STM32F103xF STM32F103xG XL-density performance line ARM-based 32-bit MCU with 768 KB to 1 MB Flash, USB, CAN, 17 timers, 3 ADCs, 13 communication interfaces Target specification Features FBGA ■ Core: ARM 32-bit Cortex™-M3 CPU with MPU – 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access – Single-cycle multiplication and hardware division ■ Memories – 768 Kbytes to 1 Mbyte of Flash memory – 96 Kbytes of SRAM – Flexible static memory controller with 4 Chip Select. Supports Compact Flash, SRAM, PSRAM, NOR and NAND memories – LCD parallel interface, 8080/6800 modes ■ Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration ■ Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers ■ 3 × 12-bit, 1 µs A/D converters (up to 21 channels) – Conversion range: 0 to 3.6 V – Triple-sample and hold capability – Temperature sensor 2 × 12-bit D/A converters ■ DMA: 12-channel DMA controller – Supported peripherals: timers, ADCs, DAC, SDIO, I2Ss, SPIs, I2Cs and USARTs ■ Debug mode – Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™ LFBGA144 10 × 10 mm ■ Up to 112 fast I/O ports – 51/80/112 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant ■ Up to 17 timers – Up to ten 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – 2 × 16-bit motor control PWM timers with dead-time generation and emergency stop – 2 × watchdog timers (Independent and Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC ■ Up to 13 communication interfaces – Up to 2 × I2C interfaces (SMBus/PMBus) – Up to 5 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with I2S interface multiplexed – CAN interface (2.0B Active) – USB 2.0 full speed interface – SDIO interface ■ CRC calculation unit, 96-bit unique ID ■ ECOPACK® packages Table 1. Device summary Reference ■ January 2012 LQFP64 10 × 10 mm, LQFP100 14 × 14 mm, LQFP144 20 × 20 mm Part number STM32F103xF STM32F103RF STM32F103VF STM32F103ZF STM32F103xG STM32F103RG STM32F103VG STM32F103ZG Doc ID 16554 Rev 3 This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice. 1/120 www.st.com 1 Contents STM32F103xF, STM32F103xG Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2/120 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15 2.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15 2.3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.6 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.8 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 2.3.9 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19 2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) 21 2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.22 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.23 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.25 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.26 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.27 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.28 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Contents 2.3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 42 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 42 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 82 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.18 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 100 Doc ID 16554 Rev 3 3/120 Contents 6 STM32F103xF, STM32F103xG 5.3.19 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 115 7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F103xF and STM32F103xG features and peripheral counts . . . . . . . . . . . . . . . . . 11 STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM32F103xF and STM32F103xG timer feature comparison . . . . . . . . . . . . . . . . . . . . . . 19 STM32F103xF and STM32F103xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 46 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 47 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 63 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 64 Asynchronous read muxed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 71 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Switching characteristics for PC Card/CF read and write cycles in attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . 78 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Doc ID 16554 Rev 3 5/120 List of tables Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. 6/120 STM32F103xF, STM32F103xG EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 111 LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 112 LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 113 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 STM32F103xF and STM32F103xG ordering information scheme . . . . . . . . . . . . . . . . . . 117 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. STM32F103xF and STM32F103xG performance line block diagram. . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STM32F103xF and STM32F103xG XL-density performance line BGA144 ballout . . . . . . 25 STM32F103xF and STM32F103xG XL-density performance line LQFP144 pinout. . . . . . 26 STM32F103xF and STM32F103xG XL-density performance line LQFP100 pinout. . . . . . 27 STM32F103xF and STM32F103xG XL-density performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 45 Typical current consumption in Run mode versus frequency (at 3.6 V)code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 45 Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Typical current consumption in Standby mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 62 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 63 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 65 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 66 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 71 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 73 PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 74 PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 76 PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 77 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 79 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 80 Doc ID 16554 Rev 3 7/120 List of figures Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. 8/120 STM32F103xF, STM32F103xG Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 104 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 105 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Recommended PCB design rules (0.80/0.75 mm pitch BGA . . . . . . . . . . . . . . . . . . . . . . 109 LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 112 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 113 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xF and STM32F103xG XL-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family, please refer to Section 2.2: Full compatibility throughout the family. The XL-density STM32F103xx datasheet should be read in conjunction with the STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/. Doc ID 16554 Rev 3 9/120 Description 2 STM32F103xF, STM32F103xG Description The STM32F103xF and STM32F103xG performance line family incorporates the highperformance ARM® Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 1 Mbyte and SRAM up to 96 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, ten general-purpose 16-bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2Ss, one SDIO, five USARTs, an USB and a CAN. The STM32F103xx XL-density performance line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. These features make the STM32F103xx high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems and video intercom. 10/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 2.1 Description Device overview The STM32F103xx XL-density performance line family offers devices in four different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. Figure 1 shows the general block diagram of the device family. Table 2. STM32F103xF and STM32F103xG features and peripheral counts Peripherals Flash memory SRAM in Kbytes FSMC Timers STM32F103Rx 768 KB 1 MB 96 No STM32F103Vx 768 KB 1 MB 96 (1) Yes General-purpose 10 Advanced-control 2 Basic 2 SPI(I2S)(2) STM32F103Zx 768 KB 1 MB 96 Yes 3(2) 2C I 2 USART 5 USB 1 CAN 1 SDIO 1 Comm GPIOs 51 80 112 12-bit ADC Number of channels 3 16 3 16 3 21 12-bit DAC Number of channels 2 2 CPU frequency 72 MHz Operating voltage Operating temperatures Package 2.0 to 3.6 V Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 10) Junction temperature: –40 to + 125 °C (see Table 10) LQFP64 LQFP100 LQFP144, BGA144 1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. Doc ID 16554 Rev 3 11/120 Description TRACECLK TRACED[0:3] as AF NJTRST JTDI JTCK/SWCLK JTMS/SWDAT JTDO as AF TPIU SWJTAG Flash obl interface STM32F103xF and STM32F103xG performance line block diagram ETM Trace/Trig Ib u s Cortex-M3 CPU Fmax: 48/72 MHz NVIC Dbus 64 bit Bus matrix GP DMA1 64 bit @VDDA RC HS SRAM 96 Kbyte RC LS IWDG GP DMA2 5 channels Reset & clock controller PCLK1 PCLK2 PCLK3 HCLK FCLK SDIO XTAL 32 kHz RTC AWU GPIO port D PE[15:0] GPIO port E PF[15:0] GPIO port F 8 ADINs common to the 3 ADCs 8 ADINs common to the ADC1 & 2 5 ADINs on ADC3 VREF– VREF+ APB2 APB1 GPIO port A PD[15:0] MOSI,MISO, SCK,NSS as AF RX,TX, CTS, RTS, CK as AF APB3 EXT.IT WKUP GPIO port B 1 channel as AF V BAT=1.8V to 3.6V Backup reg OSC32_IN OSC32_OUT TAMPER-RTC (ALARM OUT) Backup interface GPIO port C 1 channel as AF OSC_IN OSC_OUT @VSW FSMC PC[15:0] 2 channels as AF NRST VDDA VSSA PVD @VDDA @VDD Standby interface PB[15:0] PG[15:0] 4 channels 4 compl. channels BKIN, ETR input as AF 4 channels 4 compl. channels BKIN, ETR input as AF POR SUPPLY Reset SUPERVISION Int POR / PDR XTAL OSC 4-16 MHz APB1 : Fmax=24 / 36 MHz PA[15:0] VDD =2 t o 3.6V VSS @VDD 7 channels GPIO port G APB2 : Fmax=48 / 72 MHz 112 AF VOLT. REG. 3.3V TO 1.8V PLL AHB2 D[7:0], CMD CK as AF POWER VDD Flash2 512 KB System NVIC A[25:0] D[15:0] CLK NOE NWE NE[3:0] NBL[1:0] NWAIT NL as AF Flash1 512 KB MPU Flash obl interface Figure 1. STM32F103xF, STM32F103xG TIM2 4 Ch, ETR as AF TIM3 4 Ch, ETR as AF TIM4 4 Ch, ETR as AF TIM5 4 Ch, ETR as AF TIM12 2 channels as AF TIM13 1 channel as AF TIM14 1 channel as AF USART2 USART3 UART4 TIM1 UART5 TIM8 SPI2/I2S2 TIM9 SPI3/I2S3 TIM10 TIM11 SPI1 WWDG RX,TX, CTS, RTS, CK as AF RX,TX, CTS, RTS, CK as AF RX,TX as AF RX,TX as AF MOSI/SD,MISO, SCK/CK,NSS/WS, MCLK as AF MOSI/SD,MISO, SCK/CK,NSS/WS, MCLK as AF I2C1 SCL,SDA,SMBA as AF I2C2 SCL,SDA,SMBA as AF USART1 Temp sensor SRAM 512B bxCAN device USB 2.0 FS device USBDP/CAN_TX USBDM/CAN_RX 12bit ADC1 IF 12bit ADC2 IF TIM6 IF 12bit DAC1 IF DAC1_OUT as AF 12bit ADC3 IF TIM7 12bit DAC2 DAC2_OUT as AF @VDDA @VDDA ai17352 1. TA = –40 °C to +85 °C (suffix 6, see Table 73) or –40 °C to +105 °C (suffix 7, see Table 73), junction temperature up to 105 °C or 125 °C, respectively. 2. AF = alternate function on I/O port pin. 12/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Figure 2. Description Clock tree FLITFCLK to Flash programming interface USB Prescaler /1, 1.5 USBCLK to USB interface 48 MHz I2S3CLK Peripheral clock enable 8 MHz HSI RC I2S2CLK to I2S2 Peripheral clock enable Peripheral clock enable HSI SDIOCLK FSMCCLK Peripheral clock enable 72 MHz max /2 PLLSRC to I2S3 /8 SW PLLMUL HSI ..., x16 x2, x3, x4 PLL SYSCLK 72 MHz max PLLCLK AHB Prescaler /1, 2..512 HSE to Cortex System timer FCLK Cortex free running clock 36 MHz max PCLK1 to APB1 peripherals Peripheral Clock Enable to TIM2/3/4/5/12/13/14 and TIM6/7 TIMxCLK TIM2,3,4,5,12,13,14,6,7 If (APB1 prescaler =1) x1 else x2 CSS to FSMC HCLK to AHB bus, core, memory and DMA Clock Enable APB1 Prescaler /1, 2, 4, 8, 16 to SDIO Peripheral Clock Enable APB2 Prescaler /1, 2, 4, 8, 16 PLLXTPRE OSC_OUT OSC_IN 4-16 MHz HSE OSC /2 OSC32_OUT LSE OSC 32.768 kHz to RTC LSE RTCCLK to Independent Watchdog (IWDG) LSI ADC Prescaler /2, 4, 6, 8 /2 RTCSEL[1:0] LSI RC 40 kHz peripherals to APB2 Peripheral Clock Enable to TIM1/8 and TIM9/10/11 TIMxCLK TIM1, 8, 9, 10, 11 If (APB2 prescaler =1) x1 else x2 /128 OSC32_IN PCLK2 72 MHz max Peripheral Clock Enable to ADC1, 2 or 3 ADCCLK HCLK/2 To SDIO AHB interface Peripheral clock enable IWDGCLK Main Clock Output /2 MCO PLLCLK Legend: HSE = High-speed external clock signal HSI HSI = High-speed internal clock signal HSE LSI = Low-speed internal clock signal SYSCLK LSE = Low-speed external clock signal MCO ai17354 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz. 2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz. 3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz. Doc ID 16554 Rev 3 13/120 Description 2.2 STM32F103xF, STM32F103xG Full compatibility throughout the family The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices and the STM32F103xF and STM32F103xG are called XL-density devices. Low-density, high-density and XL-density devices are an extension of the STM32F103x8/B medium-density devices, they are specified in the STM32F103x4/6, STM32F103xC/D/E and STM32F103xF/G datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I2S and DAC. XL-density devices bring even more Flash and RAM memory, and extra features, namely an MPU, a greater number of timers and a dual bank Flash structure while remaining fully compatible with the other members of the family. The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD, STM32F103xE, STM32F103xF and STM32F103xG are a drop-in replacement for the STM32F103x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices. Table 3. STM32F103xx family Low-density devices Pinout Medium-density devices 16 KB Flash 32 KB Flash(1) 64 KB Flash 128 KB Flash 256 KB Flash 384 KB 512 KB Flash Flash 6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 or 64 KB(2) RAM 64 KB RAM 144 100 64 48 High-density devices 2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I2C, USB, CAN, 1 × PWM timer 2 × ADCs 3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, USB, CAN, 1 × PWM timer 2 × ADCs 64 KB RAM 5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I2Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO FSMC (100- and 144-pin packages(3)) XL-density devices 768 KB Flash 1 MB Flash 96 KB RAM 96 KB RAM 5 × USARTs 10 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I2Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO, Cortex-M3 with MPU FSMC (100- and 144-pin packages(4)), dual bank Flash memory 36 1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices. 2. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only. 3. Ports F and G are not available in devices delivered in 100-pin packages. 4. Ports F and G are not available in devices delivered in 100-pin packages. 14/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Description 2.3 Overview 2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. With its embedded ARM core, STM32F103xF and STM32F103xG performance line family is compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 2.3.2 Memory protection unit The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 2.3.3 Embedded Flash memory 768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The second bank is either 256 or 512 Kbytes depending on the device. This gives the device the capability of writing to one bank while executing code from the other bank (read-while-write capability). 2.3.4 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. Doc ID 16554 Rev 3 15/120 Description 2.3.5 STM32F103xF, STM32F103xG Embedded SRAM 96 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. 2.3.6 FSMC (flexible static memory controller) The FSMC is embedded in the STM32F103xF and STM32F103xG performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND. Functionality overview: 2.3.7 ● The three FSMC interrupt lines are ORed in order to be connected to the NVIC ● Write FIFO ● Code execution from external memory except for NAND Flash and PC Card ● The targeted frequency, fCLK, is HCLK/2, so external access is at 36 MHz when HCLK is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration. 2.3.8 Nested vectored interrupt controller (NVIC) The STM32F103xF and STM32F103xG performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels. ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail-chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 2.3.9 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines. 16/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 2.3.10 Description Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See Figure 2 for details on the clock tree. 2.3.11 Boot modes At startup, boot pins are used to select one of three boot options: ● Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes. ● Boot from system memory ● Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1. 2.3.12 Power supply schemes ● VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. ● VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. ● VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 10: Power supply scheme. 2.3.13 Power supply supervisor The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 12: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD. Doc ID 16554 Rev 3 17/120 Description 2.3.14 STM32F103xF, STM32F103xG Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. ● MR is used in the nominal regulation mode (Run) ● LPR is used in the Stop modes. ● Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode. 2.3.15 Low-power modes The STM32F103xF and STM32F103xG performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup. ● Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 2.3.16 DMA The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-toperipheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. 18/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Description The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I2S, SDIO and ADC. 2.3.17 RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. 2.3.18 Timers and watchdogs The XL-density STM32F103xx performance line devices include up to two advanced-control timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. Table 4 compares the features of the advanced-control, general-purpose and basic timers. Table 4. STM32F103xF and STM32F103xG timer feature comparison Timer Counter Counter resolution type Prescaler factor DMA request Capture/compare Complementary generation channels outputs TIM1, TIM8 16-bit Up, Any integer between down, 1 and 65536 up/down Yes 4 Yes TIM2, TIM3, TIM4, TIM5 16-bit Up, Any integer between down, 1 and 65536 up/down Yes 4 No TIM9, TIM12 16-bit Up Any integer between 1 and 65536 No 2 No TIM10, TIM11 TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No Doc ID 16554 Rev 3 19/120 Description STM32F103xF, STM32F103xG Advanced-control timers (TIM1 and TIM8) The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for: ● Input capture ● Output compare ● PWM generation (edge or center-aligned modes) ● One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs. Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining. General-purpose timers (TIMx) There are10 synchronizable general-purpose timers embedded in the STM32F103xF and STM32F103xG performance line devices (see Table 4 for differences). ● TIM2, TIM3, TIM4, TIM5 There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xF and STM32F103xG access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. ● TIM10, TIM11 and TIM9 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. ● TIM13, TIM14 and TIM12 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. 20/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Description Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 2.3.19 ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0. ● Programmable clock source I²C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) The STM32F103xF and STM32F103xG performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5). These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5. Doc ID 16554 Rev 3 21/120 Description 2.3.21 STM32F103xF, STM32F103xG Serial peripheral interface (SPI) Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. 2.3.22 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. 2.3.23 SDIO An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1. 2.3.24 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 2.3.25 Universal serial bus (USB) The STM32F103xF and STM32F103xG performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). 2.3.26 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable. 22/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Description The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 2.3.27 ADC (analog to digital converter) Three 12-bit analog-to-digital converters are embedded into STM32F103xF and STM32F103xG performance line devices and each ADC shares up to 21 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: ● Simultaneous sample and hold ● Interleaved sample and hold ● Single shunt The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 2.3.28 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This dual digital Interface supports the following features: ● two DAC converters: one for each output channel ● 8-bit or 12-bit monotonic output ● left or right data alignment in 12-bit mode ● synchronized update capability ● noise-wave generation ● triangular-wave generation ● dual DAC channel independent or simultaneous conversions ● DMA capability for each channel ● external triggers for conversion ● input voltage reference VREF+ Eight DAC trigger inputs are used in the STM32F103xF and STM32F103xG performance line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. Doc ID 16554 Rev 3 23/120 Description 2.3.29 STM32F103xF, STM32F103xG Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. 2.3.30 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.3.31 Embedded Trace Macrocell™ The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. 24/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Pinouts and pin descriptions 3 Pinouts and pin descriptions Figure 3. STM32F103xF and STM32F103xG XL-density performance line BGA144 ballout 1 2 3 4 5 6 7 8 9 10 11 12 A PC13TAMPER-RTC PE3 PE2 PE1 PE0 PB4 JTRST PB3 JTDO PD6 PD7 PA15 JTDI PA14 JTCK PA13 JTMS B PC14OSC32_IN PE4 PE5 PE6 PB9 PB5 PG15 PG12 PD5 PC11 PC10 PA12 C PC15OSC32_OUT VBAT PF0 PF1 PB8 PB6 PG14 PG11 PD4 PC12 NC PA11 D OSC_IN VSS_5 VDD_5 PF2 BOOT0 PB7 PG13 PG10 PD3 PD1 PA10 PA9 E OSC_OUT PF3 PF4 PF5 VSS_3 VSS_11 VSS_10 PG9 PD2 PD0 PC9 PA8 F NRST PF7 PF6 VDD_4 VDD_3 VDD_11 VDD_10 VDD_8 VDD_2 VDD_9 PC8 PC7 G PF10 PF9 PF8 VSS_4 VDD_6 VDD_7 VDD_1 VSS_8 VSS_2 VSS_9 PG8 PC6 H PC0 PC1 PC2 PC3 VSS_6 VSS_7 VSS_1 PE11 PD11 PG7 PG6 PG5 J VSSA PA0-WKUP PA4 PC4 PB2/ BOOT1 PG1 PE10 PE12 PD10 PG4 PG3 PG2 K VREF– PA1 PA5 PC5 PF13 PG0 PE9 PE13 PD9 PD13 PD14 PD15 L VREF+ PA2 PA6 PB0 PF12 PF15 PE8 PE14 PD8 PD12 PB14 PB15 M VDDA PA3 PA7 PB1 PF11 PF14 PE7 PE15 PB10 PB11 PB12 PB13 AI14798b Doc ID 16554 Rev 3 25/120 Pinouts and pin descriptions STM32F103xF and STM32F103xG XL-density performance line LQFP144 pinout 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD_11 VSS_11 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD_10 VSS_10 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 4. STM32F103xF, STM32F103xG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD_2 VSS_2 NC PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDD_9 VSS_9 PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD_8 VSS_8 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 VSS_6 VDD_6 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS_7 VDD_7 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS_5 VDD_5 PF6 PF7 PF8 PF9 PF10 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 ai14667 26/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG STM32F103xF and STM32F103xG XL-density performance line LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 5. Pinouts and pin descriptions LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD_2 VSS_2 NC PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 ai14391 Doc ID 16554 Rev 3 27/120 Pinouts and pin descriptions STM32F103xF and STM32F103xG XL-density performance line LQFP64 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 6. STM32F103xF, STM32F103xG 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0 OSC_IN PD1 OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 ai14392 28/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 5. Pinouts and pin descriptions STM32F103xF and STM32F103xG pin definitions LQFP64 LQFP100 LQFP144 Type(1) I / O level(2) Alternate functions(4) LFBGA144 Pins Main function(3) (after reset) A3 - 1 1 PE2 I/O FT PE2 TRACECK / FSMC_A23 A2 - 2 2 PE3 I/O FT PE3 TRACED0 / FSMC_A19 B2 - 3 3 PE4 I/O FT PE4 TRACED1/ FSMC_A20 B3 - 4 4 PE5 I/O FT PE5 TRACED2/ FSMC_A21 TIM9_CH1 B4 - 5 5 PE6 I/O FT PE6 TRACED3 / FSMC_A22 TIM9_CH2 C2 1 6 6 VBAT S VBAT A1 2 7 7 PC13-TAMPERRTC(5) I/O PC13(6) TAMPER-RTC B1 3 8 8 PC14-OSC32_IN(5) I/O PC14(6) OSC32_IN C1 4 9 9 PC15OSC32_OUT(5) PC15(6) OSC32_OUT C3 - - 10 PF0 I/O FT PF0 FSMC_A0 C4 - - 11 PF1 I/O FT PF1 FSMC_A1 D4 - - 12 PF2 I/O FT PF2 FSMC_A2 E2 - - 13 PF3 I/O FT PF3 FSMC_A3 E3 - - 14 PF4 I/O FT PF4 FSMC_A4 E4 - - 15 PF5 I/O FT PF5 FSMC_A5 D2 - 10 16 VSS_5 S VSS_5 D3 - 11 17 VDD_5 S VDD_5 F3 - - 18 PF6 I/O PF6 ADC3_IN4 / FSMC_NIORD TIM10_CH1 F2 - - 19 PF7 I/O PF7 ADC3_IN5 / FSMC_NREG TIM11_CH1 G3 - - 20 PF8 I/O PF8 ADC3_IN6 / FSMC_NIOWR TIM13_CH1 G2 - - 21 PF9 I/O PF9 ADC3_IN7 / FSMC_CD TIM14_CH1 G1 - - 22 PF10 I/O PF10 ADC3_IN8 / FSMC_INTR D1 5 12 23 OSC_IN I OSC_IN PD0(7) E1 6 13 24 OSC_OUT O OSC_OUT PD1(7) F1 7 14 25 NRST I/O NRST H1 8 15 26 PC0 I/O PC0 ADC123_IN10 H2 9 16 27 PC1 I/O PC1 ADC123_IN11 H3 10 17 28 PC2 I/O PC2 ADC123_IN12 H4 11 18 29 PC3 I/O PC3 ADC123_IN13 J1 VSSA S VSSA VREF- S VREF- K1 12 19 30 - 20 31 Pin name I/O Doc ID 16554 Rev 3 Default Remap 29/120 Pinouts and pin descriptions STM32F103xF and STM32F103xG pin definitions (continued) LQFP100 - 21 32 Pin name Type(1) LQFP64 L1 LQFP144 LFBGA144 Pins I / O level(2) Table 5. STM32F103xF, STM32F103xG Alternate functions(4) Main function(3) (after reset) VREF+ S VREF+ M1 13 22 33 VDDA S VDDA Default PA0-WKUP I/O PA0 WKUP/USART2_CTS(8) / ADC123_IN0 / TIM2_CH1_ETR / TIM5_CH1 / TIM8_ETR K2 15 24 35 PA1 I/O PA1 USART2_RTS(7) / ADC123_IN1 / TIM5_CH2 / TIM2_CH2(7) L2 16 25 36 PA2 I/O PA2 USART2_TX(7) / TIM5_CH3 / ADC123_IN2 / TIM9_CH1 / TIM2_CH3 (7) USART2_RX(7) / TIM5_CH4 / ADC123_IN3 / TIM2_CH4(7)/ TIM9_CH2 J2 14 23 34 Remap M2 17 26 37 PA3 I/O PA3 G4 18 27 38 VSS_4 S VSS_4 F4 19 28 39 VDD_4 S VDD_4 20 29 40 PA4 I/O PA4 SPI1_NSS(7) / USART2_CK(7) / DAC_OUT1 / ADC12_IN4 K3 21 30 41 PA5 I/O PA5 SPI1_SCK(7) / DAC_OUT2 / ADC12_IN5 PA6 SPI1_MISO(7) / TIM8_BKIN / ADC12_IN6 / TIM3_CH1(7)/ TIM13_CH1 TIM1_BKIN TIM1_CH1N J3 L3 22 31 42 PA6 I/O M3 23 32 43 PA7 I/O PA7 SPI1_MOSI(7)/ TIM8_CH1N / ADC12_IN7 / TIM3_CH2(7) / TIM14_CH1 J4 24 33 44 PC4 I/O PC4 ADC12_IN14 K4 25 34 45 PC5 I/O