STMICROELECTRONICS STM8S005K6T6CTR

STM8S005K6 STM8S005C6
Value line, 16 MHz STM8S 8-bit MCU, 32 Kbytes Flash, data
EEPROM,10-bit ADC, timers, UART, SPI, I²C
active, low consumption power-on
• Permanently
and power-down reset
Interrupt management
Nested interrupt controller with 32 interrupts
•
• Up to 37 external interrupts on 6 vectors
LQFP48 7x7
LQFP32 7x7
Timers
2x 16-bit general purpose timers, with 2+3
CAPCOM channels (IC, OC or PWM)
•
control timer: 16-bit, 4 CAPCOM
• Advanced
channels, 3 complementary outputs, dead-time
insertion and flexible synchronization
Features
Core
16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
•
• Extended instruction set
Memories
Medium-density Flash/EEPROM:
Program memory: 32 Kbytes of Flash
memory; data retention 20 years at 55°C
after 100 cycles
•
-
Data memory: 128 bytes of true data
EEPROM; endurance up to 100 k write/erase
cycles
• RAM: 2 Kbytes
Clock, reset and supply management
2.95 V to 5.5 V operating voltage
•
clock control, 4 master clock sources:
• Flexible
Low
power
crystal resonator oscillator
- External clock input
- Internal, user-trimmable 16 MHz RC
- Internal low power 128 kHz RC
• Clock security system with clock monitor
management:
• Power
Low
- power modes (wait, active-halt, halt)
- Switch-off peripheral clocks individually
June 2012
• 8-bit basic timer with 8-bit prescaler
• Auto wake-up timer
• Window and independent watchdog timers
Communications interfaces
UART with clock output for synchronous
operation, Smartcard, IrDA, LIN
•
• SPI interface up to 8 Mbit/s
• I C interface up to 400 Kbit/s
2
Analog-to-digital converter (ADC)
10-bit, ±1 LSB ADC with up to 10 multiplexed
channels, scan mode and analog watchdog
•
I/Os
Up to 38 I/Os on a 48-pin package including 16
high sink outputs
•
robust I/O design, immune against current
• Highly
injection
Development support
Embedded single wire interface module (SWIM)
for fast on-chip programming and non intrusive
debugging
•
DocID022186 Rev 3
1/103
www.st.com
Contents
STM8S005K6 STM8S005C6
Contents
1
2
3
4
Introduction ..............................................................................................................7
Description ...............................................................................................................8
Block diagram ..........................................................................................................9
Product overview ...................................................................................................10
4.1 Central processing unit STM8 .....................................................................................10
4.2 Single wire interface module (SWIM) and debug module (DM) ..................................10
4.3 Interrupt controller .......................................................................................................11
4.4 Flash program and data EEPROM memory ................................................................11
4.5 Clock controller ............................................................................................................12
4.6 Power management ....................................................................................................13
4.7 Watchdog timers ..........................................................................................................14
4.8 Auto wakeup counter ...................................................................................................14
4.9 Beeper ........................................................................................................................14
4.10 TIM1 - 16-bit advanced control timer .........................................................................15
4.11 TIM2, TIM3 - 16-bit general purpose timers ..............................................................15
4.12 TIM4 - 8-bit basic timer ..............................................................................................15
4.13 Analog-to-digital converter (ADC1) ............................................................................16
4.14 Communication interfaces .........................................................................................16
4.14.1 UART2 ...............................................................................................16
4.14.2 SPI .....................................................................................................17
4.14.3 I²C ......................................................................................................18
5 Pinout and pin description ...................................................................................19
5.1 STM8S005 pinouts and pin description .......................................................................20
5.1.1 Alternate function remapping ...............................................................24
6 Memory and register map .....................................................................................25
6.1 Memory map
6.2 Register map
6.2.1
6.2.2
6.2.3
................................................................................................................25
...............................................................................................................26
I/O port hardware register map ............................................................26
General hardware register map ...........................................................29
CPU/SWIM/debug module/interrupt controller registers ......................39
7 Interrupt vector mapping ......................................................................................42
8 Option bytes ...........................................................................................................44
9 Electrical characteristics ......................................................................................49
9.1 Parameter conditions ...................................................................................................49
9.1.1 Minimum and maximum values ...........................................................49
9.1.2 Typical values .......................................................................................49
9.1.3 Typical curves ......................................................................................49
2/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Contents
9.1.4 Typical current consumption ................................................................49
9.1.5 Loading capacitor .................................................................................50
9.1.6 Pin input voltage ...................................................................................50
9.2 Absolute maximum ratings ..........................................................................................50
9.3 Operating conditions ...................................................................................................52
9.3.1 VCAP external capacitor ......................................................................54
9.3.2 Supply current characteristics ..............................................................55
9.3.3 External clock sources and timing characteristics ...............................66
9.3.4 Internal clock sources and timing characteristics .................................68
9.3.5 Memory characteristics ........................................................................70
9.3.6 I/O port pin characteristics ...................................................................72
9.3.7 Typical output level curves ...................................................................75
9.3.8 Reset pin characteristics ......................................................................79
9.3.9 SPI serial peripheral interface ..............................................................81
2
9.3.10 I C interface characteristics ...............................................................84
9.3.11 10-bit ADC characteristics ..................................................................86
9.3.12 EMC characteristics ...........................................................................89
10 Package information ...........................................................................................93
10.1 48-pin LQFP package mechanical data ....................................................................93
10.2 32-pin LQFP package mechanical data ....................................................................95
11 Thermal characteristics .......................................................................................97
11.1 Reference document .................................................................................................97
11.2 Selecting the product temperature range ..................................................................97
12 Ordering information ...........................................................................................99
13 STM8 development tools ..................................................................................100
13.1 Emulation and in-circuit debugging tools .................................................................100
13.2 Software tools ..........................................................................................................100
13.2.1 STM8 toolset ....................................................................................101
13.2.2 C and assembly toolchains ..............................................................101
13.3 Programming tools ..................................................................................................101
14 Revision history .................................................................................................102
DocID022186 Rev 3
3/103
List of tables
STM8S005K6 STM8S005C6
List of tables
Table 1. STM8S005xx value line features ................................................................................................8
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers ..................................13
Table 3. TIM timer features ...................................................................................................................15
Table 4. Legend/abbreviations for pinout tables ...................................................................................19
Table 5. Pin description for STM8S005 microcontrollers .......................................................................21
Table 6. Flash, Data EEPROM and RAM boundary addresses ............................................................26
Table 7. I/O port hardware register map ................................................................................................26
Table 8. General hardware register map ................................................................................................29
Table 9. CPU/SWIM/debug module/interrupt controller registers ..........................................................39
Table 10. Interrupt mapping ...................................................................................................................42
Table 11. Option bytes ...........................................................................................................................44
Table 12. Option byte description ...........................................................................................................45
Table 13. Description of alternate function remapping bits [7:0] of OPT2 ..............................................47
Table 14. Voltage characteristics ...........................................................................................................50
Table 15. Current characteristics ...........................................................................................................51
Table 16. Thermal characteristics ..........................................................................................................52
Table 17. General operating conditions .................................................................................................53
Table 18. Operating conditions at power-up/power-down ......................................................................54
Table 19. Total current consumption with code execution in run mode at VDD = 5 V .............................55
Table 20. Total current consumption with code execution in run mode at VDD = 3.3 V ..........................66
Table 21. Total current consumption in wait mode at VDD = 5 V ............................................................58
Table 22. Total current consumption in wait mode at VDD = 3.3 V .........................................................58
Table 23. Total current consumption in active halt mode at VDD = 5 V ..................................................59
Table 24. Total current consumption in active halt mode at VDD = 3.3 V ...............................................60
Table 25. Total current consumption in halt mode at VDD = 5 V .............................................................61
Table 26. Total current consumption in halt mode at VDD = 3.3 V ..........................................................61
Table 27. Wakeup times .........................................................................................................................61
Table 28. Total current consumption and timing in forced reset state ....................................................92
Table 29. Peripheral current consumption .............................................................................................63
Table 30. HSE user external clock characteristics .................................................................................66
Table 31. HSE oscillator characteristics .................................................................................................67
Table 32. HSI oscillator characteristics ..................................................................................................68
Table 33. LSI oscillator characteristics ...................................................................................................70
Table 34. RAM and hardware registers ..................................................................................................70
Table 35. Flash program memory/data EEPROM memory ....................................................................71
Table 36. I/O static characteristics .........................................................................................................72
Table 37. Output driving current (standard ports) ..................................................................................74
Table 38. Output driving current (true open drain ports) ........................................................................74
Table 39. Output driving current (high sink ports) ..................................................................................74
Table 40. NRST pin characteristics ........................................................................................................79
Table 41. SPI characteristics ..................................................................................................................81
2
Table 42. I C characteristics ..................................................................................................................84
Table 43. ADC characteristics ................................................................................................................86
Table 44. ADC accuracy with RAIN < 10 kΩ , VDDA= 5 V .......................................................................87
Table 45. ADC accuracy with RAIN < 10 kΩ RAIN, VDDA = 3.3 V ............................................................88
Table 46. EMS data ................................................................................................................................90
Table 47. EMI data .................................................................................................................................91
4/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
List of tables
Table 48. ESD absolute maximum ratings .............................................................................................92
Table 49. Electrical sensitivities .............................................................................................................92
Table 50. 48-pin low profile quad flat package mechanical data ............................................................93
Table 51. 32-pin low profile quad flat package mechanical data .........................................................102
(1)
Table 52. Thermal characteristics
......................................................................................................97
Table 53. Document revision history ...................................................................................................102
DocID022186 Rev 3
5/103
List of figures
STM8S005K6 STM8S005C6
List of figures
Figure 1. STM8S005xx value line block diagram .....................................................................................9
Figure 2. Flash memory organization ....................................................................................................12
Figure 3. LQFP 48-pin pinout .................................................................................................................20
Figure 4. LQFP 32-pin pinout ................................................................................................................21
Figure 5. Memory map ...........................................................................................................................25
Figure 6. Supply current measurement conditions ................................................................................49
Figure 7. Pin loading conditions .............................................................................................................50
Figure 8. Pin input voltage .....................................................................................................................50
Figure 9. fCPUmax versus VDD ................................................................................................................54
Figure 10. External capacitor CEXT .......................................................................................................55
Figure 11. Typ. IDD(RUN) vs. VDD , HSE user external clock, fCPU = 16 MHz ...........................................64
Figure 12. Typ. IDD(RUN) vs. fCPU , HSE user external clock, VDD= 5 V ..................................................64
Figure 13. Typ. IDD(RUN) vs. VDD , HSI RC osc, fCPU = 16 MHz ..............................................................65
Figure 14. Typ. IDD(WFI) vs. VDD , HSE user external clock, fCPU = 16 MHz ............................................65
Figure 15. Typ. IDD(WFI) vs. fCPU, HSE user external clock VDD = 5 V ....................................................65
Figure 16. Typ. IDD(WFI) vs. VDD, HSI RC osc, fCPU = 16 MHz ................................................................66
Figure 17. HSE external clocksource .....................................................................................................67
Figure 18. HSE oscillator circuit diagram ...............................................................................................68
Figure 19. Typical HSI frequency variation vs VDD @ 3 temperatures ..................................................69
Figure 20. Typical LSI frequency variation vs VDD @ 3 temperatures ...................................................70
Figure 21. Typical VIL and VIH vs VDD @ 3 temperatures ......................................................................73
Figure 22. Typical pull-up resistance vs VDD @ 3 temperatures ............................................................73
Figure 23. Typical pull-up current vs VDD @ 3 temperatures .................................................................73
Figure 24. Typ. VOL @ VDD = 5 V (standard ports) ................................................................................75
Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports) .............................................................................76
Figure 26. Typ. VOL @ VDD = 5 V (true open drain ports) ......................................................................76
Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports) ...................................................................76
Figure 28. Typ. VOL @ VDD = 5 V (high sink ports) ................................................................................77
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports) .............................................................................77
Figure 30. Typ. VDD - VOH @ VDD = 5 V (standard ports) .......................................................................77
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) ....................................................................78
Figure 32. Typ. VDD - VOH @ VDD = 5 V (high sink ports) ......................................................................78
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) ...................................................................78
Figure 34. Typical NRST VIL and VIH vs VDD @ 3 temperatures ...........................................................80
Figure 35. Typical NRST pull-up resistance vs VDD @ 3 temperatures .................................................80
Figure 36. Typical NRST pull-up current vs VDD @ 3 temperatures ......................................................80
Figure 37. Recommended reset pin protection ......................................................................................81
Figure 38. SPI timing diagram - slave mode and CPHA = 0 ..................................................................83
(1)
Figure 39. SPI timing diagram - slave mode and CPHA = 1
.............................................................83
(1)
Figure 40. SPI timing diagram - master mode
...................................................................................84
2
(1)
Figure 41. Typical application with I C bus and timing diagram
.......................................................85
Figure 42. ADC accuracy characteristics ...............................................................................................89
Figure 43. Typical application with ADC ................................................................................................89
Figure 44. 48-pin low profile quad flat package (7 x 7) ..........................................................................93
Figure 45. 32-pin low profile quad flat package (7 x 7) ..........................................................................95
Figure 46. STM8S005xx value line ordering information scheme .........................................................99
6/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
1
Introduction
Introduction
This datasheet contains the description of the device features, pinout, electrical characteristics,
mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and peripherals,
please refer to the STM8S microcontroller family reference manual (RM0016).
•
information on programming, erasing and protection of the internal Flash memory
• For
please refer to the STM8S Flash programming manual (PM0051).
information on the debug and SWIM (single wire interface module) refer to the STM8
• For
SWIM communication protocol and debug module user manual (UM0470).
information on the STM8 core, please refer to the STM8 CPU programming manual
• For
(PM0044).
DocID022186 Rev 3
7/103
Description
2
STM8S005K6 STM8S005C6
Description
The STM8S005xx value line 8-bit microcontrollers offer 32 Kbytes of Flash program memory,
plus 128 bytes of data EEPROM. They are referred to as medium-density devices in the
STM8S microcontroller family reference manual (RM0016). All devices of the STM8S005xx
value line provide the following benefits: performance, robustness, reduced system cost, and
short develoment cycles.
Device performance and robustness are ensured by true data EEPROM supporting up to 100
000 write/erase cycles, advanced core and peripherals made in a state-of-the art technology,
a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source,
and a clock security system.
The system cost is reduced thanks to high system integration level with internal clock
oscillators, watchdog and brown-out reset.
Common family product architecture with compatible pinout, memory map and modular
peripherals allow application scalability and reduced development cycles.
All products operate from a 2.95 to 5.5 V supply voltage.
Full documentation is offered as well as a wide choice of development tools.
Table 1: STM8S005xx value line features
Device
STM8S005C6
STM8S005K6
Pin count
48
32
Maximum number of GPIOs
38
25
Ext. Interrupt pins
35
23
Timer CAPCOM channels
9
8
Timer complementary outputs
3
3
A/D Converter channels
10
7
High sink I/Os
16
12
Medium density Flash Program memory
(bytes)
32K
32K
Data EEPROM (bytes)
128
128
RAM (bytes)
2K
2K
Peripheral set
Advanced control timer (TIM1), General-purpose timers (TIM2 and TIM3), Basic
2
timer (TIM4) SPI, I C, UART, Window WDG, Independent WDG, ADC
8/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Block diagram
Figure 1: STM8S005xx value line block diagram
Reset block
XTAL 1-16 MHz
Clock controller
Reset
Reset
RC int. 16 MHz
Detector
POR/
PDR
BOR
RC int. 128 kHz
Clock to peripherals and core
Window WDG
STM8 core
Independent WDG
Single wire
debug interf.
