STM32F101x6 STM32F101x8 STM32F101xB Access line, advanced ARM-based 32-bit MCU with Flash memory, six 16-bit timers, ADC and seven communication interfaces Features ■ Core: ARM 32-bit Cortex™-M3 CPU – 36 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access – Single-cycle multiplication and hardware division ■ Memories – 32 to 128 Kbytes of Flash memory – 6 to 16 Kbytes of SRAM ■ Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR and programmable voltage detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC – PLL for CPU clock – 32 kHz oscillator for RTC with calibration ■ ■ VFQFPN36 6 × 6 mm ■ 1 × 12-bit, 1 µs A/D converter (up to 16 channels) – Conversion range: 0 to 3.6 V – Temperature sensor ■ Up to 80 fast I/O ports – 26/37/51/80 I/Os, all mappable on 16 external interrupt vectors, all 5 V-tolerant except for analog inputs March 2008 LQFP100 14 x 14 mm Up to 6 timers – Up to three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter – 2 watchdog timers (Independent and Window) – SysTick timer: 24-bit downcounter ■ Up to 7 communication interfaces – Up to 2 x I2C interfaces (SMBus/PMBus) – Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 2 SPIs (18 Mbit/s) ■ ECOPACK® packages Table 1. Device summary Reference Debug mode – Serial wire debug (SWD) and JTAG interfaces DMA – 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs LQFP64 10 x 10 mm ■ Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers ■ LQFP48 7 x 7 mm Rev 6 Root part number STM32F101x6 STM32F101C6, STM32F101R6, STM32F101T6 STM32F101x8 STM32F101C8, STM32F101R8 STM32F101V8, STM32F101T8 STM32F101xB STM32F101RB, STM32F101VB, STM32F101CB 1/74 www.st.com 1 Contents STM32F101xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 2/74 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 28 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 29 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 47 5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 STM32F101xx 6 7 5.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1 8 Contents Future family enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3/74 List of tables STM32F101xx List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. 4/74 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device features and peripheral counts (STM32F101xx access line) . . . . . . . . . . . . . . . . . . 8 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 29 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 32 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 33 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Typical current consumption in Sleep mode, code with data processing code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Typical current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 High-speed user external (HSE) clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 STM32F101xx Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. List of tables TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 64 LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 65 LQFP64 – 64-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 66 LQFP48 – 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 67 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5/74 List of figures STM32F101xx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. 6/74 STM32F101xx access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F101xx access line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F101xx access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F101xx access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F101xx access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 31 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 32 Current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V . . . 34 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 I2C bus AC waveforms and measurement circuit(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SPI timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 61 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 62 VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Recommended footprint (dimensions in mm)(1)(2)(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 LQFP48 – 48-pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 STM32F101xx 1 Introduction Introduction This datasheet contains the description of the STM32F101xx access line family features, pinout, electrical characteristics, mechanical data and ordering information. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming reference manual. For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual. 2 Description The STM32F101xx access line family incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory up to 128Kbytes and SRAM up to 16 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (two I2Cs, two SPIs, and up to three USARTs), one 12-bit ADC and three general purpose 16-bit timers. The STM32F101 family operates in the −40 to +85°C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows to design low-power applications. The complete STM32F101xx access line family includes devices in 3 different package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F101xx access line microcontroller family suitable for a wide range of applications: ● Application control and user interface ● Medical and handheld equipment ● PC peripherals, gaming and GPS platforms ● Industrial applications: PLC, inverters, printers, and scanners ● Alarm systems, Video intercom, and HVAC Figure 1 shows the general block diagram of the device family. 7/74 Description 2.1 STM32F101xx Device overview Table 2. Device features and peripheral counts (STM32F101xx access line) Peripheral STM32F101Tx STM32F101Cx STM32F101Vx 32 64 32 64 128 32 64 128 64 128 SRAM - Kbytes 6 10 6 10 16 6 10 16 10 16 General purpose 2 3 2 3 3 2 3 3 SPI 1 1 1 2 2 1 2 2 I C 1 1 1 2 2 1 2 2 USART 2 2 2 3 3 2 3 3 Communication Timers Flash - Kbytes 2 12-bit synchronized ADC number of channels GPIOs 1 10 channels 1 10 channels 1 16 channels 1 16 channels 26 37 51 80 CPU frequency 36 MHz Operating voltage Operating temperatures Packages 8/74 STM32F101Rx 2.0 to 3.6 V Ambient temperature: –40 to +85 °C (see Table 7) Junction temperature: –40 to +105 °C (see Table 7) VFQFPN36 LQFP48 LQFP64 LQFP100 STM32F101xx 2.2 Description Overview ARM® CortexTM-M3 core with embedded Flash and SRAM The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F101xx access line family having an embedded ARM core, is therefore compatible with all ARM tools and software. Embedded Flash memory Up to 128 Kbytes of embedded Flash is available for storing programs and data. Embedded SRAM Up to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. Nested vectored interrupt controller (NVIC) The STM32F101xx access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels. ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail-chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detectors lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect external line with pulse width lower than the Internal APB2 clock period. Up to 80 GPIOs are connected to the 16 external interrupt lines. 9/74 Description STM32F101xx Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected and is monitored for failure. During such a scenario, it is disabled and software interrupt management follows. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the High Speed APB (APB2) and the low Speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 36 MHz. See Figure 2 for details on the clock tree. Boot modes At startup, boot pins are used to select one of five boot options: ● Boot from User Flash ● Boot from System Memory ● Boot from SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. Power supply schemes ● VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through VDD pins. ● VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs and PLL. In VDD range (ADC is limited at 2.4 V). VDDA and VSSA must be connected to VDD and VSS, respectively. ● VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 10: Power supply scheme. Power supply supervisor The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded Programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 9: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD. 10/74 STM32F101xx Description Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. ● MR is used in the nominal regulation mode (Run) ● LPR is used in the Stop mode ● Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered-down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after RESET. It is disabled in Standby Mode, providing high impedance output. Low-power modes The STM32F101xx access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode allows to achieve the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm. ● Standby mode The Standby mode allows to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI and the HSE RC oscillators are also switched off. After entering Standby mode, SRAM and registers content are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. DMA The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general purpose timers TIMx and ADC. 11/74 Description STM32F101xx RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers (ten 16-bit registers) can be used to store data when VDD power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application time out management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0. ● Programmable clock source General purpose timers (TIMx) There are up to 3 synchronizable standard timers embedded in the STM32F101xx access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. They can work together via the Timer Link feature for synchronization or event chaining. The counter can be frozen in debug mode. Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations. 12/74 STM32F101xx Description I²C bus Up to two I²C bus interfaces can operate in multi-master and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. Universal synchronous/asynchronous receiver transmitter (USART) The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 8-bit to 16-bit. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. GPIOs (general purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. ADC (analog to digital converter) The 12-bit Analog to Digital Converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. Temperature sensor The temperature sensor has to generate a linear voltage with any variation in temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. 13/74 Description STM32F101xx Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. STM32F101xx access line block diagram TPIU SW/JTAG Trace/trig SWD Ibus Cortex M3 CPU Fmax : 36 MHz NVIC NVIC Trace Cont rol ler pbus Dbus Syst em AHB: Fmax =36 MHz 7 channels SUPPLY SUPERVISION NRST VDDA VSSA POR / PDR Rst PVD Int PCLK1 PCLK 2 HCLK FCLK @VDD PLL & CLOCK MANAGT XTAL OSC 4-16 MHz PB[ 15:0] GPIOB PC[15:0] GPIOC PD[15:0] GPIOD PE[15:0] GPIOE MOSI,MISO, SCK,NSS as AF SPI1 OSC_IN OSC_OUT RC 8 MHz IWDG RC 42 kHz Stand by in terface @VDDA VBAT @VBAT RTC AWU AHB2 APB 1 Back up reg OSC32_IN OSC32_OUT TAMPER-RTC Backu p i nterf ace APB2 : Fmax = 36 MHz GPIOA VDD = 2 to 3.6V VSS @VDD 64 bit EXTI WAKEUP PA[ 15:0] RX,TX, CTS, RTS, Smart Card as AF Flash 128 KB XTAL 32 kHz AHB2 APB2 80AF VOLT. REG. 3.3V TO 1.8V SRAM 16 KB GP DMA @VDDA POWER APB 1 : Fmax =24 / 36 MHz JNTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO as AF Flash obl Inte rfac e TRACECLK TRACED[0:3] as AS BusM atrix Figure 1. TIM2 4 Chann els TIM3 4 Chann els TIM4 4 Channels USART2 USART3 2x(8x16bit)SPI2 RX,TX, CTS, RTS, CK, SmartCard as AF RX,TX, CTS, RTS, CK, SmartCard as AF MOSI,MISO,SCK,NSS as AF I2C1 SCL,SDA,SMBA L as AF I2C2 SCL,SDA as AF USART1 @VDDA 16AF VREF+ 12bit ADC1 IF WWDG VREFTemp sen so r ai14385B 1. AF = alternate function on I/O port pin. 2. TA = –40 °C to +85 °C (junction temperature up to 125 °C). 14/74 STM32F101xx Description Figure 2. Clock tree 8 MHz HSI RC HSI /2 36 MHz max PLLSRC /8 SW PLLMUL HSI ..., x16 x2, x3, x4 PLL SYSCLK PLLCLK AHB Prescaler 36 MHz /1, 2..512 max Clock Enable (3 bits) APB1 Prescaler /1, 2, 4, 8, 16 HCLK to AHB bus, core, memory and DMA to Cortex System timer FCLK Cortex free running clock 36 MHz max PCLK1 to APB1 peripherals Peripheral Clock HSE Enable (13 bits) to TIM2, 3 TIM2,3, 4 and 4 If (APB1 prescaler =1) x1 TIMXCLK else x2 Peripheral Clock CSS Enable (3 bits) APB2 Prescaler /1, 2, 4, 8, 16 PLLXTPRE OSC_OUT OSC_IN 4-16 MHz 36 MHz max HSE OSC /2 ADC Prescaler /2, 4, 6, 8 /128 OSC32_IN OSC32_OUT Peripheral Clock Enable (11 bits) PCLK2 to APB2 peripherals LSE OSC 32.768 kHz to ADC ADCCLK to RTC LSE RTCCLK RTCSEL[1:0] LSI RC 40 kHz to Independent Watchdog (IWDG) LSI IWDGCLK Main Clock Output /2 MCO PLLCLK HSI Legend: HSE = high-speed external clock signal HSI = high-speed internal clock signal LSI = low-speed internal clock signal LSE = low-speed external clock signal HSE SYSCLK MCO ai15104 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz. 2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz. 15/74 Pin descriptions 3 STM32F101xx Pin descriptions STM32F101xx access line LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD_2 VSS_2 NC PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 ai14386b 16/74 STM32F101xx STM32F101xx access line LQFP64 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 4. Pin descriptions 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0 OSC_IN PD1 OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 ai14387b VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 STM32F101xx access line LQFP48 pinout VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0-OSC_IN PD1-OSC_OUT NRST VSSA VDDA PA0-WKUP PA1 PA2 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 35 34 3 33 4 32 5 31 6 LQFP48 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 Figure 5. VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 ai14378c 17/74 Pin descriptions PB4 PB3 PA15 PA14 30 29 28 27 VDD_2 OSC_IN/PD0 2 26 VSS_2 OSC_OUT/PD1 3 25 PA13 NRST 4 24 PA12 VSSA 5 23 PA11 VDDA 6 22 PA10 PA0-WKUP 7 21 PA9 PA1 8 20 PA8 PA2 9 10 11 12 13 14 15 PB0 PB5 31 PA7 PB6 32 PA6 PB7 33 PA5 34 1 PA4 35 VDD_3 PA3 36 BOOT0 STM32F101xx access line VFQPFN36 pinout VSS_3 17 PB2 16 19 18 VDD_1 VSS_1 QFN36 PB1 Figure 6. STM32F101xx ai14654 18/74 STM32F101xx Table 3. Pin descriptions Pin definitions LQFP64 LQFP100 VFQFPN36 Type(1) I / O level(2) Alternate functions(3) LQFP48 Pins Main function(3) (after reset) - - 1 - PE2 I/O FT PE2 TRACECLK - - 2 - PE3 I/O FT PE3 TRACED0 - - 3 - PE4 I/O FT PE4 TRACED1 - - 4 - PE5 I/O FT PE5 TRACED2 - - 5 - PE6 I/O FT PE6 TRACED3 1 1 6 - VBAT S VBAT 2 2 7 - PC13-TAMPERRTC(4) I/O PC13(5) TAMPER-RTC 3 3 8 - PC14-OSC32_IN(4) I/O PC14(5) OSC32_IN 4 4 9 - PC15OSC32_OUT(4) I/O PC15(5) OSC32_OUT - - 10 - VSS_5 S VSS_5 - - 11 - VDD_5 S VDD_5 5 5 12 2 OSC_IN I OSC_IN 6 6 13 3 OSC_OUT O OSC_OUT 7 7 14 4 NRST I/O NRST - 8 15 - PC0 I/O PC0 ADC_IN10 - 9 16 - PC1 I/O PC1 ADC_IN11 - 10 17 - PC2 I/O PC2 ADC_IN12 - 11 18 - PC3 I/O PC3 ADC_IN13 8 12 19 5 VSSA S VSSA - - 20 - VREF- S VREF- - - 21 - VREF+ S VREF+ 9 13 22 6 VDDA S VDDA Pin name Default 10 14 23 7 PA0-WKUP I/O PA0 WKUP/USART2_CTS(8)/ ADC_IN0/ TIM2_CH1_ETR(8) 11 15 24 8 PA1 I/O PA1 USART2_RTS(8)/ ADC_IN1/TIM2_CH2(8) 12 16 25 9 PA2 I/O PA2 USART2_TX(8)/ ADC_IN2/TIM2_CH3(8) 13 17 26 10 PA3 I/O PA3 USART2_RX(8)/ ADC_IN3/TIM2_CH4(8) - 18 27 - VSS_4 S VSS_4 Remap 19/74 Pin descriptions Pin definitions (continued) Alternate functions(3) LQFP64 LQFP100 VFQFPN36 Main function(3) (after reset) LQFP48 Type(1) Pins I / O level(2) Table 3. STM32F101xx - 19 28 - VDD_4 S VDD_4 14 20 29 11 PA4 I/O PA4 SPI1_NSS/ADC_IN4 USART2_CK(8)/ 15 21 30 12 PA5 I/O PA5 SPI1_SCK/ADC_IN5 16 22 31 13 PA6 I/O PA6 SPI1_MISO/ADC_IN6/ TIM3_CH1(8) 17 23 32 14 PA7 I/O PA7 SPI1_MOSI/ADC_IN7/ TIM3_CH2(8) - 24 33 PC4 I/O PC4 ADC_IN14 - 25 34 PC5 I/O PC5 ADC_IN15 18 26 35 15 PB0 I/O PB0 ADC_IN8/TIM3_CH3(8) 19 27 36 16 PB1 I/O PB1 ADC_IN9/TIM3_CH4(8) 20 28 37 17 PB2/BOOT1 I/O FT PB2/BOOT1 - - 38 - PE7 I/O FT PE7 - - 39 - PE8 I/O FT PE8 - - 40 - PE9 I/O FT PE9 - - 41 - PE10 I/O FT PE10 - - 42 - PE11 I/O FT PE11 - - 43 - PE12 I/O FT PE12 - - 44 - PE13 I/O FT PE13 - - 45 - PE14 I/O FT PE14 - - 46 - PE15 I/O FT PE15 21 29 47 - PB10 I/O FT PB10 I2C2_SCL(6)/ USART3_TX(6) (8) TIM2_CH3 22 30 48 - PB11 I/O FT PB11 I2C2_SDA(6)/ USART3_RX(6) (8) TIM2_CH4 23 31 49 18 VSS_1 S VSS_1 24 32 50 19 VDD_1 S VDD_1 25 33 51 - PB12 I/O FT PB12 SPI2_NSS(6) (8)/ I2C2_SMBAl(6)/ USART3_CK(6) (8) 26 34 52 - PB13 I/O FT PB13 SPI2_SCK(6)(8)/ USART3_CTS(6)(8) 27 35 53 - PB14 I/O FT PB14 SPI2_MISO(6)(8)/ USART3_RTS(6)(8) 20/74 Pin name Default Remap STM32F101xx Table 3. Pin descriptions Pin definitions (continued) LQFP64 LQFP100 VFQFPN36 Type(1) I / O level(2) Alternate functions(3) LQFP48 Pins Main function(3) (after reset) 28 36 54 - PB15 I/O FT PB15 - - 55 - PD8 I/O FT PD8 USART3_TX - - 56 - PD9 I/O FT PD9 USART3_RX - - 57 - PD10 I/O FT PD10 USART3_CK - - 58 - PD11 I/O FT PD11 USART3_CTS - - 59 - PD12 I/O FT PD12 TIM4_CH1 / USART3_RTS - - 60 - PD13 I/O FT PD13 TIM4_CH2 - - 61 - PD14 I/O FT PD14 TIM4_CH3 - - 62 - PD15 I/O FT PD15 TIM4_CH4 - 37 63 - PC6 I/O FT PC6 TIM3_CH1 38 