177 1.000 k 94/103 (1) mm 3.5° 0.0236 0.0295 0.0394 7.0° 0° 3.5° 0.080 Values in inches are converted from mm and rounded to 4 decimal digits DocID022186 Rev 3 7.0° 0.0031 STM8S005K6 STM8S005C6 10.2 Package information 32-pin LQFP package mechanical data Figure 45: 32-pin low profile quad flat package (7 x 7) ccc C D D1 D3 24 A A2 17 16 25 L1 b E3 32 E1 E 9 Pin 1 identification L A1 1 K c 8 5V_ME Table 51: 32-pin low profile quad flat package mechanical data Dim. (1) mm Min inches Typ A Max Min Typ 1.600 A1 0.050 A2 1.350 b 0.300 c 0.090 D 8.800 D1 6.800 D3 Max 0.0630 0.150 0.0020 1.400 1.450 0.0531 0.0551 0.0571 0.370 0.450 0.0118 0.0146 0.0177 0.200 0.0035 9.000 9.200 0.3465 0.3543 0.3622 7.000 7.200 0.2677 0.2756 0.2835 5.600 0.0059 0.0079 0.2205 E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 DocID022186 Rev 3 95/103 Package information Dim. STM8S005K6 STM8S005C6 Min inches Typ Max Min Typ E3 5.600 0.2205 e 0.800 0.0315 L 0.450 L1 0° ccc (1) 0.600 0.750 0.0177 1.000 k 96/103 (1) mm 3.5° 0.0236 Max 0.0295 0.0394 7.0° 0° 3.5° 0.100 Values in inches are converted from mm and rounded to 4 decimal digits DocID022186 Rev 3 7.0° 0.0039 STM8S005K6 STM8S005C6 11 Thermal characteristics Thermal characteristics The maximum chip junction temperature (TJ max) must never exceed the values given in Operating conditions The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x ΘJA) Where: TAmax is the maximum ambient temperature in °C • • Θ is the package junction-to-ambient thermal resistance in ° C/W • P is the sum of P and P (P = P + P ) • Ppower. is the product of I andV , expressed in Watts. This is the maximum chip internal the maximum power dissipation on output pinsWhere:P =Σ (V *I ) • P+ Σ((V represents -V *I ), taking into account the actual V /I V /I of the I/Os at low JA Dmax INTmax INTmax DD I/Omax Dmax INTmax I/Omax DD I/Omax I/Omax DD OH) OH OL OL and OL OL OH OH and high level in the application. (1) Table 52: Thermal characteristics Symbol Parameter Value Unit ΘJA Thermal resistance junction-ambient 57 °C/W 60 °C/W LQFP 48 - 7 x 7 mm ΘJA Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. 11.1 Reference document JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org. 11.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the order code. The following example shows how to calculate the temperature range needed for a given application. Assuming the following application conditions: Maximum ambient temperature TAmaz = 82 °C (measured according to JESD51-2) • •I DDmax = 15 mA, VDD = 5.5 V DocID022186 Rev 3 97/103 Thermal characteristics STM8S005K6 STM8S005C6 8 standard I/Os used at the same time in output at low level with I = 10 mA, • Maximum V =2V 4 high sink I/Os used at the same time in output at low level with I = 20 mA, • Maximum V = 1.5 V 2 true open drain I/Os used at the same time in output at low level with I = • Maximum 20 mA, V = 2 V OL OL OL OL OL OL PINTmax = 15 mA x 5.5 V = 82.5 mW PIOmax = (10 mA x 2 V x 8 )+(20 mA x 2 V x 2)+(20 mA x 1.5 V x 4) = 360 mW This gives: PINTmax = 82.5 mW and PIOmax 360 mW: PDmax = 82.5 mW + 360 mW Thus: PDmax = 443 mW TJmax for LQFP32 can be calculated as follows, using the thermal resistance ΘJA : TJmax = 75° C + (59° C/W x 464 mW) = 75°C + 27°C = 102° C This is within the range of the suffix 6 version parts (-40 < TJ < 106° C). In this case, parts must be ordered at least with the temperature range suffix 6. 98/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 12 Ordering information Ordering information Figure 46: STM8S005xx value line ordering information scheme Example: STM8 S 005 K 6 T 6 C TR Product class Family type S = Standard Sub-family type 005 = Value line STM8S005x Pin count K = 32 pins C = 48 pins Program memory size 6 = 32 Kbytes Package type T = LQFP Temperature range 6 = -40 °C to 85 °C Package pitch No character = 0.5 mm C = 0.8 mm Packing No character = Tray or tube TR = Tape and reel 1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST sales office nearest to you. DocID022186 Rev 3 99/103 STM8 development tools 13 STM8S005K6 STM8S005C6 STM8 development tools Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer. 13.1 Emulation and in-circuit debugging tools The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer. The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application. In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller. For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers. STice key features Occurrence and time profiling and code coverage (new features) • • Advanced breakpoints with up to 4 levels of conditions • Data breakpoints • Program and data trace recording up to 128 KB records • Read/write on the fly of memory during emulation • In-circuit debugging/programming via SWIM protocol • 8-bit probe analyzer • 1 input and 2 output triggers • Power supply follower managing application voltages between 1.62 to 5.5 V that allows you to specify the components you need to meet your development • Modularity requirements and adapt to future requirements by free software tools that include integrated development environment (IDE), • Supported programming software interface and assembler for STM8. 13.2 Software tools STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8, which are available in a free version that outputs up to 16 Kbytes of code. 100/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 13.2.1 STM8 development tools STM8 toolset STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com/mcu. This package includes: ST Visual Develop – Full-featured integrated development environment from ST, featuring Seamless integration of C and ASM toolsets • • Full-featured debugger • Project management • Syntax highlighting editor • Integrated programming interface • Support of advanced emulation features for STice such as code profiling and coverage ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8 microcontroller’s Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences. 13.2.2 C and assembly toolchains Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of your application directly from an easy-to-use graphical interface. Available toolchains include: Cosmic C compiler for STM8 – Available in a free version that outputs up to 16 Kbytes of code. For more information, see www.cosmic-software.com. • C compiler for STM8 – Available in a free version that outputs up to • Raisonance 16 Kbytes of code. For more information, see www.raisonance.com. assembler linker – Free assembly toolchain included in the STVD toolset, which • STM8 allows you to assemble and link your application source code. 13.3 Programming tools During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on your application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming your STM8. For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family. DocID022186 Rev 3 101/103 Revision history 14 STM8S005K6 STM8S005C6 Revision history Table 53: Document revision history Date Revision 14-Oct-2011 1 09-Jan-2012 2 Changes Initial release. Updated tRET in Table 35: Flash program memory/data EEPROM memory. Updated RPU in Table 40: NRST pin characteristics and Table 36: I/O static characteristics. Updated notes related to VCAP in Operating conditions. 13-Jun-2012 3 Updated temperature condition for factory calibrated ACCHSI in Table 32: HSI oscillator characteristics. Changed SCK input to SCK output in Figure 40: SPI timing diagram - master mode(1) . 102/103 DocID022186 Rev 3 STM8S005K6 STM8S005C6 Please Read Carefully Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom United States of America www.st.com DocID022186 Rev 3 103/103