Debug/SWIM
32 Kbytes
program Flash
Master/slave
autosynchro
LIN master
SPI emul.
UART2
128 bytes
data EEPROM
400 Kbit/s
8 Mbit/s
Up to 10 channels
1/2/4 kHz
beep
2
I C
SPI
Address and data bus
3
Block diagram
2 Kbytes
RAM
Boot ROM
16-bit advanced control
timer (TIM1)
Up to
4 CAPCOM
channels +3
complementary
outputs
16-bit general purpose
timers (TIM2, TIM3)
Up to
5 CAPCOM
channels
8-bit basic timer
(TIM4)
ADC1
Beeper
AWU timer
DocID022186 Rev 3
9/103
Product overview
4
STM8S005K6 STM8S005C6
Product overview
The following section intends to give an overview of the basic features of the device functional
modules and peripherals.
For more detailed information please refer to the corresponding family reference manual
(RM0016).
4.1
Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture
•
• 3-stage pipeline
• 32-bit wide program memory bus - single cycle fetching for most instructions
Y 16-bit index registers - enabling indexed addressing modes with or without offset
• Xandandread-modify-write
type data manipulations
8-bit
accumulator
•
• 24-bit program counter - 16-Mbyte linear memory space
• 16-bit stack pointer - access to a 64 K-level stack
• 8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
•
indirect addressing mode for look-up tables located anywhere in the address
• Indexed
space
• Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
•
• Standard data movement and logic/arithmetic functions
• 8-bit by 8-bit multiplication
• 16-bit by 8-bit and 16-bit by 16-bit division
• Bit manipulation
• Data transfer between stack and accumulator (push/pop) with direct stack access
• Data transfer using the X and Y registers or direct memory-to-memory transfers
4.2
Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time in-circuit
debugging and fast memory programming.
10/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Product overview
SWIM
Single wire interface module for direct access to the debug module and memory programming.
The interface can be activated in all device operation modes. The maximum data transmission
speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured emulator.
Beside memory and peripherals, also CPU operation can be monitored in real-time by means
of shadow registers.
R/W to RAM and peripheral registers in real-time
•
• R/W access to all resources by stalling the CPU
• Breakpoints on all program-memory instructions (software breakpoints)
• Two advanced breakpoints, 23 predefined configurations
4.3
Interrupt controller
• Nested interrupts with three software priority levels
• 32 interrupt vectors with hardware priority
• Up to 37 external interrupts on 6 vectors including TLI
• Trap and reset interrupts
4.4
Flash program and data EEPROM memory
• 32 Kbytes of Flash program single voltage Flash memory
• 128 bytes true data EEPROM
• Read while write: Writing in data memory possible while executing code in program memory
• User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional
overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by writing
a MASS key sequence in a control register. This allows the application to write to data
EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of memory
known as UBC (user boot code). Refer to the figure below.
The size of the UBC is programmable through the UBC option byte, in increments of 1 page
(512 bytes) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: 32 Kbytes minus UBC
•
• User-specific boot code (UBC): Configurable up to 32 Kbytes
DocID022186 Rev 3
11/103
Product overview
STM8S005K6 STM8S005C6
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually the
IAP and communication routines.
Figure 2: Flash memory organization
Data
EEPROM
memory
Data memory area ( 128 bytes)
Option bytes
UBC area
Remains write protected during IAP
Programmable area
from 1 Kbyte
(2 first pages) up to
32 Kbytes
(1 page steps)
Medium density
Flash program memory
(32
Kbytes)
Program memory area
Write access possible for IAP
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated,
any attempt to toggle its status triggers a global erase of the program and data memory. Even
if no protection can be considered as totally unbreakable, the feature provides a very high
level of protection for a general purpose microcontroller.
4.5
Clock controller
The clock controller distributes the system clock (fMASTER) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and ensures
clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
•
clock switching: Clock sources can be changed safely on the fly in run mode
• Safe
through a configuration register. The clock signal is not switched until the new clock source
is ready. The design guarantees glitch-free switching.
management: To reduce power consumption, the clock controller can stop the
• Clock
clock to the core, individual peripherals or memory.
clock sources: Four different clock sources can be used to drive the master
• Master
clock:
- 1-16 MHz high-speed external crystal (HSE)
- Up to 16 MHz high-speed user-external clock (HSE user-ext)
12/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
-
Product overview
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
clock: After reset, the microcontroller restarts by default with an internal 2 MHz
• Startup
clock (HSI/8). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
security system (CSS): This feature can be enabled by software. If an HSE clock
• Clock
failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an
interrupt can optionally be generated.
main clock output (CCO): This outputs an external clock for use by the
• Configurable
application.
Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit
Peripheral Bit
clock
Peripheral Bit
clock
Peripheral Bit
clock
Peripheral
clock
PCKEN1 7 TIM1
PCKEN1 3 UART2
PCKEN2 7 Reserved
PCKEN2 3 ADC
PCKEN1 6 TIM3
PCKEN1 2 Reserved
PCKEN2 6 Reserved
PCKEN2 2 AWU
PCKEN1 5 TIM2
PCKEN1 1 SPI
PCKEN2 5 Reserved
PCKEN2 1 Reserved
PCKEN1 4 TIM4
PCKEN1 0 I C
PCKEN2 4 Reserved
PCKEN2 0 Reserved
4.6
2
Power management
For efficent power management, the application can be put in one of four different low-power
modes. You can configure each mode to obtain the best compromise between lowest power
consumption, fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
•
halt mode with regulator on: In this mode, the CPU and peripheral clocks are
• Active
stopped. An internal wakeup is generated at programmable intervals by the auto wake up
unit (AWU). The main voltage regulator is kept powered on, so current consumption is
higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup
is triggered by the internal AWU interrupt, external interrupt or reset.
halt mode with regulator off: This mode is the same as active halt with regulator
• Active
on, except that the main voltage regulator is powered off, so the wake up time is slower.
mode: In this mode the microcontroller uses the least power. The CPU and peripheral
• Halt
clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by
external event or reset.
DocID022186 Rev 3
13/103
Product overview
4.7
STM8S005K6 STM8S005C6
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once activated,
the watchdogs cannot be disabled by the user program without performing a reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually generated
by external interferences or by unexpected logical conditions, which cause the application
program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application software must refresh the counter before time-out and during a limited time
window.
A reset is generated in two situations:
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up to
64 ms.
2. Refresh out of window: The downcounter is refreshed before its value is lower than the
one stored in the window register.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.
4.8
Auto wakeup counter
• Used for auto wakeup from active halt mode
• Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
• LSI clock can be internally connected to TIM3 input capture channel 1 for calibration
4.9
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit AFR7.
14/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
4.10
Product overview
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
•
independent capture/compare channels (CAPCOM) configurable as input capture,
• Four
output compare, PWM generation (edge and center aligned mode) and single pulse mode
output
• Synchronization module to control the timer with external signals
• Break input to force the timer outputs into a defined state
• Three complementary outputs with adjustable dead time
• Encoder mode
• Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
4.11
TIM2, TIM3 - 16-bit general purpose timers
• 16-bit autoreload (AR) up-counter
• 15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
• Timers with 3 or 2 individually configurable capture/compare channels
• PWM mode
• Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
4.12
TIM4 - 8-bit basic timer
• 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
• Clock source: CPU clock
• Interrupt source: 1 x overflow/update
Table 3: TIM timer features
Timer
Counter Prescaler
size
(bits)
Counting CAPCOM Complem. Ext.
Timer
mode
channels outputs trigger synchronization/
chaining
TIM1
16
Any integer from 1 to Up/
65536
down
4
3
Yes
TIM2
16
Any power of 2 from
1 to 32768
Up
3
0
No
TIM3
16
Any power of 2 from
1 to 32768
Up
2
0
No
DocID022186 Rev 3
No
15/103
Product overview
STM8S005K6 STM8S005C6
Timer
Counter Prescaler
size
(bits)
Counting CAPCOM Complem. Ext.
Timer
mode
channels outputs trigger synchronization/
chaining
TIM4
8
Up
4.13
Any power of 2 from
1 to 128
0
0
No
Analog-to-digital converter (ADC1)
The STM8S105xx products contain a 10-bit successive approximation A/D converter (ADC1)
with up to 10 multiplexed input channels and the following main features:
Input voltage range: 0 to VDDA
•
• Conversion time: 14 clock cycles
• Single and continuous and buffered continuous conversion modes
• Buffer size (n x 10 bits) where n = number of input channels
• Scan mode for single and continuous conversion of a sequence of channels
• Analog watchdog capability with programmable upper and lower thresholds
• Analog watchdog interrupt
• External trigger input
• Trigger from TIM1 TRGO
• End of conversion (EOC) interrupt
Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog
watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL
registers.
4.14
Communication interfaces
The following communication interfaces are implemented:
UART2: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA
mode, LIN2.1 master/slave capability
•
• SPI : Full and half-duplex, 8 Mbit/s
• I²C: Up to 400 Kbit/s
4.14.1
UART2
Main features
One Mbit/s full duplex SCI
•
• SPI emulation
• High precision baud rate generator
• Smartcard emulation
• IrDA SIR encoder decoder
16/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Product overview
• LIN master mode
• LIN slave mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
•
transmit and receive baud rates up to 1 Mbit/s (f
/16) and capable of
• Programmable
following any standard baud rate regardless of the input frequency
• Separate enable bits for transmitter and receiver
receiver wakeup modes:
• TwoAddress
bit (MSB)
Idle
line
(interrupt)
• Transmission error detection with interrupt generation
• Parity control
CPU
Synchronous communication
Full duplex synchronous transfers
•
• SPI master operation
• 8-bit data communication
• Maximum speed: 1 Mbit/s at 16 MHz (f
CPU/16)
LIN master mode
Emission: Generates 13-bit synch break frame
•
• Reception: Detects 11-bit break frame
LIN slave mode
Autonomous header handling - one single interrupt per valid message header
•
• Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15 %
• Synch delimiter checking
• 11-bit LIN synch break detection - break detection always active
• Parity check on the LIN identifier field
• LIN error management
• Hot plugging support
4.14.2
SPI
• Maximum speed: 8 Mbit/s (f /2) both for master and slave
• Full duplex synchronous transfers
• Simplex synchronous transfers on two lines with a possible bidirectional data line
• Master or slave operation - selectable by hardware or software
• CRC calculation
• 1 byte Tx and Rx buffer
• Slave/master selection input pin
MASTER
DocID022186 Rev 3
17/103
Product overview
4.14.3
STM8S005K6 STM8S005C6
I²C
master features:
• I²C Clock
generation
Start
and
stop generation
slave features:
• I²C Programmable
I2C address detection
Stop
bit
detection
• Generation and detection of 7-bit/10-bit addressing and general call
different communication speeds:
• Supports
Standard
speed (up to 100 kHz)
- Fast speed (up to 400 kHz)
18/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
5
Pinout and pin description
Pinout and pin description
Table 4: Legend/abbreviations for pinout tables
Type
I= Input, O = Output, S = Power supply
Level
Input
CM = CMOS
Output
HS = High sink
Output speed
O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Port and control
configuration
Reset state
Input
float = floating, wpu = weak pull-up
Output
T = True open drain, OD = Open drain, PP =
Push pull
Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset
phase and after the internal reset release.
DocID022186 Rev 3
19/103
Pinout and pin description
5.1
STM8S005K6 STM8S005C6
STM8S005 pinouts and pin description
PE0 (HS)/CLK_CCO
2
PE1 (T)/I C_SCL
2
PE2 (T)/I C_SDA
PE3/TIM1_BKIN
PD3 (HS)/TIM2_CH2 [ADC_ETR]
PD2 (HS)/TIM3_CH1 [TIM2_CH3]
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]
PD7/TLI [TIM1_CH4]
PD6/UART2_RX
PD5/UART2_TX
PD4 (HS)/TIM2_CH1 [BEEP]
Figure 3: LQFP 48-pin pinout
NRST
OSCIN/PA1
OSCOUT/PA2
V SSIO_1
1
48 47 46 45 44 43 42 41 40 39 38 37
36
PG1
2
35
PG0
3
34
4
33
VSS
VCAP
5
32
6
31
VDD
7
30
VDDIO_1
[TIM3_CH1] TIM2_CH3/PA3
(HS) PA4
(HS) PA5
8
29
9
28
PC7 (HS)/SPI_MISO
PC6 (HS)/SPI_MOSI
VDDIO_2
VSSIO_2
PC5 (HS)/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
10
27
PC2 (HS)/TIM1_CH2
11
12
26
PC1 (HS)/TIM1_CH1/UART2_CK
25
PE5/SPI_NSS
(HS) PA6
AIN8/PE7
AIN9/PE6
AIN7/PB7
AIN6/PB6
2
[I C_SDA] AIN5/PB5
2
[I C_SCL] AIN4/PB4
[TIM1_ETR/AIN3/PB3
[TIM1_CH3N] AIN2/PB2
[TIM1_CH2N] AIN1/PB1
[TIM1_CH1N] AIN0/PB0
VDDA
VSSA
13 14 15 16 17 18 19 20 21 22 23 24
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).
20/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Pinout and pin description
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]
PD1 (HS)/SWIM
PD2 (HS)/TIM3_CH1[TIM2_CH3]
PD3 (HS)/TIM2_CH2 [ADC_ETR]
PD4 (HS)/TIM2_CH1 [BEEP]
PD5/UART2_TX
PD6/UART2_RX
PD7/TLI [TIM1_CH4]
Figure 4: LQFP 32-pin pinout
32 31 30 29 28 27 26 25
NRST
1
24
PC7 (HS)/SPI_MISO
OSCIN/PA1
2
23
PC6 (HS)/SPI_MOSI
OSCOUT/PA2
3
22
PC5 (HS)/SPI_SCK
V SS
4
21
PC4 (HS)/TIM1_CH4
VCAP
5
20
PC3 (HS)/TIM1_CH3
6
19
PC2 (HS)/TIM1_CH2
V DDIO
7
18
AIN12/PF4
8
PC1 (HS)/TIM1_CH1/UART2_CK
PE5/SPI_NSS
V DD
17
[TIM1_CH1N] AIN0/PB0
[TIM1_CH2N] AIN1/PB1
[TIM1_ETR] AIN3/PB3
[TIM1_CH3N] AIN2/PB2
2
[I C_SCL] AIN4/PB4
V DDA
VSSA
2
[I C_SDA] AIN5/PB5
9 10 11 12 13 14 15 16
1. (HS) high sink capability.
2. [ ] alternate function remapping option (If the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).
Table 5: Pin description for STM8S005 microcontrollers
Pin number
LQFP48
Pin name
Type
LQFP32
1
NRST
I/O
2
2
PA1/ OSC
IN
I/O
PA2/ OSC
OUT
I/O
3
Output
floating wpu Ext.
