STM32F078xx ARM®-based 32-bit MCU, 128 KB Flash, crystal-less USB FS 2.0, 12 timers, ADC, DAC & comm. interfaces, 1.8 V Datasheet - production data Features Core: ARM 32-bit Cortex-M0 CPU, frequency up to 48 MHz LQFP100 14x14 mm UFQFPN48 LQFP64 10x10 mm 7x7 mm LQFP48 7x7 mm Memories – 128 Kbytes of Flash memory – 16 Kbytes of SRAM with HW parity CRC calculation unit Power management – Digital and I/O supply: VDD = 1.8 V ± 8% – Analog supply: VDDA = VDD to 3.6 V – Selected I/Os: VDDIO2 = 1.65 V to 3.6 V – Low power modes: Sleep, Stop – VBAT supply for RTC and backup registers Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator – Internal 48 MHz oscillator with automatic trimming based on ext. synchronization Up to 86 fast I/Os – All mappable on external interrupt vectors – Up to 67 I/Os with 5V tolerant capability and 19 with independent supply VDDIO2 Seven-channel DMA controller One 12-bit, 1.0 μs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V Two independent 12-bit DAC channels Two fast low-power analog comparators with programmable input and output Up to 23 capacitive sensing channels for touchkey, linear and rotary touch sensors Calendar RTC with alarm and periodic wakeup from Stop May 2014 This is information on a product in full production. UFBGA100 7x7 mm WLCSP49 0.4 mm pitch 12 timers – One 16-bit advanced-control timer for six-channel PWM output – One 32-bit and seven 16-bit timers, with up to four IC/OC, OCN, usable for IR control decoding or DAC control – Independent and system watchdog timers – SysTick timer Communication interfaces – Two I2C interfaces supporting Fast Mode Plus (1 Mbit/s); one supporting SMBus/PMBus and wakeup – Four USARTs supporting master synchronous SPI and modem control; two with ISO7816 interface, LIN, IrDA, auto baud rate detection and wakeup feature – Two SPIs (18 Mbit/s) with 4 to 16 programmable bit frames, and with I2S interface multiplexed – USB 2.0 full-speed interface, able to run from internal 48 MHz oscillator and with BCD and LPM support HDMI CEC wakeup on header reception Serial wire debug (SWD) 96-bit unique ID All packages ECOPACK2 Table 1. Device summary Reference STM32F078xx DocID026006 Rev 2 Part number STM32F078CB, STM32F078RB, STM32F078VB 1/123 www.st.com Contents STM32F078xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 13 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.2 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.3 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10 2/123 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 General-purpose timers (TIM2..3, TIM14..17) . . . . . . . . . . . . . . . . . . . . 22 3.14.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID026006 Rev 2 STM32F078xx Contents 3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 Universal synchronous/asynchronous receiver transmitters (USART) . . 25 3.18 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 26 3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.20 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.21 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.22 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 52 6.3.3 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 DocID026006 Rev 2 3/123 4 Contents 7 STM32F078xx 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.14 NRST and NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.16 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.17 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.19 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.20 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.21 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 118 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4/123 DocID026006 Rev 2 STM32F078xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F078xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 11 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Capacitive sensing GPIOs available on STM32F078xx devices . . . . . . . . . . . . . . . . . . . . 20 No. of capacitive sensing channels available on STM32F078xx devices. . . . . . . . . . . . . . 20 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F078xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F078xx USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F078xx SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32F078xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 39 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 40 Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 41 Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 41 Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 42 Alternate functions available on port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 STM32F078xx peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Typical and maximum current consumption from VDD supply at VDD = 1.8 V . . . . . . . . . . 54 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 55 Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 55 Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Typical and maximum consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 DocID026006 Rev 2 5/123 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. 6/123 STM32F078xx ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 103 LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 106 LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . 109 UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . 113 WLCSP49 – 0.4 mm pitch package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 WLCSP49 recommended PCB design rules (0.4 mm pitch BGA) . . . . . . . . . . . . . . . . . . 117 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 DocID026006 Rev 2 STM32F078xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 UFBGA100 package ballout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LQFP100 100-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 LQFP64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 UFQFPN48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WLCSP49 49-pin package ballout (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32F078xx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 I2S slave timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 UFBGA100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 UFBGA100 package top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline. . . . . . . . . . . . . . . 103 LQFP100 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LQFP100 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . 106 LQFP64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQFP64 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 109 LQFP48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP48 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . 112 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 UFQFPN48 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 DocID026006 Rev 2 7/123 8 List of figures Figure 48. Figure 49. Figure 50. Figure 51. 8/123 STM32F078xx WLCSP49 – 0.4 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 WLCSP49 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 WLCSP49 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP64 PD max vs. TA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 DocID026006 Rev 2 STM32F078xx 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F078xx microcontrollers. This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM Cortex-M0 core, please refer to the Cortex-M0 Technical Reference Manual, available from the www.arm.com website. DocID026006 Rev 2 9/123 Description 2 STM32F078xx Description The STM32F078xx microcontrollers incorporate the high-performance ARM Cortex-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (two I2Cs, two SPI/I2S, one HDMI CEC and four USARTs), one USB Full speed device (crystalless), one 12-bit ADC, one 12-bit DAC with two channels, seven general-purpose 16-bit timers, a 32-bit timer and an advanced-control PWM timer. The STM32F078xx microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 1.8 V ± 8% power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F078xx microcontrollers include devices in six different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F078xx peripherals proposed. These features make the STM32F078xx microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. 10/123 DocID026006 Rev 2 STM32F078xx Description Table 2. STM32F078xx family device features and peripheral counts Peripheral STM32F078CB STM32F078RB Flash (Kbytes) 128 SRAM (Kbytes) 16 Timers Advanced control 1 (16-bit) General purpose 5 (16-bit) 1 (32-bit) Basic 2 (16-bit) SPI [I2S](1) 2 [2] 2 Comm. interfaces I C 2 USART 4 USB 1 CEC 1 12-bit ADC (number of channels) STM32F078VB 1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.) 12-bit DAC (number of channels) 1 (2) Analog comparator 2 GPIOs 36 50 86 Capacitive sensing channels 16 17 23 Max. CPU frequency 48 MHz 1.8 V 8% Operating voltage Operating temperature Packages Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C LQFP48 UFQFPN48 WLCSP49 LQFP64 LQFP100 UFBGA100 1. The SPI interface can be used either in SPI mode or in I2S audio mode. DocID026006 Rev 2 11/123 Description STM32F078xx Figure 1. Block diagram 32:(5 9'' 6HULDO:LUH 'HEXJ 9'' 966 )ODVK 2EO LQWHUIDFH 6:&/. 6:',2 DV$) %XVPDWUL[ 65$0 FRQWUROOHU &257(;0&38 I0$; 0+] 19,& )ODVK*3/ 8SWR.% ELWV 65$0 .% #9'' #9''$ 6833/< 683(59,6,21 325 5HVHW ,QW 1325 1325 1567 9''$ 966$ 5&+60+] 5&+60+] *3'0$ FKDQQHOV #9''$ #9'' 3// ;7$/26& 0+] 5&/6 5&+60+] 26&B,13) 26&B2873) ,QG:LQGRZ:'* *3,2SRUW$ 3%>@ *3,2SRUW% 3&>@ *3,2SRUW& 3'>@ *3,2SRUW' 3(>@ *3,2SRUW( 3)>@3) 3)>@ *3,2SRUW) 5(6(7 &/2&. &21752/ $+% GHFRGHU 3$>@ $+%3&/. $3%3&/. $'&&/. &(&&/. 86$57&/. +&/. )&/. 86%&/. 3$' $QDORJ VZLWFKHV '' ;7$/N+] 57& %DFNXS UHJ 7RXFK 6HQVLQJ &RQWUROOHU 6<1& 3:07,0(5 FKDQQHOV FRPSOFKDQQHOV %5.(75LQSXWDV$) 7,0(5ELW FK(75DV$) $+% 7,0(5 FK(75DV$) 7,0(5 FKDQQHODV$) 86% 7,0(5 FKDQQHOV FRPSO%5.DV$) 7,0(5 FKDQQHO FRPSO%5.DV$) 7,0(5 FKDQQHO FRPSO%5.DV$) $3% 86% 3+< 65$0 % :,QGRZ:'* ,5B287DV$) '%*0&8 026,6' 0,620&. 6&.&. 