PC5 ADC12_IN15 L4 26 35 46 PB0 I/O PB0 ADC12_IN8 / TIM3_CH3 / TIM8_CH2N TIM1_CH2N M4 27 36 47 PB1 I/O PB1 ADC12_IN9 / TIM3_CH4(7) / TIM8_CH3N TIM1_CH3N J5 PB2 I/O FT PB2/BOOT1 28 37 48 M5 - - 49 PF11 I/O FT PF11 FSMC_NIOS16 L5 - - 50 PF12 I/O FT PF12 FSMC_A6 H5 - - 51 VSS_6 S VSS_6 G5 - - 52 VDD_6 S VDD_6 K5 - - 53 PF13 30/120 I/O FT PF13 Doc ID 16554 Rev 3 FSMC_A7 STM32F103xF, STM32F103xG STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) LQFP100 LQFP144 Default LQFP64 Main function(3) (after reset) LFBGA144 Type(1) Pins I / O level(2) Table 5. Pinouts and pin descriptions M6 - - 54 PF14 I/O FT PF14 FSMC_A8 L6 - - 55 PF15 I/O FT PF15 FSMC_A9 K6 - - 56 PG0 I/O FT PG0 FSMC_A10 J6 - - 57 PG1 I/O FT PG1 FSMC_A11 M7 - 38 58 PE7 I/O FT PE7 FSMC_D4 TIM1_ETR L7 - 39 59 PE8 I/O FT PE8 FSMC_D5 TIM1_CH1N K7 - 40 60 PE9 I/O FT PE9 FSMC_D6 TIM1_CH1 H6 - - 61 VSS_7 S VSS_7 G6 - - 62 VDD_7 S VDD_7 J7 - 41 63 PE10 I/O FT PE10 FSMC_D7 TIM1_CH2N H8 - 42 64 PE11 I/O FT PE11 FSMC_D8 TIM1_CH2 J8 - 43 65 PE12 I/O FT PE12 FSMC_D9 TIM1_CH3N K8 - 44 66 PE13 I/O FT PE13 FSMC_D10 TIM1_CH3 L8 - 45 67 PE14 I/O FT PE14 FSMC_D11 TIM1_CH4 M8 - 46 68 PE15 I/O FT PE15 FSMC_D12 TIM1_BKIN M9 29 47 69 PB10 I/O FT PB10 I2C2_SCL / USART3_TX(7) TIM2_CH3 PB11 USART3_RX(7) TIM2_CH4 Pin name I/O FT I2C2_SDA / Remap M10 30 48 70 PB11 H7 31 49 71 VSS_1 S VSS_1 G7 32 50 72 VDD_1 S VDD_1 M11 33 51 73 PB12 I/O FT PB12 SPI2_NSS / I2S2_WS / I2C2_SMBA / USART3_CK(7) / TIM1_BKIN(7) M12 34 52 74 PB13 I/O FT PB13 SPI2_SCK / I2S2_CK / USART3_CTS(7) / TIM1_CH1N L11 35 53 75 PB14 I/O FT PB14 SPI2_MISO / TIM1_CH2N / USART3_RTS(7)/ TIM12_CH1 L12 36 54 76 PB15 I/O FT PB15 SPI2_MOSI / I2S2_SD / TIM1_CH3N(7) / TIM12_CH2 L9 - 55 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX K9 - 56 78 PD9 I/O FT PD9 FSMC_D14 USART3_RX J9 - 57 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK H9 - 58 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS L10 - 59 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1 / USART3_RTS Doc ID 16554 Rev 3 31/120 Pinouts and pin descriptions STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) Remap PD13 FSMC_A18 TIM4_CH2 K10 - 60 82 G8 - - 83 VSS_8 S VSS_8 F8 - - 84 VDD_8 S VDD_8 K11 - 61 85 PD14 I/O FT PD14 FSMC_D0 TIM4_CH3 K12 - 62 86 PD15 I/O FT PD15 FSMC_D1 TIM4_CH4 J12 - - 87 PG2 I/O FT PG2 FSMC_A12 J11 - - 88 PG3 I/O FT PG3 FSMC_A13 J10 - - 89 PG4 I/O FT PG4 FSMC_A14 H12 - - 90 PG5 I/O FT PG5 FSMC_A15 H11 - - 91 PG6 I/O FT PG6 FSMC_INT2 H10 - - 92 PG7 I/O FT PG7 FSMC_INT3 G11 - - 93 PG8 I/O FT PG8 G10 - - 94 VSS_9 S VSS_9 F10 - 95 VDD_9 S VDD_9 - LQFP144 LQFP100 Default LQFP64 Main function(3) (after reset) LFBGA144 Type(1) Pins I / O level(2) Table 5. STM32F103xF, STM32F103xG Pin name PD13 I/O FT G12 37 63 96 PC6 I/O FT PC6 I2S2_MCK / TIM8_CH1 / SDIO_D6 TIM3_CH1 F12 38 64 97 PC7 I/O FT PC7 I2S3_MCK / TIM8_CH2 / SDIO_D7 TIM3_CH2 F11 39 65 98 PC8 I/O FT PC8 TIM8_CH3 / SDIO_D0 TIM3_CH3 E11 40 66 99 PC9 I/O FT PC9 TIM8_CH4 / SDIO_D1 TIM3_CH4 TIM1_CH1(7) E12 41 67 100 PA8 I/O FT PA8 USART1_CK / MCO D12 42 68 101 PA9 I/O FT PA9 USART1_TX(7) / TIM1_CH2(7) D11 43 69 102 PA10 I/O FT PA10 USART1_RX(7) / TIM1_CH3(7) C12 44 70 103 PA11 I/O FT PA11 USART1_CTS / USBDM / CAN_RX(7) / TIM1_CH4(7) B12 45 71 104 PA12 I/O FT PA12 USART1_RTS / USBDP / CAN_TX(7) / TIM1_ETR(7) A12 46 72 105 PA13 I/O FT JTMSSWDIO C11 - 73 106 PA13 Not connected G9 47 74 107 VSS_2 S VSS_2 F9 48 75 108 VDD_2 S VDD_2 A11 49 76 109 PA14 32/120 / I/O FT JTCKSWCLK Doc ID 16554 Rev 3 PA14 STM32F103xF, STM32F103xG STM32F103xF and STM32F103xG pin definitions (continued) Pin name Type(1) LQFP144 LQFP100 LQFP64 LFBGA144 Pins I / O level(2) Table 5. Pinouts and pin descriptions Alternate functions(4) Main function(3) (after reset) Default Remap A10 50 77 110 PA15 I/O FT JTDI SPI3_NSS / I2S3_WS TIM2_CH1_ETR PA15 / SPI1_NSS B11 51 78 111 PC10 I/O FT PC10 UART4_TX / SDIO_D2 USART3_TX B10 52 79 112 PC11 I/O FT PC11 UART4_RX / SDIO_D3 USART3_RX C10 53 80 113 PC12 I/O FT PC12 UART5_TX / SDIO_CK USART3_CK PD0 FSMC_D2(9) CAN_RX CAN_TX E10 - 81 114 PD0 I/O FT 82 115 PD1 I/O FT PD1 FSMC_D3(9) E9 54 83 116 PD2 I/O FT PD2 TIM3_ETR / UART5_RX / SDIO_CMD D9 - 84 117 PD3 I/O FT PD3 FSMC_CLK USART2_CTS C9 - 85 118 PD4 I/O FT PD4 FSMC_NOE USART2_RTS B9 - 86 119 PD5 I/O FT PD5 FSMC_NWE USART2_TX E7 - - 120 VSS_10 S VSS_10 F7 - - 121 VDD_10 S VDD_10 A8 - 87 122 PD6 I/O FT PD6 FSMC_NWAIT USART2_RX A9 - 88 123 PD7 I/O FT PD7 FSMC_NE1 / FSMC_NCE2 USART2_CK E8 - - 124 PG9 I/O FT PG9 FSMC_NE2 / FSMC_NCE3 D8 - - 125 PG10 I/O FT PG10 FSMC_NCE4_1 / FSMC_NE3 C8 - - 126 PG11 I/O FT PG11 FSMC_NCE4_2 B8 - - 127 PG12 I/O FT PG12 FSMC_NE4 D7 - - 128 PG13 I/O FT PG13 FSMC_A24 C7 - - 129 PG14 I/O FT PG14 FSMC_A25 E6 - - 130 VSS_11 S VSS_11 F6 - - 131 VDD_11 S VDD_11 B7 - - 132 PG15 I/O FT PG15 A7 55 89 133 PB3/ I/O FT JTDO SPI3_SCK / I2S3_CK/ PB3/TRACESWO TIM2_CH2 / SPI1_SCK A6 56 90 134 PB4 I/O FT NJTRST SPI3_MISO PB4 / TIM3_CH1 SPI1_MISO B6 57 91 135 PB5 I/O PB5 I2C1_SMBA / SPI3_MOSI / I2S3_SD TIM3_CH2 / SPI1_MOSI C6 58 92 136 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(8) USART1_TX D10 - (8) D6 59 93 137 PB7 I/O FT PB7 I2C1_SDA / FSMC_NADV / TIM4_CH2(8) Doc ID 16554 Rev 3 USART1_RX 33/120 Pinouts and pin descriptions STM32F103xF and STM32F103xG pin definitions (continued) Pin name Type(1) LQFP144 LQFP100 LQFP64 LFBGA144 Pins I / O level(2) Table 5. STM32F103xF, STM32F103xG Alternate functions(4) Main function(3) (after reset) I Default Remap D5 60 94 138 BOOT0 BOOT0 C5 61 95 139 PB8 I/O FT PB8 TIM4_CH3(8) / SDIO_D4 / TIM10_CH1 I2C1_SCL/ CAN_RX B5 62 96 140 PB9 I/O FT PB9 TIM4_CH4(8) / SDIO_D5 / TIM11_CH1 I2C1_SDA / CAN_TX A5 - 97 141 PE0 I/O FT PE0 TIM4_ETR / FSMC_NBL0 A4 - 98 142 PE1 I/O FT PE1 FSMC_NBL1 E5 63 99 143 VSS_3 S VSS_3 F5 64 100 144 VDD_3 S VDD_3 1. I = input, O = output, S = supply. 2. FT = 5 V tolerant. 3. Function availability depends on the chosen device. 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 9. For devices delivered in LQFP64 packages, the FSMC function is not available. 34/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 6. Pinouts and pin descriptions FSMC pin definition FSMC Pins CF CF/IDE NOR/PSRAM/ NOR/PSRAM Mux NAND 16 bit SRAM LQFP100(1) PE2 A23 A23 Yes PE3 A19 A19 Yes PE4 A20 A20 Yes PE5 A21 A21 Yes PE6 A22 A22 Yes PF0 A0 A0 A0 - PF1 A1 A1 A1 - PF2 A2 A2 A2 - PF3 A3 A3 - PF4 A4 A4 - PF5 A5 A5 - PF6 NIORD NIORD - PF7 NREG NREG - PF8 NIOWR NIOWR - PF9 CD CD - PF10 INTR INTR - PF11 NIOS16 NIOS16 - PF12 A6 A6 - PF13 A7 A7 - PF14 A8 A8 - PF15 A9 A9 - PG0 A10 A10 - A11 - PG1 PE7 D4 D4 D4 DA4 D4 Yes PE8 D5 D5 D5 DA5 D5 Yes PE9 D6 D6 D6 DA6 D6 Yes PE10 D7 D7 D7 DA7 D7 Yes PE11 D8 D8 D8 DA8 D8 Yes PE12 D9 D9 D9 DA9 D9 Yes PE13 D10 D10 D10 DA10 D10 Yes PE14 D11 D11 D11 DA11 D11 Yes PE15 D12 D12 D12 DA12 D12 Yes PD8 D13 D13 D13 DA13 D13 Yes Doc ID 16554 Rev 3 35/120 Pinouts and pin descriptions Table 6. STM32F103xF, STM32F103xG FSMC pin definition (continued) FSMC Pins NOR/PSRAM/ NOR/PSRAM Mux NAND 16 bit SRAM CF/IDE PD9 D14 D14 D14 DA14 D14 Yes PD10 D15 D15 D15 DA15 D15 Yes PD11 A16 A16 CLE Yes PD12 A17 A17 ALE Yes PD13 A18 A18 Yes PD14 D0 D0 D0 DA0 D0 Yes PD15 D1 D1 D1 DA1 D1 Yes PG2 A12 - PG3 A13 - PG4 A14 - PG5 A15 - PG6 INT2 - PG7 INT3 - PD0 D2 D2 D2 DA2 D2 Yes PD1 D3 D3 D3 DA3 D3 Yes CLK CLK PD3 Yes PD4 NOE NOE NOE NOE NOE Yes PD5 NWE NWE NWE NWE NWE Yes PD6 NWAIT NWAIT NWAIT NWAIT NWAIT Yes PD7 NE1 NE1 NCE2 Yes PG9 NE2 NE2 NCE3 - NE3 NE3 PG10 NCE4_1 NCE4_1 PG11 NCE4_2 NCE4_2 - PG12 NE4 NE4 - PG13 A24 A24 - PG14 A25 A25 - PB7 NADV NADV Yes PE0 NBL0 NBL0 Yes PE1 NBL1 NBL1 Yes 1. Ports F and G are not available in devices delivered in 100-pin packages. 36/120 LQFP100(1) CF Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 4 Memory mapping Memory mapping The memory map is shown in Figure 7. Figure 7. Memory map Reserved FSMC bank4 PCCARD 0xA000 1000 - 0xBFFF FFFF 0xA000 0000 - 0xA000 0FFF 0x9000 0000 - 0x9FFF FFFF FSMC bank3 NAND (NAND2) 0x8000 0000 - 0x8FFF FFFF FSMC register FSMC bank2 NAND (NAND1) 0x6C00 0000 - 0x6FFF FFFF 0x6800 0000 - 0x6BFF FFFF 0x6400 0000 - 0x67FF FFFF FSMC bank1 NOR/PSRAM 2 FSMC bank1 NOR/PSRAM 1 0x4002 4400 - 0x5FFF FFFF CRC 0x4002 3000 - 0x4002 33FF Reserved 0x4002 2400 - 0x4002 2FFF 0x4002 2000 - 0x4002 23FF Reserved 0x4002 1400 - 0x4002 1FFF RCC 0x4002 1000 - 0x4002 13FF 0x4002 0400 - 0x4002 0FFF 0x4002 0400 - 0x4002 07FF 0x4002 0000 - 0x4002 03FF Reserved DMA2 DMA1 Reserved SDIO Reserved TIM11 TIM10 TIM9 0xE000 0000 0xDFFF FFFF 512-Mbyte block 7 Cortex-M3's internal peripherals 512-Mbyte block 6 Not used 0xC000 0000 0xBFFF FFFF 512-Mbyte block 5 FSMC register 0xA000 0000 0x9FFF FFFF 512-Mbyte block 4 FSMC bank 3 & bank4 I2C2 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF UART5 0x4000 5000 - 0x4000 53FF UART4 0x4000 4C00 - 0x4000 4FFF USART3 0x4000 4800 - 0x4000 4BFF USART2 0x4000 4400 - 0x4000 47FF Reserved 0x4000 4000 - 0x4000 43FF SPI3/I2S3 0x4000 3C00 - 0x4000 3FFF 512-Mbyte block 2 Peripherals 0x4000 0000 0x3FFF FFFF 0x2000 0000 0x1FFF FFFF 0x0000 0000 SRAM (96 KB aliased by bit-banding) Option bytes System memory Reserved Flash memory bank 2 (256 KB or 512 KB) Flash memory bank 1 (512 KB) Reserved Aliased to Flash or system memory depending on BOOT pins 0x3FFF FFFF 0x2001 8000 0x2001 7FFF 0x2000 0000 0x4001 2000 - 0x4001 23FF 0x4001 1C00 - 0x4001 1FFF 0x4001 1800 - 0x4001 1BFF 0x4001 1400 - 0x4001 17FF 0x4001 1000 - 0x4001 13FF 0x4001 0C00 - 0x4001 0FFF 0x4001 0800 - 0x4001 0BFF 0x4001 0400 - 0x4001 07FF 0x4001 0000 - 0x4001 03FF 0x4000 7800 - 0x4000 FFFF 0x4000 7400 - 0x4000 77FF 0x4000 7000 - 0x4000 73FF 0x4000 6C00 - 0x4000 6FFF 0x4000 6800 - 0x4000 6BFF 0x4000 6400 - 0x4000 67FF 0x4000 6000 - 0x4000 63FF 0x4000 5C00 - 0x4000 5FFF SPI2/I2S2 Reserved 0x4000 3800 - 0x4000 3BFF IWDG 0x4000 3000 - 0x4000 33FF WWDG 0x4000 2C00 - 0x4000 2FFF RTC 512-Mbyte block 1 SRAM Reserved 0x4001 5000 - 0x4001 53FF 0x4001 4C00 - 0x4001 4FFF 0x4001 4000 - 0x4001 4BFF 0x4001 3C00 - 0x4001 3FFF 0x4001 3800 - 0x4001 3BFF 0x4001 3400 - 0x4001 37FF 0x4001 3000 - 0x4001 33FF 0x4001 2C00 - 0x4001 2FFF 0x4001 2800 - 0x4001 2BFF 0x4001 2400 - 0x4001 27FF 512-Mbyte block 3 FSMC bank1 & bank2 512-Mbyte block 0 Code 0x4001 8400 - 0x4001 FFFF 0x4001 8000 - 0x4001 83FF 0x4001 5800 - 0x4001 7FFF 0x4001 5400 - 0x4001 57FF Reserved ADC3 USART1 TIM8 SPI1 TIM1 ADC2 ADC1 Port G Port F Port E Port D Port C Port B Port A EXTI AFIO Reserved DAC PWR BKP Reserved BxCAN Shared USB/CAN SRAM 512 bytes USB registers 0x8000 0000 0x7FFF FFFF 0x6000 0000 0x5FFF FFFF 0x6000 0000 - 0x63FF FFFF Reserved Flash interfaces 1 & 2 0xFFFF FFFF 0x7000 0000 - 0x7FFF FFFF FSMC bank1 NOR/PSRAM 4 FSMC bank1 NOR/PSRAM 3 0x4000 3400 - 0x4000 37FF 0x4000 2800 - 0x4000 2BFF Reserved 0x4000 2400 - 0x4000 27FF TIM14 0x4000 2000 - 0x4000 23FF TIM13 0x4000 1C00 - 0x4000 1FFF TIM12 TIM7 0x4000 1800 - 0x4000 1BFF TIM6 0x4000 1000 - 0x4000 13FF TIM5 0x4000 0C00 - 0x4000 0FFF TIM4 0x4000 0800 - 0x4000 0BFF 0x4000 1400 - 0x4000 17FF TIM3 0x4000 0400 - 0x4000 07FF TIM2 0x4000 0000 - 0x4000 03FF 0x1FFF F800 - 0x1FFF F80F 0x1FFF E000- 0x1FFF F7FF 0x0810 0000 - 0x1FFF DFFF 0x080F FFFF 0x0808 0000 0x0807 FFFF 0x0800 0000 0x0010 0000 - 0x07FF FFFF 0x000F FFFF 0x0000 0000 Doc ID 16554 Rev 3 ai17353 37/120 Electrical characteristics STM32F103xF, STM32F103xG 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage STM32F103xx pin C = 50 pF VIN ai14141 38/120 STM32F103xx pin Doc ID 16554 Rev 3 ai14142 STM32F103xF, STM32F103xG 5.1.6 Electrical characteristics Power supply scheme Figure 10. Power supply scheme 6"!4 6 "ACKUPCIRCUITRY /3#+24# 7AKEUPLOGIC "ACKUPREGISTERS /54 '0)/S ). ,EVELSHIFTER 0O WERSWI TCH )/ ,OGIC +ERNELLOGIC #05 $IGITAL -EMORIES 6$$ 6$$ 2EGULATOR §N& §& 633 6$$ 6$$! 62%& N& & N& & 62%& 62%& !$# $!# !NALOG 2#S0,, 633! AI Caution: In Figure 10, the 4.7 µF capacitor must be connected to VDD3. 5.1.7 Current consumption measurement Figure 11. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 Doc ID 16554 Rev 3 39/120 Electrical characteristics 5.2 STM32F103xF, STM32F103xG Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics, Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Symbol VDD–VSS VIN(2) |ΔVDDx| |VSSX − VSS| VESD(HBM) Voltage characteristics Ratings Min Max –0.3 4.0 Input voltage on five volt tolerant pin VSS −0.3 VDD + 4.0 Input voltage on any other pin VSS − 0.3 4.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 External main supply voltage (including VDDA and VDD)(1) Electrostatic discharge voltage (human body model) Unit V mV see Section 5.3.12: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 8: Current characteristics for the maximum allowed injected current values. Table 8. Symbol IVDD IVSS IIO IINJ(PIN)(2) ΣIINJ(PIN) Current characteristics Ratings Max. Total current into VDD/VDDA power lines (source)(1) Total current out of VSS ground lines 150 (sink)(1) 150 Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin −25 Injected current on five volt tolerant pins(3) Injected current on any other mA -5/+0 pin(4) Total injected current (sum of all I/O and control pins) Unit ±5 (5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. Negative injection disturbs the analog performance of the device. See note 3 below Table 65 on page 103. 3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 7: Voltage characteristics for the maximum allowed input voltage values. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 7: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). 40/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 9. Electrical characteristics Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 5.3 Operating conditions 5.3.1 General operating conditions Table 10. Value Unit –65 to +150 °C 150 °C General operating conditions Symbol Parameter fHCLK Min Max Internal AHB clock frequency 0 72 fPCLK1 Internal APB1 clock frequency 0 36 fPCLK2 Internal APB2 clock frequency 0 72 Standard operating voltage 2 3.6 2 3.6 2.4 3.6 1.8 3.6 LQFP144 - 666 LQFP100 - 434 LQFP64 - 444 LFBGA144 - 500 WLCSP64 - 400 –40 85 VDD VDDA (1) VBAT PD Analog operating voltage (ADC not used) Analog operating voltage (ADC used) Conditions Must be the same potential as VDD(2) Backup operating voltage Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(3) Unit MHz V V V mW Ambient temperature for 6 suffix version Maximum power dissipation Low power dissipation –40 105 Ambient temperature for 7 suffix version Maximum power dissipation –40 105 Low power dissipation(4) –40 125 6 suffix version –40 105 7 suffix version –40 125 (4) °C TA TJ °C Junction temperature range °C 1. When the ADC is used, refer to Table 62: ADC characteristics. 2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and operation. 3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 114). 4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 114). Doc ID 16554 Rev 3 41/120 Electrical characteristics 5.3.2 STM32F103xF, STM32F103xG Operating conditions at power-up / power-down The parameters given in Table 11 are derived from tests performed under the ambient temperature condition summarized in Table 10. Table 11. Operating conditions at power-up / power-down Symbol Parameter tVDD 5.3.3 Conditions Min Max VDD rise time rate 0 ∞ VDD fall time rate 20 ∞ Unit µs/V Embedded reset and power control block characteristics The parameters given in Table 12 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 12. Embedded reset and power control block characteristics Symbol Parameter Conditions Programmable voltage detector level selection VPVD VPVDhyst(2) PVD hysteresis VPOR/PDR Power on/power down reset threshold VPDRhyst (2) TRSTTEMPO (2) Min Typ PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V PLS[2:0]=000 (falling edge) 2 2.08 2.16 V PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V PLS[2:0]=111 (rising edge) 2.76 2.88 3 V PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V - 100 - Unit mV Falling edge 1.8(1) 1.88 1.96 V Rising edge 1.84 1.92 2.0 V PDR hysteresis - 40 - mV Reset temporization 1 2.5 4.5 mS 1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 2. Guaranteed by design, not tested in production. 42/120 Max Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 5.3.4 Electrical characteristics Embedded reference voltage The parameters given in Table 13 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 13. Symbol VREFINT Embedded internal reference voltage Parameter Internal reference voltage Conditions Min Typ –40 °C < TA < +105 °C 1.16 1.20 1.26 V –40 °C < TA < +85 °C 1.16 1.20 1.24 V - 5.1 17.1(2) µs - - 10 mV - - 100 ppm/°C ADC sampling time when TS_vrefint(1) reading the internal reference voltage Internal reference voltage VRERINT(2) spread over the temperature range TCoeff(2) VDD = 3 V ±10 mV Temperature coefficient Max Unit 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production. 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 11: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code. Maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except when explicitly mentioned ● The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above) ● Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) ● When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK The parameters given in Table 14, Table 15 and Table 16 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Doc ID 16554 Rev 3 43/120 Electrical characteristics Table 14. STM32F103xF, STM32F103xG Maximum current consumption in Run mode, code with data processing running from Flash Max(1) Symbol Parameter Conditions External clock(2), all peripherals enabled IDD Supply current in Run mode fHCLK Unit TA = 85 °C TA = 105 °C 72 MHz 68 69 48 MHz 51 51 36 MHz 41 41 24 MHz 29 30 16 MHz 22 22.5 8 MHz 12.5 14 72 MHz 39 39 48 MHz 29.5 30 24 24.5 17.5 19 16 MHz 14 15 8 MHz 8.5 10.5 External clock(3), all 36 MHz peripherals disabled 24 MHz mA 1. Based on characterization, not tested in production. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. Table 15. Maximum current consumption in Run mode, code with data processing running from RAM Max(1) Symbol Parameter Conditions External clock(2), all peripherals enabled IDD Supply current in Run mode fHCLK Unit TA = 85 °C TA = 105 °C 72 MHz 65 65.5 48 MHz 46.5 47 36 MHz 37 37 24 MHz 26.5 27 16 MHz 19 20 8 MHz 11.5 13 72 MHz 34.5 36 48 MHz 25 26 20.5 21 15 16 16 MHz 11 13 8 MHz 7.5 9 External clock(3), all 36 MHz peripherals disabled 24 MHz 1. Data based on characterization results, tested in production at VDD max, fHCLK max. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 44/120 Doc ID 16554 Rev 3 mA STM32F103xF, STM32F103xG Electrical characteristics Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled #ONSUMPTIONM! -(Z -(Z -(Z -(Z -(Z -(Z 4EMPERATURE # AI Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)code with data processing running from RAM, peripherals disabled #ONSUMPTIONM! -(Z -(Z -(Z -(Z -(Z -(Z 4EMPERATURE # AI Doc ID 16554 Rev 3 45/120 Electrical characteristics Table 16. STM32F103xF, STM32F103xG Maximum current consumption in Sleep mode, code running from Flash or RAM Max(1) Symbol Parameter Conditions External clock(2), all peripherals enabled IDD Supply current in Sleep mode fHCLK Unit TA = 85 °C TA = 105 °C 72 MHz 47.5 48.5 48 MHz 34 35 36 MHz 27.5 27.5 24 MHz 20 20.5 16 MHz 15 16 8 MHz 9 11 72 MHz 9.5 11.2 48 MHz 7.7 9.5 36 MHz 6.9 8.5 24 MHz 5.9 7.8 16 MHz 5.4 7.2 8 MHz 4.7 6.4 mA External clock(3), all peripherals disabled 1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 46/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 17. Electrical characteristics Typical and maximum current consumptions in Stop and Standby modes Typ(1) Symbol IDD IDD_VBAT Parameter Conditions Max VDD/VBAT VDD/VBAT VDD/VBAT TA = TA = = 2.0 V = 2.4 V = 3.3 V 85 °C 105 °C Regulator in run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog), Supply current in f =8 MHz CK Stop mode Regulator in low-power mode, lowspeed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 44.8 45.3 46.4 810 1680 37.4 37.8 38.7 790 1660 Low-speed internal RC oscillator Supply current in and independent watchdog OFF, Standby mode low-speed oscillator and RTC OFF 1.8 2.0 2.5 5(2) 8(2) Backup domain Low-speed oscillator and RTC ON supply current 1.05 1.1 1.4 2(2) 2.3(2) Unit µA 1. Typical values are measured at TA = 25 °C. 2. Based on characterization, not tested in production. Figure 14. Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values 2.5 Consumption (µA) 2 1.8 V 1.5 2V 2.4 V 3.3 V 1 3.6 V 0.5 0 –45 25 85 Temperature (°C) Doc ID 16554 Rev 3 105 ai17337 47/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 15. Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values #ONSUMPTIONμ! 6 6 6 6 6 # # # # 4EMPERATURE # AI 48/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 16. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values #ONSUMPTION μ! 6 6 6 6 6 # # # 4EMPERATURE # # AI Figure 17. Typical current consumption in Standby mode versus temperature at different VDD values #ONSUMPTIONμ! 6 6 6 6 6 # # # 4EMPERATURE # Doc ID 16554 Rev 3 # AI 49/120 Electrical characteristics STM32F103xF, STM32F103xG Typical current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load). ● All peripherals are disabled except if it is explicitly mentioned. ● The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above). ● Ambient temperature and VDD supply voltage conditions summarized in Table 10. ● Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 Table 18. Typical current consumption in Run mode, code with data processing running from Flash Typ(1) Symbol Parameter Conditions (3) External clock IDD Supply current in Run mode Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency fHCLK All peripherals All peripherals disabled enabled(2) 72 MHz 52.5 33.5 48 MHz 36.6 23.8 36 MHz 28.5 18.7 24 MHz 24.1 12.8 16 MHz 14 9.2 8 MHz 7.7 5.4 4 MHz 4.6 3.4 2 MHz 3 2.3 1 MHz 2.2 1.8 500 kHz 1.7 1.5 125 kHz 1.4 1.3 64 MHz 45.5 28.6 48 MHz 35.1 22.4 36 MHz 27.5 17.5 24 MHz 18.9 11.6 16 MHz 12.2 8.2 8 MHz 7.2 4.8 4 MHz 4 2.7 2 MHz 2.3 1.7 1 MHz 1.5 1.2 500 kHz 1.1 0.9 125 kHz 0.75 0.7 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 50/120 Doc ID 16554 Rev 3 Unit mA mA STM32F103xF, STM32F103xG Table 19. Electrical characteristics Typical current consumption in Sleep mode, code running from Flash or RAM Typ(1) Symbol Parameter Conditions External clock IDD Supply current in Sleep mode (3) fHCLK All peripherals All peripherals enabled(2) disabled 72 MHz 32.5 7 48 MHz 23 5 36 MHz 17.7 4 24 MHz 12.2 3.1 16 MHz 8.4 2.3 8 MHz 4.6 1.5 4 MHz 3 1.3 2 MHz 2.15 1.25 1 MHz 1.7 1.2 500 kHz 1.5 1.15 125 kHz 1.35 1.15 64 MHz 28.7 5.7 48 MHz 22 4.4 36 MHz 17 3.35 11.6 2.3 7.7 1.6 3.9 0.8 2.3 0.7 1.5 0.6 1 MHz 1.1 0.5 500 kHz 0.9 0.5 125 kHz 0.7 0.5 Unit mA 24 MHz Running on high 16 MHz speed internal RC (HSI), AHB prescaler 8 MHz used to reduce the 4 MHz frequency 2 MHz 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. Doc ID 16554 Rev 3 51/120 Electrical characteristics STM32F103xF, STM32F103xG On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed under the following conditions: ● all I/O pins are in input mode with a static value at VDD or VSS (no load) ● all peripherals are disabled unless otherwise mentioned ● the given value is calculated by measuring the current consumption ● – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 7 Table 20. Peripheral current consumption(1) Peripheral APB1 52/120 Typical consumption at 25 °C TIM2 1.6 TIM3 1.5 TIM4 1.5 TIM5 1.5 TIM6 0.6 TIM7 0.6 TIM12 0.95 TIM13 0.7 TIM14 0.75 SPI2 0.6 SPI3 0.6 USART2 0.7 USART3 0.7 USART4 0.7 USART5 0.7 I2C1 0.65 I2C2 0.65 USB 0.9 CAN 0.9 DAC(2) 1.35 Doc ID 16554 Rev 3 Unit mA STM32F103xF, STM32F103xG Table 20. Electrical characteristics Peripheral current consumption(1) (continued) Peripheral APB2 Typical consumption at 25 °C GPIOA 0.55 GPIOB 0.55 GPIOC 0.55 GPIOD 0.6 GPIOE 0.6 GPIOF 0.55 GPIOG 0.55 TIM1 1.95 TIM8 1.9 TIM9 1 TIM10 0.8 TIM11 0.8 ADC1(3) 1.85 ADC2(3) 1.8 ADC3(3) 1.8 SPI1 0.45 USART1 0.8 Unit mA 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2. Specific conditions for DAC: EN1, EN2 bits in the DAC_CR register are set to 1 and the converted value set to 0x800. 3. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit in the ADC_CR2 register is set to 1. 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 21 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Doc ID 16554 Rev 3 53/120 Electrical characteristics Table 21. STM32F103xF, STM32F103xG High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit 1 8 25 MHz fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 5 - - tr(HSE) tf(HSE) Cin(HSE) ns (1) OSC_IN rise or fall time - - 20 OSC_IN input capacitance(1) - 5 - pF 45 - 55 % - - ±1 µA DuCy(HSE) Duty cycle IL V OSC_IN Input leakage current VSS ≤VIN ≤VDD 1. Guaranteed by design, not tested in production. Low-speed external user clock generated from an external source The characteristics given in Table 22 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 22. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit - 32.768 1000 kHz fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 OSC32_IN input capacitance(1) - 5 - pF 30 - 70 % - - ±1 µA V Cin(LSE) ns DuCy(LSE) Duty cycle IL OSC32_IN Input leakage current VSS ≤VIN ≤VDD 1. Guaranteed by design, not tested in production. 54/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 18. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tW(HSE) tW(HSE) t THSE EXTER NAL CLOCK SOURC E fHSE_ext OSC _IN IL STM32F103xx ai14143 Figure 19. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) tW(LSE) OSC32_IN IL tW(LSE) t TLSE EXTER NAL CLOCK SOURC E fLSE_ext STM32F103xx ai14144b Doc ID 16554 Rev 3 55/120 Electrical characteristics STM32F103xF, STM32F103xG High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 23. HSE 4-16 MHz oscillator characteristics(1)(2) Symbol Min Typ Max Unit Oscillator frequency 4 8 16 MHz RF Feedback resistor - 200 - kΩ C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 Ω - 30 - pF i2 HSE driving current VDD= 3.3 V, VIN = VSS with 30 pF load - - 1 mA gm Oscillator transconductance Startup 25 - mA/V VDD is stabilized - - ms fOSC_IN tSU(HSE)(4) Parameter Conditions Startup time 2 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization results, not tested in production. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 20. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 fHS E OSC_IN 8 MH z resonator CL2 REXT(1) RF OSC_OU T Bias controlled gain STM32F103xx ai14145 1. REXT value depends on the crystal characteristics. 56/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 24. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 24. Symbol LSE oscillator characteristics (fLSE = 32.768 kHz)(1)(2) Parameter RF Feedback resistor C(2) Recommended load capacitance versus equivalent serial resistance of the crystal (RS) I2 LSE driving current gm Oscillator transconductance tSU(LSE)(3) Startup time Conditions Min Typ Max Unit - 5 - MΩ RS = 30 kΩ - - 15 pF VDD = 3.3 V, VIN = VSS - - 1.4 µA 5 - - µA/V TA = 50 °C - 1.5 - TA = 25 °C - 2.5 - TA = 10 °C - 4 - TA = 0 °C - 6 - TA = -10 °C - 10 - TA = -20 °C - 17 - TA = -30 °C - 32 - TA = -40 °C - 60 - VDD is stabilized s 1. Based on characterization, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer, PCB layout and humidity Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 21). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Doc ID 16554 Rev 3 57/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 21. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 fLSE OSC32_IN 32.768 kH z resonator CL2 Bias controlled gain RF STM32F103xx OSC32_OU T ai14146 5.3.7 Internal clock source characteristics The parameters given in Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. High-speed internal (HSI) RC oscillator Table 25. Symbol HSI oscillator characteristics(1) Parameter Conditions Min Typ Max fHSI Frequency - 8 DuCy(HSI) Duty cycle 45 - 55 % - - 1(3) % TA = –40 to 105 °C –2 - 2.5 % TA = –10 to 85 °C –1.5 - 2.2 % TA = 0 to 70 °C –1.3 - 2 % TA = 25 °C –1.1 - 1.8 % User-trimmed with the RCC_CR register(2) ACCHSI Accuracy of the HSI oscillator Factorycalibrated(4) MHz tsu(HSI)(4) HSI oscillator startup time 1 - 2 µs IDD(HSI)(4) HSI oscillator power consumption - 80 100 µA 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. 3. Guaranteed by design, not tested in production. 4. Based on characterization, not tested in production. 58/120 Unit Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Low-speed internal (LSI) RC oscillator Table 26. LSI oscillator characteristics (1) Symbol fLSI(2) Parameter Frequency Min Typ Max Unit 30 40 60 kHz tsu(LSI)(3) LSI oscillator startup time - - 85 µs IDD(LSI)(3) LSI oscillator power consumption - 0.65 1.2 µA 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production. Wakeup time from low-power mode The wakeup times given in Table 27 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: ● Stop or Standby mode: the clock source is the RC oscillator ● Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 27. Low-power mode wakeup timings Symbol tWUSLEEP(1) tWUSTOP(1) tWUSTDBY(1) Parameter Typ Unit Wakeup from Sleep mode 1.8 µs Wakeup from Stop mode (regulator in run mode) 3.6 Wakeup from Stop mode (regulator in low power mode) 5.4 Wakeup from Standby mode 50 µs µs 1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. Doc ID 16554 Rev 3 59/120 Electrical characteristics 5.3.8 STM32F103xF, STM32F103xG PLL characteristics The parameters given in Table 28 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 28. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 1 8.0 25 MHz PLL input clock duty cycle 40 - 60 % fPLL_OUT PLL multiplier output clock 16 - 72 MHz tLOCK PLL lock time - - 200 µs Jitter Cycle-to-cycle jitter - - 300 ps fPLL_IN 1. Based on characterization, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 29. Symbol tprog tERASE tME IDD Vprog Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms Mass erase time TA = –40 to +105 °C 20 - 40 ms Read mode fHCLK = 72 MHz with 2 wait states, VDD = 3.3 V - - 28 mA Write mode fHCLK = 72 MHz, VDD = 3.3 V - - 7 mA Erase mode fHCLK = 72 MHz, VDD = 3.3 V - - 5 mA Power-down mode / Halt, VDD = 3.0 to 3.6 V - - 50 µA 2 - 3.6 V Parameter Supply current Conditions Programming voltage 1. Guaranteed by design, not tested in production. 60/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 30. Electrical characteristics Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions Min(1) TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle (2) 10 kcycles at TA = 105 °C 10 (2) 20 at TA = 55 °C Unit kcycles Years 1. Based on characterization not tested in production. 2. Cycling performed over the whole temperature range. 5.3.10 FSMC characteristics Asynchronous waveforms and timings Figure 22 through Figure 25 represent asynchronous waveforms and Table 31 through Table 35 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: Note: ● AddressSetupTime = 0 ● AddressHoldTime = 1 ● DataSetupTime = 1 On all tables, the tHCLK is the HCLK clock period. Doc ID 16554 Rev 3 61/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms TW.% &3-#?.% T V./%?.% T W./% T H.%?./% &3-#?./% &3-#?.7% TV!?.% &3-#?!;= T H!?./% !DDRESS TV",?.% T H",?./% &3-#?.",;= T H$ATA?.% T SU$ATA?./% TH$ATA?./% T SU$ATA?.% $ATA &3-#?$;= T V.!$6?.% TW.!$6 &3-#?.!$6 -36 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Note: 62/120 FSMC_BusTurnAroundDuration = 0. Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) Table 31. Symbol Parameter Min Max Unit 5tHCLK + 0.5 5tHCLK + 2 ns 0.5 1.5 ns 5tHCLK – 1 5tHCLK + 1 ns tw(NE) FSMC_NE low time tv(NOE_NE) FSMC_NEx low to FSMC_NOE low tw(NOE) FSMC_NOE low time th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns th(A_NOE) Address hold time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0.5 - ns tsu(Data_NE) Data to FSMC_NEx high setup time 2tHCLK - 1 - ns 2tHCLK - 1 - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 ns tw(NADV) FSMC_NADV low time - tHCLK + 2 ns 1. CL = 15 pF. Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:0] th(A_NWE) Address tv(BL_NE) FSMC_NBL[3:0] th(BL_NWE) NBL tv(Data_NE) th(Data_NWE) Data FSMC_D[15:0] t v(NADV_NE) tw(NADV) FSMC_NADV(1) ai14990 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Doc ID 16554 Rev 3 63/120 Electrical characteristics Table 32. Symbol STM32F103xF, STM32F103xG Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1) Parameter Min Max Unit tw(NE) FSMC_NE low time 3tHCLK + 0.5 3tHCLK + 1.5 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tHCLK + 0.5 tHCLK + 1.5 ns tw(NWE) FSMC_NWE low time tHCLK – 0.5 tHCLK + 1 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tHCLK – 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns th(A_NWE) Address hold time after FSMC_NWE high tHCLK - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tHCLK – 1.5 - ns tv(Data_NE) FSMC_NEx low to Data valid - tHCLK ns th(Data_NWE) Data hold time after FSMC_NWE high tHCLK - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 ns tw(NADV) FSMC_NADV low time - tHCLK + 1.5 ns Min Max 1. CL = 15 pF. Table 33. Symbol Asynchronous read muxed Parameter tw(NE) FSMC_NE low time tv(NOE_NE) FSMC_NEx low to FSMC_NOE low tw(NOE) FSMC_NOE low time th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time tv(A_NE) 3tHCLK + 0.5 4tHCLK – 1 7tHCLK + 2 3tHCLK + 1.5 4tHCLK + 1 0.5 - FSMC_NEx low to FSMC_A valid - 0 tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 2 th(AD_NADV) FSMC_AD (address) valid hold time after FSMC NADV high tHCLK - th(A_NOE) Address hold time after FSMC_NOE high tHCLK – 2 - th(BL_NOE) FSMC_BL time after FSMC_NOE high 0.5 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 tsu(Data_NE) Data to FSMC_NEx high setup time 4tHCLK – 0.5 - 4tHCLK – 1 - tsu(Data_NOE) Data to FSMC_NOE high setup time 64/120 7tHCLK + 0.5 th(Data_NE) Data hold time after FSMC_NEx high 0 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - Doc ID 16554 Rev 3 Unit ns STM32F103xF, STM32F103xG Electrical characteristics Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms tw(NE) FSMC_NE tv(NOE_NE) t h(NE_NOE) FSMC_NOE t w(NOE) FSMC_NWE tv(A_NE) FSMC_A[25:16] t h(A_NOE) Address tv(BL_NE) th(BL_NOE) FSMC_NBL[1:0] NBL th(Data_NE) tsu(Data_NE) t v(A_NE) tsu(Data_NOE) Address FSMC_AD[15:0] t v(NADV_NE) th(Data_NOE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14892b Table 34. Symbol Asynchronous multiplexed PSRAM/NOR read timings(1) Parameter Min Max Unit tw(NE) FSMC_NE low time 7tHCLK + 0.5 7tHCLK + 2 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 3tHCLK + 0.5 3tHCLK + 1.5 ns tw(NOE) FSMC_NOE low time 4tHCLK – 1 4tHCLK + 1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 ns tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 2 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high tHCLK - ns th(A_NOE) Address hold time after FSMC_NOE high tHCLK -2 - ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0.5 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns tsu(Data_NE) Data to FSMC_NEx high setup time 4tHCLK - 0.5 - ns 4tHCLK - 1 - ns tsu(Data_NOE) Data to FSMC_NOE high setup time th(Data_NE) Data hold time after FSMC_NEx high 0 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns 1. CL = 15 pF. Doc ID 16554 Rev 3 65/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:16] th(A_NWE) Address tv(BL_NE) th(BL_NWE) FSMC_NBL[1:0] NBL t v(A_NE) t v(Data_NADV) Address FSMC_AD[15:0] t v(NADV_NE) th(Data_NWE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14891B Table 35. Symbol Asynchronous multiplexed PSRAM/NOR write timings(1) Parameter Max Unit 5tHCLK + 0.5 5tHCLK + 2 ns tHCLK + 1 tHCLK + 1.5 ns tw(NE) FSMC_NE low time tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tw(NWE) FSMC_NWE low time 3tHCLK + 0.5 3tHCLK + 1 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tHCLK – 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3.5 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 ns tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 1.5 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high tHCLK – 0.5 - ns th(A_NWE) Address hold time after FSMC_NWE high 4tHCLK – 2 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tHCLK – 1.5 - ns - tHCLK + 6 ns tHCLK – 0.5 - ns tv(Data_NADV) FSMC_NADV high to Data valid th(Data_NWE) Data hold time after FSMC_NWE high 1. CL = 15 pF. 66/120 Min Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Synchronous waveforms and timings Figure 26 through Figure 29 represent synchronous waveforms and Table 37 through Table 39 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: ● BurstAccessMode = FSMC_BurstAccessMode_Enable; ● MemoryType = FSMC_MemoryType_CRAM; ● WriteBurst = FSMC_WriteBurst_Enable; ● CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual) ● DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM Figure 26. Synchronous multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &3-#?#,+ $ATALATENCY TD#,+,.%X, T D#,+,.%X( &3-#?.%X TD#,+,.!$6, TD#,+,.!$6( &3-#?.!$6 TD#,+,!)6 TD#,+,!6 &3-#?!;= TD#,+,./%, TD#,+,./%( &3-#?./% TD#,+,!$)6 TSU!$6#,+( TD#,+,!$6 &3-#?!$;= !$;= TH#,+(!$6 TSU!$6#,+( $ TSU.7!)46#,+( TH#,+(!$6 $ $ TH#,+(.7!)46 &3-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( TH#,+(.7!)46 &3-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( TH#,+(.7!)46 AIH Doc ID 16554 Rev 3 67/120 Electrical characteristics Table 36. STM32F103xF, STM32F103xG Synchronous multiplexed NOR/PSRAM read timings(1) Symbol Parameter Max Unit 27.6 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 0.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1.5 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 14 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 11 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0.5 - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 2 - ns th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns 1. CL = 15 pF. 68/120 Min Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 27. Synchronous multiplexed PSRAM write timings "53452. TW#,+ TW#,+ &3-#?#,+ $ATALATENCY TD#,+,.%X, TD#,+,.%X( &3-#?.%X TD#,+,.!$6, TD#,+,.!$6( &3-#?.!$6 TD#,+,!6 TD#,+,!)6 &3-#?!;= TD#,+,.7%, TD#,+,.7%( &3-#?.7% TD#,+,!$)6 TD#,+,$ATA TD#,+,!$6 &3-#?!$;= TD#,+,$ATA !$;= $ $ &3-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( TH#,+(.7!)46 TD#,+,.",( &3-#?.", AIG Doc ID 16554 Rev 3 69/120 Electrical characteristics Table 37. STM32F103xF, STM32F103xG Synchronous multiplexed PSRAM write timings(1) Symbol Parameter Max Unit 27.5 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 1 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1.5 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 10 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 1 - ns td(CLKL-Data) FSMC_A/D[15:0] valid after FSMC_CLK low - 6 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 - ns 1. CL = 15 pF. 70/120 Min Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &3-#?#,+ TD#,+,.%X, TD#,+,.%X( $ATALATENCY &3-#?.%X TD#,+,.!$6, TD#,+,.!$6( &3-#?.!$6 TD#,+,!)6 TD#,+,!6 &3-#?!;= TD#,+,./%, TD#,+,./%( &3-#?./% TSU$6#,+( TH#,+($6 TSU$6#,+( $ &3-#?$;= TSU.7!)46#,+( TH#,+($6 $ $ TH#,+(.7!)46 &3-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( T H#,+(.7!)46 &3-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( TH#,+(.7!)46 AIG Table 38. Synchronous non-multiplexed NOR/PSRAM read timings(1) Symbol Parameter Min Max Unit 27.6 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 1.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 1 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 0...25) 2 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - tHCLK + 1 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 3.5 - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 0 - ns 1. CL = 15 pF. Doc ID 16554 Rev 3 71/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 29. Synchronous non-multiplexed PSRAM write timings TW#,+ "53452. TW#,+ &3-#?#,+ TD#,+,.%X, TD#,+,.%X( $ATALATENCY &3-#?.%X TD#,+,.!$6, TD#,+,.!$6( &3-#?.!$6 TD#,+,!6 TD#,+,!)6 &3-#?!;= TD#,+,.7%, TD#,+,.7%( &3-#?.7% TD#,+,$ATA &3-#?