High
interrupt sink
1
3
Input
Main function
(after reset)
Speed
OD
PP
X
X
Default alternate
function
Alternate
function after
remap [option
bit]
Reset
X
O1
X
X
Port A1
Resonator/
crystal in
X
X
X
O1
X
X
Port A2
Resonator/
crystal out
4
-
VSSIO_1
S
I/O ground
5
4
VSS
S
Digital ground
DocID022186 Rev 3
21/103
Pinout and pin description
Pin number
LQFP48
Pin name
Type
LQFP32
STM8S005K6 STM8S005C6
Input
Output
floating wpu Ext.
High
interrupt sink
Main function
(after reset)
Speed
OD
Default alternate
function
PP
6
5
VCAP
S
1.8 V regulator capacitor
7
6
VDD
S
Digital power supply
8
7
VDDIO_1
S
I/O power supply
9
-
PA3/ TIM2
_CH3
[TIM3
_CH1]
I/O
X
X
X
O1
X
X
Port A3
Timer 2 -
Alternate
function after
remap [option
bit]
TIM3_ CH1
[AFR1]
channel 3
10
-
PA4
I/O
X
X
X
HS
O3
X
X
Port A4
11
-
PA5
I/O
X
X
X
HS
O3
X
X
Port A5
12
-
PA6
I/O
X
X
X
HS
O3
X
X
Port A6
-
8
PF4/
(1)
AIN12
I/O
X
X
O1
X
X
Port F4
13
9
VDDA
S
Analog power supply
14
10
VSSA
S
Analog ground
15
-
PB7/ AIN7
I/O
X
X
X
O1
X
X
Port B7
Analog input 7
16
-
PB6/ AIN6
I/O
X
X
X
O1
X
X
Port B6
Analog input 6
17
11
PB5/ AIN5
2
[I C_
SDA]
I/O
X
X
X
O1
X
X
Port B5
Analog input 5
2
I C_SDA
[AFR6]
18
12
PB4/ AIN4
2
[I C_
SCL]
I/O
X
X
X
O1
X
X
Port B4
Analog input 4
2
I C_SCL
[AFR6]
19
13
PB3/ AIN3
[TIM1_
ETR]
I/O
X
X
X
O1
X
X
Port B3
Analog input 3
TIM1_ ETR
[AFR5]
20
14
PB2/ AIN2
[TIM1_
CH3N]
I/O
X
X
X
O1
X
X
Port B2
Analog input 2
TIM1_ CH3N
[AFR5]
21
15
PB1/ AIN1
[TIM1_
CH2N]
I/O
X
X
X
O1
X
X
Port B1
Analog input 1
TIM1_ CH2N
[AFR5]
22
16
PB0/ AIN0
[TIM1_
CH1N]
I/O
X
X
X
O1
X
X
Port B0
Analog input 0
TIM1_ CH1N
[AFR5]
23
-
PE7/ AIN8
I/O
X
X
X
O1
X
X
Port E7
Analog input 8
24
-
PE6/ AIN9
I/O
X
X
X
O1
X
X
Port E6
Analog input 9
22/103
DocID022186 Rev 3
Analog input 12
(2)
STM8S005K6 STM8S005C6
Pin number
LQFP48
Pin name
Type
LQFP32
Pinout and pin description
Input
Output
floating wpu Ext.
High
interrupt sink
25
17
PE5/SPI_
NSS
I/O
X
X
X
26
18
PC1/
TIM1_
CH1/
UART2_CK
I/O
X
X
X
PC2/
TIM1_
CH2
I/O
PC3/
TIM1_
CH3
I/O
PC4/
TIM1_
CH4
I/O
27
28
29
19
20
21
HS
Main function
(after reset)
Speed
Default alternate
function
OD
PP
O1
X
X
Port E5
SPI master/slave
select
O3
X
X
Port C1
Timer 1 -
Alternate
function after
remap [option
bit]
channel 1/ UART2
synchronous clock
X
X
X
HS
O3
X
X
Port C2
Timer 1channel 2
X
X
X
HS
O3
X
X
Port C3
Timer 1 channel 3
X
X
X
HS
O3
X
X
Port C4
Timer 1 channel 4
30
22
PC5/ SPI_
SCK
I/O
X
X
X
HS
O3
X
X
Port C5
SPI clock
31
-
VSSIO_2
S
I/O ground
32
-
VDDIO_2
S
I/O power supply
33
23
PC6/ SPI_
MOSI
I/O
X
X
X
HS
O3
X
X
Port C6
SPI master out/slave
in
34
24
PC7/ SPI_
MISO
I/O
X
X
X
HS
O3
X
X
Port C7
SPI master in/ slave
out
35
-
PG0
I/O
X
X
O1
X
X
Port G0
36
-
PG1
I/O
X
X
O1
X
X
Port G1
37
-
PE3/
TIM1_
BKIN
I/O
X
X
X
O1
X
X
Port E3
Timer 1 - break input
38
-
2
PE2/ I C_
SDA
I/O
X
X
O1
(3)
T
Port E2
2
I C data
39
-
2
PE1/ I C_
SCL
I/O
X
X
O1
(3)
T
Port E1
2
I C clock
40
-
PE0/
CLK_
CCO
I/O
X
X
X
HS
O3
X
X
Port E0
Configurable clock
output
41
25
PD0/
TIM3_
CH2
[TIM1_
BKIN]
[CLK_
CCO]
I/O
X
X
X
HS
O3
X
X
Port D0
Timer 3 channel 2
DocID022186 Rev 3
TIM1_ BKIN
[AFR3]/ CLK_
CCO [AFR2]
23/103
Pinout and pin description
Pin number
LQFP48
Pin name
Type
LQFP32
STM8S005K6 STM8S005C6
Input
Output
floating wpu Ext.
High
interrupt sink
Main function
(after reset)
Speed
OD
PP
Default alternate
function
42
26
PD1/
(4)
SWIM
I/O
X
X
X
HS
O4
X
X
Port D1
SWIM data interface
43
27
PD2/
TIM3_
CH1
[TIM2_
CH3]
I/O
X
X
X
HS
O3
X
X
Port D2
Timer 3 -
PD3/
TIM2_
CH2
[ADC_
ETR]
I/O
PD4/
TIM2_
CH1
[BEEP]
I/O
44
45
28
29
channel 1
X
X
X
HS
O3
X
X
Port D3
Timer 2 channel 2
X
X
X
HS
O3
X
X
Port D4
Timer 2 channel 1
46
30
PD5/
UART2_
TX
I/O
X
X
X
O1
X
X
Port D5
UART2 data transmit
47
31
PD6/
UART2_
RX
I/O
X
X
X
O1
X
X
Port D6
UART2 data receive
48
32
PD7/ TLI
[TIM1_
CH4]
I/O
X
X
X
O1
X
X
Port D7
Top level interrupt
Alternate
function after
remap [option
bit]
TIM2_CH3
[AFR1]
ADC_ ETR
[AFR0]
BEEP output
[AFR7]
TIM1_ CH4
[AFR4]
(1)
A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.
(2)
AIN12 is not selectable in ADC scan mode or with analog watchdog.
(3)
In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented).
(4)
The PD1 pin is in input pull-up during the reset phase and after internal reset release.
5.1.1
Alternate function remapping
As shown in the rightmost column of the pin description table, some alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. When the remapping option is active, the default alternate function is no
longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO
section of the family reference manual, RM0016).
24/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Memory and register map
6
Memory and register map
6.1
Memory map
Figure 5: Memory map
0x00 0000
RAM
(2 Kbytes)
0x00 07FF
512 bytes stack
Reserved
0x00 4000
0x00 407F
0x00 4080
0x00 47FF
0x00 4800
0x00 487F
0x00 4900
128-byte data EEPROM
Reserved
Option bytes
Reserved
0x00 4FFF
0x00 5000
GPIO and periph. reg.
0x00 57FF
0x00 5800
Reserved
0x00 5FFF
0x00 6000
2 Kbytes boot ROM
0x00 67FF
0x00 6800
Reserved
0x00 7EFF
0x00 7F00
0x00 7FFF
0x00 8000
CPU/SWIM/debug/ITC
registers
32 interrupt vectors
0x00 807F
Flash program memory
(32 Kbytes)
0x00 FFFF
0x01 0000
Reserved
0x02 7FFF
The following table lists the boundary addresses for each memory size. The top of the stack
is at the RAM end address in each case.
DocID022186 Rev 3
25/103
Memory and register map
STM8S005K6 STM8S005C6
Table 6: Flash, Data EEPROM and RAM boundary addresses
Memory area
Size (bytes)
Start address
End address
Flash program memory 32K
0x00 8000
0x00 FFFF
RAM
2K
0x00 0000
0x00 07FF
Data EEPROM
128
0x00 4000
0x00 407F
6.2
Register map
6.2.1
I/O port hardware register map
Table 7: I/O port hardware register map
Address
26/103
Block
Register label
Register name
Reset
status
0x00 5000 Port A
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX
0x00 5002
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x00
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005 Port B
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX
0x00 5007
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A Port C
PC_ODR
Port C data output latch register
0x00
DocID022186 Rev 3
(1)
(1)
STM8S005K6 STM8S005C6
Address
Block
Memory and register map
Register label
Register name
Reset
status
0x00 500B
PC_IDR
Port C input pin value register
0xXX
0x00 500C
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F Port D
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX
0x00 5011
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x02
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5014 Port E
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX
0x00 5016
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019 Port F
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX
0x00 501B
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
DocID022186 Rev 3
(1)
(1)
(1)
(1)
27/103
Memory and register map
Address
Register label
Register name
Reset
status
0x00 501E Port G
PG_ODR
Port G data output latch register
0x00
0x00 501F
PG_IDR
Port G input pin value register
0xXX
0x00 5020
PG_DDR
Port G data direction register
0x00
0x00 5021
PG_CR1
Port G control register 1
0x00
0x00 5022
PG_CR2
Port G control register 2
0x00
0x00 5023 Port H
PH_ODR
Port H data output latch register
0x00
0x00 5024
PH_IDR
Port H input pin value register
0xXX
0x00 5025
PH_DDR
Port H data direction register
0x00
0x00 5026
PH_CR1
Port H control register 1
0x00
0x00 5027
PH_CR2
Port H control register 2
0x00
0x00 5028 Port I
PI_ODR
Port I data output latch register
0x00
0x00 5029
PI_IDR
Port I input pin value register
0xXX
0x00 502A
PI_DDR
Port I data direction register
0x00
0x00 502B
PI_CR1
Port I control register 1
0x00
0x00 502C
PI_CR2
Port I control register 2
0x00
(1)
28/103
Block
STM8S005K6 STM8S005C6
Depends on the external circuitry.