64 - PC7 I/O FT PC7 TIM3_CH2 39 65 - PC8 I/O FT PC8 TIM3_CH3 - 40 66 - PC9 I/O FT PC9 TIM3_CH4 29 41 67 20 PA8 I/O FT PA8 USART1_CK/MCO 30 42 68 21 PA9 I/O FT PA9 USART1_TX(8) 31 43 69 22 PA10 I/O FT PA10 USART1_RX(8) 32 44 70 23 PA11 I/O FT PA11 USART1_CTS 33 45 71 24 PA12 I/O FT PA12 USART1_RTS 34 46 72 25 PA13/JTMS/SWDIO I/O FT JTMS-SWDIO PA13 - - 73 - 35 47 74 26 VSS_2 S VSS_2 36 48 75 27 VDD_2 S VDD_2 37 49 76 28 PA14/JTCK/SWCLK I/O FT JTCK/SWCLK PA14 38 50 77 29 PA15/JTDI I/O FT JTDI PA15 - 51 78 PC10 I/O FT PC10 USART3_TX - 52 79 PC11 I/O FT PC11 USART3_RX - 53 80 PC12 I/O FT PC12 Pin name SPI2_MOSI(6) (8) Remap Not connected TIM2_CH1_ETR/ SPI1_NSS USART3_CK (7) 5 5 81 2 PD0 I/O FT 6 6 82 3 PD1 I/O FT OSC_OUT(7) 54 83 - PD2 I/O FT PD2 - 84 - PD3 I/O FT PD3 - Default OSC_IN TIM3_ETR USART2_CTS 21/74 Pin descriptions Table 3. STM32F101xx Pin definitions (continued) LQFP64 LQFP100 VFQFPN36 Type(1) I / O level(2) Alternate functions(3) LQFP48 Pins Main function(3) (after reset) - - 85 - PD4 I/O FT PD4 USART2_RTS - - 86 - PD5 I/O FT PD5 USART2_TX - - 87 - PD6 I/O FT PD6 USART2_RX - - 88 - PD7 I/O FT PD7 USART2_CK 39 55 89 30 PB3/JTDO I/O FT JTDO PB3/TRACESWO TIM2_CH2 / SPI1_SCK 40 56 90 31 PB4/JNTRST I/O FT JNTRST PB4 TIM3_CH1 / SPI1_MISO 41 57 91 32 PB5 I/O PB5 I2C1_SMBAl TIM3_CH2 / SPI1_MOSI 42 58 92 33 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(6) (8) USART1_TX 43 59 93 34 PB7 I/O FT PB7 I2C1_SDA(8)/ TIM4_CH2(6) (8) USART1_RX 44 60 94 35 BOOT0 I 45 61 95 - PB8 I/O PB8 TIM4_CH3(6) (8) I2C1_SCL PB9 TIM4_CH4(6) (8) I2C1_SDA TIM4_ETR(6) 46 62 96 - Pin name PB9 I/O Default Remap BOOT0 FT FT - - 97 - PE0 I/O FT PE0 - - 98 - PE1 I/O FT PE1 47 63 99 36 VSS_3 S VSS_3 48 64 100 1 VDD_3 S VDD_3 1. I = input, O = output, S = supply, HiZ= high impedance. 2. FT= 5 V tolerant. 3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 8. 4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time. 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 6. Available only on devices with a Flash memory density equal or higher than 64 Kbytes. 7. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode. 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 22/74 STM32F101xx 4 Memory mapping Memory mapping The memory map is shown in Figure 7. Figure 7. Memory map APB memory space 0xFFFF FFFF 0xE010 0000 0x6000 0000 0x4002 3400 0x4002 3000 0xFFFF FFFF 0xE010 0000 Cortex-M3 internal peripherals 0xE000 0000 6 reserved reserved 4K CRC 1K reserved 3K 0x4002 2000 Flash interface 1K 0x4002 1400 reserved 3K 0x4002 1000 RCC 1K 0x4002 0400 reserved 3K 0x4002 0000 DMA 1K reserved 1K USART1 1K reserved 1K 0x4002 2400 7 reserved 0x4001 3C00 0x4001 3800 0xC000 0000 0x4001 3400 0x4001 3000 0x4001 2C00 5 0x4001 2800 0x4001 2400 0xA000 0000 SPI1 1K reserved 1K reserved 1K ADC1 1K reserved 2K 0x4001 1800 Port E 1K 0x4001 1400 Port D 1K 0x4001 1000 Port C 1K 0x4001 0C00 Port B 1K 0x4001 0800 Port A 1K 0x4001 0400 EXTI 1K 0x4001 0000 AFIO 1K reserved 35K 0x4001 1C00 4 0x1FFF FFFF reserved 0x1FFF F80F 0x8000 0000 Option Bytes 0x1FFF F800 3 System memory 0x1FFF F000 0x6000 0000 0x4000 7400 0x4000 7000 2 0x4000 0000 0x4000 6C00 reserved Peripherals 0x4000 6800 0x4000 6400 0x4000 6000 0x2000 0000 SRAM 1K BKP 1K reserved 1K reserved 1K reserved 1K reserved 1K 0x4000 5800 I2C2 1K 0x4000 5400 I2C1 1K reserved 2K 0x4000 4800 USART3 1K 0x4000 4400 USART2 1K reserved 2K SPI2 1K 0x4000 3400 reserved 1K 0x4000 3000 IWDG 1K 0x4000 2C00 WWDG 1K 0x4000 2800 RTC 1K reserved 7K 0x4000 0800 TIM4 1K 0x4000 0400 TIM3 1K 0x4000 0000 TIM2 1K 0x4000 5C00 1 PWR 0x0801 FFFF 0x4000 4C00 0 Flash memory 0x0800 0000 0x0000 0000 Aliased to Flash, system memory or SRAM depending on 0x0000 0000 BOOT pins Reserved 0x4000 3C00 0x4000 3800 0x4000 0C00 ai14379c 23/74 Electrical characteristics 5 Electrical characteristics 5.1 Test conditions STM32F101xx Unless otherwise specified, all voltages are referred to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. 24/74 STM32F101xx Electrical characteristics Figure 8. Pin loading conditions Figure 9. Pin input voltage STM32F101 PIN STM32F101 PIN C=50pF VIN ai14123 Power supply scheme Figure 10. Power supply scheme VBAT Backup circuitry (OSC32K,RTC, Wake-up logic Backup registers) Po wer swi tch 1.8-3.6V OUT GP I/Os IN Level shifter 5.1.6 ai14124 IO Logic Kernel logic (CPU, Digital & Memories) VDD VDD 1/2/3/4/5 5 × 100 nF + 1 × 10 µF VDD 1/2/3/4/5 VDDA VREF 10 nF + 1 µF Regulator VSS 10 nF + 1 µF VREF+ VREF- ADC Analog: RCs, PLL, ... VSSA ai14125c 25/74 Electrical characteristics 5.1.7 STM32F101xx Current consumption measurement Figure 11. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 26/74 STM32F101xx 5.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 4: Voltage characteristics, Table 5: Current characteristics, and Table 6: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 4. Voltage characteristics Symbol Ratings VDD −VSS VIN |∆VDDx| |VSSX − VSS| Min Max External main supply voltage (including VDDA and VDD)(1) –0.3 4.0 Input voltage on five volt tolerant pin(2) VSS −0.3 +5.5 Input voltage on any other pin(2) VSS − 0.3 VDD+0.3 Variations between different power pins 50 50 Variations between all the different ground pins 50 50 Electrostatic discharge voltage (human body model) VESD(HBM) Unit V mV see Section 5.3.11: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. IINJ(PIN) must never be exceeded (see Table 5: Current characteristics). This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. Table 5. Current characteristics Symbol Ratings Max. IVDD Total current into VDD power lines (source)(1) 150 IVSS (sink)(1) 150 IIO IINJ(PIN) (2)(3) ΣIINJ(PIN)(2) Total current out of VSS ground lines Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin −25 Injected current on NRST pin ±5 Injected current on High-speed external OSC_IN and Lowspeed external OSC_IN pins ±5 Injected current on any other pin(4) ±5 Total injected current (sum of all I/O and control pins)(4) ± 25 Unit mA 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC characteristics. 4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 27/74 Electrical characteristics Table 6. STM32F101xx Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 5.3 Operating conditions 5.3.1 General operating conditions Table 7. Value Unit –65 to +150 °C 150 °C General operating conditions Symbol Parameter fHCLK Min Max Internal AHB clock frequency 0 36 fPCLK1 Internal APB1 clock frequency 0 36 fPCLK2 Internal APB2 clock frequency 0 36 VDD Standard operating voltage 2 3.6 V VBAT Backup operating voltage 1.8 3.6 V PD Power dissipation at TA = 85 °C(1) Conditions LQFP100 434 LQFP64 444 LQFP48 363 VFQFPN36 1110 Ambient temperature (2) Low power dissipation TJ MHz mW Maximum power dissipation TA Unit Junction temperature range –40 85 °C –40 105 °C –40 105 °C 1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 68). 2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 68). 5.3.2 Operating conditions at power-up / power-down Subject to general operating conditions for TA. Table 8. Symbol tVDD 28/74 Operating conditions at power-up / power-down Parameter Conditions Min VDD rise time rate 0 VDD fall time rate 20 Max Unit ∞ ∞ µs/V STM32F101xx 5.3.3 Electrical characteristics Embedded reset and power control block characteristics The parameters given in Table 9 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. . Table 9. Symbol VPVD Embedded reset and power control block characteristics Parameter Programmable voltage detector level selection VPVDhyst(2) PVD hysteresis VPOR/PDR Power on/power down reset threshold VPDRhyst PDR hysteresis tRSTTEMPO(2) Conditions Min Typ Max Unit PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V PLS[2:0]=000 (falling edge) 2 2.08 2.16 V PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V PLS[2:0]=111 (rising edge) 2.76 2.88 3 V PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V 100 mV Falling edge 1.8(1) 1.88 1.96 V Rising edge 1.84 1.92 2.0 V Reset temporization 40 1.5 2.5 mV 3.5 ms 1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 2. Guaranteed by design, not tested in production. 29/74 Electrical characteristics 5.3.4 STM32F101xx Embedded reference voltage The parameters given in Table 10 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 10. Symbol VREFINT TS_vrefint(1) Embedded internal reference voltage Parameter Internal reference voltage Conditions Min Typ Max Unit –40 °C < TA < +85 °C 1.16 1.20 1.24 V 5.1 17.1 µs ADC sampling time when reading the internal reference voltage 1. Shortest sampling time can be determined in the application by multiple iterations. 