166:6DV$) ,1387 ,1387 287387 DV$) 7$03(557& $/$50287 (;7,7 :.83 #9'',2 026,6' 0,620&. 6&.&. 166:6DV$) 26&B,1 26&B287 57&LQWHUIDFH 6<1& $) 9%$7 WR9 #96: &56 &5& JURXSVRI FKDQQHOV 3RZHU &RQWUROOHU 63,,6 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 6&/6'$60%$ P$IRU)0 DV$) 6&/6'$P$ IRU)0DV$) 63,,6 6<6&)*,) *3FRPSDUDWRU ,& *3FRPSDUDWRU ,& #9''$ +'0,&(& 7HPS VHQVRU $'LQSXWV ELW $'& 7,0(5 ,) 7,0(5 9''$ 966$ #9''$ ,) &(&DV$) ELW '$& '$&B287 ELW '$& '$&B287 #9''$ 06Y9 12/123 DocID026006 Rev 2 STM32F078xx Functional overview 3 Functional overview 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM The ARM Cortex-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 3.2 Memories The device has the following features: 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. The non-volatile memory is divided into two arrays: – 128 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected ® – Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and boot in RAM selection disabled 3.3 Boot modes At startup, the boot pin and boot selector option bit are used to select one of the three boot options: Boot from User Flash Boot from System Memory Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I2C on pins PB6/PB7 or through the USB DFU interface. DocID026006 Rev 2 13/123 Functional overview 3.4 STM32F078xx Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes VDD = 1.8 V ± 8%: external power supply for I/Os and digital logic. Provided externally through VDD pins. VDDA = from VDD to 3.6 V: external analog power supply for ADC, DAC RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC are used). The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. VDDIO2 = 1.65 to 3.6 V: external power supply for marked I/Os. Provided externally through the VDDIO2 pin. The VDDIO2 voltage level is completely independent from VDD or VDDA, but it must not be provided without a valid supply on VDD. The VDDIO2 supply is monitored and compared with the internal reference voltage (VREFINT). When the VDDIO2 is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list. VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 12: Power supply scheme. 3.5.2 Power-on reset To guarantee a proper power-on reset, the NPOR pin must be held low until VDD is stable. When VDD is stable, the reset state can be exited either by: putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by forcing the pin to high level by connecting it to VDDA. 3.5.3 Low-power modes The STM32F078xx microcontrollers support two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. 14/123 DocID026006 Rev 2 STM32F078xx Functional overview Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, RTC, I2C1, USART1, USART2, USB, COMPx, VDDIO2 supply comparator or the CEC. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization. DocID026006 Rev 2 15/123 Functional overview STM32F078xx Figure 2. Clock tree )/,7)&/. WR)ODVK SURJUDPPLQJLQWHUIDFH +6, &56 WR,& 6<6&/. 0+] +6,5& WR,6 +6, /6( 0+] +6,5& WR&(& +6, +&/. 6: 3//65& 35(',9 3//08/ 3// [[ [ +6, 3//&/. +6( WR$+%EXVFRUH PHPRU\DQG'0$ WRFRUWH[6\VWHPWLPHU )&/.&RUWH[IUHHUXQQLQJFORFN $+% $+% SUHVFDOHU 6<6&/. $3% SUHVFDOHU 3&/. WR$3%SHULSKHUDOV &66 26&B287 26&B,1 ,I$3%SUHVFDOHU [HOVH[ 0+] +6(26& 3&/. 6<6&/. +6, /6( 26&B,1 26&B287 /6(26& N+] 57&&/. /6,5& N+] 0&2 0&235( 0DLQFORFN RXWSXW WR7,0 3.7 WR86$57 WR86$57 WR57& /6( 57&6(/>@ WR7,0 +6, 1--$-, WR86% /6, WR,:'* 3//12',9 3//&/. 0&2 +6, +6, +6, +6( 6<6&/. /6, /6( 0+] +6, +6,5& WR$'& DV\QFKURQRXV FORFNLQSXW 069 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 16/123 DocID026006 Rev 2 STM32F078xx 3.8 Functional overview Direct memory access controller (DMA) The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except TIM14), DAC and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to ® 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4 priority levels. Closely coupled NVIC gives low latency interrupt processing Interrupt entry vector table address passed directly to the core Closely coupled NVIC core interface Allows early processing of interrupts Processing of late arriving higher priority interrupts Support for tail-chaining Processor state automatically saved Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 86 GPIOs can be connected to the 16 external interrupt lines. 3.10 Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. DocID026006 Rev 2 17/123 Functional overview STM32F078xx An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name 3.10.2 Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (5 °C), VDDA= 3.3 V (10 mV) 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at a temperature of 110 °C (5 °C), VDDA= 3.3 V (10 mV) 0x1FFF F7C2 - 0x1FFF F7C3 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 4. Internal voltage reference calibration values Calibration value name VREFINT_CAL 3.10.3 Description Memory address Raw data acquired at a temperature of 30 °C (5 °C), 0x1FFF F7BA - 0x1FFF F7BB VDDA= 3.3 V (10 mV) VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 18/123 DocID026006 Rev 2 STM32F078xx 3.11 Functional overview Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. This digital Interface supports the following features: 8-bit or 12-bit monotonic output Left or right data alignment in 12-bit mode Synchronized update capability Noise-wave generation Triangular-wave generation Dual DAC channel independent or simultaneous conversions DMA capability for each channel External triggers for conversion Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests. 3.12 Comparators (COMP) The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. The reference voltage can be one of the following: External I/O DAC output pins Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 26: Embedded internal reference voltage for the value and precision of the internal reference voltage. Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator. 3.13 Touch sensing controller (TSC) The STM32F078xx devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 23 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. DocID026006 Rev 2 19/123 Functional overview STM32F078xx The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Table 5. Capacitive sensing GPIOs available on STM32F078xx devices Group 1 2 3 4 Capacitive sensing signal name Pin name Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G5_IO1 PB3 TSC_G1_IO2 PA1 TSC_G5_IO2 PB4 TSC_G1_IO3 PA2 TSC_G5_IO3 PB6 TSC_G1_IO4 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 TSC_G3_IO1 PC5 TSC_G7_IO1 PE2 TSC_G3_IO2 PB0 TSC_G7_IO2 PE3 TSC_G3_IO3 PB1 TSC_G7_IO3 PE4 TSC_G7_IO4 PE5 TSC_G8_IO1 PD12 TSC_G8_IO2 PD13 TSC_G8_IO3 PD14 TSC_G8_IO4 PD15 TSC_G4_IO1 PA9 TSC_G4_IO2 PA10 TSC_G4_IO3 PA11 TSC_G4_IO4 PA12 Group 5 6 7 8 Table 6. No. of capacitive sensing channels available on STM32F078xx devices Number of capacitive sensing channels Analog I/O group 20/123 STM32F078Vx STM32F078Rx STM32F078Cx G1 3 3 3 G2 3 3 3 G3 2 2 1 G4 3 3 3 G5 3 3 3 G6 3 3 3 G7 3 0 0 G8 3 0 0 Number of capacitive sensing channels 23 17 16 DocID026006 Rev 2 STM32F078xx 3.14 Functional overview Timers and watchdogs The STM32F078xx devices include up to six general-purpose timers, two basic timers and an advanced control timer. Table 7 compares the features of the different timers. Table 7. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 Yes TIM2 32-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 Yes TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 Yes TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No General purpose Basic DocID026006 Rev 2 Capture/compare Complementary channels outputs 21/123 Functional overview 3.14.1 STM32F078xx Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for: Input capture Output compare PWM generation (edge or center-aligned modes) One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. 3.14.2 General-purpose timers (TIM2..3, TIM14..17) There are six synchronizable general-purpose timers embedded in the STM32F078xx devices (see Table 7 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM2, TIM3 STM32F078xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining. TIM2 and TIM3 both have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Their counters can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. 22/123 DocID026006 Rev 2 STM32F078xx Functional overview TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate withTIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.14.3 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. 3.14.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop mode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.14.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.14.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: A 24-bit down counter Autoreload capability Maskable system interrupt generation when the counter reaches 0 Programmable clock source (HCLK or HCLK/8) 3.15 Real-time clock (RTC) and backup registers The RTC and the five backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when VDD power is not present. They are not reset by a system or power reset. DocID026006 Rev 2 23/123 Functional overview STM32F078xx The RTC is an independent BCD timer/counter. Its main features are the following: Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. Automatic correction for 28, 29 (leap year), 30, and 31 day of the month. Programmable alarm with wake up from Stop mode capability. Periodic wakeup unit with programmable resolution and period. On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock. Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection. Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection. Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC clock sources can be: A 32.768 kHz external crystal A resonator or oscillator The internal low-power RC oscillator (typical frequency of 40 kHz) The high-speed external clock divided by 32 3.16 Inter-integrated circuit interfaces (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with extra output drive on most of the associated I/Os. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters. Table 8. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts 24/123 DocID026006 Rev 2 STM32F078xx Functional overview verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller. Refer to Table 9 for the differences between I2C1 and I2C2. Table 9. STM32F078xx I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os X X Independent clock X - SMBus X - Wakeup from STOP X - 1. X = supported. 3.17 Universal synchronous/asynchronous receiver transmitters (USART) The device embeds four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3, USART4), which communicate at speeds of up to 6 Mbit/s. They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode. The USART interfaces can be served by the DMA controller. Table 10. STM32F078xx USART implementation USART1 and USART2 USART3 and USART4 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X - USART modes/features(1) DocID026006 Rev 2 25/123 Functional overview STM32F078xx Table 10. STM32F078xx USART implementation (continued) USART1 and USART2 USART3 and USART4 LIN mode X - Dual clock domain and wakeup from Stop mode X - Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection X - Driver Enable X X USART modes/features(1) 1. X = supported. 3.18 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. Two standard I2S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency. Table 11. STM32F078xx SPI/I2S implementation SPI features(1) Hardware CRC calculation X Rx/Tx FIFO X NSS pulse mode X I2S mode X TI mode X 1. X = supported. 26/123 SPI1 and SPI2 DocID026006 Rev 2 STM32F078xx 3.19 Functional overview High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception. 3.20 Universal serial bus (USB) The STM32F078xx embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation. 3.21 Clock recovery system (CRS) The STM32F078xx embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.22 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. DocID026006 Rev 2 27/123 Pinouts and pin descriptions 4 STM32F078xx Pinouts and pin descriptions Figure 3. UFBGA100 package ballout (top view) $ 3( 3( 3% %227 3' 3' 3% 3% 3$ 3$ 3$ 3$ % 3( 3( 3% 3% 3% 3' 3' 3' 3' 3& 3& 3$ & 3& 3( 3( 9'' 3% 3' 3' 3& 3) 3$ ' 3& 3( 966 3$ 3$ 3& 3& 9%$7 1& 3& 3& 3& ) 3) 3) 966 966 * 3) 3) 9'',2 9'' + 3& 1567 9'' 3' 3' 3' - 3) 3& 3& 3' 3' 3' . 966$ 3& 3$ 3$ 3& / 3) 3$ 3$ 3$ 3& 1325 0 9''$ 3$ 3$ 3$ 3% 3% ( 3' 3' 3% 3% 3% 3( 3( 3( 3% 3% 3% 3( 3( 3( 3( 3( 3( ,2SLQVXSSOLHGE\9'',2 069 28/123 DocID026006 Rev 2 STM32F078xx Pinouts and pin descriptions 9'' 966 3( 3( 3% 3% %227 3% 3% 3% 3% 3% 3' 3' 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$ Figure 4. LQFP100 100-pin package pinout (top view) /4)3 9'',2 966 3) 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3' 3' 3' 3' 3' 3' 3' 3' 3% 3% 3% 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 966 9'' 1325 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3( 3( 3( 3( 3( 9%$7 3& 3&26&B,1 3&26&B287 3) 3) 3)26&B,1 3)26&B287 1567 3& 3& 3& 3& 3) 966$ 9''$ 3) 3$ 3$ 3$ *0QJOTVQQMJFECZ7%%*0 069 DocID026006 Rev 2 29/123 Pinouts and pin descriptions STM32F078xx 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 5. LQFP64 64-pin package pinout (top view) 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 966 9'' 3$ 3$ /4)3 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3& 3& 3% 3% 1325 3% 3% 966 9'' 9%$7 *0QJOTVQQMJFECZ7%%*0 069 9%$7 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 966$ 9''$ 3$ 3$ 3% 3$ 3$ 3% 3% 3% 3% %227 3% /4)3 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 9'' 3% 966 3% 1325 3% 3% 3$ 3$ 3$ 3$ 3$ 3$ 3% 9'' 966 Figure 6. LQFP48 48-pin package pinout (top view) ,2SLQVXSSOLHGE\9'',2 069 30/123 DocID026006 Rev 2 STM32F078xx Pinouts and pin descriptions 9%$7 3$ 3% 3$ 3% 3% 3% 3% 3% %227 3% 9'' 966 Figure 7. UFQFPN48 48-pin package pinout (top view) 9'',2 966 3$ 3$ 3$ 3)26&B287 3$ 1567 3$ 966$ 9''$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 8)4)31 1325 3% 3% 966 9'' 3$ 3$ 3% 3% 3$ 3&26&B287 3)26&B,1 3$ 3$ 3& 3&26&B,1 *0QJOTVQQMJFECZ7%%*0 069 Figure 8. WLCSP49 49-pin package ballout (bottom view) $ 9'' 966 %227 3% 3% 3$ 3$ % 9%$7 1& 3% 3% 3$ 9'',2 966 3% 3% 3$ 3$ 3$ ' 26&B,1 26&B287 3& 3% 966 3$ 3$ & 3& 3& 26& 26& B287 B,1 3) 3) ( 1567 966$ 3$ 3$ 3% 3% 3% ) 9''$ 3$ 3$ 3$ 3$ 9'' 3% * 3$ 3$ 3% 3% 1325 3% 3% ,2SLQVXSSLHGE\9'',2 DocID026006 Rev 2 069 31/123 Pinouts and pin descriptions STM32F078xx Table 12. Legend/abbreviations used in the pinout table Name Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin name Pin type I/O structure S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC POR External power on reset pin with embedded weak pull-up resistor, powered from VDDA TC B RST Standard 3.3 V I/O Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Notes Pin functions Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 13. STM32F078xx pin definitions LQFP48/UFQFPN48 WLCSP49 1 - - - PE2 I/O FT TSC_G7_IO1, TIM3_ETR - A1 2 - - - PE3 I/O FT TSC_G7_IO2, TIM3_CH1 - B1 3 - - - PE4 I/O FT TSC_G7_IO3, TIM3_CH2 - C2 4 - - - PE5 I/O FT TSC_G7_IO4, TIM3_CH3 - D2 5 - - - PE6 I/O FT TIM3_CH4 WKUP3, RTC_TAMP3 E2 6 1 1 B7 VBAT S 32/123 Pin type Notes LQFP64 B2 Pin name (function after reset) I/O structure LQFP100 Pin functions UFBGA100 Pin numbers DocID026006 Rev 2 Alternate functions Additional functions Backup power supply STM32F078xx Pinouts and pin descriptions Table 13. STM32F078xx pin definitions (continued) Pin type Notes Pin name (function after reset) I/O structure Pin functions WLCSP49 LQFP48/UFQFPN48 LQFP64 LQFP100 UFBGA100 Pin numbers (1) Alternate functions Additional functions - WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT - OSC32_IN - OSC32_OUT C1 7 2 2 D5 PC13 I/O TC D1 8 3 3 C7 PC14-OSC32_IN (PC14) I/O TC E1 9 4 4 C6 PC15OSC32_OUT (PC15) I/O TC F2 10 - - - PF9 I/O FT TIM15_CH1 - G2 11 - - - PF10 I/O FT TIM15_CH2 - F1 12 5 5 D7 PF0-OSC_IN (PF0) I/O FT CRS_ SYNC OSC_IN G1 13 6 6 D6 PF1-OSC_OUT (PF1) I/O FT - OSC_OUT H2 14 7 7 E7 NRST I/O RST H1 15 8 - - PC0 I/O TTa EVENTOUT ADC_IN10 J2 16 9 - - PC1 I/O TTa EVENTOUT ADC_IN11 J3 17 10 - - PC2 I/O TTa SPI2_MISO, I2S2_MCK, EVENTOUT ADC_IN12 K2 18 11 - - PC3 I/O TTa SPI2_MOSI, I2S2_SD, EVENTOUT ADC_IN13 J1 19 - - - PF2 I/O FT EVENTOUT WKUP8 K1 20 12 8 E6 VSSA S Analog ground M1 21 13 9 F7 VDDA S Analog power supply L1 22 - - - PF3 I/O L2 23 14 10 F6 PA0 I/O (2) (1) (2) (1) (2) Device reset input / internal reset output (active low) FT EVENTOUT TTa USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX DocID026006 Rev 2 RTC_ TAMP2, WKUP1, COMP1_OUT, ADC_IN0, COMP1_INM6 33/123 Pinouts and pin descriptions STM32F078xx Table 13. STM32F078xx pin definitions (continued) M2 24 15 11 G7 PA1 Pin type I/O Notes Pin name (function after reset) I/O structure Pin functions WLCSP49 LQFP48/UFQFPN48 LQFP64 LQFP100 UFBGA100 Pin numbers Alternate functions Additional functions TTa USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT ADC_IN1, COMP1_INP ADC_IN2, COMP2_OUT, COMP2_INM6, WKUP4 ADC_IN3, COMP2_INP K3 25 16 12 E5 PA2 I/O TTa USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3 L3 26 17 13 E4 PA3 I/O TTa USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4 D3 27 18 - - VSS S Ground H3 28 19 - - VDD S Digital power supply M3 K4 L4 29 30 31 20 21 22 14 15 16 G6 F5 F4 PA4 PA5 PA6 I/O I/O I/O TTa SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1 TTa SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2 COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2 TTa SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS ADC_IN6 ADC_IN7 M4 32 23 17 F3 PA7 I/O TTa SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT K5 33 24 - - PC4 I/O TTa EVENTOUT, USART3_TX ADC_IN14 L5 34 25 - - PC5 I/O TTa TSC_G3_IO1, USART3_RX ADC_IN15, WKUP5 M5 35 26 18 G5 PB0 I/O TTa TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT, USART3_CK ADC_IN8 34/123 DocID026006 Rev 2 STM32F078xx Pinouts and pin descriptions Table 13. STM32F078xx pin definitions (continued) LQFP48/UFQFPN48 WLCSP49 36 27 19 G4 PB1 I/O TTa L6 37 28 20 G3 NPOR I POR M7 38 - - - PE7 I/O FT TIM1_ETR - L7 39 - - - PE8 I/O FT TIM1_CH1N - M8 40 - - - PE9 I/O FT TIM1_CH1 - L8 41 - - - PE10 I/O FT TIM1_CH2N - M9 42 - - - PE11 I/O FT TIM1_CH2 - L9 43 - - - PE12 I/O FT SPI1_NSS, I2S1_WS, TIM1_CH3N - M10 44 - - - PE13 I/O FT SPI1_SCK, I2S1_CK, TIM1_CH3 - M11 45 - - - PE14 I/O FT SPI1_MISO, I2S1_MCK, TIM1_CH4 - M12 46 - - - PE15 I/O FT SPI1_MOSI, I2S1_SD, TIM1_BKIN - L10 47 29 21 E3 PB10 I/O FT SPI2_SCK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3 - L11 48 30 22 G2 PB11 I/O FT USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA - F12 49 31 23 D3 VSS S Ground G12 50 32 24 F2 VDD S Digital power supply Pin type Notes LQFP64 M6 Pin name (function after reset) I/O structure LQFP100 Pin functions UFBGA100 Pin numbers (3) Alternate functions Additional functions TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3 ADC_IN9 Device power-on reset input (active low) L12 51 33 25 E2 PB12 I/O FT TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT K12 52 34 26 G1 PB13 I/O FTf SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3 DocID026006 Rev 2 - - 35/123 Pinouts and pin descriptions STM32F078xx Table 13. STM32F078xx pin definitions (continued) K11 53 35 27 F1 PB14 Pin type I/O Notes Pin name (function after reset) I/O structure Pin functions WLCSP49 LQFP48/UFQFPN48 LQFP64 LQFP100 UFBGA100 Pin numbers Alternate functions Additional functions FTf SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4 - WKUP7, RTC_REFIN K10 54 36 28 E1 PB15 I/O FT SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM15_CH1N, TIM15_CH2 K9 55 - - - PD8 I/O FT USART3_TX - K8 56 - - - PD9 I/O FT USART3_RX - J12 57 - - - PD10 I/O FT USART3_CK - J11 58 - - - PD11 I/O FT USART3_CTS - J10 59 - - - PD12 I/O FT USART3_RTS, TSC_G8_IO1 - H12 60 - - - PD13 I/O FT TSC_G8_IO2 - H11 61 - - - PD14 I/O FT TSC_G8_IO3 - H10 62 - - - PD15 I/O FT E12 63 37 - - PC6 I/O TSC_G8_IO4, CRS_SYNC - FT (4) TIM3_CH1 - TIM3_CH2 - E11 64 38 - - PC7 I/O FT (4) E10 65 39 - - PC8 I/O FT (4) TIM3_CH3 - D12 66 40 - - PC9 I/O FT (4) TIM3_CH4 - D11 67 41 29 D1 PA8 I/O FT (4) USART1_CK, TIM1_CH1, EVENTOUT, MCO, CRS_SYNC - D10 68 