DocID022186 Rev 3
(1)
(1)
(1)
STM8S005K6 STM8S005C6
6.2.2
Memory and register map
General hardware register map
Table 8: General hardware register map
Address
Block
Register label
Register name
Reset status
0x00 5050 to
0x00 5059
Reserved area (10 bytes)
0x00 505A
Flash
FLASH_CR1
Flash control register 1
0x00
0x00 505B
FLASH_CR2
Flash control register 2
0x00
0x00 505C
FLASH_NCR2
Flash complementary control
0xFF
register 2
0x00 505D
FLASH _FPR
Flash protection register
0x00 505E
FLASH _NFPR
Flash complementary protection register 0xFF
0x00 505F
FLASH _IAPSR
Flash in-application programming status 0x00
register
0x00 5060 to
0x00 5061
Reserved area (2 bytes)
0x00 5062
Flash
0x00 5063
Reserved area (1 byte)
0x00 5064
Flash
0x00 5065 to
0x00 509F
Reserved area (59 bytes)
0x00 50A0
ITC
0x00 50A1
0x00 50A2 to
0x00 50B2
FLASH _PUKR
0x00
Flash program memory unprotection
register
0x00
Data EEPROM unprotection register
0x00
EXTI_CR1
External interrupt control register 1
0x00
EXTI_CR2
External interrupt control register 2
0x00
FLASH _DUKR
Reserved area (17 bytes)
DocID022186 Rev 3
29/103
Memory and register map
STM8S005K6 STM8S005C6
Address
Block
Register label
Register name
Reset status
0x00 50B3
RST
RST_SR
Reset status register
0xXX
0x00 50B4 to
0x00 50BF
Reserved area (12 bytes)
0x00 50C0
CLK
CLK_ICKR
Internal clock control register
0x01
CLK_ECKR
External clock control register
0x00
CLK_CMSR
Clock master status register
0xE1
0x00 50C4
CLK_SWR
Clock master switch register
0xE1
0x00 50C5
CLK_SWCR
Clock switch control register
0xXX
0x00 50C6
CLK_CKDIVR
Clock divider register
0x18
0x00 50C7
CLK_PCKENR1
Peripheral clock gating register 1
0xFF
0x00 50C8
CLK_CSSR
Clock security system register
0x00
0x00 50C9
CLK_CCOR
Configurable clock control register
0x00
0x00 50CA
CLK_PCKENR2
Peripheral clock gating register 2
0xFF
0x00 50CC
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
0x00 50CD
CLK_SWIMCCR SWIM clock control register
0x00 50C1
0x00 50C2
Reserved area (1 byte)
0x00 50C3
CLK
(1)
0bXXXX
XXX0
0x00 50CE to
0x00 50D0
Reserved area (3 bytes)
0x00 50D1
WWDG WWDG_CR
WWDG control register
0x7F
0x00 50D2
WWDG_WR
WWDR window register
0x7F
30/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Memory and register map
Address
Block
Register label
Register name
Reset status
0x00 50D3 to
0x00 50DF
Reserved area (13 bytes)
0x00 50E0
IWDG
IWDG_KR
IWDG key register
0xXX
0x00 50E1
IWDG_PR
IWDG prescaler register
0x00
0x00 50E2
IWDG_RLR
IWDG reload register
0xFF
AWU_CSR1
AWU control/ status register 1
0x00
0x00 50F1
AWU_APR
AWU asynchronous prescaler buffer
register
0x3F
0x00 50F2
AWU_TBR
AWU timebase selection register
0x00
BEEP_CSR
BEEP control/ status register
0x1F
SPI_CR1
SPI control register 1
0x00
0x00 5201
SPI_CR2
SPI control register 2
0x00
0x00 5202
SPI_ICR
SPI interrupt control register
0x00
0x00 5203
SPI_SR
SPI status register
0x02
0x00 5204
SPI_DR
SPI data register
0x00
0x00 5205
SPI_CRCPR
SPI CRC polynomial register
0x07
0x00 5206
SPI_RXCRCR
SPI Rx CRC register
0xFF
0x00 5207
SPI_TXCRCR
SPI Tx CRC register
0xFF
0x00 50E3 to
0x00 50EF
Reserved area (13 bytes)
0x00 50F0
AWU
0x00 50F3
BEEP
0x00 50F4 to
0x00 50FF
Reserved area (12 bytes)
0x00 5200
SPI
DocID022186 Rev 3
(2)
31/103
Memory and register map
STM8S005K6 STM8S005C6
Address
Block
Register label
0x00 5208 to
Reserved area (8 bytes)
Register name
Reset status
0x00 520F
0x00 5210
2
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x00
2
0x02
2
0x00
I2C_CR1
I C control register 1
0x00 5211
I2C_CR2
I C control register 2
0x00 5212
I2C_FREQR
I C frequency register
0x00 5213
I2C_OARL
I C Own address register low
0x00 5214
I2C_OARH
I C own address register high
0x00 5215
Reserved
0x00 5216
I2C_DR
I C data register
0x00 5217
I2C_SR1
I C status register 1
0x00 5218
I2C_SR2
I C status register 2
0x00 5219
I2C_SR3
I C status register 3
0x00 521A
I2C_ITR
I C interrupt control register
0x00 521B
I2C_CCRL
I C clock control register low
0x00 521C
I2C_CCRH
I C clock control register high
0x00 521D
I2C_TRISER
I C TRISE register
0x00 521E
I2C_PECR
I C packet error checking register
0x00 521F to
I C
Reserved area (17 bytes)
0x00 522F
0x00 5230 to
0x00 523F
32/103
Reserved area (6 bytes)
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Memory and register map
Address
Block
Register label
Register name
Reset status
0x00 5240
UART2
UART2_SR
UART2 status register
0xC0
0x00 5241
UART2_DR
UART2 data register
0xXX
0x00 5242
UART2_BRR1
UART2 baud rate register 1
0x00
0x00 5243
UART2_BRR2
UART2 baud rate register 2
0x00
0x00 5244
UART2_CR1
UART2 control register 1
0x00
0x00 5245
UART2_CR2
UART2 control register 2
0x00
0x00 5246
UART2_CR3
UART2 control register 3
0x00
0x00 5247
UART2_CR4
UART2 control register 4
0x00
0x00 5248
UART2_CR5
UART2 control register 5
0x00
0x00 5249
UART2_CR6
UART2 control register 6
0x00
0x00 524A
UART2_GTR
UART2 guard time register
0x00
0x00 524B
UART2_PSCR
UART2 prescaler register
0x00
TIM1_CR1
TIM1 control register 1
0x00
0x00 5251
TIM1_CR2
TIM1 control register 2
0x00
0x00 5252
TIM1_SMCR
TIM1 slave mode control register
0x00
0x00 5253
TIM1_ETR
TIM1 external trigger register
0x00
0x00 5254
TIM1_IER
TIM1 interrupt enable register
0x00
0x00 5255
TIM1_SR1
TIM1 status register 1
0x00
0x00 524C to
0x00 524F
Reserved area (4 bytes)
0x00 5250
TIM1
DocID022186 Rev 3
33/103
Memory and register map
Address
Block
STM8S005K6 STM8S005C6
Register label
Register name
Reset status
0x00 5256
TIM1_SR2
TIM1 status register 2
0x00
0x00 5257
TIM1_EGR
TIM1 event generation register
0x00
0x00 5258
TIM1_CCMR1
TIM1 capture/ compare mode
0x00
register 1
0x00 5259
TIM1_CCMR2
TIM1 capture/compare mode
0x00
register 2
0x00 525A
TIM1_CCMR3
TIM1 capture/ compare mode
0x00
register 3
0x00 525B
TIM1_CCMR4
TIM1 capture/compare mode
0x00
register 4
0x00 525C
TIM1_CCER1
TIM1 capture/ compare enable
0x00
register 1
0x00 525D
TIM1_CCER2
TIM1 capture/compare enable
0x00
register 2
0x00 525E
TIM1_CNTRH
TIM1 counter high
0x00
0x00 525F
TIM1_CNTRL
TIM1 counter low
0x00
0x00 5260
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 5261
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 5262
TIM1_ARRH
TIM1 auto-reload register high
0xFF
0x00 5263
TIM1_ARRL
TIM1 auto-reload register low
0xFF
0x00 5264
TIM1_RCR
TIM1 repetition counter register
0x00
0x00 5265
TIM1_CCR1H
TIM1 capture/ compare register 1 high
0x00
34/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Address
Block
Memory and register map
Register label
Register name
Reset status
0x00 5266
TIM1_CCR1L
TIM1 capture/ compare register 1 low
0x00
0x00 5267
TIM1_CCR2H
TIM1 capture/ compare register 2 high
0x00
0x00 5268
TIM1_CCR2L
TIM1 capture/ compare register 2 low
0x00
0x00 5269
TIM1_CCR3H
TIM1 capture/ compare register 3 high
0x00
0x00 526A
TIM1_CCR3L
TIM1 capture/ compare register 3 low
0x00
0x00 526B
TIM1_CCR4H
TIM1 capture/ compare register 4 high
0x00
0x00 526C
TIM1_CCR4L
TIM1 capture/ compare register 4 low
0x00
0x00 526D
TIM1_BKR
TIM1 break register
0x00
0x00 526E
TIM1_DTR
TIM1 dead-time register
0x00
0x00 526F
TIM1_OISR
TIM1 output idle state register
0x00
TIM2_CR1
TIM2 control register 1
0x00
0x00 5301
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5302
TIM2_SR1
TIM2 status register 1
0x00
0x00 5303
TIM2_SR2
TIM2 status register 2
0x00
0x00 5304
TIM2_EGR
TIM2 event generation register
0x00
0x00 5305
TIM2_CCMR1
TIM2 capture/ compare mode
0x00
0x00 5270 to
0x00 52FF
Reserved area (147 bytes)
0x00 5300
TIM2
register 1
0x00 5306
TIM2_CCMR2
TIM2 capture/ compare mode
0x00
register 2
DocID022186 Rev 3
35/103
Memory and register map
Address
Block
0x00 5307
STM8S005K6 STM8S005C6
Register label
Register name
Reset status
TIM2_CCMR3
TIM2 capture/ compare mode
0x00
register 3
0x00 5308
TIM2_CCER1
TIM2 capture/ compare enable register 0x00
1
0x00 5309
TIM2_CCER2
TIM2 capture/ compare enable register 0x00
2
0x00 530A
TIM2_CNTRH
TIM2 counter high
0x00
0x00 530B
TIM2_CNTRL
TIM2 counter low
0x00
0x00 530C
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 530D
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 530E
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 530F
TIM2_CCR1H
TIM2 capture/ compare register 1 high
0x00
0x00 5310
TIM2_CCR1L
TIM2 capture/ compare register 1 low
0x00
0x00 5311
TIM2_CCR2H
TIM2 capture/ compare reg. 2 high
0x00
0x00 5312
TIM2_CCR2L
TIM2 capture/ compare register 2 low
0x00
0x00 5313
TIM2_CCR3H
TIM2 capture/ compare register 3 high
0x00
0x00 5314
TIM2_CCR3L
TIM2 capture/ compare register 3 low
0x00
TIM3_CR1
TIM3 control register 1
0x00
0x00 5321
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5322
TIM3_SR1
TIM3 status register 1
0x00
0x00 5315 to
0x00 531F
Reserved area (11 bytes)
0x00 5320
TIM3
36/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Address
Block
Memory and register map
Register label
Register name
Reset status
0x00 5323
TIM3_SR2
TIM3 status register 2
0x00
0x00 5324
TIM3_EGR
TIM3 event generation register
0x00
0x00 5325
TIM3_CCMR1
TIM3 capture/ compare mode
0x00
register 1
0x00 5326
TIM3_CCMR2
TIM3 capture/ compare mode
0x00
register 2
0x00 5327
TIM3_CCER1
TIM3 capture/ compare enable register 0x00
1
0x00 5328
TIM3_CNTRH
TIM3 counter high
0x00
0x00 5329
TIM3_CNTRL
TIM3 counter low
0x00
0x00 532A
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 532B
TIM3_ARRH
TIM3 auto-reload register high
0xFF
0x00 532C
TIM3_ARRL
TIM3 auto-reload register low
0xFF
0x00 532D
TIM3_CCR1H
TIM3 capture/ compare register 1 high
0x00
0x00 532E
TIM3_CCR1L
TIM3 capture/ compare register 1 low
0x00
0x00 532F
TIM3_CCR2H
TIM3 capture/ compare register 2 high
0x00
0x00 5330
TIM3_CCR2L
TIM3 capture/ compare register 2 low
0x00
TIM4_CR1
TIM4 control register 1
0x00
0x00 5341
TIM4_IER
TIM4 interrupt enable register
0x00
0x00 5342
TIM4_SR
TIM4 status register
0x00
0x00 5331 to
0x00 533F
Reserved area (15 bytes)
0x00 5340
TIM4
DocID022186 Rev 3
37/103
Memory and register map
Address
Block
STM8S005K6 STM8S005C6
Register label
Register name
Reset status
0x00 5343
TIM4_EGR
TIM4 event generation register
0x00
0x00 5344
TIM4_CNTR
TIM4 counter
0x00
0x00 5345
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 5346
TIM4_ARR
TIM4 auto-reload register
0xFF
ADC data buffer registers
0x00
ADC _CSR
ADC control/ status register
0x00
0x00 5401
ADC_CR1
ADC configuration register 1
0x00
0x00 5402
ADC_CR2
ADC configuration register 2
0x00
0x00 5403
ADC_CR3
ADC configuration register 3
0x00
0x00 5404
ADC_DRH
ADC data register high
0xXX
0x00 5405
ADC_DRL
ADC data register low
0xXX
0x00 5406
ADC_TDRH
ADC Schmitt trigger disable
0x00
0x00 5347 to
0x00 53DF
Reserved area (153 bytes)
0x00 53E0 to
0x00 53F3
ADC1
0x00 53F4 to
0x00 53FF
Reserved area (12 bytes)
0x00 5400
ADC1
ADC _DBxR
register high
0x00 5407
ADC_TDRL
ADC Schmitt trigger disable
0x00
register low
0x00 5408
ADC_HTRH
ADC high threshold register high
0x03
0x00 5409
ADC_HTRL
ADC high threshold register low
0xFF
38/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Address
Block
Memory and register map
Register label
Register name
Reset status
0x00 540A
ADC_LTRH
ADC low threshold register high
0x00
0x00 540B
ADC_LTRL
ADC low threshold register low
0x00
0x00 540C
ADC_AWSRH
ADC analog watchdog status
0x00
register high
0x00 540D
ADC_AWSRL
ADC analog watchdog status
0x00
register low
0x00 540E
ADC _AWCRH
ADC analog watchdog control
0x00
register high
0x00 540F
ADC_AWCRL
ADC analog watchdog control
0x00
register low
0x00 5410 to
0x00 57FF
Reserved area (1008 bytes)
(1)
Depends on the previous reset source.
(2)
Write only register.
6.2.3
CPU/SWIM/debug module/interrupt controller registers
Table 9: CPU/SWIM/debug module/interrupt controller registers
Address
Block
Register label
Register name
Reset
status
0x00 7F00
CPU
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
0x00 7F04
XH
X index register high
0x00
(1)
DocID022186 Rev 3
39/103
Memory and register map
Address
STM8S005K6 STM8S005C6
Block
Register label
Register name
Reset
status
0x00 7F05
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x07
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
0x00 7F0B to Reserved area (85 bytes)
0x00 7F5F
0x00 7F60
CPU
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC
ITC_SPR1
Interrupt software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt software priority register 3
0xFF
0x00 7F73
ITC_SPR4
Interrupt software priority register 4
0xFF
0x00 7F74
ITC_SPR5
Interrupt software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt software priority register 8
0xFF
SWIM control status register
0x00
0x00 7F78 to Reserved area (2 bytes)
0x00 7F79
0x00 7F80
40/103
SWIM
SWIM_CSR
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Address
Block
Memory and register map
Register label
Register name
Reset
status
DM_BK1RE
DM breakpoint 1 register extended
byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended
byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
0x00 7F95
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM debug module control register 1 0x00
0x00 7F97
DM_CR2
DM debug module control register 2 0x00
0x00 7F98
DM_CSR1
DM debug module control/status
0x00 7F81 to Reserved area (15 bytes)
0x00 7F8F
0x00 7F90
DM
0x10
register 1
0x00 7F99
DM_CSR2
DM debug module control/status
0x00
register 2
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
0x00 7F9B to Reserved area (5 bytes)
0x00 7F9F
(1)
Accessible by debug module only
DocID022186 Rev 3
41/103
Interrupt vector mapping
7
STM8S005K6 STM8S005C6
Interrupt vector mapping
Table 10: Interrupt mapping
IRQ
no.
Source
block
Description
Wakeup
from halt
mode
Wakeup from Vector
active-halt
address
mode
RESET
Reset
Yes
Yes
0x00 8000
TRAP
Software interrupt
-
-
0x00 8004
0
TLI
External top level interrupt -
-
0x00 8008
1
AWU
Auto wake up from halt
-
Yes
0x00 800C
2
CLK
Clock controller
-
-
0x00 8010
3
EXTI0
Port A external interrupts
Yes
Yes
0x00 8014
4
EXTI1
Port B external interrupts
Yes
Yes
0x00 8018
5
EXTI2
Port C external interrupts
Yes
Yes
0x00 801C
6
EXTI3
Port D external interrupts
Yes
Yes
0x00 8020
7
EXTI4
Port E external interrupts
Yes
Yes
0x00 8024
(1)
(1)
8
0x00 8028
9
42/103
Reserved
-
-
0x00 802C
10
SPI
End of transfer
Yes
Yes
0x00 8030
11
TIM1
TIM1 update/ overflow/
underflow/ trigger/ break
-
-
0x00 8034
12
TIM1
TIM1 capture/ compare
-
-
0x00 8038
13
TIM
TIM update/ overflow
-
-
0x00 803C
14
TIM
TIM capture/ compare
-
-
0x00 8040
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Interrupt vector mapping
IRQ
no.
Source
block
Description
Wakeup
from halt
mode
Wakeup from Vector
active-halt
address
mode
15
TIM3
Update/ overflow
-
-
0x00 8044
16
TIM3
Capture/ compare
-
-
0x00 8048
17
Reserved
-
-
0x00 804C
18
Reserved
-
-
0x00 8050
2
2
19
I C
I C interrupt
Yes
Yes
0x00 8054
20
UART2
Tx complete
-
-
0x00 8058
21
UART2
Receive register DATA
FULL
-
-
0x00 805C
22
ADC1
ADC1 end of conversion/ analog watchdog interrupt
-
0x00 8060
23
TIM
TIM update/ overflow
-
-
0x00 8064
24
Flash
EOP/ WR_PG_DIS
-
-
0x00 8068
Reserved
(1)
0x00 806C
to 0x00
807C
Except PA1
DocID022186 Rev 3
43/103
Option bytes
8
STM8S005K6 STM8S005C6
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in the table below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP
option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication
protocol and debug module user manual (UM0470) for information on SWIM programming
procedures.
Table 11: Option bytes
Addr.
Option
name
Option Option bits
byte no.