5.3.5 Supply current characteristics The current consumption is measured as described in Figure 11: Current consumption measurement scheme. Maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if it is explicitly mentioned ● The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) ● Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) ● When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK The parameters given in Table 11 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 11. Maximum current consumption in Run mode, code with data processing running from Flash Max(1) Symbol Parameter Conditions fHCLK Unit TA = 85 °C External clock (2), all peripherals enabled IDD Supply current in Run mode 36 MHz 28.6 24 MHz 19.9 16 MHz 14.7 8 MHz 8.6 36 MHz 19.8 24 MHz 13.9 16 MHz 10.7 8 MHz 6.8 mA External clock (2), all peripherals Disabled 1. Data based on characterization results, not tested in production. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz. 30/74 STM32F101xx Electrical characteristics Table 12. Maximum current consumption in Run mode, code with data processing running from RAM Max Symbol Parameter Conditions fHCLK Unit TA = 85 °C 36 MHz(2) External clock (1), all peripherals enabled IDD 24 MHz 17.5 16 MHz(2) 12.5 MHz(2) 7.5 8 Supply current in Run mode External clock(1) all peripherals disabled(2) 24 (2) 36 MHz 16 24 MHz 11.5 16 MHz 8.5 8 MHz 5.5 mA 1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz. 2. Based on characterization, not tested in production. Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled 25 Consumption (mA) 20 15 36MHz 16MHz 8MHz 10 5 0 -40 0 25 70 85 Temperature (°C) 31/74 Electrical characteristics STM32F101xx Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled 16 14 Consumption (mA) 12 10 36MHz 16MHz 8MHz 8 6 4 2 0 -40 0 25 70 85 Temperature (°C) Table 13. Maximum current consumption in Sleep mode, code running from Flash or RAM Max Symbol Parameter Conditions fHCLK Unit TA = 85 °C External clock(1) all peripherals enabled IDD Supply current in Sleep mode 36 MHz(2) 15.5 MHz(2) 11.5 24 (2) 16 MHz 8.5 8 MHz(2) 5.5 36 MHz 5 24 MHz 4.5 16 MHz 4 8 MHz 3 mA External clock(1), all peripherals disabled(2) 1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz. 2. Based on characterization, not tested in production. 32/74 STM32F101xx Table 14. Electrical characteristics Typical and maximum current consumptions in Stop and Standby modes Typ(1) Symbol Parameter Unit VDD/ VBAT = 2.4 V VDD/VBAT = 3.3 V TA = 85 °C Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 23.5 24 200(2) Regulator in Low Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 13.5 14 180(2) Supply current in Standby mode(3) Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF 1.7 2 4(2) Backup domain supply current Low-speed oscillator and RTC ON 1.1 1.4 1.9(4) Supply current in Stop mode IDD IDD_VBAT Conditions Max µA 1. Typical values are measured at TA = 25 °C, VDD = 3.3 V, unless otherwise specified. 2. Data based on characterization results, tested in production at VDDmax and fHCLK max. 3. To have the Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator and RTC ON) to IDD Standby (when VDD is present the Backup Domain is powered by VDD supply). 4. Data based on characterization results, not rested in production. Figure 14. Current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Stop regulator ON 140 Consumption (µA) 120 100 80 3.3 V 60 3.6 V 40 20 0 -45 25 70 90 Temperature (°C) 33/74 Electrical characteristics STM32F101xx Figure 15. Current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V 140 Consumption (µA) 120 100 80 3.3 V 3.6 V 60 40 20 0 -40 0 25 70 85 Temperature (°C) Figure 16. Current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V Standby mode 3 Consumption (µA) 2.5 2 3.3 V 1.5 3.6 V 1 0.5 0 -45 25 70 Temperature (°C) 34/74 90 STM32F101xx Electrical characteristics Typical current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if it is explicitly mentioned ● The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) ● Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling) ● When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 The parameters given in Table 15 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 15. Symbol Typical current consumption in Run mode, code with data processing running from Flash Parameter Conditions External clock(3) IDD Supply current in Run mode fHCLK Typ(1) Typ(1) All peripherals enabled(2) All peripherals disabled 36 MHz 19 14.8 24 MHz 12.9 10.1 16 MHz 9.3 7.4 8 MHz 5.5 4.6 4 MHz 3.3 2.8 2 MHz 2.2 1.9 1 MHz 1.6 1.45 500 kHz 1.3 1.25 125 kHz 1.08 1.06 36 MHz 18.3 14.1 24 MHz 12.2 9.5 16 MHz 8.5 6.8 8 MHz 4.9 4 4 MHz 2.7 2.2 2 MHz 1.6 1.4 1 MHz 1.02 0.9 500 kHz 0.73 0.67 125 kHz 0.5 0.48 Unit mA Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 35/74 Electrical characteristics Table 16. Symbol STM32F101xx Typical current consumption in Sleep mode, code with data processing code running from Flash or RAM Parameter Conditions (3) External clock IDD Supply current in Sleep mode Typ(1) Typ(1) All peripherals enabled(2) All peripherals disabled 36 MHz 7.6 3.1 24 MHz 5.3 2.3 16 MHz 3.8 1.8 8 MHz 2.1 1.2 4 MHz 1.6 1.1 2 MHz 1.3 1 1 MHz 1.11 0.98 500 kHz 1.04 0.96 125 kHz 0.98 0.95 36 MHz 7 2.5 24 MHz 4.8 1.8 16 MHz 3.2 1.2 8 MHz 1.6 0.6 4 MHz 1 0.5 2 MHz 0.72 0.47 1 MHz 0.56 0.44 500 kHz 0.49 0.42 125 kHz 0.43 0.41 fHCLK mA Running on High Speed Internal RC (HSI), AHB prescaler used to reduce the frequency 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 36/74 Unit STM32F101xx Electrical characteristics Table 17. Symbol IDD IDD_VBAT Typical current consumption in Standby mode VDD Typ(1) Low-speed internal RC oscillator and independent watchdog OFF 3.3 V 2 2.4 V 1.5 Supply current in Low-speed internal RC oscillator and Standby mode(2) independent watchdog ON 3.3 V 3.4 2.4 V 2.6 Low-speed internal RC oscillator ON, independent watchdog OFF 3.3 V 3.2 2.4 V 2.4 3.3 V 1.4 2.4 V 1.1 Parameter Backup domain supply current Conditions Unit µA Low-speed oscillator and RTC ON µA 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. To obtain Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator, RTC ON) to IDD Standby. 37/74 Electrical characteristics STM32F101xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed under the following conditions: ● all I/O pins are in input mode with a static value at VDD or VSS (no load) ● all peripherals are disabled unless otherwise mentioned ● the given value is calculated by measuring the current consumption ● – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 4. Table 18. Peripheral current consumption Peripheral Typical consumption at 25 °C(1) TIM2 0.6 TIM3 0.6 TIM4 0.6 SPI2 0.08 USART2 0.21 USART3 0.21 I2C1 0.18 I2C2 0.18 GPIO A 0.21 GPIO B 0.21 GPIO C 0.21 GPIO D 0.21 GPIO E 0.21 Unit APB1 mA APB2 (2) 1. ADC1 1.4 SPI1 0.24 USART1 0.35 fHCLK = 36 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2. Specific conditions for ADC: fHCLK = 28 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit in the ADC_CR2 register is set to 1. 38/74 STM32F101xx 5.3.6 Electrical characteristics External clock source characteristics High-speed user external clock The characteristics given in Table 19 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7. Table 19. High-speed user external (HSE) clock characteristics Symbol Parameter Conditions Min fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage VSS tw(HSE) tw(HSE) OSC_IN high or low time(1) 16 0.7VDD Typ Max Unit 8 25 MHz VDD V tr(HSE) tf(HSE) IL 0.3VDD ns OSC_IN rise or fall time(1) OSC_IN Input leakage current 5 VSS ≤ VIN ≤ VDD ±1 µA 1. Value based on design simulation and/or technology characteristics. It is not tested in production. 39/74 Electrical characteristics STM32F101xx Low-speed user external clock The characteristics given in Table 20 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7. Table 20. Low-speed user external clock characteristics Symbol Parameter Conditions Min fLSE_ext User external clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage VSS tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 Typ Max Unit 32.768 1000 kHz 0.7VDD VDD V tr(LSE) tf(LSE) IL 0.3VDD ns OSC32_IN rise or fall time(1) OSC32_IN Input leakage current 5 VSS ≤ VIN ≤ VDD ±1 µA 1. Value based on design simulation and/or technology characteristics. It is not tested in production. Figure 17. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tW(HSE) tW(HSE) t THSE EXTER NAL CLOCK SOURC E fHSE_ext OSC _IN IL STM32F101 ai14127 40/74 STM32F101xx Electrical characteristics Figure 18. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) tW(LSE) OSC32_IN IL tW(LSE) t TLSE EXTER NAL CLOCK SOURC E fLSE_ext STM32F101 ai14140b High-speed external clock The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 21. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 21. HSE 4-16 MHz oscillator characteristics(1) Symbol fOSC_IN RF CL1 CL2(2) i2 gm(4) tSU(HSE) (5) Parameter Conditions Oscillator frequency Min Typ Max Unit 4 8 16 MHz Feedback resistor 200 kΩ Recommended load capacitance versus R = 30 Ω equivalent serial resistance of the crystal (RS)(3) S 30 pF HSE driving current VDD = 3.3 V VIN = VSS with 30 pF load Oscillator transconductance Startup Startup time VDD is stabilized 1 25 mA mA/V 2 ms 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board capacitance). 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. Based on characterization results, not tested in production. 5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer 41/74 Electrical characteristics STM32F101xx Figure 19. Typical application with an 8 MHz crystal RESONATOR WITH IN TEGRATED CAPAC ITORS CL1 fHSE OSC_IN 8 MH z resonator CL2 REXT(1) RF Bias controlled gain STM32F101xx OSC_OU T ai14128 1. REXT value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS. Low-speed external clock The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor CL1 CL2 Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(1) RS = 30 KΩ 15 pF I2 LSE driving current VDD = 3.3 V VIN = VSS 1.4 µA gm Oscillator transconductance tSU(LSE)(2) 5 5 Startup time VDD is stabilized MΩ µA/V 3 s 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 20. Typical application with a 32.768 kHz crystal RESONATOR WITH IN TEGRATED CAPAC ITORS CL1 fLSE OSC32_IN 32.768 KH z resonator CL2 RF OSC32_OU T Bias controlled gain STM32F101xx ai14129 42/74 STM32F101xx 5.3.7 Electrical characteristics Internal clock source characteristics The parameters given in Table 23 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. High-speed internal (HSI) RC oscillator Table 23. HSI oscillator characteristics(1) Symbol fHSI Parameter Conditions Min Frequency ACCHSI Accuracy of HSI oscillator tsu(HSI) HSI oscillator startup time IDD(HSI) HSI oscillator power consumption Typ Max 8 Unit MHz TA = –40 to 85 °C ±1 ±3 % TA = –10 to 85 °C ±1 ±2.5 % TA = 0 to 70 °C ±1 ±2.2 % at TA = 25 °C ±1 ±2 % 2 µs 80 100 µA Min(2) Typ Max Unit 30 40 60 kHz 85 µs 1.2 µA 1 1. VDD = 3.3 V, TA = −40 to 85 °C unless otherwise specified. LSI low speed internal RC oscillator Table 24. Symbol fLSI LSI oscillator characteristics (1) Parameter Conditions Frequency tsu(LSI) LSI oscillator startup time IDD(LSI) LSI oscillator power consumption 0.65 1. VDD = 3 V, TA = −40 to 85 °C unless otherwise specified. 2. Value based on device characterization, not tested in production. 43/74 Electrical characteristics STM32F101xx Wakeup time from low power mode The wakeup times given in Table 25 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: ● Stop or Standby mode: the clock source is the RC oscillator ● Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 25. Symbol Low-power mode wakeup timings Parameter Typ Unit Wakeup on HSI RC clock 1.8 µs Wakeup from Stop mode (regulator in run mode) HSI RC wakeup time = 2 µs 3.6 Wakeup from Stop mode (regulator in low-power mode) HSI RC wakeup time = 2 µs, Regulator wakeup from LP mode time = 5 µs 5.4 HSI RC wakeup time = 2 µs, Regulator wakeup from power down time = 38 µs 50 tWUSLEEP(1) Wakeup from Sleep mode tWUSTOP(1) tWUSTDBY(1) Wakeup from Standby mode Conditions µs µs 1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction. 5.3.8 PLL characteristics The parameters given in Table 26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 26. Symbol PLL characteristics Parameter Test conditions Value Min PLL input clock fPLL_IN fPLL_OUT tLOCK Max(1) 8.0 Unit MHz PLL input clock duty cycle 40 60 % PLL multiplier output clock 16 36 MHz 200 µs PLL lock time 1. Data based on device characterization, not tested in production. 44/74 Typ STM32F101xx 5.3.9 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = −40 to 85 °C unless otherwise specified. Table 27. Symbol tprog tERASE tME IDD Vprog Flash memory characteristics Conditions Min Typ Max(1) Unit 16-bit programming time TA = −40 to +85 °C 40 52.5 70 µs Page (1kB) erase time TA = −40 to +85 °C 20 40 ms Mass erase time TA = −40 to +85 °C 20 40 ms Read mode fHCLK = 36MHz with 2 wait states, VDD = 3.3 V 20 mA Write / Erase modes fHCLK = 36 MHz, VDD = 3.3 V 5 mA Power-down mode / Halt, VDD = 3.0 to 3.6 V 50 µA 3.6 V Parameter Supply current Programming voltage 2 1. Values based on characterization and not tested in production. Table 28. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions Min(1) TA = –40 °C to 85 °C 10 kcycle(2) 30 TA = 85 °C, 1 TA = 55 °C, 10 kcycle(2) Unit Typ Max kcycles Years 20 1. Values based on characterization not tested in production. 2. Cycling performed over the whole temperature range. 45/74 Electrical characteristics 5.3.10 STM32F101xx EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (Electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 29. They are based on the EMS levels and classes defined in application note AN1709. Table 29. EMS characteristics Symbol Parameter Conditions Level/Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK=48 MHz conforms to IEC 1000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz conforms to IEC 1000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). 46/74 STM32F101xx Electrical characteristics Electromagnetic Interference (EMI) The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading. Table 30. EMI characteristics Symbol Parameter Monitored frequency band Conditions Max vs. [fHSE/fHCLK] Unit 8/36 MHz SEMI 5.3.11 Peak level VDD = 3.3 V, TA = 2 5°C, LQFP100 package compliant with SAE J 1752/3 0.1 MHz to 30 MHz 7 30 MHz to 130 MHz 8 130 MHz to 1GHz 13 SAE EMI Level 3.5 dBµV - Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 31. ESD absolute maximum ratings Symbol Ratings VESD(HBM) Electrostatic discharge voltage (human body model) Electrostatic discharge VESD(CDM) voltage (charge device model) Conditions TA = +25 °C conforming to JESD22-A114 TA = +25 °C conforming to JESD22-C101 Class Maximum value(1) 2 Unit 2000 V II 500 1. Values based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on 10 parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78 IC latch-up standard. 47/74 Electrical characteristics Table 32. Symbol Electrical sensitivities Parameter LU 5.3.12 STM32F101xx Conditions Static latch-up class Class TA = +105 °C conforming to JESD78A II level A I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 33 are derived from tests performed under the conditions summarized in Table 7. All I/Os are CMOS and TTL compliant. Table 33. Symbol VIL I/O static characteristics Parameter Conditions Input low level voltage(1) Standard IO input high level voltage(1) VIH Input low level voltage(1) VIH Input high level voltage(1) Ilkg 2 VDD+0.5 2 5.5V –0.5 0.35 VDD 0.65 VDD VDD+0.5 Unit V CMOS ports IO FT Schmitt trigger voltage hysteresis(3) Input leakage current Max 0.8 TTL ports Standard IO Schmitt trigger voltage hysteresis(3) (4) Typ –0.5 IO FT(2) input high level voltage(1) VIL Vhys Min V 200 mV 5% VDD(4) mV VSS ≤VIN ≤VDD Standard I/Os ±1 VIN = 5 V I/O FT 3 µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 30 40 50 kΩ RPD Weak pull-down equivalent resistor(6) VIN = VDD 30 40 50 kΩ CIO I/O pin capacitance 5 pF 1. Values based on characterization results, and not tested in production. 2. FT = Five-volt tolerant. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. With a minimum of 100 mV. 5. Leakage could be higher than max. if negative current is injected on adjacent pins. 6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). 48/74 STM32F101xx Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed VOL). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: ● The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 5). ● The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 5). Output voltage levels Unless otherwise specified, the parameters given in Table 34 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. All I/Os are CMOS and TTL compliant. Table 34. Output voltage characteristics Symbol Parameter VOL(1) Output Low level voltage for an I/O pin when 8 pins are sunk at the same time VOH(2) Output High level voltage for an I/O pin when 8 pins are sourced at the same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at the same time VOH(2) Output high level voltage for an I/O pin when 8 pins are sourced at the same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at the same time VOH (2) Output high level voltage for an I/O pin when 8 pins are sourced at the same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at the same time VOH(2) Output high level voltage for an I/O pin when 8 pins are sourced at the same time Conditions TTL port, IIO = +8 mA, 2.7 V < VDD < 3.6 V CMOS port IIO = +8 mA 2.7 V < VDD < 3.6 V IIO = +20 mA(3) 2.7 V < VDD < 3.6 V IIO = +6 mA(3) 2 V < VDD < 2.7 V Min Max Unit 0.4 V VDD–0.4 0.4 V 2.4 1.3 V VDD–1.3 0.4 V VDD–0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 3. Based on characterization data, not tested in production. 