$;= TD#,+,$ATA $ $ &3-#?.7!)4 7!)4#&'B7!)40/,B TSU.7!)46#,+( TD#,+,.",( TH#,+(.7!)46 &3-#?.", AIH Table 39. Synchronous non-multiplexed PSRAM write timings(1) Symbol Parameter Max Unit 27.6 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 0.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1.5 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1.5 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1.5 - ns td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2.5 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns 1. CL = 15 pF. 72/120 Min Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics PC Card/CompactFlash controller waveforms and timings Figure 30 through Figure 35 represent synchronous waveforms and Table 42 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: ● COM.FSMC_SetupTime = 0x04; ● COM.FSMC_WaitSetupTime = 0x07; ● COM.FSMC_HoldSetupTime = 0x04; ● COM.FSMC_HiZSetupTime = 0x00; ● ATT.FSMC_SetupTime = 0x04; ● ATT.FSMC_WaitSetupTime = 0x07; ● ATT.FSMC_HoldSetupTime = 0x04; ● ATT.FSMC_HiZSetupTime = 0x00; ● IO.FSMC_SetupTime = 0x04; ● IO.FSMC_WaitSetupTime = 0x07; ● IO.FSMC_HoldSetupTime = 0x04; ● IO.FSMC_HiZSetupTime = 0x00; ● TCLRSetupTime = 0; ● TARSetupTime = 0; Figure 30. PC Card/CompactFlash controller waveforms for common memory read access FSMC_NCE4_2(1) FSMC_NCE4_1 th(NCEx-AI) tv(NCEx-A) FSMC_A[10:0] th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR) td(NREG-NCEx) td(NIORD-NCEx) FSMC_NREG FSMC_NIOWR FSMC_NIORD FSMC_NWE td(NCE4_1-NOE) tw(NOE) FSMC_NOE tsu(D-NOE) th(NOE-D) FSMC_D[15:0] ai14895b 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. Doc ID 16554 Rev 3 73/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 31. PC Card/CompactFlash controller waveforms for common memory write access FSMC_NCE4_1 FSMC_NCE4_2 High tv(NCE4_1-A) th(NCE4_1-AI) FSMC_A[10:0] th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR) td(NREG-NCE4_1) td(NIORD-NCE4_1) FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NCE4_1-NWE) tw(NWE) td(NWE-NCE4_1) FSMC_NWE FSMC_NOE MEMxHIZ =1 td(D-NWE) tv(NWE-D) th(NWE-D) FSMC_D[15:0] ai14896b 74/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access FSMC_NCE4_1 tv(NCE4_1-A) FSMC_NCE4_2 th(NCE4_1-AI) High FSMC_A[10:0] FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) FSMC_NREG FSMC_NWE td(NCE4_1-NOE) tw(NOE) td(NOE-NCE4_1) FSMC_NOE tsu(D-NOE) th(NOE-D) FSMC_D[15:0](1) ai14897b 1. Only data bits 0...7 are read (bits 8...15 are disregarded). Doc ID 16554 Rev 3 75/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write access FSMC_NCE4_1 FSMC_NCE4_2 High tv(NCE4_1-A) th(NCE4_1-AI) FSMC_A[10:0] FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) FSMC_NREG td(NCE4_1-NWE) tw(NWE) FSMC_NWE td(NWE-NCE4_1) FSMC_NOE tv(NWE-D) FSMC_D[7:0](1) ai14898b 1. Only data bits 0...7 are driven (bits 8...15 remains HiZ). Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access FSMC_NCE4_1 FSMC_NCE4_2 th(NCE4_1-AI) tv(NCEx-A) FSMC_A[10:0] FSMC_NREG FSMC_NWE FSMC_NOE FSMC_NIOWR tw(NIORD) td(NIORD-NCE4_1) FSMC_NIORD tsu(D-NIORD) td(NIORD-D) FSMC_D[15:0] ai14899B 76/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access &3-#?.#%? &3-#?.#%? TV.#%X! TH.#%?!) &3-#?!;= &3-#?.2%' &3-#?.7% &3-#?./% &3-#?.)/2$ TD.#%?.)/72 TW.)/72 &3-#?.)/72 !44X(): TV.)/72$ TH.)/72$ &3-#?$;= AIB Table 40. Switching characteristics for PC Card/CF read and write cycles in attribute/common space Symbol Parameter Min Max tv(NCEx-A) FSMC_NCEx low to FSMC_Ay valid - 0 th(NCEx-AI) FSMC_NCEx high to FSMC_Ax invalid 0 - td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 2 th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid tHCLK + 4 - td(NCEx_NWE) FSMC_NCEx low to FSMC_NWE low - 5tHCLK + 1 td(NCEx_NOE) FSMC_NCEx low to FSMC_NOE low - 5tHCLK + 1 tw(NOE) FSMC_NOE low width 8tHCLK - 0.5 8tHCLK + 1 td(NOE-NCEx FSMC_NOE high to FSMC_NCEx high 5tHCLK - 0.5 - tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 32 - th(NOE-D) FSMC_NOE high to FSMC_D[15:0] invalid tHCLK - tw(NWE) FSMC_NWE low width 8tHCLK – 1 8tHCLK + 4 td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5tHCLK + 1.5 - td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5tHCLK + 1 tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 11tHCLK - td(D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13tHCLK + 2.5 - Doc ID 16554 Rev 3 Unit ns 77/120 Electrical characteristics Table 41. STM32F103xF, STM32F103xG Switching characteristics for PC Card/CF read and write cycles in I/O space Symbol Parameter tw(NIOWR) Min Max Unit 8 THCLK - ns - 5 THCLK 4 ns 11THCLK 7 - ns FSMC_NIOWR low width tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK + 1 ns th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK 2.5 - ns td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK 0.5 ns th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5 THCLK 0.5 - ns 8THCLK - ns tw(NIORD) FSMC_NIORD low width tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 28 ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 3 ns NAND controller waveforms and timings Figure 36 through Figure 39 represent synchronous waveforms and Table 43 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: 78/120 ● COM.FSMC_SetupTime = 0x00; ● COM.FSMC_WaitSetupTime = 0x02; ● COM.FSMC_HoldSetupTime = 0x01; ● COM.FSMC_HiZSetupTime = 0x00; ● ATT.FSMC_SetupTime = 0x00; ● ATT.FSMC_WaitSetupTime = 0x02; ● ATT.FSMC_HoldSetupTime = 0x01; ● ATT.FSMC_HiZSetupTime = 0x00; ● Bank = FSMC_Bank_NAND; ● MemoryDataWidth = FSMC_MemoryDataWidth_16b; ● ECC = FSMC_ECC_Enable; ● ECCPageSize = FSMC_ECCPageSize_512Bytes; ● TCLRSetupTime = 0; ● TARSetupTime = 0; Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 36. NAND controller waveforms for read access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NWE td(ALE-NOE) th(NOE-ALE) FSMC_NOE (NRE) tsu(D-NOE) th(NOE-D) FSMC_D[15:0] ai14901b Figure 37. NAND controller waveforms for write access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NWE) th(NWE-ALE) FSMC_NWE FSMC_NOE (NRE) tv(NWE-D) th(NWE-D) FSMC_D[15:0] ai14902b Figure 38. NAND controller waveforms for common memory read access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NOE) th(NOE-ALE) FSMC_NWE tw(NOE) FSMC_NOE tsu(D-NOE) th(NOE-D) FSMC_D[15:0] ai14912b Doc ID 16554 Rev 3 79/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 39. NAND controller waveforms for common memory write access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NOE) tw(NWE) th(NOE-ALE) FSMC_NWE FSMC_NOE td(D-NWE) tv(NWE-D) th(NWE-D) FSMC_D[15:0] ai14913b Table 42. Symbol Switching characteristics for NAND Flash read cycles(1) Parameter Min Max Unit 3tHCLK – 1 3tHCLK + 1 ns tw(NOE) FSMC_NOE low width tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 13 - ns th(NOE-D) FSMC_D[15:0] valid data after FSMC_NOE high 0 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 2tHCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 2tHCLK - ns 1. CL = 15 pF. Table 43. Symbol Switching characteristics for NAND Flash write cycles(1) Parameter Max Unit 3tHCLK 3tHCLK ns - 0 ns tw(NWE) FSMC_NWE low width tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 2tHCLK + 2 - ns td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3tHCLK + 1.5 ns th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3tHCLK + 8 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 2tHCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 2tHCLK - ns 1. CL = 15 pF. 80/120 Min Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 5.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 44. They are based on the EMS levels and classes defined in application note AN1709. Table 44. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP144, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 72 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP144, TA = +25 °C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Doc ID 16554 Rev 3 81/120 Electrical characteristics STM32F103xF, STM32F103xG Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be appFlied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 45. Symbol SEMI 5.3.12 EMI characteristics Parameter Peak level Conditions Max vs. [fHSE/fHCLK] Monitored frequency band Unit 8/48 MHz 8/72 MHz 0.1 to 30 MHz VDD = 3.3 V, TA = 25 °C, 30 to 130 MHz LQFP144 package compliant with IEC 130 MHz to 1GHz 61967-2 SAE EMI Level 8 12 31 21 28 33 4 4 dBµV - Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 46. Symbol VESD(HBM) ESD absolute maximum ratings Ratings Conditions Class Maximum value(1) Unit Electrostatic discharge TA = +25 °C, conforming 2 voltage (human body model) to JESD22-A114 Electrostatic discharge TA = +25 °C, conforming II VESD(CDM) voltage (charge device model) to JESD22-C101 1. Based on characterization results, not tested in production. 82/120 Doc ID 16554 Rev 3 2000 V 500 STM32F103xF, STM32F103xG Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 47. Symbol LU 5.3.13 Electrical sensitivities Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 48 Table 48. I/O current injection susceptibility Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 Injected current on all FT pins -5 +0 Injected current on any other pin -5 +5 Doc ID 16554 Rev 3 Unit mA 83/120 Electrical characteristics 5.3.14 STM32F103xF, STM32F103xG I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 49. Symbol VIL VIH Vhys Ilkg I/O static characteristics Parameter Min Typ Max Unit Standard IO input low level voltage –0.3 - 0.28*(VDD-2 V)+0.8 V V IO FT(1) input low level voltage –0.3 - 0.32*(VDD-2 V)+0.75 V V Standard IO input high level voltage 0.41*(VDD-2 V)+1.3 V - VDD+0.3 V 0.42*(VDD-2 V)+1 V - Standard IO Schmitt trigger voltage hysteresis(2) 200 - - mV IO FT Schmitt trigger voltage hysteresis(2) 5% VDD(3) - - mV VSS ≤VIN ≤VDD Standard I/Os - - ±1 VIN= 5 V, I/O FT - - 3 IO FT(1) input high level voltage Input leakage current (4) Conditions VDD > 2 V VDD ≤2 V 5.5 V 5.2 µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 30 40 50 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 30 40 50 kΩ CIO I/O pin capacitance - 5 - pF 1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than max. if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 40 and Figure 41 for standard I/Os, and in Figure 42 and Figure 43 for 5 V tolerant I/Os. 84/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 40. Standard I/O input characteristics - CMOS port 6)(6),6 6 6 )( $$ 6 $$ MENT6 )( QUIRE NDARDRE TA #-/3S 7)(MIN 7),MAX 6 ),6 ## T6 ),6 $$ RDREQUIREMEN #-/3STANDA )NPUTRANGE NOTGUARANTEED 6$$6 AIB Figure 41. Standard I/O input characteristics - TTL port 6)(6),6 7)(MIN 44,REQUIREMENTS 6)( 6 6 6 )( $$ )NPUTRANGE NOTGUARANTEED 7),MAX 6 ),6 $$ 44,REQUIREMENTS 6),6 6$$6 AI Doc ID 16554 Rev 3 85/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 42. 5 V tolerant I/O input characteristics - CMOS port 6)(6),6 6 $$ TS6 )( UIREMEN REQ TANDARD #-/3S )NPUTRANGE NOTGUARANTEED 6 ),6 $$ T6 ),6 $$ REQUIRMEN /3STANDARD #- 6 )(6 $$ 6$$6 6$$ AIB Figure 43. 5 V tolerant I/O input characteristics - TTL port 6)(6),6 44,REQUIREMENT6 )(6 6 6 )( $$ 7)(MIN 7),MAX )NPUTRANGE NOTGUARANTEED 6 ), 6 $$ 44,REQUIREMENTS6 ),6 6$$6 AI Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxedVOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: 86/120 ● The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 8). ● The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 8). Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Output voltage levels Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 50. Symbol VOL(1) VOH (2) VOL (1) VOH (2) Output voltage characteristics Parameter Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time VOL(1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VOL(1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time Conditions Min Max TTL port(3) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 CMOS port(3) IIO =+ 8mA 2.7 V < VDD < 3.6 V IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V Unit V VDD–0.4 - - 0.4 V 2.4 - - 1.3 V VDD–1.3 - - 0.4 V VDD–0.4 - 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 4. Based on characterization data, not tested in production. Doc ID 16554 Rev 3 87/120 Electrical characteristics STM32F103xF, STM32F103xG Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 44 and Table 51, respectively. Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 51. I/O AC characteristics(1) MODEx[1:0] Symbol bit value(1) Parameter Conditions Min Max Unit - 2 MHz - 125(3) - 125(3) - 10 - 25(3) - 25(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V - 20 MHz CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) 10 - fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 10 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time CL = 50 pF, VDD = 2 V to 3.6 V fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time Fmax(IO)out Maximum 11 tf(IO)out tr(IO)out - tEXTIpw frequency(2) Output high to low level fall time Output low to high level rise time ns CL = 50 pF, VDD = 2 V to 3.6 V Pulse width of external signals detected by the EXTI controller MHz ns ns ns 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 44. 3. Guaranteed by design, not tested in production. 88/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 44. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) £ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 5.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 49). Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 52. NRST pin characteristics Symbol Parameter Min Typ Max –0.5 - 0.8 VIH(NRST)(1) NRST Input high level voltage 2 - VDD+0.5 NRST Schmitt trigger voltage hysteresis - 200 - mV 30 40 50 kΩ - - 100 ns 300 - - ns VIL(NRST)(1) Conditions NRST Input low level voltage Vhys(NRST) Weak pull-up equivalent resistor(2) RPU VF(NRST)(1) NRST Input filtered pulse VNF(NRST)(1) NRST Input not filtered pulse Unit V VIN = VSS 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). Figure 45. Recommended NRST pin protection VDD External reset circuit(1) NRST(2) RPU Internal Reset Filter 0.1 µF STM32F10xxx ai14132d 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 52. Otherwise the reset will not be taken into account by the device. Doc ID 16554 Rev 3 89/120 Electrical characteristics 5.3.16 STM32F103xF, STM32F103xG TIM timer characteristics The parameters given in Table 53 are guaranteed by design. Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 53. Symbol tres(TIM) fEXT ResTIM tCOUNTER TIMx(1) characteristics Parameter Conditions Min Max Unit 1 - tTIMxCLK 13.9 - ns Timer external clock frequency on CH1 to CH4 f TIMxCLK = 72 MHz 0 fTIMxCLK/2 MHz 0 36 MHz Timer resolution - 16 bit 65536 tTIMxCLK 910 µs - 65536 × 65536 tTIMxCLK - 59.6 s Timer resolution time fTIMxCLK = 72 MHz 16-bit counter clock period 1 when internal clock is fTIMxCLK = 72 MHz 0.0139 selected tMAX_COUNT Maximum possible count fTIMxCLK = 72 MHz 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. 90/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 5.3.17 Electrical characteristics Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 54 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 10. The STM32F103xC, STM32F103xD and STM32F103xESTM32F103xF and STM32F103xG performance line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 54. Refer also to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 54. I2C characteristics Standard mode I2C(1) Symbol Fast mode I2C(1)(2) Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0(3) - 0(4) 900(3) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF µs ns µs 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve the fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz. 3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. Doc ID 16554 Rev 3 91/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 46. I2C bus AC waveforms and measurement circuit VDD VDD 4 .7 k 4 .7 k STM32F103xx 100 SDA I2C bus 100 SCL S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) th(STA) SCL tw(SCLH) tsu(SDA) tw(SCLL) tr(SCL) th(SDA) tw(STO:STA) S TOP tsu(STO) tf(SCL) ai14149c 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 55. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 kΩ 400 0x801E 300 0x8028 200 0x803C 100 0x00B4 50 0x0168 20 0x0384 1. RP = External pull-up resistance, fSCL = I2C speed. 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. 92/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics I2S - SPI characteristics Unless otherwise specified, the parameters given in Table 56 for SPI or in Table 57 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 56. Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) DuCy(SCK) SPI characteristics Parameter Conditions Min Max Master mode - 18 Slave mode - 18 Capacitive load: C = 30 pF - 8 ns 30 70 % SPI clock frequency SPI clock rise and fall time MHz SPI slave input clock duty Slave mode cycle tsu(NSS)(1) NSS setup time Slave mode 4tPCLK - th(NSS)(1) NSS hold time Slave mode 2tPCLK - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 60 Master mode 5 - Slave mode 5 - Master mode 5 - Slave mode 4 - (1) tw(SCKH) tw(SCKL)(1) tsu(MI) (1) tsu(SI)(1) th(MI) Data input setup time (1) th(SI)(1) Data input hold time ta(SO)(1)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3tPCLK tdis(SO)(1)(3) Data output disable time Slave mode 2 10 (1) Data output valid time Slave mode (after enable edge) - 25 tv(MO)(1) Data output valid time Master mode (after enable edge) - 5 Slave mode (after enable edge) 15 - Master mode (after enable edge) 2 - tv(SO) th(SO)(1) th(MO) (1) Unit ns Data output hold time 1. Based on characterization, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Doc ID 16554 Rev 3 93/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 47. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) tSU(NSS) SCK Input CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 48. SPI timing diagram - slave mode and CPHA = 1(1) NSS input tSU(NSS) SCK Input CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 94/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 49. SPI timing diagram - master mode(1) High NSS input SCK Input CPHA= 0 CPOL=0 SCK Input tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Doc ID 16554 Rev 3 95/120 Electrical characteristics Table 57. STM32F103xF, STM32F103xG I2S characteristics Symbol DuCy(SCK) Parameter Conditions Min Max Unit 30 70 % 1.522 1.525 Slave mode 0 6.5 I2S slave input clock duty cycle Slave mode Master mode (data: 16 bits, Audio frequency = 48 kHz) fCK 1/tc(CK) I S clock frequency tr(CK) tf(CK) I2S clock rise and fall time Capacitive load CL = 50 pF - 8 tv(WS) (1) WS valid time Master mode 3 - th(WS) (1) I2S2 2 - WS hold time Master mode I2S3 0 - tsu(WS) th(WS) 2 (1) (1) tw(CKH) (1) tw(CKL) (1) WS setup time Slave mode 4 - WS hold time Slave mode 0 - Master fPCLK= 16 MHz, audio frequency = 48 kHz 312.5 - CK high and low time 345 - I2S2 2 - I2S3 6.5 - 1.5 - Master receiver 0 - Slave receiver 0.5 - tsu(SD_MR) (1) Data input setup time tsu(SD_SR) (1) Data input setup time th(SD_MR) (1)(2) th(SD_SR) (1)(2) MHz Master receiver Slave receiver Data input hold time tv(SD_ST) (1)(2) Data output valid time Slave transmitter (after enable edge) - 18 th(SD_ST) (1) Data output hold time Slave transmitter (after enable edge) 11 - tv(SD_MT) (1)(2) Data output valid time Master transmitter (after enable edge) - 3 th(SD_MT) (1) Data output hold time Master transmitter (after enable edge) 0 - 1. Based on design simulation and/or characterization results, not tested in production. 2. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns. 96/120 Doc ID 16554 Rev 3 ns STM32F103xF, STM32F103xG Electrical characteristics Figure 50. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 51. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Based on characterization, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Doc ID 16554 Rev 3 97/120 Electrical characteristics STM32F103xF, STM32F103xG SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK). Figure 52. SDIO high-speed mode tf tr tC tW(CKH) tW(CKL) CK tOV tOH D, CMD (output) tISU tIH D, CMD (input) ai14887 Figure 53. SD default mode CK tOVD tOHD D, CMD (output) ai14888 98/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 58. Electrical characteristics SD / MMC characteristics Symbol Parameter Conditions Min Max Unit MHz Clock frequency in data transfer mode CL ≤ 30 pF 0 48 tW(CKL) Clock low time, fPP = 16 MHz CL ≤ 30 pF 32 - tW(CKH) Clock high time, fPP = 16 MHz CL ≤ 30 pF 30 - tr Clock rise time CL ≤ 30 pF - 4 tf Clock fall time CL ≤ 30 pF - 5 fPP ns CMD, D inputs (referenced to CK) tISU Input setup time CL ≤ 30 pF 2 - tIH Input hold time CL ≤ 30 pF 0 - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time CL ≤ 30 pF - 6 tOH Output hold time CL ≤ 30 pF 0 - ns CMD, D outputs (referenced to CK) in SD default mode(1) tOVD Output valid default time CL ≤ 30 pF - 7 tOHD Output hold default time CL ≤ 30 pF 0.5 - ns 1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output. USB characteristics The USB interface is USB-IF certified (Full Speed). Table 59. USB startup time Symbol tSTARTUP(1) Parameter USB transceiver startup time Max Unit 1 µs 1. Guaranteed by design, not tested in production. Doc ID 16554 Rev 3 99/120 Electrical characteristics Table 60. STM32F103xF, STM32F103xG USB DC electrical characteristics Symbol Parameter Conditions Min.(1) Max.(1) Unit 3.0(3) 3.6 V V Input levels VDD (4) USB operating voltage(2) I(USBDP, USBDM) 0.2 VCM(4) Differential common mode range Includes VDI range 0.8 2.5 VSE(4) Single ended receiver threshold 1.3 2.0 VDI Differential input sensitivity Output levels VOL Static output level low RL of 1.5 kΩ to 3.6 V(5) VOH Static output level high RL of 15 kΩ to VSS(5) 0.3 V 2.8 3.6 1. All the voltages are measured from the local ground potential. 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range. 3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 4. Guaranteed by characterization, not tested in production. 5. RL is the load connected on the USB drivers Figure 54. USB timings: definition of data signal rise and fall time Crossover points Differen tial data lines VCRS VS S Table 61. tr tf ai14137 USB: full-speed electrical characteristics Driver characteristics(1) Symbol Parameter Conditions Min Max Unit tr Rise time(2) CL = 50 pF 4 20 ns tf (2) CL = 50 pF 4 20 ns tr/tf 90 110 % 1.3 2.0 V trfm VCRS Fall Time Rise/ fall time matching Output signal crossover voltage 1. Guaranteed by design, not tested in production. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 5.3.18 CAN (controller area network) interface Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). 100/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 5.3.19 Electrical characteristics 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 62 are preliminary values derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 10. Note: It is recommended to perform a calibration after each power-up. Table 62. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 2.4 - 3.6 V VREF+ Positive reference voltage 2.4 - VDDA V IVREF Current on the VREF input pin - 160 220(1) µA fADC ADC clock frequency 0.6 - 14 MHz fS(2) Sampling rate 0.05 - 1 MHz - - 823 kHz - - 17 1/fADC 0 (VSSA or VREFtied to ground) - VREF+ V - - 50 kΩ fTRIG(2) VAIN fADC = 14 MHz External trigger frequency Conversion voltage range(3) See Equation 1 and Table 63 for details RAIN(2) External input impedance RADC(2) Sampling switch resistance - - 1 kΩ CADC(2) Internal sample and hold capacitor - - 8 pF tCAL(2) Calibration time fADC = 14 MHz tlat(2) Injection trigger conversion latency fADC = 14 MHz tlatr(2) Regular trigger conversion latency fADC = 14 MHz tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) fADC = 14 MHz fADC = 14 MHz 5.9 µs 83 1/fADC - - 0.214 µs - - 3(4) 1/fADC - - 0.143 µs (4) 1/fADC - - 2 0.107 - 17.1 µs 1.5 - 239.5 1/fADC 0 0 1 µs 18 µs 1 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package. Refer to Section 3: Pinouts and pin descriptions for further details. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 62. Doc ID 16554 Rev 3 101/120 Electrical characteristics STM32F103xF, STM32F103xG Equation 1: RAIN max formula TS - – R ADC R AIN < --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 63. RAIN max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RAIN max (kΩ) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 64. Symbol ADC accuracy - limited test conditions(1)(2) Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions Typ Max(3) fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 3 V to 3.6 V TA = 25 °C Measurements made after ADC calibration VREF+ = VDDA ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ±0.8 ±1.5 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.14 does not affect the ADC accuracy. 3. Based on characterisation, not tested in production. 102/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 65. Electrical characteristics ADC accuracy(1) (2)(3) Symbol Parameter ET Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration Typ Max(4) ±2 ±5 ±1.5 ±2.5 ±1.5 ±3 ±1 ±2 ±1.5 ±3 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges. 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.14 does not affect the ADC accuracy. 4. Preliminary values. Figure 55. ADC accuracy characteristics V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096 EG 4095 4094 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4093 (2) ET (3) 7 (1) 6 5 4 EO EL 3 ED 2 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 4093 4094 4095 4096 VDDA Doc ID 16554 Rev 3 ai14395b 103/120 Electrical characteristics STM32F103xF, STM32F103xG Figure 56. Typical connection diagram using the ADC VDD RAIN(1) VAIN VT 0.6 V AINx Cparasitic VT 0.6 V IL±1 µA STM32F103xx Sample and hold ADC converter RADC(1) 12-bit converter CADC(1) ai14150c 1. Refer to Table 62 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 57 or Figure 58, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 57. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F103xx VREF+ (see note 1) 1 µF // 10 nF VDDA 1 µF // 10 nF VSSA /VREF– (see note 1) ai14388b 1. VREF+ and VREF– inputs are available only on 100-pin packages. 104/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Electrical characteristics Figure 58. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F103xx VREF+/VDDA (See note 1) 1 µF // 10 nF VREF–/VSSA (See note 1) ai14389 1. VREF+ and VREF– inputs are available only on 100-pin packages. Doc ID 16554 Rev 3 105/120 Electrical characteristics STM32F103xF, STM32F103xG 5.3.20 DAC electrical specifications Table 66. DAC characteristics Symbol Parameter Min Typ Max Unit VDDA Analog supply voltage 2.4 - 3.6 V VREF+ Reference supply voltage 2.4 - 3.6 V VSSA Ground 0 - 0 V Resistive load vs. VSSA with buffer ON 5 - - kΩ Resistive load vs. VDDA with buffer ON 15 - - kΩ RLOAD (1) Comments VREF+ must always be below VDDA RO(1) Impedance output with buffer OFF - - 15 When the buffer is OFF, the Minimum resistive load between DAC_OUT kΩ and VSS to have a 1% accuracy is 1.5 MΩ CLOAD(1) Capacitive load - - 50 Maximum capacitive load at pF DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x155) and (0xEAB) at VREF+ = 2.4 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer ON 0.2 - - V DAC_OUT Higher DAC_OUT voltage with buffer ON max(1) - - VDDA – 0.2 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer OFF - 0.5 DAC_OUT Higher DAC_OUT voltage with buffer OFF max(1) - VREF+ – 10 mV IDDVREF+ DAC DC current consumption in quiescent mode (Standby mode) - 380 With no load, worst code (0x0E4) at µA VREF+ = 3.6 V in terms of DC consumption on the inputs - 380 µA IDDA DAC DC current consumption in quiescent mode (Standby mode) - 480 With no load, worst code (0xF1C) at µA VREF+ = 3.6 V in terms of DC consumption on the inputs - ±0.5 LSB Given for the DAC in 10-bit configuration - ±3 LSB Given for the DAC in 12-bit configuration DNL(2) 106/120 Differential non linearity Difference between two consecutive code-1LSB) mV Doc ID 16554 Rev 3 It gives the maximum output excursion of the DAC. V With no load, middle code (0x800) on the inputs STM32F103xF, STM32F103xG Table 66. DAC characteristics (continued) Symbol INL(2) Electrical characteristics Parameter Min Typ Max Unit - - ±1 LSB Given for the DAC in 10-bit configuration - - ±4 LSB Given for the DAC in 12-bit configuration - - ±10 mV Given for the DAC in 12-bit configuration Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) Comments Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V Gain error - - ±0.5 % Given for the DAC in 12bit configuration Settling time (full scale: for a 10-bit input code transition (2) between the lowest and the tSETTLING highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Wakeup time from off state tWAKEUP(2) (Setting the ENx bit in the DAC Control register) - 6.5 10 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. Power supply rejection ratio PSRR+ (1) (to VDDA) (static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF Offset(2) Gain error(2) Update rate(2) 1. Guaranteed by design, not tested in production. 2. Preliminary values. Figure 59. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R LOAD 12-bit digital to analog converter DACx_OUT C LOAD ai17157 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. Doc ID 16554 Rev 3 107/120 Electrical characteristics 5.3.21 STM32F103xF, STM32F103xG Temperature sensor characteristics Table 67. TS characteristics Symbol TL(1) Avg_Slope V25 Parameter Min Typ Max Unit - ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C Voltage at 25 °C 1.34 1.43 1.52 V VSENSE linearity with temperature (1) (1) tSTART(2) Startup time 4 - 10 µs TS_temp(3)(2) ADC sampling time when reading the temperature - - 17.1 µs 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. 108/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Package characteristics 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 60. Recommended PCB design rules (0.80/0.75 mm pitch BGA Dpad Dpad 0.37 mm Dsm 0.52 mm typ. (depends on solder mask registration tolerance Solder paste 0.37 mm aperture diameter – Non solder mask defined pads are recommended – 4 to 6 mils screen print Dsm ai15469 Doc ID 16554 Rev 3 109/120 Package characteristics STM32F103xF, STM32F103xG Figure 61. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline C Seating plane A2 ddd A4 C A A3 A1 B D D1 A e F M F E1 E e Øb (144 balls) Ball A1 Ø eee M C A Ø fff M B C X3_ME 1. Drawing is not to scale. Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data inches(1) millimeters Symbol Min Typ A A1 Max Typ 1.70 0.21 Max 0.0669 0.0083 A2 1.07 0.0421 A3 0.27 0.0106 A4 0.85 0.0335 b 0.35 0.40 0.45 0.0138 0.0157 0.0177 D 9.85 10.00 10.15 0.3878 0.3937 0.3996 D1 E 8.80 9.85 10.00 0.3465 10.15 0.3878 0.3937 E1 8.80 0.3465 e 0.80 0.0315 F 0.60 0.0236 ddd 0.10 0.0039 eee 0.15 0.0059 fff 0.08 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 110/120 Min Doc ID 16554 Rev 3 0.3996 STM32F103xF, STM32F103xG Package characteristics Figure 62. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline(1) Figure 63. Recommended footprint(1)(2) Seating plane C A A2 A1 c b ccc 0.25 mm gage plane C 108 109 D 73 1.35 72 0.35 k D1 0.5 A1 D3 L 73 108 L1 17.85 19.9 22.6 72 109 144 E1 E 37 1 36 E3 19.9 22.6 ai149 144 Pin 1 identification 37 36 1 e ME_1A 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 69. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 D 21.80 D1 Max 0.063 0.15 0.002 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 22.00 22.20 0.8583 0.8661 0.874 19.80 20.00 20.20 0.7795 0.7874 0.7953 E 21.80 22.00 22.20 0.8583 0.8661 0.874 E1 19.80 20.00 20.20 0.7795 0.7874 0.7953 D3 17.50 0.0059 0.0079 0.689 E3 17.50 0.689 e 0.50 0.0197 L 0.45 L1 k ccc 0.60 0.75 0.0177 1.00 0° 3.5° 0.0236 0.0295 0.0394 7° 0.08 0° 3.5° 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 16554 Rev 3 111/120 Package characteristics STM32F103xF, STM32F103xG Figure 64. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline(1) Figure 65. Recommended footprint(1)(2) 0.25 mm 0.10 inch GAGE PLANE k 75 51 D L D1 76 L1 D3 51 75 50 0.5 C 76 50 0.3 16.7 14.3 b E3 E1 E 100 26 1.2 100 26 Pin 1 1 identification 1 25 ccc 25 C 12.3 e A1 16.7 ai14906b A2 A SEATING PLANE C 1L_ME 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 70. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 D 15.80 D1 13.80 D3 Max 0.063 0.15 0.002 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 16.00 16.20 0.622 0.6299 0.6378 14.00 14.20 0.5433 0.5512 0.5591 12.00 0.0059 0.0079 0.4724 E 15.80 16.00 16.20 0.622 0.6299 0.6378 E1 13.80 14.00 14.20 0.5433 0.5512 0.5591 E3 12.00 e L 0.50 0.45 L1 k ccc 0.4724 0.60 0.0197 0.75 1.00 0° 3.5° 0.0236 0.0295 0.0394 7° 0.08 0° 3.5° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 112/120 0.0177 Doc ID 16554 Rev 3 7° STM32F103xF, STM32F103xG Package characteristics Figure 67. Recommended footprint(1)(2) Figure 66. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline(1) 48 33 D 0.3 ccc C D1 A A2 D3 33 48 49 32 49 12.7 32 0.5 10.3 b L1 10.3 E3 E1 E 64 L A1 K 1.2 64 1 17 Pin 1 identification 16 1 17 c 16 7.8 5W_ME 12.7 ai14909 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.600 A1 0.050 A2 1.350 b 0.170 c 0.090 D 11.800 D1 9.800 D. Max 0.0630 0.150 0.0020 0.0059 1.400 1.450 0.0531 0.0551 0.0571 0.220 0.270 0.0067 0.0087 0.0106 0.200 0.0035 12.000 12.200 0.4646 0.4724 0.4803 10.000 10.200 0.3858 0.3937 0.4016 0.0079 7.500 E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.00 10.200 0.3858 0.3937 0.4016 e 0.500 0.0197 k 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.75 0.0177 0.0236 0.0295 L1 1.000 0.0394 ccc 0.080 0.0031 Number of pins N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 16554 Rev 3 113/120 Package characteristics 6.2 STM32F103xF, STM32F103xG Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 10: General operating conditions on page 41. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: ● TA max is the maximum ambient temperature in °C, ● ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, ● PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), ● PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 72. Package thermal characteristics Symbol ΘJA 6.2.1 Parameter Value Thermal resistance junction-ambient LFBGA144 - 10 × 10 mm / 0.8 mm pitch 40 Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch 30 Unit °C/W Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 114/120 Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG 6.2.2 Package characteristics Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 73: STM32F103xF and STM32F103xG ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F103xF and STM32F103xG at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 72 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 73: STM32F103xF and STM32F103xG ordering information scheme). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW Doc ID 16554 Rev 3 115/120 Package characteristics STM32F103xF, STM32F103xG Using the values obtained in Table 72 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 73: STM32F103xF and STM32F103xG ordering information scheme). Figure 68. LQFP100 PD max vs. TA 700 PD (mW) 600 500 Suffix 6 400 Suffix 7 300 200 100 0 65 75 85 95 105 115 TA (°C) 116/120 Doc ID 16554 Rev 3 125 135 STM32F103xF, STM32F103xG 7 Part numbering Part numbering Table 73. STM32F103xF and STM32F103xG ordering information scheme Example: STM32 F103 RF T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 103 = performance line Pin count R = 64 pins V = 100 pins Z = 144 pins Flash memory size F = 768 Kbytes of Flash memory G = 1 Mbyte of Flash memory Package H = BGA T = LQFP Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Options xxx = programmed parts TR = tape and real For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Doc ID 16554 Rev 3 117/120 Revision history 8 STM32F103xF, STM32F103xG Revision history Table 74. Document revision history Date Revision 27-Oct-2009 1 Initial release. 2 LQFP64 package mechanical data updated: see Figure 66: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 71: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. Internal code removed from Table 73: STM32F103xF and STM32F103xG ordering information scheme. Updated note 2 below Table 54: I2C characteristics Updated Figure 46: I2C bus AC waveforms and measurement circuit Updated Figure 45: Recommended NRST pin protection Updated note 1 below Table 49: I/O static characteristics Updated Table 20: Peripheral current consumption Updated Table 14: Maximum current consumption in Run mode, code with data processing running from Flash Updated Table 15: Maximum current consumption in Run mode, code with data processing running from RAM Updated Table 16: Maximum current consumption in Sleep mode, code running from Flash or RAM Updated Table 17: Typical and maximum current consumptions in Stop and Standby modes Updated Table 18: Typical current consumption in Run mode, code with data processing running from Flash Updated Table 19: Typical current consumption in Sleep mode, code running from Flash or RAM Updated Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz) Updated Figure 22: Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms on page 62 Added Section 5.3.13: I/O current injection characteristics on page 83 3 Section 2.3.26: GPIOs (general-purpose inputs/outputs): modified text of last sentence. Table 5: STM32F103xF and STM32F103xG pin definitions: updated pins PD0, PD1, OSC_IN, OSC_OUT, PB8, PB9, and PF8. Table 7: Voltage characteristics: Removed the previous footnotes 2 and 3 and added current footnote 2. Table 8: Current characteristics: updated footnotes 3, 4, and 5. Table 21: High-speed external user clock characteristics: replaced the tw(HSE) min value by 5 (instead of 16). Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz): updated symbols and footnotes. 15-Nov-2010 18-Jan-2012 118/120 Changes Doc ID 16554 Rev 3 STM32F103xF, STM32F103xG Table 74. Revision history Document revision history Date 18-Jan-2012 Revision Changes 3 Asynchronous waveforms and timings: added notes about tHCLK clock period and FSMC_BusTurnAroundDuration; updated conditions, modified Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings, Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings, Table 34: Asynchronous multiplexed PSRAM/NOR read timings, and Table 35: Asynchronous multiplexed PSRAM/NOR write timings; added Table 33: Asynchronous read muxed. Synchronous waveforms and timings: updated Figure 27: Synchronous multiplexed PSRAM write timings; updated Table 36: Synchronous multiplexed NOR/PSRAM read timings, Table 37: Synchronous multiplexed PSRAM write timings, Table 38: Synchronous nonmultiplexed NOR/PSRAM read timings, and Table 39: Synchronous non-multiplexed PSRAM write timings. PC Card/CompactFlash controller waveforms and timings: updated Figure 35: PC Card/CompactFlash controller waveforms for I/O space write access; split switching characteristics into Table 40: Switching characteristics for PC Card/CF read and write cycles in attribute/common space and Table 41: Switching characteristics for PC Card/CF read and write cycles in I/O space, modified values, and removed footnote concerning preliminary values. NAND controller waveforms and timings: updated conditions, split switching characteristics into Table 42: Switching characteristics for NAND Flash read cycles and Table 43: Switching characteristics for NAND Flash write cycles, and values modified. Section 5.3.14: I/O port characteristics: updated footnote1 of Table 49: I/O static characteristics; updated Output driving current. Table 50: Output voltage characteristics: swapped “TTL and “CMOS” ports in the conditions column. Table 54: I2C characteristics: updated footnote 2. Updated Table 58: SD / MMC characteristics. Table 62: ADC characteristics: updated footnote 1. Table 64: ADC accuracy - limited test conditions: updated footnote 3. Table 67: TS characteristics: updated footnote 1. Doc ID 16554 Rev 3 119/120 STM32F103xF, STM32F103xG Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 120/120 Doc ID 16554 Rev 3