7
6
5
4
3
2
1
0
Factory
default
setting
0x4800
Read-out
protection
(ROP)
OPT0
ROP [7:0]
00h
0x4801
User boot
code(UBC)
OPT1
UBC [7:0]
00h
NOPT1
NUBC [7:0]
FFh
Alternate
function
remapping
(AFR)
OPT2
AFR7
AFR6
AFR5
AFR4
AFR3
AFR2
AFR1
AFR0
00h
NOPT2
NAFR7
NAFR6
NAFR5
NAFR4
NAFR3
NAFR2
NAFR1
NAFR0
FFh
Miscell.
option
OPT3
Reserved
HSI
TRIM
LSI_ EN
IWDG
_HW
WWDG
_HW
WWDG
_HALT
00h
NOPT3
Reserved
NHSI
TRIM
NLSI_
EN
NIWDG
_HW
NWWDG
_HW
NWW
G_HALT
FFh
OPT4
Reserved
EXT CLK
CKAWU
SEL
PRS C1
PRS C0
00h
NOPT4
Reserved
NEXT
CLK
NCKA
WUSEL
NPRSC1
NPR
SC0
FFh
OPT5
HSECNT [7:0]
00h
NOPT5
NHSECNT [7:0]
FFh
Reserved
00h
0x4802
0x4803
0x4804
0x4805h
0x4806
0x4807
Clock
option
0x4808
0x4809
HSE clock
startup
0x480A
0x480B
44/103
Reserved
OPT6
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Addr.
Option
name
Option Option bits
byte no.
7
NOPT6
0x480C
0x480D
Reserved
OPT7
NOPT7
0x480E
0x487E
Option bytes
Bootloader
OPTBL
NOPTBL
0x487F
6
5
4
3
2
1
0
Factory
default
setting
Reserved
FFh
Reserved
00h
Reserved
FFh
BL[7:0]
00h
NBL[7:0]
FFh
Table 12: Option byte description
Option byte no.
Description
OPT0
ROP[7:0] Memory readout protection (ROP)
AAh: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Page 0 to 1 defined as UBC, memory write-protected
0x02: Page 0 to 3 defined as UBC, memory write-protected
0x03: Page 0 to 4 defined as UBC, memory write-protected
...
0x3E: Pages 0 to 63 defined as UBC, memory write-protected
Other values: Reserved
Note: Refer to the family reference manual (RM0016) section on
Flash write protection for more details.
OPT2
AFR[7:0]
Refer to following table for the alternate function remapping
decriptions of bits [7:2].
OPT3
HSITRIM:High speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
DocID022186 Rev 3
45/103
Option bytes
Option byte no.
STM8S005K6 STM8S005C6
Description
LSI_EN:Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
OPT4
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL:Auto wake-up unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]:HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
46/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Option bytes
Option byte no.
Description
OPT6
Reserved
OPT7
Reserved
OPTBL
BL[7:0] Bootloader option byte
For STM8S products, this option is checked by the boot ROM code
after reset. Depending on the content of addresses 0x487E, 0x487F,
and 0x8000 (reset vector), the CPU jumps to the bootloader or to
the reset vector. Refer to the UM0560 (STM8L/S bootloader manual)
for more details.
For STM8L products, the bootloader option bytes are on addresses
0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control
whether the bootloader is active or not. For more details, refer to the
UM0560 (STM8L/S bootloader manual) for more details.
Table 13: Description of alternate function remapping bits [7:0] of OPT2
(1)
Option byte no.
Description
OPT2
AFR7 Alternate function remapping option 7
(2)
0: AFR7 remapping option inactive: Default alternate function .
1: Port D4 alternate function = BEEP.
AFR6 Alternate function remapping option 6
(2)
0: AFR6 remapping option inactive: Default alternate functions .
2
1: Port B5 alternate function = I C_SDA; port B4 alternate function
2
= I C_SCL.
AFR5 Alternate function remapping option 5
(2)
0: AFR5 remapping option inactive: Default alternate functions .
1: Port B3 alternate function = TIM1_ETR; port B2 alternate function
= TIM1_NCC3; port B1 alternate function = TIM1_CH2N; port B0
alternate function = TIM1_CH1N.
AFR4 Alternate function remapping option 4
(2)
0: AFR4 remapping option inactive: Default alternate function .
1: Port D7 alternate function = TIM1_CH4.
AFR3 Alternate function remapping option 3
(2)
0: AFR3 remapping option inactive: Default alternate function .
1: Port D0 alternate function = TIM1_BKIN.
AFR2 Alternate function remapping option 2
DocID022186 Rev 3
47/103
Option bytes
STM8S005K6 STM8S005C6
Option byte no.
(1)
Description
(2)
0: AFR2 remapping option inactive: Default alternate function .
1: Port D0 alternate function = CLK_CCO.Note: AFR2 option has
priority over AFR3 if both are activated.
AFR1 Alternate function remapping option 1
(2)
0: AFR1 remapping option inactive: Default alternate functions .
1: Port A3 alternate function = TIM3_CH1; port D2 alternate function
TIM2_CH3.
AFR0 Alternate function remapping option 0
(2)
0: AFR0 remapping option inactive: Default alternate function .
1: Port D3 alternate function = ADC_ETR.
48/103
(1)
Do not use more than one remapping option in the same port.
(2)
Refer to pinout description.
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
9
Electrical characteristics
9.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100 % of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on characterization,
the minimum and maximum values refer to sample tests and represent the mean value plus
or minus three times the standard deviation (mean ± 3 Σ).
9.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given
only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 Σ).
9.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are not
tested.
9.1.4
Typical current consumption
For typical current consumption measurements, VDD, VDDIO and VDDA are connected together
in the configuration shown in the following figure.
Figure 6: Supply current measurement conditions
5 V or 3.3 V
A
V DD
V DDA
V DDIO
V SS
VSSA
VSSIO
DocID022186 Rev 3
49/103
Electrical characteristics
9.1.5
STM8S005K6 STM8S005C6
Loading capacitor
The loading conditions used for pin parameter measurement are shown in the following figure.
Figure 7: Pin loading conditions
STM8 PIN
50 pF
9.1.6
Pin input voltage
The input voltage measurement on a pin of the device is described in the following figure.
Figure 8: Pin input voltage
STM8 PIN
VIN
9.2
Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 14: Voltage characteristics
50/103
Symbol
Ratings
Min
Max
Unit
VDDx - VSS
Supply voltage (including VDDA and VDDIO)
-0.3
6.5
V
VIN
Input voltage on true open drain pins (PE1,
(2)
PE2)
VSS - 0.3
6.5
(1)
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Symbol
Electrical characteristics
Ratings
(2)
Input voltage on any other pin
|VDDx VDD|
Min
Max
VSS - 0.3
VDD + 0.3
Variations between different power pins
50
|VSSx - VSS| Variations between all the different ground pins
VESD
Unit
Electrostatic discharge voltage
mV
50
see Absolute maximum
ratings (electrical sensitivity)
(1)
All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be
connected to the external power supply
(2)
IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected.
If VIN maximum cannot be respected, the injection current must be limited externally to the
IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced
by VIN<VSS. For true open-drain pads, there is no positive injection current, and the
corresponding VIN maximum must always be respected
Table 15: Current characteristics
(1)
Symbol
Ratings
IVDD
Total current into VDD power lines (source)
IVSS
IIO
ΣIIO
Max.
Unit
(2)
60
mA
Total current out of VSS ground lines (sink)
(2)
60
Output current sunk by any I/O and control pin
20
Output current source by any I/Os and control pin
20
Total output current sourced (sum of all I/O and control 200
(3)
pins) for devices with two VDDIO pins
Total output current sourced (sum of all I/O and control 100
(3)
pins) for devices with one VDDIO pin
Total output current sunk (sum of all I/O and control
(3)
pins) for devices with two VSSIO pins
160
Total output current sunk (sum of all I/O and control
(3)
pins) for devices with one VSSIO pin
80
DocID022186 Rev 3
51/103
Electrical characteristics
Symbol
IINJ(PIN)
(4) (5)
STM8S005K6 STM8S005C6
(1)
Ratings
Max.
Injected current on NRST pin
±4
Injected current on OSCIN pin
±4
(6)
Injected current on any other pin
ΣIINJ(PIN)
(1)
(4)
Unit
±4
(6)
Total injected current (sum of all I/O and control pins)
±20
Data based on characterization results, not tested in production.
(2)
All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be
connected to the external supply.
(3)
I/O pins used simultaneously for high current source/sink must be uniformly spaced
around the package between the VDDIO/VSSIO pins.
(4)
IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected.
If VIN maximum cannot be respected, the injection current must be limited externally to the
IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced
by VIN<VSS. For true open-drain pads, there is no positive injection current, and the
corresponding VIN maximum must always be respected
(5)
Negative injection disturbs the analog performance of the device. See note in I2C interface
characteristics.
(6)
When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the
absolute sum of the positive and negative injected currents (instantaneous values). These
results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O
port pins of the device.
Table 16: Thermal characteristics
9.3
Symbol
Ratings
Value
Unit
TSTG
Storage temperature range
-65 to 150
°C
TJ
Maximum junction temperature
150
Operating conditions
The device must be used in operating conditions that respect the parameters in the table
below. In addition, full account must be taken of all physical capacitor characteristics and
tolerances.
52/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Table 17: General operating conditions
Symbol
Parameter
fCPU
VDD/ VDD_IO
VCAP
(1)
Conditions
Min
Max
Unit
Internal CPU clock
frequency
0
16
MHz
Standard operating
voltage
2.95
5.5
V
CEXT: capacitance of
external capacitor
470
3300
nF
0.3
Ohm
ESL of external
capacitor
15
nH
Power dissipation at
48-pin devices, with
TA = 85 °C for suffix 6 output on eight standard
ports, two high sink ports
and two open drain ports
(3)
simultaneously
443
mW
32-pin package, with
output on eight standard
ports and two high sink
(3)
ports simultaneously
360
ESR of external
capacitor
PD
(2)
at 1 MHz
(4)
TA
Ambient temperature
for 6 suffix version
Maximum power
dissipation
-40
85
TJ
Junction temperature
range
6 suffix version
-40
105
°C
(1)
Care should be taken when selecting the capacitor, due to its tolerance, as well as the
parameter dependency on temperature, DC bias and frequency in addition to other factors.
The parameter maximum value must be respected for the full application range.
(2)
To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/ΘJA (see Thermal
characteristics ) with the value for TJmax given in the current table and the value for ΘJA
given in Thermal characteristics.
(3)
Refer to Thermal characteristics.
(4)
This frequency of 1 MHz as a condition for VCAP parameters is given by design of the
internal regulator.
DocID022186 Rev 3
53/103
Electrical characteristics
STM8S005K6 STM8S005C6
Figure 9: fCPUmax versus VDD
f
CPU (MHz)
Functionality
16
not
guaranteed
in this area
12
Functionality guaranteed
@TA-40 to 85 °C
8
4
0
2.95
4.0
5.0
5.5
Supply voltage
Table 18: Operating conditions at power-up/power-down
Symbol
Parameter
tVDD
VDD rise time rate
2.0
VDD fall time rate
2.0
Min
Typ
Max
Unit
(1)
∞
µs/V
(1)
∞
VDD rising
1.7
(1)
tTEMP
Reset releasedelay
VIT+
Power-on reset
threshold
2.65
2.8
2.95
VIT-
Brown-out reset
threshold
2.58
2.7
2.88
VHYS(BOR)
Brown-out reset
hysteresis
(1)
9.3.1
Conditions
70
ms
V
mV
Guaranteed by design, not tested in production.
VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in the Operating conditions section. Care should be taken to limit
the series inductance to less than 15 nH.
54/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 10: External capacitor CEXT
ESL
C
ESR
RLeak
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.
9.3.2
Supply current characteristics
The current consumption is measured as described in Pin input voltage.
9.3.2.1
Total current consumption in run mode
Table 19: Total current consumption with code execution in run mode at VDD = 5 V
Symbol Parameter
(1)
Conditions
IDD(RUN) Supply
fCPU = fMASTER
current in run
= 16 MHz
mode, code
executed
from RAM
HSE crystal osc.
Typ Max
Unit
3.2
mA
(16 MHz)
HSE user ext. clock
2.6
3.2
2.5
3.2
1.6
2.2
1.3
2.0
(16 MHz)
HSI RC osc.
(16 MHz)
fCPU = fMASTER/128 = HSE user ext. clock
125 kHz
(16 MHz)
HSI RC osc.
(16 MHz)
fCPU = fMASTER/128 = HSI RC osc.
15.625 kHz
(16 MH3z/8)
0.75
fCPU = fMASTER
LSI RC osc.
0.55
= 128 kHz
(128 kHz)
DocID022186 Rev 3
55/103
Electrical characteristics
Symbol Parameter
IDD(RUN)
STM8S005K6 STM8S005C6
(1)
Conditions
Supply
fCPU = fMASTER
current in run
= 16 MHz
mode, code
executed
fromFlash
Typ Max
HSE crystal osc.
Unit
7.7
(16 MHz)
HSE user ext. clock
7.0
8.0
7.0
8.0
(16 MHz)
HSI RC osc.
(16 MHz)
fCPU = fMASTER
= 2 MHz
HSI RC osc.
1.5
(2)
(16 MHz/8)
fCPU = fMASTER/128 = HSI RC osc.
125 kHz
(16 MHz)
1.35 2.0
fCPU = fMASTER/128 = HSI RC osc.
15.625 kHz
(16 MHz/8)
0.75
fCPU = fMASTER
LSI RC osc.
0.6
= 128 kHz
(128 kHz)
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Table 20: Total current consumption with code execution in run mode at VDD = 3.3 V
(1)
Symbol Parameter Conditions
IDD(RUN) Supply
fCPU = fMASTER = 16 MHz
current
in run
mode,
code
executed
from
RAM
HSE crystal osc.
Unit
2.8
mA
(16 MHz)
HSE user ext. clock
2.6
3.2
2.5
3.2
(16 MHz)
HSI RC osc.
(16 MHz)
56/103
Typ Max
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
(1)
Symbol Parameter Conditions
Typ Max
fCPU = fMASTER/128
HSE user ext. clock
= 125 kHz
(16 MHz)
HSI RC osc.
1.6
2.2
1.3
2.0
Unit
(16 MHz)
fCPU = fMASTER/128 =
15.625 kHz
HSI RC osc. (16 MHz/8) 0.75
fCPU = fMASTER = 128 kHz
LSI RC osc.
0.55
(128 kHz)
Supply
fCPU = fMASTER = 16 MHz
current
in run
mode,
code
executed
from
Flash
HSE crystal osc.
7.3
(16 MHz)
HSE user ext. clock
7.0
8.0
7.0
8.0
(16 MHz)
HSI RC osc.
(16 MHz)
fCPU = fMASTER = 2 MHz
HSI RC osc.
1.5
(2)
(16 MHz/8)
fCPU = fMASTER/128
HSI RC osc.
= 125 kHz
(16 MHz)
fCPU = fMASTER/128 =
15.625 kHz
HSI RC osc.
fCPU = fMASTER = 128 kHz
LSI RC osc.
1.35 2.0
0.75
(16 MHz/8)
0.6
(128 kHz)
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
DocID022186 Rev 3
57/103
Electrical characteristics
9.3.2.2
STM8S005K6 STM8S005C6
Total current consumption in wait mode
Table 21: Total current consumption in wait mode at VDD = 5 V
Symbol Parameter
Conditions
IDD(WFI) Supply
current in
wait mode
fCPU = fMASTER = 16
MHz
(1)
HSE crystal osc.
Typ Max
Unit
2.15
mA
(16 MHz)
HSE user ext. clock
1.55 2.0
(16 MHz)
HSI RC osc.