49/74 Electrical characteristics STM32F101xx Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 21 and Table 35, respectively. Unless otherwise specified, the parameters given in Table 35 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 35. MODEx [1:0] bit value(1) I/O AC characteristics(1) Symbol Parameter fmax(IO)out Maximum frequency(2) 10 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time Fmax(IO)out Maximum 11 tf(IO)out tr(IO)out - tEXTIpw Frequency(2) Output high to low level fall time Output low to high level rise time Conditions CL = 50 pF, VDD = 2 V to 3.6 V Max Unit 2 MHz 125(3) CL = 50 pF, VDD = 2 V to 3.6 V ns (3) 125 CL= 50 pF, VDD = 2 V to 3.6 V 10 MHz 25(3) CL= 50 pF, VDD = 2 V to 3.6 V ns 25(3) CL= 30 pF, VDD = 2.7 V to 3.6 V 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) Pulse width of external signals detected by the EXTI controller 10 ns ns 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 21. 3. Values based on design simulation and validated on silicon, not tested in production. 50/74 STM32F101xx Electrical characteristics Figure 21. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) £ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 5.3.13 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 33). Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 36. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST Input low level voltage –0.5 0.8 VIH(NRST) NRST Input high level voltage 2 VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis RPU Unit V 200 Weak pull-up equivalent resistor(1) VIN = VSS 30 40 pulse(2) VF(NRST) NRST Input filtered VNF(NRST) NRST Input not filtered pulse(2) 50 kΩ 100 ns 300 ns 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Values guaranteed by design, not tested in production. Figure 22. Recommended NRST pin protection VDD External reset circuit(1) NRST(2) RPU Internal Reset FILTER 0.1 µF STM32F10xxx ai14132b 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 36. Otherwise the reset will not be taken into account by the device. 51/74 Electrical characteristics 5.3.14 STM32F101xx TIM timer characteristics The parameters given in Table 37 are guaranteed by fabrication. Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 37. Symbol tres(TIM) fEXT ResTIM tCOUNTER TIMx(1) characteristics Parameter Conditions Min Max 1 tTIMxCLK 27.8 ns Timer resolution time fTIMxCLK = 36 MHz Timer external clock frequency on CH1 to CH4 fTIMxCLK = 36 MHz 0 fTIMxCLK/2 MHz 0 18 MHz 16 bit 65536 tTIMxCLK 1820 µs 65536 × 65536 tTIMxCLK 119.2 s Timer resolution 16-bit counter clock period when internal clock is selected tMAX_COUNT Maximum possible count Unit 1 fTIMxCLK = 36 MHz 0.0278 fTIMxCLK = 36 MHz 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. 5.3.15 Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 38 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 7. The STM32F101xx access line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 38. Refer also to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). 52/74 STM32F101xx Electrical characteristics Table 38. I2C characteristics Standard mode I2C(1) Fast mode I2C(1)(2) Symbol Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 (3) 0(4) 900(3) µs th(SDA) SDA data hold time tr(SDA) tr(SCL) SDA and SCL rise time 1000 20+0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20+0.1Cb 300 th(STA) Start condition hold time 4.0 0.6 tsu(STA) Repeated Start condition setup time 4.7 0.6 tsu(STO) Stop condition setup time 4.0 0.6 µs tw(STO:STA) Stop to Start condition time (bus free) 4.7 1.3 µs Cb Capacitive load for each bus line 2C 1. Values based on standard I 0 ns µs 400 400 pF protocol requirement, not tested in production. 2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I2C frequency. 3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 53/74 Electrical characteristics STM32F101xx Figure 23. I2C bus AC waveforms and measurement circuit(1) VDD VDD 4 .7 kΩ 4 .7 kΩ 100 Ω 100 Ω I²C bus STM32F101 SDA SCL S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) tsu(SDA) tw(SCKL) th(STA) SCL tw(SCKH) tr(SCK) th(SDA) tsu(STA:STO) S TOP tsu(STO) tf(SCK) ai14127b 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 39. SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V)(1)(2)(3) fSCL I2C_CCR value (kHz) RP = 4.7 kΩ 400 TBD 300 TBD 200 TBD 100 TBD 50 TBD 20 TBD 1. TBD = to be determined. 2. RP = External pull-up resistance, fSCL = I2C speed, 3. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. 54/74 STM32F101xx Electrical characteristics SPI interface characteristics Unless otherwise specified, the parameters given in Table 40 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 7. Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 40. Symbol fSCK 1/tc(SCK) SPI characteristics(1) Parameter Conditions Min Max Master mode 0 18 Slave mode 0 18 SPI clock frequency MHz SPI clock rise and fall time Capacitive load: C = 30 pF tsu(NSS)(2) NSS setup time Slave mode 4 tPCLK th(NSS)(2) NSS hold time Slave mode 18 SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 SPI1 1 SPI2 5 tr(SCK) tf(SCK) tw(SCKH)(2) tw(SCKL)(2) 8 60 tsu(MI) (2) Data input setup time Master mode tsu(SI)(2) Data input setup time Slave mode th(MI) (2) Data input hold time Master mode (2) Data input hold time Slave mode 3 Slave mode, fPCLK = 36 MHz, Data output access time presc = 4 0 55 0 4 tPCLK th(SI) ta(SO)(2)(3) 1 SPI1 1 SPI2 5 Slave mode, fPCLK = 24 MHz (2)(4) Data output disable time Slave mode (2)(1) Data output valid time Slave mode (after enable edge) tv(MO)(2)(1) Data output valid time Master mode (after enable edge) tdis(SO) tv(SO) th(SO)(2) th(MO)(2) Data output hold time Unit ns 10 25 3 Slave mode (after enable edge) 25 Master mode (after enable edge) 4 1. Remapped SPI1 characteristics to be determined. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 55/74 Electrical characteristics STM32F101xx Figure 24. SPI timing diagram - slave mode and CPHA=0 NSS input SCK Input tSU(NSS) CPHA= 0 CPOL=0 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134 Figure 25. SPI timing diagram - slave mode and CPHA=1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) M SB IN B I T1 IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 56/74 STM32F101xx Electrical characteristics Figure 26. SPI timing diagram - master mode(1) High NSS input SCK Input SCK Input tc(SCK) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 57/74 Electrical characteristics 5.3.16 STM32F101xx 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 41 are derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 7. Note: It is recommended to perform a calibration after each power-up. Table 41. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA ADC power supply 2.4 3.6 V VREF+ Positive reference voltage 2.4 VDDA V IVREF Current on the VREF input pin 220(1) µA fADC ADC clock frequency 0.6 14 MHz fS(2) Sampling rate 0.05 1 MHz 823 kHz 17 1/fADC VREF+ V fTRIG(2) VAIN External trigger frequency 160(1) fADC = 14 MHz 0 (VSSA or VREFtied to ground) Conversion voltage range(3) RAIN(2) External input impedance RADC(2) See Equation 1 and Table 42 kΩ Sampling switch resistance 1 kΩ CADC(2) Internal sample and hold capacitor 5 pF tCAL(2) Calibration time fADC = 14 MHz Injection trigger conversion latency fADC = 14 MHz tlatr(2) Regular trigger conversion latency fADC = 14 MHz tS(2) Sampling time fADC = 14 MHz tSTAB(2) Power-up time 83 1/fADC (4) 3 µs 1/fADC 0.143 (4) 2 1/fADC 17.1 µs 1.5 239.5 1/fADC 1 µs 18 µs 0 fADC = 14 MHz µs 0.107 1 Total conversion time (including sampling time) µs 0.214 tlat(2) tCONV(2) 5.9 0 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package. Refer to Section 3: Pin descriptions for further details. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 41. 