42 30 D2 PA9 I/O FT (4) USART1_TX, TIM1_CH2, TIM15_BKIN, TSC_G4_IO1 - C12 69 43 31 C2 PA10 I/O FT (4) USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2 - B12 70 44 32 C1 PA11 I/O FT (4) USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT USB_DM 36/123 DocID026006 Rev 2 STM32F078xx Pinouts and pin descriptions Table 13. STM32F078xx pin definitions (continued) LQFP100 LQFP64 LQFP48/UFQFPN48 WLCSP49 I/O structure Notes Pin functions UFBGA100 Pin numbers A12 71 45 33 C3 PA12 I/O FT (4) A11 72 46 34 B3 PA13 I/O FT C11 73 - - - PF6 I/O FT F11 74 47 35 B1 VSS S Ground G11 75 48 36 B2 VDDIO2 S Digital power supply A10 76 49 37 A1 PA14 I/O Pin name (function after reset) Pin type FT Alternate functions Additional functions USART1_RTS, TIM1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT USB_DP (5) IR_OUT, SWDIO, USB_NOE - (4) - - (4) (4) (5) USART2_TX, SWCLK - - A9 77 50 38 A2 PA15 I/O FT (4) SPI1_NSS, I2S1_WS, USART2_RX, USART4_RTS, TIM2_CH1_ETR, EVENTOUT B11 78 51 - - PC10 I/O FT (4) USART3_TX, USART4_TX - USART3_RX, USART4_RX - C10 79 52 - - PC11 I/O FT (4) B10 80 53 - - PC12 I/O FT (4) USART3_CK, USART4_CK - C9 81 - - - PD0 I/O FT (4) SPI2_NSS, I2S2_WS - B9 82 - - - PD1 I/O FT (4) SPI2_SCK, I2S2_CK - (4) USART3_RTS, TIM3_ETR - C8 83 54 - - PD2 I/O FT B8 84 - - - PD3 I/O FT SPI2_MISO, I2S2_MCK, USART2_CTS - B7 85 - - - PD4 I/O FT SPI2_MOSI, I2S2_SD, USART2_RTS - A6 86 - - - PD5 I/O FT USART2_TX - B6 87 - - - PD6 I/O FT USART2_RX - A5 88 - - - PD7 I/O FT USART2_CK - A8 89 55 39 A3 PB3 I/O FT SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT - DocID026006 Rev 2 37/123 Pinouts and pin descriptions STM32F078xx Table 13. STM32F078xx pin definitions (continued) LQFP48/UFQFPN48 WLCSP49 90 56 40 A4 PB4 I/O FT SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT - C5 91 57 41 B4 PB5 I/O FT SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 WKUP6 B5 92 58 42 C4 PB6 I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03 - I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4 - Pin type Notes LQFP64 A7 Pin name (function after reset) I/O structure LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions B4 93 59 43 D4 PB7 I/O FTf A4 94 60 44 A5 BOOT0 I B A3 95 61 45 B5 PB8 I/O FTf I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC - B3 96 62 46 C5 PB9 I/O FTf SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - C3 97 - - - PE0 I/O FT EVENTOUT, TIM16_CH1 - A2 98 - - - PE1 I/O FT EVENTOUT, TIM17_CH1 - D3 99 63 47 A6 VSS S Ground C4 100 64 48 A7 VDD S Digital power supply Boot memory selection 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual. 3. This pin is supplied by VDDA. 4. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2. 5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. 38/123 DocID026006 Rev 2 DocID026006 Rev 2 Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA0 - USART2_CTS TIM2_CH1_ETR TSC_G1_IO1 USART4_TX - - COMP1_OUT PA1 EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 USART4_RX TIM15_CH1N - - PA2 TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 - - - COMP2_OUT PA3 TIM15_CH2 USART2_RX TIM2_CH4 TSC_G1_IO4 - - - - PA4 SPI1_NSS, I2S1_WS USART2_CK - TSC_G2_IO1 TIM14_CH1 - - - PA5 SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 - - - - PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN TSC_G2_IO3 USART3_CTS TIM16_CH1 EVENTOUT COMP1_OUT PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT PA8 MCO USART1_CK TIM1_CH1 EVENTOUT CRS_SYNC - - - PA9 TIM15_BKIN USART1_TX TIM1_CH2 TSC_G4_IO1 - - - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 TSC_G4_IO2 - - - - PA11 EVENTOUT USART1_CTS TIM1_CH4 TSC_G4_IO3 - - - COMP1_OUT PA12 EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 - - - COMP2_OUT PA13 SWDIO IR_OUT USB_NOE - - - - - PA14 SWCLK USART2_TX - - - - - - PA15 SPI1_NSS, I2S1_WS USART2_RX TIM2_CH1_ETR EVENTOUT USART4_RTS - - - STM32F078xx Table 14. Alternate functions selected through GPIOA_AFR registers for port A 39/123 40/123 Table 15. Alternate functions selected through GPIOB_AFR registers for port B DocID026006 Rev 2 Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N TSC_G3_IO2 USART3_CK - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N TSC_G3_IO3 USART3_RTS - PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 TSC_G5_IO1 - - PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT TSC_G5_IO2 - TIM17_BKIN PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA - - PB6 USART1_TX I2C1_SCL TIM16_CH1N TSC_G5_IO3 - - PB7 USART1_RX I2C1_SDA TIM17_CH1N TSC_G5_IO4 USART4_CTS - PB8 CEC I2C1_SCL TIM16_CH1 TSC_SYNC - - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT - SPI2_NSS, I2S2_WS PB10 CEC I2C2_SCL TIM2_CH3 TSC_SYNC USART3_TX SPI2_SCK, I2S2_CK PB11 EVENTOUT I2C2_SDA TIM2_CH4 TSC_G6_IO1 USART3_RX - PB12 SPI2_NSS, I2S2_WS EVENTOUT TIM1_BKIN TSC_G6_IO2 USART3_CK TIM15_BKIN PB13 SPI2_SCK, I2S2_CK - TIM1_CH1N TSC_G6_IO3 USART3_CTS I2C2_SCL PB14 SPI2_MISO, I2S2_MCK TIM15_CH1 TIM1_CH2N TSC_G6_IO4 USART3_RTS I2C2_SDA PB15 SPI2_MOSI, I2S2_SD TIM15_CH2 TIM1_CH3N TIM15_CH1N - - STM32F078xx STM32F078xx Table 16. Alternate functions selected through GPIOC_AFR registers for port C Pin name AF0 AF1 PC0 EVENTOUT - PC1 EVENTOUT - PC2 EVENTOUT SPI2_MISO, I2S2_MCK PC3 EVENTOUT SPI2_MOSI, I2S2_SD PC4 EVENTOUT USART3_TX PC5 TSC_G3_IO1 USART3_RX PC6 TIM3_CH1 - PC7 TIM3_CH2 - PC8 TIM3_CH3 - PC9 TIM3_CH4 - PC10 USART4_TX USART3_TX PC11 USART4_RX USART3_RX PC12 USART4_CK USART3_CK PC13 - - PC14 - - PC15 - - Table 17. Alternate functions selected through GPIOD_AFR registers for port D Pin name AF0 AF1 PD0 - SPI2_NSS, I2S2_WS PD1 - SPI2_SCK, I2S2_CK PD2 TIM3_ETR USART3_RTS PD3 USART2_CTS SPI2_MISO, I2S2_MCK PD4 USART2_RTS SPI2_MOSI, I2S2_SD PD5 USART2_TX - PD6 USART2_RX - PD7 USART2_CK - PD8 USART3_TX - PD9 USART3_RX - PD10 USART3_CK - PD11 USART3_CTS - PD12 USART3_RTS TSC_G8_IO1 PD13 - TSC_G8_IO2 PD14 - TSC_G8_IO3 PD15 CRS_SYNC TSC_G8_IO4 DocID026006 Rev 2 41/123 42 STM32F078xx Table 18. Alternate functions selected through GPIOE_AFR registers for port E Pin name AF0 AF1 PE0 TIM16_CH1 EVENTOUT PE1 TIM17_CH1 EVENTOUT PE2 TIM3_ETR TSC_G7_IO1 PE3 TIM3_CH1 TSC_G7_IO2 PE4 TIM3_CH2 TSC_G7_IO3 PE5 TIM3_CH3 TSC_G7_IO4 PE6 TIM3_CH4 - PE7 TIM1_ETR - PE8 TIM1_CH1N - PE9 TIM1_CH1 - PE10 TIM1_CH2N - PE11 TIM1_CH2 - PE12 TIM1_CH3N SPI1_NSS, I2S1_WS PE13 TIM1_CH3 SPI1_SCK, I2S1_CK PE14 TIM1_CH4 SPI1_MISO, I2S1_MCK PE15 TIM1_BKIN SPI1_MOSI, I2S1_SD Table 19. Alternate functions available on port F 42/123 Pin name AF PF0 CRS_SYNC PF1 - PF2 EVENTOUT PF3 EVENTOUT PF6 - PF9 TIM15_CH1 PF10 TIM15_CH2 DocID026006 Rev 2 STM32F078xx 5 Memory mapping Memory mapping Figure 9. STM32F078xx memory map [)))))))) [)) $+% [ [( [( &RUWH[ 0,QWHUQDO 3HULSKHUDOV UHVHUYHG [& [)) $+% [ 5HVHUYHG [$ [ [))))))) [)))) $3% 2SWLRQE\WHV [ [ 6\VWHPPHPRU\ 5HVHUYHG [ [)))& $3% [ [ 5HVHUYHG [ 3HULSKHUDOV [ )ODVKPHPRU\ [ 65$0 [ 5HVHUYHG &2'( [ )ODVKV\VWHPPHPRU\ RU65$0GHSHQGLQJRQ %227FRQILJXUDWLRQ [ [ 5HVHUYHG 069 DocID026006 Rev 2 43/123 Memory mapping STM32F078xx Table 20. STM32F078xx peripheral register boundary addresses Bus AHB2 AHB1 APB 44/123 Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB GPIOE 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 4000 - 0x4002 43FF 1 KB TSC 0x4002 3400 - 0x4002 3FFF 3 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP DocID026006 Rev 2 STM32F078xx Memory mapping Table 20. STM32F078xx peripheral register boundary addresses (continued) Bus APB Boundary address Size Peripheral 0x4000 8000 - 0x4000 FFFF 32 KB Reserved 0x4000 7C00 - 0x4000 7FFF 1 KB Reserved 0x4000 7800 - 0x4000 7BFF 1 KB CEC 0x4000 7400 - 0x4000 77FF 1 KB DAC 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6C00 - 0x4000 6FFF 1 KB CRS 0x4000 6400 - 0x4000 6BFF 2 KB Reserved 0x4000 6000 - 0x4000 63FF 1 KB USB RAM 0x4000 5C00 - 0x4000 5FFF 1 KB USB 0x4000 5800 - 0x4000 5BFF 1 KB I2C2 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 5000 - 0x4000 53FF 1 KB Reserved 0x4000 4C00 - 0x4000 4FFF 1 KB USART4 0x4000 4800 - 0x4000 4BFF 1 KB USART3 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1800 - 0x4000 1FFF 2 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB TIM2 DocID026006 Rev 2 45/123 Electrical characteristics STM32F078xx 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 1.8 V and VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 11. Figure 10. Pin loading conditions Figure 11. Pin input voltage 0&8SLQ 0&8SLQ 9,1 & S) 069 46/123 DocID026006 Rev 2 069 STM32F078xx 6.1.6 Electrical characteristics Power supply scheme Figure 12. Power supply scheme 9%$7 %DFNXSFLUFXLWU\ /6(57& %DFNXSUHJLVWHUV ±9 3RZHUVZLWFK 9'' 1325 9&25( [9'' [Q) *3,2V ,1 [) /HYHOVKLIWHU 287 ,2 ORJLF /HYHOVKLIWHU 9'',2 ,2 ORJLF .HUQHOORJLF &38'LJLWDO 0HPRULHV [966 9'',2 9'',2 9'',2 Q) ) 287 *3,2V ,1 966 9''$ 9''$ Q) ) 95() 95() $'& '$& $QDORJ 5&V3//« 966$ 069 Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DocID026006 Rev 2 47/123 Electrical characteristics 6.1.7 STM32F078xx Current consumption measurement Figure 13. Current consumption measurement scheme , ''B9%$7 9 %$7 , '' 9 '' 9 '',2 , ''$ 9 ''$ 069 48/123 DocID026006 Rev 2 STM32F078xx 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics, Table 22: Current characteristics and Table 23: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 21. Voltage characteristics(1) Symbol VDD–VSS Ratings Min Max Unit -0.3 1.95 V -0.3 4.0 V -0.3 4.0 V - 0.4 V -0.3 4.0 V Input voltage on FT and FTf pins VSS 0.3 VDDIOx + 4.0 V Input voltage on POR pins VSS 0.3 VDDA + 4.0 V Input voltage on TTa pins VSS 0.3 4.0 V 0 9.0 V VSS 0.3 4.0 V Variations between different VDD power pins - 50 mV Variations between all the different ground pins - 50 mV External main supply voltage VDDIO2–VSS External I/O supply voltage VDDA–VSS External analog supply voltage VDD–VDDA Allowed voltage difference for VDD > VDDA VBAT–VSS External backup supply voltage (2) VIN BOOT0 Input voltage on any other pin |VDDx| |VSSx VSS| VESD(HBM) Electrostatic discharge voltage (human body model) see Section 6.3.11: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 22: Current characteristicsfor the maximum allowed injected current values. DocID026006 Rev 2 49/123 Electrical characteristics STM32F078xx Table 22. Current characteristics Symbol Ratings Max. IVDD Total current into sum of all VDD power lines (source)(1) 120 IVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) (1) Maximum current into each VDD power pin (source) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 IIO(PIN) Output current sunk by any I/O and control pin 25 Output current source by any I/O and control pin -25 (2) IIO(PIN) Total output current sunk by sum of all I/Os and control pins 80 Total output current sourced by sum of all I/Os and control pins(2) -80 Total output current sourced by sum of all I/Os supplied by VDDIO2 -40 Injected current on TC and RST pin ±5 Injected current on TTa pins(5) IINJ(PIN) Total injected current (sum of all I/O and control mA -5/+0(4) Injected current on POR, B, FT and FTf pins IINJ(PIN)(3) Unit ±5 pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 58: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 23. Thermal characteristics Symbol TSTG TJ 50/123 Ratings Storage temperature range Maximum junction temperature DocID026006 Rev 2 Value Unit –65 to +150 °C 150 °C STM32F078xx Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 24. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency 0 48 fPCLK Internal APB clock frequency 0 48 VDD Standard operating voltage 1.65 1.95 V 1.65 3.6 V VDD 3.6 2.4 3.6 1.65 3.6 TC and RST I/O –0.3 VDDIOx+0.3 TTa and POR I/O –0.3 VDDA+0.3 FT and FTf I/O –0.3 5.2(1) BOOT0 0 5.2 UFBGA100 - 364 LQFP100 - 476 LQFP64 - 455 LQFP48 - 370 UFQFPN48 - 625 WLCSP49 - 408 –40 85 –40 105 VDDIO2 VDDA VBAT VIN PD Analog operating voltage (ADC and DAC not used) Must have a potential equal to or higher than VDD Analog operating voltage (ADC and DAC used) Backup operating voltage I/O input voltage Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(2) V Ambient temperature for the suffix 6 version Maximum power dissipation Ambient temperature for the suffix 7 version Maximum power dissipation –40 105 Low power dissipation(3) –40 125 Suffix 6 version –40 105 Suffix 7 version –40 125 TA TJ Must not be supplied if VDD is not present I/O supply voltage Junction temperature range Low power dissipation(3) MHz V V mW °C °C °C 1. To sustain a voltage higher than VDDIOx+0.3 V, the internal pull-up/pull-down resistors must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.2: Thermal characteristics. 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics). DocID026006 Rev 2 51/123 Electrical characteristics 6.3.2 STM32F078xx Operating conditions at power-up / power-down The parameters given in Table 25 are derived from tests performed under the ambient temperature condition summarized in Table 24. Table 25. Operating conditions at power-up / power-down Symbol tVDD tVDDA 6.3.3 Parameter Conditions VDD rise time rate - VDD fall time rate VDDA rise time rate - VDDA fall time rate Min Max 0 20 0 20 Unit μs/V Embedded reference voltage The parameters given in Table 26 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 26. Embedded internal reference voltage Symbol Parameter VREFINT Internal reference voltage tS_vrefint ADC sampling time when reading the internal reference voltage VREFINT Internal reference voltage spread over the temperature range TCoeff Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.2 1.25 V 1.16 1.2 1.24(1) V 4(2) - - μs - - 10(2) mV - 100(2) - 100(2) ppm/°C 1.5 2.5 –40 °C < TA < +85 °C VDDA = 3 V Temperature coefficient TVREFINT_RDY Internal reference voltage (3) temporization 4.5 ms 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 3. Guaranteed by design, not tested in production. This parameter is the latency between the time when pin NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the hardware. 52/123 DocID026006 Rev 2 STM32F078xx 6.3.4 Electrical characteristics Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: All I/O pins are in analog input mode All peripherals are disabled except when explicitly mentioned The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 27 to Table 31 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. DocID026006 Rev 2 53/123 Electrical characteristics STM32F078xx Parameter Symbol Table 27. Typical and maximum current consumption from VDD supply at VDD = 1.8 V All peripherals enabled (1) Conditions Supply current in Run mode, code executing from Flash HSI48 IDD 54/123 Supply current in Sleep mode, code executing from Flash or RAM Supply current in Run mode, code executing from RAM IDD fHCLK All peripherals disabled Max @ TA(2) Max @ TA(2) Unit Typ Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 23.0 24.8 25.8 26.7 12.9 13.7 14.1 15.3 48 MHz 22.9 24.6 25.7 26.6 12.8 13.6 13.9 15.2 32 MHz 15.5 16.6 17.2 19.1 8.7 9.2 9.4 10.0 24 MHz 12.0 12.8 13.2 14.3 6.8 7.2 7.3 7.7 8 MHz 4.2 4.4 4.5 4.6 2.4 2.6 2.6 2.7 1 MHz 0.7 0.9 1.0 1.1 0.5 0.6 0.7 0.7 48 MHz 22.9 24.6 25.7 27.6 12.8 13.6 13.9 15.2 32 MHz 15.5 16.6 17.2 19.1 8.7 9.2 9.4 10.0 24 MHz 12.0 12.8 13.2 14.3 6.8 7.2 7.3 7.7 HSI clock, PLL off 8 MHz 4.2 4.4 4.5 4.6 2.4 2.6 2.6 2.7 HSI48 48 MHz 22.1 23.8 25.0 25.9 11.9 12.7 13.1 13.6 48 MHz 21.9 23.6(3) 24.8 25.7(3) 11.8 12.5(3) 12.9 13.5(3) 32 MHz 14.8 15.9 16.5 18.2 7.9 8.4 8.6 9.8 24 MHz 11.3 12.0 12.4 13.7 6.0 6.4 6.6 7.3 8 MHz 3.8 4.0 4.1 3.9 2.0 2.2 2.2 2.3 1 MHz 0.5 0.6 0.6 0.7 0.2 0.4 0.4 0.4 48 MHz 21.9 23.6 24.7 25.0 11.8 12.5 12.9 13.5 32 MHz 14.8 15.9 16.5 18.2 7.9 8.4 8.6 9.8 24 MHz 11.3 12.0 12.4 13.7 6.0 6.4 6.6 7.3 HSI clock, PLL off 8 MHz 3.8 4.0 4.1 4.2 2.0 2.2 2.2 2.3 HSI48 48 MHz 14.5 15.6 16.2 16.9 3.0 3.3 3.3 3.6 16.1 16.8(3) 2.9 3.1(3) 3.2 3.4(3) HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off 15.4 (3) 48 MHz 14.3 32 MHz 9.7 10.4 10.7 11.6 1.9 2.1 2.2 2.3 24 MHz 7.4 7.9 8.2 8.5 1.5 1.7 1.7 1.8 8 MHz 2.5 2.7 2.7 2.9 0.5 0.6 0.6 0.7 1 MHz 0.3 0.4 0.4 0.4 0.1 0.2 0.2 0.2 48 MHz 14.3 15.4 16.1 16.8 2.9 3.1 3.2 3.4 32 MHz 9.7 10.4 10.7 11.6 1.9 2.1 2.2 2.3 24 MHz 7.4 7.9 8.2 8.8 1.5 1.7 1.7 1.8 8 MHz 2.5 2.7 2.7 2.9 0.5 0.6 0.6 0.7 DocID026006 Rev 2 mA mA STM32F078xx Electrical characteristics 1. USB is kept disabled as this IP functions only with a 48 MHz clock. 2. Data based on characterization results, not tested in production unless otherwise specified. 3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). Symbol Para-meter Table 28. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Conditions (1) HSI48 IDDA Supply current in Run or Sleep mode, code executing from Flash or RAM HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off fHCLK VDDA = 3.6 V Max @ TA(2) Max @ TA(2) Typ Unit Typ 25 °C 85 °C 105 °C 309 325 328 332 320 335 339 348 48 MHz 151 169(3) 177 180(3) 163 181(3) 192 196(3) 32 MHz 103 119 124 126 112 127 133 135 24 MHz 81 95 98 100 87 100 105 107 8 MHz 1.6 2.8 3.0 3.3 2.1 3.2 3.4 3.9 1 MHz 1.6 2.8 3.0 3.3 2.0 3.2 3.4 3.9 48 MHz 217 238 249 253 238 259 272 278 32 MHz 170 189 197 200 187 205 214 218 24 MHz 146 164 170 173 162 178 186 189 8 MHz 67 76 79 80 77 86 89 90 48 MHz 25 °C 85 °C 105 °C μA 1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production unless otherwise specified. 3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). Table 29. Typical and maximum current consumption from the VBAT supply Max(1) = 2.7 V = 3.3 V = 3.6 V RTC domain IDD_VBAT supply current = 2.4 V Parameter = 1.8 V Symbol = 1.65 V Typ @ VBAT TA = 25 °C LSE & RTC ON; “Xtal mode”: lower driving capability; LSEDRV[1:0] = '00' 0.5 0.6 0.7 0.8 1.1 1.2 1.3 LSE & RTC ON; “Xtal mode” higher driving capability; LSEDRV[1:0] = '11' 0.8 Conditions TA = TA = 85 °C 105 °C 1.7 Unit 2.3 μA 0.9 1.1 1.2 1.4 1.6 1.7 2.1 2.8 1. Data based on characterization results, not tested in production. DocID026006 Rev 2 55/123 Electrical characteristics STM32F078xx Typical current consumption The MCU is placed under the following conditions: VDD = VDDA = 1.8 V All I/O pins are in analog input configuration The Flash access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled, fPCLK = fHCLK PLL is used for frequencies greater than 8 MHz AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively Table 30. Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal Typical consumption in Run mode Symbol IDD IDDA 56/123 Parameter Current consumption from VDD supply Current consumption from VDDA supply fHCLK Typical consumption in Sleep mode Unit Peripherals Peripherals Peripherals Peripherals enabled enabled disabled disabled 48 MHz 22.0 12.7 14.2 3.2 36 MHz 17.1 9.9 10.8 2.5 32 MHz 15.4 8.9 9.7 2.2 24 MHz 11.9 7.0 7.5 1.8 16 MHz 8.3 4.9 5.2 1.3 8 MHz 4.4 2.7 2.7 0.7 4 MHz 2.7 1.7 1.8 0.6 2 MHz 1.6 1.1 1.2 0.6 1 MHz 1.1 0.8 0.9 0.5 500 kHz 0.9 0.7 0.8 0.5 48 MHz 143 36 MHz 112 32 MHz 102 24 MHz 81 16 MHz 59 8 MHz 1 4 MHz 1 2 MHz 1 1 MHz 1 500 kHz 1 DocID026006 Rev 2 mA μA STM32F078xx Electrical characteristics IDDA Max = 3.6 V = 3.3 V = 3.0 V = 2.7 V = 2.4 V All oscillators OFF = 2.0 V Supply current in Stop mode Typ @ VDDA (VDD = 1.8 V) = 1.8 V Conditions IDD Parameter Symbol Table 31. Typical and maximum consumption in Stop mode 0.5 1.0 1.0 1.0 1.0 DocID026006 Rev 2 1.1 1.1 1.2 TA = 25 °C TA = TA = 85 °C 105 °C 2.1 15.4 37.0 1.6 2.6 3.4 Unit μA 57/123 Electrical characteristics STM32F078xx I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 51: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 33: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx f SW C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 58/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Table 32. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 1.8 V CEXT = 0 pF C = CINT + CEXT + CS VDDIOx = 1.8 V CEXT = 10 pF C = CINT + CEXT + CS ISW I/O current consumption VDDIOx = 1.8 V CEXT = 22 pF C = CINT + CEXT + CS VDDIOx = 1.8 V CEXT = 33 pF C = CINT + CEXT + CS VDDIOx = 1.8 V CEXT = 47 pF C = CINT + CEXT + CS I/O toggling frequency (fSW) Typ 2 MHz 0.09 4 MHz 0.17 8 MHz 0.34 18 MHz 0.79 36 MHz 1.50 48 MHz 2.06 2 MHz 0.13 4 MHz 0.26 8 MHz 0.50 18 MHz 1.18 36 MHz 2.27 48 MHz 3.03 2 MHz 0.18 4 MHz 0.36 8 MHz 0.69 18 MHz 1.60 36 MHz 3.27 2 MHz 0.23 4 MHz 0.45 8 MHz 0.87 18 MHz 2.0 36 MHz 3.7 2 MHz 0.29 4 MHz 0.55 8 MHz 1.09 18 MHz 2.43 Unit mA 1. CS = 5 pF (estimated value). DocID026006 Rev 2 59/123 Electrical characteristics STM32F078xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 33. The MCU is placed under the following conditions: All I/O pins are in analog mode All peripherals are disabled unless otherwise mentioned The given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on Ambient operating temperature and supply voltage conditions summarized in Table 21: Voltage characteristics The power consumption of the digital part of the on-chip peripherals is given inTable 33. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 33. Peripheral current consumption Peripheral AHB 60/123 Typical consumption at 25 °C BusMatrix(1) 2.2 CRC 1.6 DMA 5.7 Flash interface 13.0 GPIOA 8.2 GPIOB 8.5 GPIOC 2.3 GPIOD 1.9 GPIOE 2.2 GPIOF 1.2 SRAM 0.9 TSC 5.0 All AHB peripherals 52.6 DocID026006 Rev 2 Unit μA/MHz STM32F078xx Electrical characteristics Table 33. Peripheral current consumption (continued) Peripheral Typical consumption at 25 °C (2) APB-Bridge 2.8 ADC(3) 4.1 CEC 1.5 CRS DAC APB Unit 0.8 (3) 4.7 DEBUG (MCU debug feature) 0.1 I2C1 3.9 I2C2 4.0 PWR 1.3 SPI1 8.7 SPI2 8.5 SYSCFG & COMP 1.7 TIM1 14.9 TIM2 15.5 TIM3 11.4 TIM6 2.5 TIM7 2.3 TIM14 5.3 TIM15 9.1 TIM16 6.6 TIM17 6.8 USART1 17.0 USART2 16.7 USART3 5.4 USART4 5.4 USB 7.2 WWDG 1.4 All APB peripherals μA/MHz 169.6 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA). 2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus. 3. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, is not included. Refer to the tables of characteristics in the subsequent sections. DocID026006 Rev 2 61/123 Electrical characteristics 6.3.5 STM32F078xx Wakeup time from low-power mode The wakeup times given in Table 34 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0). All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions Table 34. Low-power mode wakeup timings Symbol Parameter tWUSTOP Wakeup from Stop mode tWUSLEEP Wakeup from Sleep mode 62/123 Typ @ VDDA = 1.8 V = 3.3 V 3.5 2.8 4 SYSCLK cycles DocID026006 Rev 2 Max Unit 5.3 μs - μs STM32F078xx 6.3.6 Electrical characteristics External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 14: High-speed external clock source AC timing diagram. Table 35. High-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit - 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - 20 1. Guaranteed by design, not tested in production. Figure 14. High-speed external clock source AC timing diagram WZ+6(+ 9+6(+ 9+6(/ WU+6( WI+6( WZ+6(/ W 7+6( 069 DocID026006 Rev 2 63/123 Electrical characteristics STM32F078xx Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 15. Table 36. Low-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit kHz fLSE_ext User external clock source frequency - 32.768 1000 VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time - - 50 1. Guaranteed by design, not tested in production. Figure 15. Low-speed external clock source AC timing diagram WZ/6(+ 9/6(+ 9/6(/ WU/6( WI/6( WZ/6(/ W 7/6( 069 64/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 37. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 37. HSE oscillator characteristics Symbol fOSC_IN Parameter Conditions(1) Min(2) Typ Max(2) Unit 4 8 32 MHz - 200 - k Oscillator frequency Feedback resistor RF (3) During startup IDD HSE current consumption gm tSU(HSE) Oscillator transconductance (4) Startup time - 8.5 VDD = 1.8 V, Rm = 30 , CL = 10 pF@8 MHz - 0.4 - VDD = 1.8 V, Rm = 45 , CL = 10 pF@8 MHz - 0.5 - VDD = 1.8 V, Rm = 30 , CL = 5 pF@32 MHz - 0.8 - VDD = 1.8 V, Rm = 30 , CL = 10 pF@32 MHz - 1 - VDD = 1.8 V, Rm = 30 , CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID026006 Rev 2 65/123 Electrical characteristics STM32F078xx Figure 16. Typical application with an 8 MHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I+6( 26&B,1 0+ ] UHVRQDWRU &/ 5(;7 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. 66/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 38. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD gm Parameter LSE current consumption Oscillator transconductance tSU(LSE)(3) Startup time Conditions(1) Min(2) Typ Max(2) Unit LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]= 01 medium low driving capability - - 1 LSEDRV[1:0] = 10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]= 01 medium low driving capability 8 - - LSEDRV[1:0] = 10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDDIOx is stabilized - 2 - μA μA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID026006 Rev 2 67/123 Electrical characteristics STM32F078xx Figure 17. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I/6( 26&B,1 'ULYH SURJUDPPDEOH DPSOLILHU N+ ] UHVRQDWRU 26&B28 7 &/ 069 Note: 68/123 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID026006 Rev 2 STM32F078xx 6.3.7 Electrical characteristics Internal clock source characteristics The parameters given in Table 39 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 39. HSI oscillator characteristics(1) Symbol fHSI TRIM DuCy(HSI) ACCHSI Parameter Conditions Min Typ Max Unit Frequency - 8 - MHz HSI user trimming step - - 1(2) % Duty cycle (2) 45 Accuracy of the HSI oscillator (factory calibrated) - 55 (2) % % TA = –40 to 105 °C –3.8(3) - 4.6(3) TA = –10 to 85 °C –2.9(3) - 2.9(3) % TA = 0 to 70 °C –2.3(3) - 2.2(3) % –1 - 1 % TA = 25 °C tsu(HSI) HSI oscillator startup time 1(2) - 2(2) μs IDDA(HSI) HSI oscillator power consumption - 80 100(2) μA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 18. HSI oscillator accuracy characterization results -!8 -). 4; #= ! -36 DocID026006 Rev 2 69/123 Electrical characteristics STM32F078xx High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 40. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Min Typ - 14 Frequency HSI14 user-trimming step - DuCy(HSI14) Duty cycle 45 Accuracy of the HSI14 oscillator (factory calibrated) TA = –10 to 85 °C TA = 25 °C tsu(HSI14) IDDA(HSI14) HSI14 oscillator startup time MHz - 1 55 % (2) % (3) - 5.1 % –3.2(3) - 3.1(3) % –2.5 - (3) 2.3 % –1 - 1 % - (2) μs 1 HSI14 oscillator power consumption (2) (3) (3) TA = 0 to 70 °C Unit - (2) TA = –40 to 105 °C –4.2 ACCHSI14 Max (2) - 100 2 150(2) μA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 19. HSI14 oscillator accuracy characterization results -!8 -). 4; #= ! -36 70/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics High-speed internal 48 MHz (HSI48) RC oscillator Table 41. HSI48 oscillator characteristics(1) Symbol fHSI48 TRIM Parameter Conditions Frequency HSI48 user-trimming step Unit - 48 - MHz TA = –10 to 85 °C Accuracy of the HSI48 oscillator (factory calibrated) T = 0 to 70 °C A (2) (2) 0.14 - (2) % (2) % (3) % 0.2 55 (3) - 4.7 -4.1(3) - 3.7(3) % - (3) % -4.9 -3.8 TA = 25 °C IDDA(HSI48) Max 45 TA = –40 to 105 °C tsu(HSI48) Typ 0.09 DuCy(HSI48) Duty cycle ACCHSI48 Min (3) -2.8 3.4 - 2.9 % (2) μs HSI48 oscillator startup time - - 6 HSI48 oscillator power consumption - 312 350(2) μA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 20. HSI48 oscillator accuracy characterization results -!8 -). 4; #= ! -36 DocID026006 Rev 2 71/123 Electrical characteristics STM32F078xx Low-speed internal (LSI) RC oscillator Table 42. LSI oscillator characteristics(1) Symbol fLSI tsu(LSI) Parameter Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 μs LSI oscillator power consumption - 0.75 1.2 μA Frequency (2) IDDA(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.8 PLL characteristics The parameters given in Table 43 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 43. PLL characteristics Value Symbol fPLL_IN fPLL_OUT tLOCK JitterPLL Parameter Unit Min Typ Max 1(2) 8.0 24(2) MHz PLL input clock duty cycle 40 (2) - 60(2) % PLL multiplier output clock 16(2) - 48 MHz PLL lock time - - 200(2) μs Cycle-to-cycle jitter - - 300(2) ps PLL input clock(1) 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 72/123 DocID026006 Rev 2 STM32F078xx 6.3.9 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 44. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA–40 to +105 °C 40 53.5 60 μs Page (2 KB) erase time TA –40 to +105 °C 20 - 40 ms tME Mass erase time TA –40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 45. Flash memory endurance and data retention Symbol NEND Parameter Endurance Conditions TA = –40 to +105 °C 1 tRET Data retention kcycle(2) at TA = 85 °C 1 kcycle(2) at TA = 105 °C (2) 10 kcycles at TA = 55 °C Min(1) Unit 10 kcycles 30 10 Years 20 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 46. They are based on the EMS levels and classes defined in application note AN1709. DocID026006 Rev 2 73/123 Electrical characteristics STM32F078xx Table 46. EMS characteristics Symbol Parameter Level/ Class Conditions VFESD VDD 1.8 V, LQFP100, TA +25 °C, Voltage limits to be applied on any I/O pin fHCLK 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD1.8 V, LQFP100, TA +25°C, fHCLK 48 MHz, conforming to IEC 61000-4-4 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: Corrupted program counter Unexpected reset Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 47. EMI characteristics Symbol Parameter SEMI 74/123 Conditions Monitored frequency band 0.1 to 30 MHz VDD 1.8 V, TA 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level DocID026006 Rev 2 Max vs. [fHSE/fHCLK] Unit 8/48 MHz 2 21 dBμV 15 4 - STM32F078xx 6.3.11 Electrical characteristics Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 48. ESD absolute maximum ratings Symbol Ratings Conditions Packages VESD(HBM) Electrostatic discharge voltage TA +25 °C, conforming All (human body model) to JESD22-A114 VESD(CDM) Electrostatic discharge voltage TA +25 °C, conforming WLCSP49 (charge device model) to ANSI/ESD STM5.3.1 All others Class Maximum value(1) Unit 2 2000 V C3 250 C4 500 V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: A supply overvoltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 49. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions TA +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. DocID026006 Rev 2 75/123 Electrical characteristics STM32F078xx Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μA/+0 μA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 50. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 50. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.13 Injected current on BOOT0 and PF1 pins –0 NA Injected current on PC0 pin –0 +5 Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA –5 NA Injected current on all other FT and FTf pins, and on POR pin –5 NA Injected current on all other TTa, TC and RST pins –5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under the conditions summarized in Table 24: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). Table 51. I/O static characteristics Symbol VIL 76/123 Parameter Low level input voltage Conditions Min Typ Max TC and TTa I/O - - 0.3 VDDIOx+0.07(1) FT and FTf I/O - - 0.475 VDDIOx–0.2(1) BOOT0 - - 0.3 VDDIOx–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDDIOx DocID026006 Rev 2 Unit V STM32F078xx Electrical characteristics Table 51. I/O static characteristics (continued) Symbol VIH Vhys Ilkg RPU Parameter High level input voltage Schmitt trigger hysteresis Input leakage current(2) Weak pull-up equivalent resistor (4) RPD Weak pull-down equivalent resistor(4) CIO I/O pin capacitance Conditions Min TC and TTa I/O 0.445 VDDIOx+0.398 FT and FTf I/O 0.5 VDDIOx+0.2(1) (1) (1) 0.2 VDDIOx+0.95 BOOT0 Typ Max - - - - - - Unit V All I/Os except BOOT0 pin 0.7 VDDIOx - TC and TTa I/O - 200(1) - FT and FTf I/O - (1) 100 - BOOT0 - 300(1) - TC, FT and FTf I/O TTa in digital mode VSS VIN VDDIOx - - 0.1 TTa in digital mode VDDIOx VIN VDDA - - 1 TTa in analog mode VSS VIN VDDA - - 0.2 FT and FTf I/O (3) VDDIOx VIN 5 V - - 10 VIN VSS 25 40 55 k VIN VDDIOx 25 40 55 k - 5 - pF mV μA 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 50: I/O current injection susceptibility. 3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). DocID026006 Rev 2 77/123 Electrical characteristics STM32F078xx All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 21 for standard I/Os, and in Figure 22 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. Figure 21. TC and TTa I/O input characteristics 3 VIN (V) 2.5 TESTED RANGE TTL standard requirement 2 1.5 UNDEFINED INPUT RANGE 1 TTL standard requirement 0.5 TESTED RANGE 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDDIOx (V) MS32130V3 78/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics 3 VIN (V) 2.5 TESTED RANGE TTL standard requirement 2 1.5 1 TTL standard requirement 0.5 TESTED RANGE 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDDIOx (V) MS32131V3 DocID026006 Rev 2 79/123 Electrical characteristics STM32F078xx Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 21: Voltage characteristics). The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see Table 21: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 52. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(4) Output low level voltage for an I/O pin VOH(4) Output high level voltage for an I/O pin VOLFm+(3) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max CMOS port(2) |IIO| = 8 mA VDDIOx 2.7 V - 0.4 VDDIOx–0.4 - - 0.4 2.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - - 0.4 V VDDIOx–0.4 - V |IIO| = 20 mA VDDIOx 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V TTL port(2) |IIO| = 8 mA VDDIOx 2.7 V |IIO| = 20 mA VDDIOx 2.7 V |IIO| = 6 mA VDDIOx 2 V |IIO| = 4 mA Unit V V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings IIO. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. Data based on characterization results. Not tested in production. 4. Data based on characterization results. Not tested in production. 80/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 23 and Table 53, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 53. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 1 - 125 - 125 - 10 - 25 - 25 - 4 - 62.5 - 62.5 CL = 30 pF, VDDIOx 2.7 V - 50 CL = 50 pF, VDDIOx 2.7 V - 30 CL = 50 pF, 2 V VDDIOx 2.7 V - 20 CL = 50 pF, VDDIOx 2 V - 10 CL = 30 pF, VDDIOx 2.7 V - 5 CL = 50 pF, VDDIOx 2.7 V - 8 CL = 50 pF, 2 V VDDIOx 2.7 V - 12 CL = 50 pF, VDDIOx 2 V - 25 CL = 30 pF, VDDIOx 2.7 V - 5 CL = 50 pF, VDDIOx 2.7 V - 8 CL = 50 pF, 2 V VDDIOx 2.7 V - 12 CL = 50 pF, VDDIOx 2 V - 25 fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx 2 V fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx 2 V fmax(IO)out Maximum frequency(3) 11 tf(IO)out tr(IO)out Output fall time Output rise time DocID026006 Rev 2 ns MHz ns MHz ns MHz ns MHz ns 81/123 Electrical characteristics STM32F078xx Table 53. I/O AC characteristics(1)(2) (continued) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions fmax(IO)out Maximum frequency(3) Fm+ configuration (4) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx 2 V fmax(IO)out Maximum frequency(3) CL = 50 pF, VDDIOx 2 V tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller Min Max Unit - 2 MHz - 12 - 34 - 0.5 - 16 - 44 10 - ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 23. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration. Figure 23. I/O AC characteristics definition W I,2RXW W U,2RXW 7 7DQGLIWKHGXW\F\FOHLV 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW U I ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ 069 6.3.14 NRST and NPOR pin characteristics NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. 82/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Table 54. NRST pin characteristics Symbol Parameter VIL(NRST) Conditions Min Typ Max NRST input low level voltage - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage 0.445 VDD+0.398(1) - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV 25 40 55 k - - 100(1) ns 700(1) - - ns RPU Weak pull-up equivalent resistor(2) VF(NRST) NRST input filtered pulse VIN VSS VNF(NRST) NRST input not filtered pulse Unit V 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). Figure 24. Recommended NRST pin protection ([WHUQDO UHVHWFLUFXLW 9 '' 5 38 1567 ,QWHUQDOUHVHW )LOWHU ) 069 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 54: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. NPOR pin characteristics The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor to the VDDA, RPU. Unless otherwise specified, the parameters given in Table 55 below are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 55. NPOR pin characteristics Symbol Parameter VIL(NPOR) NPOR Input low level voltage VIH(NPOR) NPOR Input high level voltage Conditions Min 0.5 VDDA + 0.2(1) DocID026006 Rev 2 Typ Max 0.475 VDDA - Unit 0.2(1) V 83/123 Electrical characteristics STM32F078xx Table 55. NPOR pin characteristics (continued) Symbol Parameter Vhys(NPOR) NPOR Schmitt trigger voltage hysteresis RPU Conditions Weak pull-up equivalent resistor(2) VIN VSS Min Typ Max Unit - 100(1) - mV 25 40 55 k 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 6.3.15 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 56 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 24: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 56. ADC characteristics Symbol Parameter VDDA Analog supply voltage for ADC ON IDDA (ADC) Current consumption of the ADC(1) Conditions VDD = VDDA = 3.3 V Min Typ Max Unit 2.4 - 3.6 V - 0.9 - mA fADC ADC clock frequency 0.6 - 14 MHz fS(2) Sampling rate 0.05 - 1 MHz - - 823 kHz - - 17 1/fADC 0 - VDDA V - - 50 k fADC = 14 MHz fTRIG(2) External trigger frequency VAIN Conversion voltage range RAIN(2) External input impedance RADC(2) Sampling switch resistance - - 1 k CADC(2) Internal sample and hold capacitor - - 8 pF tCAL(2) Calibration time See Equation 1 and Table 57 for details fADC = 14 MHz 84/123 ADC_DR register write latency μs 83 1/fADC 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle ADC clock = HSI14 WLATENCY(2) 5.9 DocID026006 Rev 2 STM32F078xx Electrical characteristics Table 56. ADC characteristics (continued) Symbol (2) tlatr Parameter Conditions Min μs fADC = fPCLK/2 5.5 1/fPCLK 0.219 μs 10.5 1/fPCLK fADC = fHSI14 = 14 MHz 0.188 - 0.259 μs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 μs 1.5 - 239.5 1/fADC 0 0 1 μs 1 - 18 μs ADC jitter on trigger conversion Sampling time tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) Unit 0.196 Trigger conversion latency fADC = fPCLK/4 = 12 MHz tS(2) Max fADC = fPCLK/2 = 14 MHz fADC = fPCLK/4 JitterADC Typ fADC = 14 MHz 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on IDDA and 60 μA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. Equation 1: RAIN max formula TS R AIN ------------------------------------------------------------- – R ADC N+2 f ADC C ADC ln 2 The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 57. RAIN max for fADC = 14 MHz Ts (cycles) tS (μs) RAIN max (k)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. DocID026006 Rev 2 85/123 Electrical characteristics STM32F078xx Table 58. ADC accuracy(1)(2)(3) Symbol Parameter Test conditions Typ Max(4) ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 k VDDA = 3 V to 3.6 V TA = 25 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 k VDDA = 2.7 V to 3.6 V TA = 40 to 105 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 k VDDA = 2.4 V to 3.6 V TA = 25 °C Unit LSB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. 