1.5
1.9
(16 MHz)
fCPU = fMASTER/128
= 125 kHz
HSI RC osc.
fCPU = fMASTER/128
= 15.625 kHz
HSI RC osc.
1.3
(16 MHz)
0.7
(2)
(16 MHz/8)
fCPU = fMASTER = 128 LSI RC osc.
kHz
(128 kHz)
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
0.5
Table 22: Total current consumption in wait mode at VDD = 3.3 V
(1)
Symbol Parameter
Conditions
Typ Max
Unit
IDD(WFI) Supply
current in
wait mode
fCPU = fMASTER = 16 HSE crystal osc.
MHz
(16 MHz)
1.75
mA
HSE user ext. clock
1.55 2.0
(16 MHz)
HSI RC osc.
(16 MHz)
58/103
DocID022186 Rev 3
1.5
1.9
STM8S005K6 STM8S005C6
Symbol Parameter
9.3.2.3
Electrical characteristics
(1)
Conditions
Typ Max
fCPU = fMASTER/128
= 125 kHz
HSI RC osc.
fCPU = fMASTER/128
= 15.625 kHz
HSI RC osc.
fCPU = fMASTER =
128 kHz
LSI RC osc.
Unit
1.3
(16 MHz)
0.7
(2)
(16 MHz/8)
0.5
(128 kHz)
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Total current consumption in active halt mode
Table 23: Total current consumption in active halt mode at VDD = 5 V
Symbol Parameter Conditions
IDD(AH)
Supply
current in
active halt
mode
Typ
(3)
Main
voltage
regulator
(2)
(MVR)
Flash mode
Clock source
On
Operating mode HSE crystal
osc.
Max at Unit
85
(1)
°C
1080
µA
(16 MHz)
LSI RC osc.
200
320
(128 kHz)
Power-down
mode
HSE crystal
osc.
1030
(16 MHz)
LSI RC osc.
140
270
(128 kHz)
DocID022186 Rev 3
59/103
Electrical characteristics
STM8S005K6 STM8S005C6
Symbol Parameter Conditions
(3)
Main
voltage
regulator
(2)
(MVR)
Flash mode
Off
Operating mode LSI RC osc.
Typ
Max at Unit
85
(1)
°C
68
120
12
60
Clock source
(128 kHz)
Power-down
mode
(1)
Data based on characterization results, not tested in production.
(2)
Configured by the REGAH bit in the CLK_ICKR register.
(3)
Configured by the AHALT bit in the FLASH_CR1 register.
Table 24: Total current consumption in active halt mode at VDD = 3.3 V
Symbol Parameter
IDD(AH)
Supply
current in
active halt
mode
Conditions
Typ
Main
voltage
regulator
(2)
(MVR)
Flash mode
On
Operating
mode
(3)
Clock source
HSE crystal osc. 680
Off
Operating
mode
Power-down
mode
60/103
DocID022186 Rev 3
µA
(16 MHz)
LSI RC osc.
(128 kHz)
Power-down
mode
Max at Unit
85
(1)
°C
200
320
HSE crystal osc. 630
(16 MHz)
LSI RC osc.
(128 kHz)
140
270
LSI RC osc.
(128 kHz)
66
120
10
60
STM8S005K6 STM8S005C6
9.3.2.4
Electrical characteristics
(1)
Data based on characterization results, not tested in production.
(2)
Configured by the REGAH bit in the CLK_ICKR register.
(3)
Configured by the AHALT bit in the FLASH_CR1 register.
Total current consumption in halt mode
Table 25: Total current consumption in halt mode at VDD = 5 V
Symbol
Parameter
Conditions
Typ
Max at Unit
(1)
85 °C
IDD(H)
Supply current in Flash in operating mode, HSI
halt mode
clock after wakeup
62
90
6.5
25
Flash in powerdown mode, HSI
clock after wakeup
(1)
µA
Data based on characterization results, not tested in production.
Table 26: Total current consumption in halt mode at VDD = 3.3 V
Symbol
Parameter
Conditions
Typ
Max at Unit
(1)
85 °C
IDD(H)
Supply current in
halt mode
Flash in operating mode, HSI
clock after wakeup
60
90
Flash in powerdown mode, HSI
clock after wakeup
4.5
20
(1)
9.3.2.5
µA
Data based on characterization results, not tested in production.
Low power mode wakeup times
Table 27: Wakeup times
Symbol
Parameter
Wakeup time from
tWU(WFI)
Conditions
Typ
See
(2)
note
0 to 16 MHz
wait mode to run
(3)
mode
fCPU = fMASTER = 16 MHz
DocID022186 Rev 3
(1)
Max
Unit
μs
0.56
61/103
Electrical characteristics
Symbol
Parameter
Conditions
Wakeup time active
MVR voltage
halt mode to run
regulator
(3)
Flash in operating
(5)
mode
MVR voltage Flash in
HSI
halt mode to run
regulator
(after
(4)
Wakeup time active
MVR voltage
halt mode to run
regulator
power-down
mode
(4)
Flash in operating
(5)
mode
(after
Wakeup time active
MVR voltage Flash in
HSI
halt mode to run
regulator
(after
(6)
3
(6)
48
wakeup)
power-down
(5)
mode
off
Wakeup time from
Flash in operating mode
mode
(6)
50
wakeup)
(5)
halt mode to run
(3)
(6)
2
HSI
off
mode
(6)
1
wakeup)
mode
(4)
Unit
wakeup)
(5)
on
(3)
52
(5)
Flash in power-down mode
(1)
Data guaranteed by design, not tested in production.
(2)
tWU(WFI) = 2 x 1/fmaster + x 1/fCPU.
(3)
Measured from interrupt event to interrupt vector fetch.
(4)
Configured by the REGAH bit in the CLK_ICKR register.
(5)
Configured by the AHALT bit in the FLASH_CR1 register.
(6)
Plus 1 LSI clock depending on synchronization.
9.3.2.6
(after
Wakeup time active
mode
(1)
Max
HSI
on
(3)
tWU(H)
(4)
Typ
mode
(3)
tWU(AH)
STM8S005K6 STM8S005C6
54
Total current consumption and timing in forced reset state
Table 28: Total current consumption and timing in forced reset state
Symbol
Parameter
Conditions
Typ
IDD(R)
Supply current in reset
(2)
state
VDD = 5 V
500
VDD = 3.3 V
400
62/103
(1)
Max
Unit
μA
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Symbol
Parameter
tRESETBL
Reset pin release to
vector fetch
Electrical characteristics
Conditions
Typ
(1)
Data guaranteed by design, not tested in production.
(2)
Characterized with all I/Os tied to VSS.
9.3.2.7
(1)
Max
Unit
150
μs
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/fCPU = fMASTER = 16 MHz.
Table 29: Peripheral current consumption
Symbol
Parameter
Typ.
IDD(TIM1)
TIM1 supply current
IDD(TIM2)
TIM2 supply current
IDD(TIM3)
TIM3 timer supply current
(1)
90
IDD(TIM4)
TIM4 timer supply current
(1)
30
(1)
Unit
230
(1)
115
µA
(2)
IDD(UART2)
UART2 supply current
IDD(SPI)
SPI supply current
IDD(I
2
2
C)
IDD(ADC1)
I C supply current
110
(2)
45
(2)
65
(3)
ADC1 supply current when converting
955
(1)
Data based on a differential IDD measurement between reset configuration and timer
counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in
production.
(2)
Data based on a differential IDD measurement between the on-chip peripheral when kept
under reset and not clocked and the on-chip peripheral when clocked and not kept under
reset. No I/O pads toggling. Not tested in production.
(3)
Data based on a differential IDD measurement between reset configuration and continuous
A/D conversions. Not tested in production.
DocID022186 Rev 3
63/103
Electrical characteristics
9.3.2.8
STM8S005K6 STM8S005C6
Current consumption curves
The following figures show typical current consumption measured with code executing in
RAM.
Figure 11: Typ. IDD(RUN) vs. VDD , HSE user external clock, fCPU = 16 MHz
-40°C
3
25°C
2.95
85°C
2.9
IDD(RUN)HSE [mA]
2.85
2.8
2.75
2.7
2.65
2.6
2.55
2.5
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10235
Figure 12: Typ. IDD(RUN) vs. fCPU , HSE user external clock, VDD= 5 V
-40°C
5
25°C
4.5
85°C
4
IDD(RUN)HSE [mA]
3.5
3
2.5
2
1.5
1
0.5
0
0
5
10
15
fcpu [MHz]
20
25
30
IID10236
64/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 13: Typ. IDD(RUN) vs. VDD , HSI RC osc, fCPU = 16 MHz
-40°C
3
25°C
2.9
85°C
2.8
IDD(RUN)HSI [mA]
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10237
Figure 14: Typ. IDD(WFI) vs. VDD , HSE user external clock, fCPU = 16 MHz
-40°C
2.4
25°C
2.2
85°C
IDD(WFI)HSE [mA]
2
1.8
1.6
1.4
1.2
1
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10238
Figure 15: Typ. IDD(WFI) vs. fCPU, HSE user external clock VDD = 5 V
IDD(WFI)HSE [mA]
-40°C
3
25°C
2.5
85°C
2
1.5
1
0.5
0
0
5
10
15
fcpu [MHz]
20
25
30
IID10239
DocID022186 Rev 3
65/103
Electrical characteristics
STM8S005K6 STM8S005C6
Figure 16: Typ. IDD(WFI) vs. VDD, HSI RC osc, fCPU = 16 MHz
-40°C
2
25°C
1.9
85°C
1.8
IDD(WFI)HSI [mA]
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10240
9.3.3
External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Table 30: HSE user external clock characteristics
Symbol
Parameter
fHSE_ext
VHSEH
(1)
VHSEL
(1)
ILEAK_HSE
(1)
Conditions
Min
Max
Unit
User external clock source
frequency
0
16
MHz
OSCIN input pin high level
voltage
0.7 x VDD
VDD + 0.3 V
V
OSCIN input pin low level
voltage
OSCIN input leakage current
VSS < VIN < VDD
VSS
0.3 x VDD
-1
+1
Data based on characterization results, not tested in production.
66/103
DocID022186 Rev 3
μA
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 17: HSE external clocksource
V
HSEH
V HSEL
External clock
source
fHSE
OSCIN
STM8
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and start-up stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 31: HSE oscillator characteristics
Symbol
Parameter
Conditions
fHSE
External high speed
Feedback resistor
(1)
C
Typ
1
oscillator frequency
RF
Min
Max
Unit
16
MHz
220
kΩ
Recommended load
20
(2)
capacitance
IDD(HSE)
HSE oscillator power
consumption
pF
C = 20 pF,
6 (startup)
fOSC = 16 MHz
1.6 (stabilized)
(3)
mA
gm
C = 10 pF,
6 (startup)
fOSC =16 MHz
1.2 (stabilized)
Oscillator
5
transconductance
tSU(HSE)
(1)
(3)
(4)
Startup time
VDD is stabilized
mA/V
1
ms
C is approximately equivalent to 2 x crystal Cload.
DocID022186 Rev 3
67/103
Electrical characteristics
STM8S005K6 STM8S005C6
(2)
The oscillator selection can be optimized in terms of supply current using a high quality resonator with
small Rm value. Refer to crystal manufacturer for more details
(3)
Data based on characterization results, not tested in production.
(4)
tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16
MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer.
Figure 18: HSE oscillator circuit diagram
Rm
f HSE to core
Lm
CO
RF
CL1
Cm
OSCIN
gm
Resonator
Consumption
control
Resonator
OSCOUT
CL2
STM8
HSE oscillator critical g m equation
2
2
gmcrit= (2 × Π × fHSE) × Rm(2Co + C)
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1= CL2 = C: Grounded external capacitance
gm >> gmcrit
9.3.4
Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Table 32: HSI oscillator characteristics
Symbol Parameter
fHSI
68/103
Conditions
Frequency
Min
Typ
16
DocID022186 Rev 3
Max
Unit
MHz
STM8S005K6 STM8S005C6
Electrical characteristics
Symbol Parameter
Conditions
Min
ACCHSI Accuracy of HSI
oscillator
User-trimmed with
CLK_HSITRIMR register
for given VDD and TA
(1)
conditions
Typ
(2)
1.0
(3)
Accuracy of HSI
oscillator (factory
calibrated)
Max
VDD = 5 V, TA = 25°C
Unit
%
5.0
-5.0
VDD = 5 V,
5.0
-40 °C ≤ TA ≤ 85 °C
tsu(HSI)
(2)
HSI oscillator
wakeup time
including calibration
1.0
IDD(HSI) HSI oscillator power
consumption
170
(1)
Refer to application note.
(2)
Guaranteed by design, not tested in production.
(3)
Data based on characterization results, not tested in production.
(3)
250
µs
µA
Figure 19: Typical HSI frequency variation vs VDD @ 3 temperatures
-40°C
16.5
25°C
16.4
85°C
HSI frequency [MHz]
16.3
16.2
16.1
16
15.9
15.8
15.7
15.6
15.5
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10241
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
DocID022186 Rev 3
69/103
Electrical characteristics
STM8S005K6 STM8S005C6
Table 33: LSI oscillator characteristics
Symbol
Parameter
fLSI
Frequency
tsu(LSI)
LSI oscillator wakeup time
IDD(LSI)
LSI oscillator power consumption
(1)
Min
Typ
Max
Unit
128
kHz
(1)
7
µs
5
µA
Guaranteeed by design, not tested in production.
Figure 20: Typical LSI frequency variation vs VDD @ 3 temperatures
-40°C
150
25°C
145
85°C
LSI frequency [MHz]
140
135
130
125
120
115
110
105
100
2.5
3
3.5
4
VDD [V]
4.5
5
5.5
6
IID10242
9.3.5
Memory characteristics
RAM and hardware registers
Table 34: RAM and hardware registers
Symbol
Parameter
VRM
Data retention mode
(1)
Conditions
Min
Halt mode (or reset)
VIT-max
(1)
Unit
(2)
V
Minimum supply voltage without losing data stored in RAM (in halt mode or under reset)
or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.
refer to Operating conditions for the value of VIT-max
(2)
Refer to the Operating conditions section for the value of VIT-max
Flash program memory/data EEPROM memory
General conditions: TA = -40 to 85°C.
70/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Table 35: Flash program memory/data EEPROM memory
(1)
Symbol Parameter
Conditions
Min
VDD
Operating voltage (all modes,
execution/write/erase)
fCPU ≤ 16 MHz
2.95
tprog
Standard programming time
(including erase) for
byte/word/block (1 byte/4
bytes/128 bytes)
Max
Unit
5.5
V
6.0
6.6
ms
Fast programming time for 1 block
(128 bytes)
3.0
3.3
ms
terase
Erase time for 1 block (128 bytes)
3.0
3.3
ms
NRW
Erase/write cycles (program
memory)
(2)
(2)
Erase/write cycles(data memory)
tRET
IDD
(1)
TA = 85 °C
100
TA = 85 ° C
100 k
Data retention (program memory) TRET = 55° C
after 100 erase/write cycles at TA
= 85 °C
20
Data retention (data memory) after
10 k erase/write cycles at TA = 85
°C
20
Data retention (data memory) after TRET = 85° C
100 k erase/write cyclesat TA = 85
°C
1
Supply current (Flash
programming or erasing for 1 to
128 bytes)
Typ
cycles
years
2.0
mA
Data based on characterization results, not tested in production.