58/74 STM32F101xx Electrical characteristics Equation 1: RAIN max formula: t S R AIN < --------------------------------------------------------------- – R ADC N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 42. RAIN max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RAIN max (kΩ) 1.5 0.11 1.2 7.5 0.54 10 13.5 0.96 19 28.5 2.04 41 41.5 2.96 60 55.5 3.96 80 71.5 5.11 104 239.5 17.1 350 1. Data guaranteed by design, not tested in production. Table 43. ADC accuracy - limited test conditions(1) Symbol ET EO EG Parameter Total unadjusted error(3) Offset error(3) (3) Gain error (3) ED Differential linearity error EL Integral linearity error(3) Test conditions Typ Max(2) fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 3 V to 3.6 V TA = 25 °C Measurements made after ADC calibration VREF+ = VDDA ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ±0.8 ±1.5 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. Data based on characterization, not tested in production. 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. 59/74 Electrical characteristics STM32F101xx Table 44. ADC accuracy(1) (2) Symbol Parameter ET EO Test conditions Total unadjusted error(4) Offset error(3) (3) EG Gain error ED Differential linearity error(3) EL Integral linearity error (3) fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration Typ Max(3) ±2 ±5 ±1.5 ±2.5 ±1.5 ±3 ±1 ±2 ±1.5 ±3 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges. 3. Data based on characterization, not tested in production. 4. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Figure 27. ADC accuracy characteristics V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096 EG 4095 4094 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4093 (2) ET (3) 7 (1) 6 5 4 EO EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 60/74 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 2 3 4 5 6 7 4093 4094 4095 4096 VDDA ai14395b STM32F101xx Electrical characteristics Figure 28. Typical connection diagram using the ADC VDD RAIN(1) VAIN STM32F101 VT 0.6 V AINx CAIN VT 0.6 V RADC(1) 12-bit A/D conversion CADC(1) IL±1 µA ai14139b 1. Refer to Table 41 for the values of RAIN, RADC and CADC. 2. CPARASITIC must be added to CAIN. It represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 29 or Figure 30, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 29. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F101xx V REF+ 1 µF // 10 nF V DDA 1 µF // 10 nF V SSA/V REF- ai14380 1. VREF+ and VREF- inputs are available only on 100-pin packages. 61/74 Electrical characteristics STM32F101xx Figure 30. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F101xx VREF+/VDDA 1 µF // 10 nF VREF–/VSSA ai14380 1. VREF+ and VREF- inputs are available only on 100-pin packages. 5.3.17 Temperature sensor characteristics Table 45. TS characteristics Symbol TL(1) Parameter tSTART(2) TS_temp(3)(2) Min Typ Max Unit ±1 ±2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V 10 µs 17.1 µs VSENSE linearity with temperature Avg_Slope(1) Average slope V25(1) Conditions Voltage at 25°C Startup time 4 ADC sampling time when reading the temperature 1. Guaranteed by characterization, not tested in production. 2. Data guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. 62/74 2.2 STM32F101xx 6 Package characteristics 6.1 Package mechanical data Package characteristics In order to meet environmental requirements, ST offers the STM32F101xx in ECOPACK® packages. These packages have a Lead-free second-level interconnect. The category of second-level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 63/74 Package characteristics STM32F101xx Figure 31. VFQFPN36 6 x 6 mm, 0.5 mm pitch, Figure 32. Recommended footprint package outline(1) (dimensions in mm)(1)(2)(3) Seating plane C ddd C 4.30 A2 A 36 A1 A3 D 27 4.80 36 28 27 E2 1 Pin # 1 ID R = 0.20 e 1 4.80 6.30 b 4.10 4.30 4.10 E 0.30 18 19 0.75 9 19 9 10 18 1.00 0.50 10 4.30 D2 L ai14870 ZR_ME 1. Drawing is not to scale. 2. The back-side pad is not internally connected to the VSS or VDD power pads. 3. There is an exposed die pad on the underside of the VFQFPN package. It should be soldered to the PCB. All leads should also be soldered to the PCB. Table 46. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max 0.800 0.900 1.000 0.0315 0.0354 0.0394 A1 0.020 0.050 0.0008 0.0020 A2 0.650 1.000 0.0256 0.0394 A3 0.250 A 0.0098 b 0.180 0.230 0.300 0.0071 0.0091 0.0118 D 5.875 6.000 6.125 0.2313 0.2362 0.2411 D2 1.750 3.700 4.250 0.0689 0.1457 0.1673 E 5.875 6.000 6.125 0.2313 0.2362 0.2411 E2 1.750 3.700 4.250 0.0689 0.1457 0.1673 e 0.450 0.500 0.550 0.0177 0.0197 0.0217 L 0.350 0.550 0.750 0.0138 0.0217 0.0295 ddd 0.080 1. Values in inches are converted from mm and rounded to 4 decimal digits. 64/74 0.0031 STM32F101xx Package characteristics Figure 34. Recommended footprint(1)(2) Figure 33. LQFP100, 100-pin low-profile quad flat package outline(1) 0.25 mm 0.10 inch GAGE PLANE 75 k 51 D L D1 76 50 0.5 L1 D3 51 75 C 0.3 76 50 16.7 14.3 b E3 E1 E 100 26 1.2 1 100 26 Pin 1 1 identification 25 12.3 25 ccc C 16.7 e A1 ai14906 A2 A SEATING PLANE C 1L_ME 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 47. LQPF100 – 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Typ Min A Max Typ Min 1.6 A1 0.05 0.15 Max 0.063 0.002 0.0059 A2 1.4 1.35 1.45 0.0551 0.0531 0.0571 b 0.22 0.17 0.27 0.0087 0.0067 0.0106 0.09 0.2 0.0035 0.0079 c D 16 15.8 16.2 0.6299 0.622 0.6378 D1 14 13.8 14.2 0.5512 0.5433 0.5591 D3 12 E 16 15.8 16.2 0.6299 0.622 0.6378 E1 14 13.8 14.2 0.5512 0.5433 0.5591 E3 12 e 0.5 L 0.6 0.0177 0.0295 L1 1 k 3.5° 0.0° 7.0° ccc 0.4724 0.4724 0.0197 0.45 0.75 0.0236 0.0394 0.0° 7.0° 0.08 3.5° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 65/74 Package characteristics STM32F101xx Figure 36. Recommended footprint(1)(2) Figure 35. LQFP64 – 64 pin low-profile quad flat package outline(1) D A D1 A2 48 33 0.3 A1 49 b E1 12.7 32 0.5 10.3 E e 10.3 64 17 1.2 1 16 c 7.8 L1 12.7 L ai14398 ai14909 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 48. LQFP64 – 64-pin low-profile quad flat package mechanical data inches(1) mm Dim. Min Typ A Max Min 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 Max 0.0630 0.15 0.0020 0.0059 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 0.0079 D 12.00 0.4724 D1 10.00 0.3937 E 12.00 0.4724 E1 10.00 0.3937 e 0.50 0.0197 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 1.00 0.0394 Number of pins N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. 66/74 Typ STM32F101xx Package characteristics Figure 37. LQFP48 – 48-pin low-profile quad flat package outline(1) Figure 38. Recommended footprint(1)(2) D A D1 A2 0.50 1.20 13 A1 0.30 24 25 12 b 9.70 E1 e E 0.20 7.30 5.80 7.30 1 36 48 37 1.20 c L1 L ai14384 5.80 9.70 θ ai14911 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 49. LQFP48 – 48-pin low-profile quad flat package mechanical data inches(1) mm Dim. Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 C 0.09 Max 0.0630 0.15 0.0020 0.0059 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 0.0079 D 9.00 0.3543 D1 7.00 0.2756 E 9.00 0.3543 E1 7.00 0.2756 e 0.50 0.0197 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 1.00 0.0394 Number of pins N 48 1. Values in inches are converted from mm and rounded to 4 decimal digits. 67/74 Package characteristics 6.2 STM32F101xx Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 7: General operating conditions on page 28. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: ● TA max is the maximum ambient temperature in ° C, ● ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, ● PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), ● PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 50. Thermal characteristics Symbol Parameter ΘJA Value Thermal resistance junction-ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch 45 Unit °C/W Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm / 0.5 mm pitch 55 Thermal resistance junction-ambient VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch 18 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 68/74 STM32F101xx 7 Ordering information scheme Ordering information scheme Table 51. Ordering information scheme Example: STM32 F 101 C 6 T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 101 = access line Pin count T = 36 pins C = 48 pins R = 64 pins V = 100 pins Flash memory size 6 = 32 Kbytes of Flash memory 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory Package H = BGA T = LQFP U = VFQFPN Temperature range 6 = Industrial temperature range, –40 to 85 °C. Options xxx = programmed parts TR = tape and real For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. 7.1 Future family enhancements Further developments of the STM32F101xx access line will see an expansion of the current options. Larger packages will soon be available with up to 512 KB Flash, 48 KB SRAM and with extended features such as flexible static memory controller (FSMC) support, DAC and additional timers and USARTS. 