(2)
The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes
even when a write/erase operation addresses a single byte.
DocID022186 Rev 3
71/103
Electrical characteristics
9.3.6
STM8S005K6 STM8S005C6
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused
pins must be kept at a fixed voltage: using the output mode of the I/O for example or an
external pull-up or pull-down resistor.
Table 36: I/O static characteristics
Symbol Parameter
Conditions
Min
VIL
Input low level
voltage
VDD = 5 V
VIH
Input high level
voltage
Vhys
Hysteresis
Max
Unit
-0.3
0.3 x VDD
V
0.7 x
VDD
VDD + 0.3
V
V
Rpu
Pull-up resistor
tR, tF
Rise and fall
Fast I/Os load = 50 pF
time(10 % - 90 %)
(1)
Typ
700
VDD = 5 V, VIN = VSS
30
55
mV
80
35
kΩ
(3)
Standard and high sink
I/OsLoad = 50 pF
125
(3)
(2)
Ilkg
Input leakage
current, analog
and digital
VSS ≤ VIN ≤ VDD
±1.0
Ilkg ana
Analog input
leakage current
VSS ≤ VIN ≤ VDD
±250
Ilkg(inj)
Leakage current in Injection current ±4 mA
(2)
adjacent I/O
(1)
ns
(2)
(2)
±1.0
ns
µA
nA
µA
Hysteresis voltage between Schmitt trigger switching levels. Based on characterization
results, not tested in production.
(2)
Data based on characterization results, not tested in production.
(3)
Data guaranteed by design, not tested in production.
72/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 21: Typical VIL and VIH vs VDD @ 3 temperatures
-40°C
6
25°C
85°C
5
VIL / VIH [V]
4
3
2
1
0
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10243
Figure 22: Typical pull-up resistance vs VDD @ 3 temperatures
-40°C
60
25°C
85°C
Pull-Up resistance [kW]
55
50
45
40
35
30
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10244
Figure 23: Typical pull-up current vs VDD @ 3 temperatures
140
Pull-Up current [µA]
120
100
80
-40°C
60
25°C
40
85°C
20
0
0
1
2
3
VDD [V]
4
5
6
IID10245
1. The pull-up is a pure resistor (slope goes through 0).
DocID022186 Rev 3
73/103
Electrical characteristics
STM8S005K6 STM8S005C6
Table 37: Output driving current (standard ports)
Symbol Parameter
VOL
VOH
(1)
Conditions
Min
Max
Output low level with four pins IIO = 4 mA,
sunk
VDD = 3.3 V
1.0
Output low level with eight
pins sunk
IIO= 10 mA,
2.0
Output high level with four
pins sourced
IIO = 4 mA,
Output high level with eight
pins sourced
IIO = 10 mA,
Unit
(1)
V
VDD = 5 V
(1)
2.0
V
VDD = 3.3 V
2.4
VDD = 5 V
Data based on characterization results, not tested in production
Table 38: Output driving current (true open drain ports)
Symbol Parameter
Conditions
Max
VOL
IIO = 10 mA, VDD = 3.3 V
1.5
IIO = 10 mA, VDD = 5 V
1.0
IIO = 20 mA, VDD = 5 V
2.0
(1)
Output low level with two pins
sunk
Unit
(1)
V
(1)
Data based on characterization results, not tested in production
Table 39: Output driving current (high sink ports)
74/103
Symbol Parameter
Conditions
VOL
Output low level with four pins
sunk
IIO = 10 mA,
Output low level with eight pins
sunk
IIO = 10 mA,
Min
Max
(1)
1.1
VDD = 3.3 V
VDD = 5 V
DocID022186 Rev 3
0.9
Unit
V
STM8S005K6 STM8S005C6
Electrical characteristics
Symbol Parameter
VOH
(1)
Output low level with four pins
sunk
IIO = 20 mA,
Output high level with four pins
sourced
IIO = 10 mA,
Min
Max
Unit
(1)
1.6
VDD = 5 V
(1)
1.9
VDD = 3.3 V
Output high level with eight pins IIO = 10 mA,
sourced
VDD = 5 V
3.8
Output high level with four pins
sourced
2.9
(1)
IIO = 20 mA,
VDD = 5 V
Data based on characterization results, not tested in production
Typical output level curves
The following figures show typical output level curves measured with output on a single pin.
Figure 24: Typ. VOL @ VDD = 5 V (standard ports)
-40°C
1.5
25°C
1.25
85°C
1
VOL [V]
9.3.7
Conditions
0.75
0.5
0.25
0
0
2
4
6
IOL [mA]
8
10
12
IID10224
DocID022186 Rev 3
75/103
Electrical characteristics
STM8S005K6 STM8S005C6
Figure 25: Typ. VOL @ VDD = 3.3 V (standard ports)
-40°C
1.5
25°C
1.25
85°C
VOL [V]
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
IOL [mA]
IID10225
Figure 26: Typ. VOL @ VDD = 5 V (true open drain ports)
-40°C
2
1.75
25°C
1.5
85°C
VOL [V]
1.25
1
0.75
0.5
0.25
0
0
5
10
15
20
25
IOL [mA]
IID10226
Figure 27: Typ. VOL @ VDD = 3.3 V (true open drain ports)
-40°C
2
1.75
25°C
1.5
85°C
VOL [V]
1.25
1
0.75
0.5
0.25
0
0
2
4
6
8
10
12
14
IOL [mA]
IID10227
76/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 28: Typ. VOL @ VDD = 5 V (high sink ports)
-40°C
1.5
25°C
1.25
85°C
VOL [V]
1
0.75
0.5
0.25
0
0
5
10
15
20
25
IOL [mA]
IID10228
Figure 29: Typ. VOL @ VDD = 3.3 V (high sink ports)
-40°C
1.5
25°C
1.25
85°C
VOL [V]
1
0.75
0.5
0.25
0
0
2
4
6
8
10
12
14
IOL [mA]
IID10229
Figure 30: Typ. VDD - VOH @ VDD = 5 V (standard ports)
-40°C
VDD - VOH [V]
2
1.75
25°C
1.5
85°C
1.25
1
0.75
0.5
0.25
0
0
2
4
6
IOH [mA]
8
10
12
IID10230
DocID022186 Rev 3
77/103
Electrical characteristics
STM8S005K6 STM8S005C6
Figure 31: Typ. VDD - VOH @ VDD = 3.3 V (standard ports)
-40°C
VDD - VOH [V]
2
1.75
25°C
1.5
85°C
1.25
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
IOH [mA]
IID10231
Figure 32: Typ. VDD - VOH @ VDD = 5 V (high sink ports)
-40°C
VDD - VOH [V]
2
1.75
25°C
1.5
85°C
1.25
1
0.75
0.5
0.25
0
0
5
10
15
20
25
IOH [mA]
IID10232
Figure 33: Typ. VDD - VOH @ VDD = 3.3 V (high sink ports)
-40°C
VDD - VOH [V]
2
1.75
25°C
1.5
85°C
1.25
1
0.75
0.5
0.25
0
0
2
4
6
8
10
12
14
IOH [mA]
IID10233
78/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
9.3.8
Electrical characteristics
Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 40: NRST pin characteristics
Symbol
Parameter
Conditions
VIL(NRST)
NRST input low
Min
(1)
Typ
-0.3
0.3 x VDD
0.7 x VDD
VDD + 0.3
level voltage
VIH(NRST)
NRST input high
(1)
level voltage
VOL(NRST)
NRST output low
Unit
V
0.5
(1)
level voltage
RPU(NRST)
IOL=2 mA
Max
NRST pull-up
30
(2)
55
80
kΩ
resistor
tI FP(NRST)
NRST input filtered
75
(3)
pulse
ns
tIN FP(NRST)
NRST input not
500
(3)
filtered pulse
tOP(NRST)
NRST output
pulse
15
(3)
(1)
Data based on characterization results, not tested in production.
(2)
The RPU pull-up equivalent resistor is based on a resistive transistor
(3)
Data guaranteed by design, not tested in production.
DocID022186 Rev 3
μs
79/103
Electrical characteristics
STM8S005K6 STM8S005C6
Figure 34: Typical NRST VIL and VIH vs VDD @ 3 temperatures
-40°C
6
5.5
25°C
5
85°C
4.5
VIL / VIH [V]
4
3.5
3
2.5
2
1.5
1
0.5
0
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10248
Figure 35: Typical NRST pull-up resistance vs VDD @ 3 temperatures
-40°C
NRESET Pull-Up resistance [kW]
60
25°C
85°C
55
50
45
40
35
30
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
IID10234
Figure 36: Typical NRST pull-up current vs VDD @ 3 temperatures
140
NRESET Pull-Up current [µA]
120
100
80
-40°C
60
25°C
40
85°C
20
0
2
2.5
3
3.5
4
VDD [V]
4.5
5
5.5
6
IID10246
80/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
The reset network shown in the following figure protects the device against parasitic resets.
The user must ensure that the level on the NRST pin can go below VIL(NRST) max. (see Table
40: NRST pin characteristics ), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry,
attention must be taken to the charge/discharge time of the external capacitor to fulfill the
external devices reset timing conditions. Minimum recommended capacity is 100 nF.
Figure 37: Recommended reset pin protection
STM8
VDD
RPU
External
reset
circuit
NRST
Filter
Internal reset
0.1 μF
(optional)
9.3.9
SPI serial peripheral interface
Unless otherwise specified, the parameters given in the following table are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage conditions.
tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 41: SPI characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
fSCK1
SPI clock
frequency
Master mode
0
8
MHz
Slave mode
0
6
tc(SCK)
tr(SCK)
SPI clock rise
and fall time
tf(SCK)
tsu(NSS)
th(NSS)
(1)
(1)
Capacitive load: C = 30 pF
25
ns
NSS setup time Slave mode
4x
tMASTER
ns
NSS hold time
70
ns
Slave mode
DocID022186 Rev 3
81/103
Electrical characteristics
Symbol
tw(SCKH)
(1)
tw(SCKL)
(1)
(1)
tsu(MI)
tsu(SI)
(1)
th(MI)
th(SI)
(1)
(1)
ta(SO)
(1) (2)
tdis(SO)
tv(SO)
tv(MO)
th(SO)
th(MO)
(1) (3)
(1)
(1)
(1)
(1)
STM8S005K6 STM8S005C6
Parameter
Conditions
Min
Max
SCK high and
low time
Master mode
tSCK/2 15
tSCK/2 +
15
Data input
setup time
Master mode
5
Data input
setup time
Slave mode
5
Data input hold
time
Master mode
7
Data input hold
time
Slave mode
10
Data output
access time
Slave mode
Data output
disable time
Slave mode
Data output
valid time
Slave mode
Data output
valid time
Master mode
Data output
hold time
Slave mode
ns
ns
ns
25
(after enable edge)
36
(after enable edge)
Master mode
(after enable edge)
12
ns
ns
73
28
ns
ns
3x
tMASTER
(after enable edge)
Unit
ns
ns
ns
ns
(1)
Values based on design simulation and/or characterization results, and not tested in
production.
(2)
Min time is for the minimum time to drive the output and the max time is for the maximum
time to validate the data.
(3)
Min time is for the minimum time to invalidate the output and the max time is for the
maximum time to put the data in Hi-Z.
82/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 38: SPI timing diagram - slave mode and CPHA = 0
NSS input
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
tc(SCK)
th(NSS)
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
M SB IN
B I T1 IN
LSB IN
th(SI)
ai14134
(1)
Figure 39: SPI timing diagram - slave mode and CPHA = 1
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
M SB IN
B I T1 IN
LSB IN
ai14135
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID022186 Rev 3
83/103
Electrical characteristics
STM8S005K6 STM8S005C6
(1)
Figure 40: SPI timing diagram - master mode
High
NSS input
SCK intput
SCK output
tc(SCK)
CPHA= 0
CPOL=0
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136b
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.
9.3.10
2
I C interface characteristics
2
Table 42: I C characteristics
Symbol
Parameter
2
Standard mode I C
(2)
Min
(2)
Max
2 (1)
Fast mode I C
(2)
Min
Unit
(2)
Max
tw(SCLL)
SCL clock low time
4.7
1.3
μs
tw(SCLH)
SCL clock high time
4.0
0.6
μs
tsu(SDA)
SDA setup time
250
100
ns
th(SDA)
SDA data hold time
0
tr(SDA)
tr(SCL)
tf(SDA)
tf(SCL)
84/103
(3)
(4)
0
(3)
900
ns
SDA and SCL rise time
1000
300
ns
SDA and SCL fall time
300
300
ns
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Symbol
Electrical characteristics
2
Parameter
Standard mode I C
(2)
(2)
Min
th(STA)
START condition hold time
tsu(STA)
Repeated START condition
setup time
tsu(STO)
STOP condition setup time
tw(STO:STA) STOP to START condition time
(bus free)
Cb
Max
2 (1)
Fast mode I C
(2)
Unit
(2)
Min
Max
4.0
0.6
μs
4.7
0.6
μs
4.0
0.6
μs
4.7
1.3
μs
Capacitive load for each bus line
400
400
(1)
fMASTER, must be at least 8 MHz to achieve max fast I C speed (400kHz).
(2)
Data based on standard I C protocol requirement, not tested in production.
pF
2
2
(3)
The maximum hold time of the start condition has only to be met if the interface does not stretch the
low time.
(4)
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge
the undefined region of the falling edge of SCL.
2
Figure 41: Typical application with I C bus and timing diagram
VDD
(1)
VDD
STM8Sx05xx
SDA
I²C bus
SCL
S TART REPEATED
S TART
S TART
tsu(STA)
SDA
tf(SDA)
tr(SDA)
th(STA)
SCL
tw(SCLH)
tsu(SDA)
tw(SCLL)
tr(SCL)
th(SDA)
tf(SCL)
S TOP
tsu(STA:STO)
tsu(STO)
ai15385b
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD
DocID022186 Rev 3
85/103
Electrical characteristics
9.3.11
STM8S005K6 STM8S005C6
10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise specified.
Table 43: ADC characteristics
Symbol Parameter
Conditions
fADC
ADC clock frequency
Min
Typ
Max
Unit
VDDA =2.95 to 5.5 V 1.0
4.0
MHz
VDDA =4.5 to 5.5 V
1.0
6.0
5.5
V
VDDA
Analog supply
3.0
VREF+
Positive reference voltage
2.75
VDDA
V
VREF-
Negative reference voltage
(1)
V SSA
0.5
V
VAIN
Conversion voltage range
V SSA
V DDA
V
VREF-
VREF+ V
(1)
(2)
Devices with
external
VREF+/VREF- pins
CADC
tS
(2)
Internal sample and hold
capacitor
Sampling time
tSTAB
Wakeup time from standby
tCONV
Total conversion time
(including sampling time,
10-bit resolution)
(1)
3.0
fADC = 4 MHz
0.75
fADC = 6 MHz
0.5
pF
µs
7.0
µs
fADC = 4 MHz
3.5
µs
fADC = 6 MHz
2.33
µs
14
1/fADC
Data guaranteed by design, not tested in production..
(2)
During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged
by the external source. The internal resistance of the analog source must allow the
capacitance to reach its final voltage level within tS. After the end of the sample time tS,
86/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
changes of the analog input voltage have no effect on the conversion result. Values for the
sample clock tS depend on programming.
Table 44: ADC accuracy with RAIN < 10 kΩ , VDDA= 5 V
Symbol
Parameter
|ET|
Total unadjusted error
|EO|
|EG|
|ED|
|EL|
(1)
(2)
(2)
Offset error
(2)
Gain error
(2)
Differential linearity error
(2)
Integral linearity error
(1)
Conditions
Typ
Max
Unit
fADC = 2 MHz
1.0
2.5
LSB
fADC = 4 MHz
1.4
3.0
fADC = 6 MHz
1.6
3.5
fADC = 2 MHz
0.6
2.0
fADC = 4 MHz
1.1
2.5
fADC = 6 MHz
1.2
2.5
fADC = 2 MHz
0.2
2.0
fADC = 4 MHz
0.6
2.5
fADC = 6 MHz
0.8
2.5
fADC = 2 MHz
0.7
1.5
fADC = 4 MHz
0.7
1.5
fADC = 6 MHz
0.8
1.5
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.6
1.5
fADC = 6 MHz
0.6
1.5
Data based on characterisation results, not tested in production.
(2)
ADC accuracy vs. negative injection current: Injecting negative current on any of the
analog input pins should be avoided as this significantly reduces the accuracy of the
conversion being performed on another analog input. It is recommended to add a Schottky
diode (pin to ground) to standard analog pins which may potentially inject negative current.
DocID022186 Rev 3
87/103
Electrical characteristics
STM8S005K6 STM8S005C6
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in the I/O
port pin characteristics section does not affect the ADC accuracy.
Table 45: ADC accuracy with RAIN < 10 kΩ RAIN, VDDA = 3.3 V
Symbol
Parameter
|ET|
Total unadjusted error
|EO|
|EG|
|ED|
|EL|
(1)
(2)
(2)
Offset error
Gain error
(2)
(2)
Differential linearity error
(2)
Integral linearity error
(1)
Conditions
Typ
Max
Unit
fADC = 2 MHz
1.1
2.0
LSB
fADC = 4 MHz
1.6
2.5
fADC = 2 MHz
0.7
1.5
fADC = 4 MHz
1.3
2.0
fADC = 2 MHz
0.2
1.5
fADC = 4 MHz
0.5
2.0
fADC = 2 MHz
0.7
1.0
fADC = 4 MHz
0.7
1.0
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.6
1.5
Data based on characterisation results, not tested in production.
(2)
ADC accuracy vs. negative injection current: Injecting negative current on any of the
analog input pins should be avoided as this significantly reduces the accuracy of the
conversion being performed on another analog input. It is recommended to add a Schottky
diode (pin to ground) to standard analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in I/O port
pin characteristics does not affect the ADC accuracy.
88/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
Figure 42: ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer
curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal
one.
EL = Integral linearity error: maximum deviation between any actual transition and the end
point correlation line.
Figure 43: Typical application with ADC
VDD
VAIN
RAIN
CAIN
9.3.12
AINx
STM8
VT
0.6 V
10-bit A/D
conversion
VT
0.6 V
IL
± 1 µA
CADC
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
DocID022186 Rev 3
89/103
Electrical characteristics
9.3.12.1
STM8S005K6 STM8S005C6
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
FESD: Functional electrostatic discharge (positive and negative) is applied on all pins of
the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.
•
A burst of fast transient voltage (positive and negative) is applied to V and V
• FTB:
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with
DD
SS
the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table
below based on the EMS levels and classes defined in application note AN1709 (EMC design
guide for STMicrocontrollers).
9.3.12.2
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
•
• Unexpected reset
• Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques
for improving microcontroller EMC performance).
Table 46: EMS data
Symbol
Parameter
Conditions
Level/ class
VFESD
Voltage limits to be applied on
any I/O pin to induce a
functional disturbance
VDD = 5 V, TA = 25 °C, fMASTER = 16 MHz,
conforming to IEC 1000-4-2
2/B
VEFTB
90/103
(1)
Fast transient voltage burst
limits to be applied through 100 VDD= 5 V, TA = 25 °C ,fMASTER = 16 MHz,conforming
(1)
4/A
pF on VDD and VSS pins to
to IEC 1000-4-4
induce a functional disturbance
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Electrical characteristics
(1)
Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 (EMC
guidelines for STM8S microcontrollers).
9.3.12.3
Electromagnetic interference (EMI)
Emission tests conform to the IEC61967-2 standard for test software, board layout and pin
loading.
Table 47: EMI data
Symbol Parameter Conditions
General
conditions
SEMI
Peak level
VDD = 5 V,
TA = +25 °C,
LQFP48
package
conforming to
IEC61967-2
Unit
Max fHSE/fCPU
8 MHz/ 8
MHz
8 MHz/ 16
MHz
0.1 MHz to
30 MHz
13
14
30 MHz to
130 MHz
23
19
130 MHz to 1 -4.0
GHz
SAE EMI
level
(1)
9.3.12.4
(1)
Monitored
frequency
band
2.0
dBµV
-4.0
1.5
—
Data based on characterization results, not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product
is stressed in order to determine its performance in terms of electrical sensitivity. For more
details, refer to the application note AN1181.
9.3.12.5
Electrostatic discharge (ESD)
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied
to the pins of each sample according to each pin combination. The sample size depends on
the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the
JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.
DocID022186 Rev 3
91/103
Electrical characteristics
STM8S005K6 STM8S005C6
Table 48: ESD absolute maximum ratings
Symbol
Ratings
Conditions
VESD(HBM) Electrostatic discharge
TA = +25°C,
voltage (Human body model) conforming to
JESD22-A114
VESD(CDM) Electrostatic discharge
voltage (Charge device
model)
(1)
9.3.12.6
Class Maximum Unit
(1)
value
A
2000
V
TA=+25°C, conforming IV
to JESD22-C101
1000
V
Data based on characterization results, not tested in production
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up performance:
A supply overvoltage (applied to each power supply pin)
•
injection (applied to each input, output and configurable I/O pin) are performed
• Aoncurrent
each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 49: Electrical sensitivities
(1)
Symbol
Parameter
Conditions
Class
LU
Static latch-up class
TA = +25 °C
A
TA = +85 °C
A
(1)
Class description: A Class is an STMicroelectronics internal specification. All its limits
are higher than the JEDEC specifications, that means when a device belongs to class A it
exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international
standard).
92/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
10
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
®
specifications, grade definitions and product status are available at: www.st.com. ECOPACK
is an ST trademark.
10.1
48-pin LQFP package mechanical data
Figure 44: 48-pin low profile quad flat package (7 x 7)
D
ccc C
D1
D3
A
A2
25
36
24
37
L1
b
E3 E1 E
48
Pin 1
identification
13
1
L
A1
K
c
12
5B_ME
Table 50: 48-pin low profile quad flat package mechanical data
Dim.
(1)
mm
Min
inches
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
8.800
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
9.200
0.3465
9.000
DocID022186 Rev 3
0.0059
0.0079
0.3543
0.3622
93/103
Package information
Dim.
D1
STM8S005K6 STM8S005C6
inches
Min
Typ
Max
Min
Typ
Max
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
5.500
0.2165
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
5.500
0.2165
e
0.500
0.0197
L
0.450
L1
0°
ccc
(1)
0.600
0.750
0.0177
1.000
k
94/103
(1)
mm
3.5°
0.0236
0.0295
0.0394
7.0°
0°
3.5°
0.080
Values in inches are converted from mm and rounded to 4 decimal digits
DocID022186 Rev 3
7.0°
0.0031
STM8S005K6 STM8S005C6
10.2
Package information
32-pin LQFP package mechanical data
Figure 45: 32-pin low profile quad flat package (7 x 7)
ccc C
D
D1
D3
24
A
A2
17
16
25
L1
b
E3
32
E1 E
9
Pin 1
identification
L
A1
1
K
c
8
5V_ME
Table 51: 32-pin low profile quad flat package mechanical data
Dim.
(1)
mm
Min
inches
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.300
c
0.090
D
8.800
D1
6.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.370
0.450
0.0118
0.0146
0.0177
0.200
0.0035
9.000
9.200
0.3465
0.3543
0.3622
7.000
7.200
0.2677
0.2756
0.2835
5.600
0.0059
0.0079
0.2205
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
DocID022186 Rev 3
95/103
Package information
Dim.
STM8S005K6 STM8S005C6
Min
inches
Typ
Max
Min
Typ
E3
5.600
0.2205
e
0.800
0.0315
L
0.450
L1
0°
ccc
(1)
0.600
0.750
0.0177
1.000
k
96/103
(1)
mm
3.5°
0.0236
Max
0.0295
0.0394
7.0°
0°
3.5°
0.100
Values in inches are converted from mm and rounded to 4 decimal digits
DocID022186 Rev 3
7.0°
0.0039
STM8S005K6 STM8S005C6
11
Thermal characteristics
Thermal characteristics
The maximum chip junction temperature (TJ max) must never exceed the values given in
Operating conditions
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using
the following equation:
TJmax = TAmax + (PDmax x ΘJA)
Where:
TAmax is the maximum ambient temperature in °C
•
• Θ is the package junction-to-ambient thermal resistance in ° C/W
• P is the sum of P and P (P = P + P )
• Ppower. is the product of I andV , expressed in Watts. This is the maximum chip internal
the maximum power dissipation on output pinsWhere:P
=Σ (V *I )
• P+ Σ((V represents
-V *I ), taking into account the actual V /I
V /I of the I/Os at low
JA
Dmax
INTmax
INTmax
DD
I/Omax
Dmax
INTmax
I/Omax
DD
I/Omax
I/Omax
DD
OH) OH
OL OL and
OL OL
OH OH
and high level in the application.
(1)
Table 52: Thermal characteristics
Symbol
Parameter
Value
Unit
ΘJA
Thermal resistance junction-ambient
57
°C/W
60
°C/W
LQFP 48 - 7 x 7 mm
ΘJA
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural
convection environment.
11.1
Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural convection
(still air). Available from www.jedec.org.
11.2
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code.
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmaz = 82 °C (measured according to JESD51-2)
•
•I
DDmax
= 15 mA, VDD = 5.5 V
DocID022186 Rev 3
97/103
Thermal characteristics
STM8S005K6 STM8S005C6
8 standard I/Os used at the same time in output at low level with I = 10 mA,
• Maximum
V =2V
4 high sink I/Os used at the same time in output at low level with I = 20 mA,
• Maximum
V = 1.5 V
2 true open drain I/Os used at the same time in output at low level with I =
• Maximum
20 mA, V = 2 V
OL
OL
OL
OL
OL
OL
PINTmax = 15 mA x 5.5 V = 82.5 mW
PIOmax = (10 mA x 2 V x 8 )+(20 mA x 2 V x 2)+(20 mA x 1.5 V x 4) = 360 mW
This gives: PINTmax = 82.5 mW and PIOmax 360 mW:
PDmax = 82.5 mW + 360 mW
Thus: PDmax = 443 mW
TJmax for LQFP32 can be calculated as follows, using the thermal resistance ΘJA :
TJmax = 75° C + (59° C/W x 464 mW) = 75°C + 27°C = 102° C
This is within the range of the suffix 6 version parts (-40 < TJ < 106° C). In this case, parts
must be ordered at least with the temperature range suffix 6.
98/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
12
Ordering information
Ordering information
Figure 46: STM8S005xx value line ordering information scheme
Example:
STM8
S
005
K
6
T
6
C
TR
Product class
Family type
S = Standard
Sub-family type
005 = Value line STM8S005x
Pin count
K = 32 pins
C = 48 pins
Program memory size
6 = 32 Kbytes
Package type
T = LQFP
Temperature range
6 = -40 °C to 85 °C
Package pitch
No character = 0.5 mm
C = 0.8 mm
Packing
No character = Tray or tube
TR = Tape and reel
1. For a list of available options (e.g. memory size, package) and orderable part numbers or
for further information on any aspect of this device, please go to www.st.com or contact
the ST sales office nearest to you.
DocID022186 Rev 3
99/103
STM8 development tools
13
STM8S005K6 STM8S005C6
STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation boards
and a low-cost in-circuit debugger/programmer.
13.1
Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8
application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers
new advanced debugging capabilities including profiling and coverage to help detect and
eliminate bottlenecks in application execution and dead code when fine tuning an application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to order
exactly what you need to meet your development requirements and to adapt your emulation
system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
•
• Advanced breakpoints with up to 4 levels of conditions
• Data breakpoints
• Program and data trace recording up to 128 KB records
• Read/write on the fly of memory during emulation
• In-circuit debugging/programming via SWIM protocol
• 8-bit probe analyzer
• 1 input and 2 output triggers
• Power supply follower managing application voltages between 1.62 to 5.5 V
that allows you to specify the components you need to meet your development
• Modularity
requirements and adapt to future requirements
by free software tools that include integrated development environment (IDE),
• Supported
programming software interface and assembler for STM8.
13.2
Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8, which are available in a free version that outputs up
to 16 Kbytes of code.
100/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
13.2.1
STM8 development tools
STM8 toolset
STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com/mcu. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integration of C and ASM toolsets
•
• Full-featured debugger
• Project management
• Syntax highlighting editor
• Integrated programming interface
• Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,
write and verify of your STM8 microcontroller’s Flash program memory, data EEPROM and
option bytes. STVP also offers project mode for saving programming configurations and
automating programming sequences.
13.2.2
C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of your
application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – Available in a free version that outputs up to 16 Kbytes
of code. For more information, see www.cosmic-software.com.
•
C compiler for STM8 – Available in a free version that outputs up to
• Raisonance
16 Kbytes of code. For more information, see www.raisonance.com.
assembler linker – Free assembly toolchain included in the STVD toolset, which
• STM8
allows you to assemble and link your application source code.
13.3
Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on your application board via the SWIM protocol. Additional tools are to include
a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated
programming platforms with sockets for programming your STM8.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
DocID022186 Rev 3
101/103
Revision history
14
STM8S005K6 STM8S005C6
Revision history
Table 53: Document revision history
Date
Revision
14-Oct-2011
1
09-Jan-2012
2
Changes
Initial release.
Updated tRET in Table 35: Flash program memory/data
EEPROM memory.
Updated RPU in Table 40: NRST pin characteristics and Table
36: I/O static characteristics.
Updated notes related to VCAP in Operating conditions.
13-Jun-2012
3
Updated temperature condition for factory calibrated ACCHSI
in Table 32: HSI oscillator characteristics.
Changed SCK input to SCK output in Figure 40: SPI timing
diagram - master mode(1) .
102/103
DocID022186 Rev 3
STM8S005K6 STM8S005C6
Please Read Carefully
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries
(“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products
and services described herein at anytime, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein,
and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described
herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document.
If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for
the use of such third party products or services, or any intellectual property contained therein or considered as a warranty
covering the use in any manner whatsoever of such third party products or services or any intellectual property contained
therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND
THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS
ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR
MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL
DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN
AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document
shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or
extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
©
2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel
- Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom United States of America
www.st.com
DocID022186 Rev 3
103/103