69/74 Revision history 8 Revision history Table 52. Document revision history Date Revision 06-Jun-2007 1 First draft. 2 IDD values modified in Table 11: Maximum current consumption in Run and Sleep modes (TA = 85 °C). VBAT range modified in Power supply schemes. VREF+ min value, tSTAB, tlat and fTRIG added to Table 41: ADC characteristics. Table 37: TIMx characteristics modified. Note 6 modified and Note 8, Note 4 and Note 7 added below Table 3: Pin definitions. Figure 18: Low-speed external clock source AC timing diagram, Figure 10: Power supply scheme, Figure 22: Recommended NRST pin protection and Figure 23: I2C bus AC waveforms and measurement circuit(1) modified. Sample size modified and machine model removed in Electrostatic discharge (ESD). Number of parts modified and standard reference updated in Static latchup. 25 °C and 85 °C conditions removed and class name modified in Table 32: Electrical sensitivities. tSU(LSE) changed to tSU(LSE) in Table 21: HSE 4-16 MHz oscillator characteristics. In Table 28: Flash memory endurance and data retention, typical endurance added, data retention for TA = 25 °C removed and data retention for TA = 85 °C added. Note removed below Table 7: General operating conditions. VBG changed to VREFINT in Table 10: Embedded internal reference voltage. IDD max values added to Table 11: Maximum current consumption in Run and Sleep modes (TA = 85 °C). IDD(HSI) max value added to Table 23: HSI oscillator characteristics. RPU and RPD min and max values added to Table 33: I/O static characteristics. RPU min and max values added to Table 36: NRST pin characteristics (two notes removed). Datasheet title corrected. USB characteristics section removed. Features on page 1 list optimized. Small text changes. 20-Jul-07 70/74 STM32F101xx Changes STM32F101xx Revision history Table 52. Date 18-Oct-2007 Document revision history (continued) Revision Changes 3 VESD(CDM) value added to Table 31: ESD absolute maximum ratings. Note added below Table 9: Embedded reset and power control block characteristics. and below Table 21: HSE 4-16 MHz oscillator characteristics. Note added below Table 34: Output voltage characteristics and VOH parameter description modified. Table 41: ADC characteristics and Table 43: ADC accuracy - limited test conditions modified. Figure 27: ADC accuracy characteristics modified. Packages are ECOPACK® compliant. Tables modified in Section 5.3.5: Supply current characteristics. ADC and ANTI_TAMPER signal names modified (see Table 3: Pin definitions). Table 3: Pin definitions modified. Note 4 removed and values updated in Table 17: Typical current consumption in Standby mode. Vhys modified in Table 33: I/O static characteristics. Updated: Table 29: EMS characteristics and Table 30: EMI characteristics. tVDD modified in Table 8: Operating conditions at power-up / power-down. Typical values modified, note 2 modified and note 3 removed in Table 25: Low-power mode wakeup timings. Maximum current consumption Table 11, Table 12 and Table 13 updated. Values added and notes added in Table 14: Typical and maximum current consumptions in Stop and Standby modes. On-chip peripheral current consumption on page 38 added. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see Section 6: Package characteristics). Vprog added to Table 27: Flash memory characteristics. TS_temp added to Table 45: TS characteristics. TS_vrefint added to Table 10: Embedded internal reference voltage. Handling of unused pins specified in General input/output characteristics on page 48. All I/Os are CMOS and TTL compliant. Table 3: Pin definitions: table clarified and Note 7 modified. Internal LSI RC frequency changed from 32 to 40 kHz (see Table 24: LSI oscillator characteristics). Values added to Table 25: Low-power mode wakeup timings. NEND modified in Table 28: Flash memory endurance and data retention. Option byte addresses corrected in Figure 7: Memory map. ACCHSI modified in Table 23: HSI oscillator characteristics. tJITTER removed from Table 26: PLL characteristics. Appendix A: Important notes on page 71 added. Added: Figure 12, Figure 13, Figure 14 and Figure 16. 71/74 Revision history Table 52. Date 22-Nov-2007 72/74 STM32F101xx Document revision history (continued) Revision Changes 4 Document status promoted from preliminary data to datasheet. Small text changes. STM32F101CB part number corrected in Table 1: Device summary. Number of communication peripherals corrected for STM32F101Tx in Table 2: Device features and peripheral counts (STM32F101xx access line) and Number of GPIOs corrected for LQFP package. Power supply schemes on page 10 modified. Main function and default alternate function modified for PC14 and PC15 in Table 3: Pin definitions, Note 5 added, Remap column added. Figure 10: Power supply scheme modified. VDD −VSS ratings modified and Note 1 modified in Table 4: Voltage characteristics. Note 1 modified in Table 5: Current characteristics. Note 2 added in Table 9: Embedded reset and power control block characteristics. 48 and 72 MHz frequencies removed from Table 11, Table 12 and Table 13. MCU ‘s operating conditions modified in Typical current consumption on page 35. IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum value added in Table 14: Typical and maximum current consumptions in Stop and Standby modes. Note added in Table 15 on page 35 and Table 16 on page 36. Table 18: Peripheral current consumption modified. Figure 15: Current consumption in Stop mode with regulator in Lowpower mode versus temperature at VDD = 3.3 V and 3.6 V added. Note removed below Figure 24: SPI timing diagram - slave mode and CPHA=0. Note added below Figure 25: SPI timing diagram - slave mode and CPHA=1(1). Figure 28: Typical connection diagram using the ADC modified. tSU(HSE) and tSU(LSE) conditions modified in Table 21 and Table 22, respectively. Maximum values removed from Table 25: Low-power mode wakeup timings. tRET conditions modified in Table 28: Flash memory endurance and data retention. Conditions modified in Table 29: EMS characteristics. Impedance size specified in A.4: Voltage glitch on ADC input 0 on page 71. Small text changes in Table 34: Output voltage characteristics. Section 5.3.11: Absolute maximum ratings (electrical sensitivity) updated. Details on unused pins removed from General input/output characteristics on page 48. Table 40: SPI characteristics updated. Notes added and Ilkg removed in Table 41: ADC characteristics. Note added in Table 42 and Table 45. Note 2 and Note 3 added below Table 43: ADC accuracy - limited test conditions. Avg_Slope and V25 modified in Table 45: TS characteristics. ΘJAvalue for VFQFPN36 package added in Table 50: Thermal characteristics. I2C interface characteristics on page 52 modified. Order codes replaced by Section 7: Ordering information scheme. STM32F101xx Revision history Table 52. Date 14-Mar-2008 21-Mar-2008 Document revision history (continued) Revision Changes 5 Figure 2: Clock tree on page 15 added. CRC added (see CRC (cyclic redundancy check) calculation unit on page 9 and Figure 7: Memory map on page 23 for address). Maximum TJ value given in Table 6: Thermal characteristics on page 28. PD, TA and TJ added, tprog values modified and tprog description clarified in Table 27: Flash memory characteristics on page 45. IDD modified in Table 14: Typical and maximum current consumptions in Stop and Standby modes on page 33. ACCHSI modified in Table 23: HSI oscillator characteristics on page 43, note 2 removed. tRET modified in Table 28: Flash memory endurance and data retention. VNF(NRST) unit corrected in Table 36: NRST pin characteristics on page 51. Table 40: SPI characteristics on page 55 modified. IVREF added in Table 41: ADC characteristics on page 58. Table 43: ADC accuracy - limited test conditions added. Table 44: ADC accuracy modified. LQFP100 package specifications updated (see Section 6: Package characteristics on page 63). Recommended LQFP100, LQFP64, LQFP48 and VFQFPN36 footprints added (see Figure 34, Figure 36, Figure 38 and Figure 32). Section 6.2: Thermal characteristics on page 68 modified. Appendix A: Important notes removed. 6 Small text changes. In Table 28: Flash memory endurance and data retention: – NEND tested over the whole temperature range – cycling conditions specified for tRET – tRET min modified at TA = 55 °C Figure 2: Clock tree corrected. Figure 7: Memory map clarified. V25, Avg_Slope and TL modified in Table 45: TS characteristics. CRC feature removed. 73/74 STM32F101xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 74/74