86/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Figure 25. ADC accuracy characteristics (* ([DPSOHRIDQDFWXDO WUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QG SRLQWFRUUHODWLRQOLQH (7 (7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKH ILUVWLGHDORQH (* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO WUDQVLWLRQDQGWKH ODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW FRUUHODWLRQOLQH (2 (/ (' /6%,'($/ 966$ 9''$ -36 Figure 26. Typical connection diagram using the ADC 9 ''$ 6DPSOHDQGKROG$'& FRQ YHU WHU 97 5 $,1 9$,1 5 $'& $,1[ & SDU DVLWLF 97 ,/ $ ELW FRQ YHU WHU &$'& 069 1. Refer to Table 56: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 12: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. DocID026006 Rev 2 87/123 Electrical characteristics 6.3.16 STM32F078xx DAC electrical specifications Table 59. DAC characteristics Symbol Parameter Min Typ Max Unit Comments VDDA Analog supply voltage for DAC ON 2.4 - 3.6 V RLOAD(1) Resistive load with buffer ON 5 - - k Load is referred to ground RO(1) CLOAD(1) Impedance output with buffer OFF - - 15 k When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 M Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VDDA = 3.6 V and (0x155) and (0xEAB) at VDDA = 2.4 V DAC_OUT min(1) Lower DAC_OUT voltage with buffer ON 0.2 - - V DAC_OUT max(1) Higher DAC_OUT voltage with buffer ON - - VDDA – 0.2 V DAC_OUT min(1) Lower DAC_OUT voltage with buffer OFF - 0.5 - mV DAC_OUT max(1) Higher DAC_OUT voltage with buffer OFF - - VDDA – 1LSB V - - 380 μA IDDA(1) DAC DC current consumption in quiescent mode(2) With no load, middle code (0x800) on the input - - 480 μA With no load, worst code (0xF1C) on the input Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for the DAC in 10-bit configuration - - ±2 LSB Given for the DAC in 12-bit configuration - - ±1 LSB Given for the DAC in 10-bit configuration - - ±4 LSB Given for the DAC in 12-bit configuration - - ±10 mV - - ±3 LSB Given for the DAC in 10-bit at VDDA = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VDDA = 3.6 V - - ±0.5 % DNL(3) INL(3) Offset(3) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) Offset error (difference between measured value at Code (0x800) and the ideal value = VDDA/2) Gain error(3) Gain error 88/123 DocID026006 Rev 2 It gives the maximum output excursion of the DAC. Given for the DAC in 12-bit configuration STM32F078xx Electrical characteristics Table 59. DAC characteristics (continued) Symbol Min Typ Max Unit Settling time (full scale: for a 10-bit input code transition (3) between the lowest and the tSETTLING highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 μs Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 tWAKEUP(3) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 μs CLOAD 50 pF, RLOAD 5 k input code between lowest and highest possible ones. PSRR+ (1) Power supply rejection ratio (to VDDA) (static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF Update rate(3) Parameter Comments CLOAD 50 pF, RLOAD 5 k MS/s CLOAD 50 pF, RLOAD 5 k 1. Guaranteed by design, not tested in production. 2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved. 3. Data based on characterization results, not tested in production. Figure 27. 12-bit buffered / non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R LOAD 12-bit digital to analog converter DACx_OUT C LOAD ai17157 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. DocID026006 Rev 2 89/123 Electrical characteristics 6.3.17 STM32F078xx Comparator characteristics Table 60. Comparator characteristics Symbol VDDA Parameter Conditions Min(1) Typ Max(1) Unit Analog supply voltage 2 - 3.6 VIN Comparator input voltage range 0 - VDDA VSC VREFINT scaler offset voltage - ±5 ±10 mV tS_SC VREFINT scaler startup time from power down - 0.2 1000 ms tSTART Comparator startup time Startup time to reach propagation delay specification - - 60 μs Ultra-low power mode - 2 4.5 Low power mode - 0.7 1.5 Medium power mode - 0.3 0.6 VDDA 2.7 V - 50 100 VDDA 2.7 V - 100 240 Ultra-low power mode - 2 7 Low power mode - 0.7 2.1 Medium power mode - 0.3 1.2 VDDA 2.7 V - 90 180 VDDA 2.7 V - 110 300 Propagation delay for 200 mV step with 100 mV overdrive High speed mode tD Propagation delay for full range step with 100 mV overdrive High speed mode V μs ns μs ns Voffset Comparator offset error - 4 10 mV dVoffset/dT Offset error temperature coefficient - 18 - μV/°C Ultra-low power mode - 1.2 1.5 Low power mode - 3 5 Medium power mode - 10 15 High speed mode - 75 100 IDD(COMP) 90/123 COMP current consumption DocID026006 Rev 2 μA STM32F078xx Electrical characteristics Table 60. Comparator characteristics (continued) Symbol Parameter Min(1) Typ Max(1) Conditions No hysteresis (COMPxHYST[1:0]=00) Vhys Comparator hysteresis - 0 High speed mode Low hysteresis (COMPxHYST[1:0]=01) All other power modes 3 High speed mode Medium hysteresis (COMPxHYST[1:0]=10) All other power modes 7 High speed mode High hysteresis (COMPxHYST[1:0]=11) All other power modes 18 Unit 13 8 5 10 26 15 9 19 mV 19 49 31 40 1. Data based on characterization results, not tested in production. 6.3.18 Temperature sensor characteristics Table 61. TS characteristics Symbol Parameter TL(1) Typ Max Unit - 1 2 °C Average slope 4.0 4.3 4.6 mV/°C Voltage at 30 °C (5 °C)(2) 1.34 1.43 1.52 V Startup time 4 - 10 μs ADC sampling time when reading the temperature 4 - - μs VSENSE linearity with temperature (1) Avg_Slope V30 tSTART Min (1) tS_temp(1) 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byteRefer to Table 3: Temperature sensor calibration values. 6.3.19 VBAT monitoring characteristics Table 62. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit k R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 2 - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 4 - - μs Er(1) tS_vbat(1) 1. Guaranteed by design, not tested in production. DocID026006 Rev 2 91/123 Electrical characteristics 6.3.20 STM32F078xx Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 63. TIMx characteristics Symbol Parameter Conditions tres(TIM) Timer resolution time fEXT Timer external clock frequency on CH1 to CH4 ResTIM tCOUNTER tMAX_COUNT Min Max Unit 1 - tTIMxCLK 20.8 - ns 0 fTIMxCLK/2 MHz fTIMxCLK = 48 MHz 0 24 MHz TIMx (except TIM2) - 16 TIM2 - 32 1 65536 tTIMxCLK 0.0208 1365 μs - 65536 × 65536 tTIMxCLK - 89.48 s fTIMxCLK = 48 MHz Timer resolution 16-bit counter clock period fTIMxCLK = 48 MHz Maximum possible count with 32-bit counter fTIMxCLK = 48 MHz bit Table 64. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 65. WWDG min/max timeout value at 48 MHz (PCLK) 92/123 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 DocID026006 Rev 2 Unit ms STM32F078xx 6.3.21 Electrical characteristics Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: Standard-mode (Sm): with a bit rate up to 100 kbit/s Fast-mode (Fm): with a bit rate up to 400 kbit/s Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: Table 66. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered DocID026006 Rev 2 93/123 Electrical characteristics STM32F078xx SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 67 for SPI or in Table 68 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 24: General operating conditions. Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 67. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 6 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk tdis(SO)(3) Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 th(SO) th(MO) DuCy(SCK) Data output hold time SPI slave input clock duty cycle Unit MHz ns ns % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 94/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics Figure 28. SPI timing diagram - slave mode and CPHA = 0 E^^ŝŶƉƵƚ ƚĐ;^<Ϳ ƚŚ;E^^Ϳ ^</ŶƉƵƚ ƚ^h;E^^Ϳ W,с Ϭ WK>сϬ ƚǁ;^<,Ϳƚǁ;^<>Ϳ W,с Ϭ WK>сϭ ƚǀ;^KͿ ƚĂ;^KͿ D/^K Khd W hd ƚƌ;^<ͿƚĨ;^<Ϳ ƚĚŝƐ;^KͿ ƚŚ;^KͿ D^ K hd / dϲ Khd D ^ /E / dϭ /E >^ Khd ƚƐƵ;^/Ϳ DK^/ / EWhd >^ /E ƚŚ;^/Ϳ DLF Figure 29. SPI timing diagram - slave mode and CPHA = 1 E^^ŝŶƉƵƚ ^</ŶƉƵƚ ƚ^h;E^^Ϳ W ,сϭ W K>сϬ W ,сϭ W K>сϭ ƚĐ;^<Ϳ ƚǁ;^>,Ϳ ƚǁ;^>>Ϳ ƚǀ;^KͿ ƚĂ;^KͿ D/^ K Khd W hd ƚŚ;^KͿ D^ K hd ƚƐƵ;^/Ϳ DK^ / / EWhd ƚŚ;E^^Ϳ / dϲ Khd ƚƌ;^>Ϳ ƚĨ;^>Ϳ ƚĚŝƐ;^KͿ > ^ Khd ƚŚ;^/Ϳ / dϭ /E D^ /E > ^ /E DL 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. DocID026006 Rev 2 95/123 Electrical characteristics STM32F078xx Figure 30. SPI timing diagram - master mode (IGH .33INPUT 3#+/UTPUT #0(! #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(! #0/, #0(! #0/, TW3#+( TW3#+, TSU-) -)3/ ).0 54 TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 - 3"/54 " ) 4/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. Table 68. I2S characteristics(1) Symbol fCK 1/tc(CK) Parameter I2S clock frequency tr(CK) I2S clock rise time tf(CK) I2S clock fall time Conditions Min Max 1.597 1.601 Slave mode 0 6.5 Capacitive load CL = 15 pF - 10 - 12 306 - 312 - Master mode (data: 16 bits, Audio frequency = 48 kHz) Master fPCLK= 16 MHz, audio frequency = 48 kHz tw(CKH) I2S clock high time tw(CKL) I2S clock low time tv(WS) WS valid time Master mode 2 - th(WS) WS hold time Master mode 2 - tsu(WS) WS setup time Slave mode 7 - th(WS) WS hold time Slave mode 0 - I2S slave input clock duty cycle Slave mode 25 75 DuCy(SCK) 96/123 DocID026006 Rev 2 Unit MHz ns % STM32F078xx Electrical characteristics Table 68. I2S characteristics(1) (continued) Symbol Parameter Conditions Min Max tsu(SD_MR) Data input setup time Master receiver 6 - tsu(SD_SR) Data input setup time Slave receiver 2 - Master receiver 4 - Slave receiver 0.5 - - 20 13 - - 4 0 - th(SD_MR) (2) th(SD_SR)(2) Data input hold time tv(SD_ST)(2) Data output valid time th(SD_ST) Data output hold time tv(SD_MT) (2) th(SD_MT) Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) Data output valid time Data output hold time Unit ns 1. Data based on design simulation and/or characterization results, not tested in production. 2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns. Figure 31. I2S slave timing diagram (Philips protocol) &.,QSXW WF&. &32/ &32/ WZ&.+ WK:6 WZ&./ :6LQSXW WY6'B67 WVX:6 6'WUDQVPLW /6%WUDQVPLW 06%WUDQVPLW WVX6'B65 6'UHFHLYH /6%UHFHLYH %LWQWUDQVPLW WK6'B67 /6%WUDQVPLW WK6'B65 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID026006 Rev 2 97/123 Electrical characteristics STM32F078xx Figure 32. I2S master timing diagram (Philips protocol) TF#+ TR#+ #+OUTPUT TC#+ #0/, TW#+( #0/, TV73 TH73 TW#+, 73OUTPUT TV3$?-4 3$TRANSMIT ,3"TRANSMIT -3"TRANSMIT ,3"RECEIVE ,3"TRANSMIT TH3$?-2 TSU3$?-2 3$RECEIVE "ITNTRANSMIT TH3$?-4 -3"RECEIVE "ITNRECEIVE ,3"RECEIVE AIB 1. Data based on characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 98/123 DocID026006 Rev 2 STM32F078xx Electrical characteristics USB characteristics The STM32F078xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation). Table 69. USB electrical characteristics Symbol VDDIO2 Parameter Conditions USB transceiver operating voltage Min. Typ Max. Unit 3.0(1) - 3.6 V μs tSTARTUP(2) USB transceiver startup time - - 1.0 RPUI Embedded USB_DP pull-up value during idle 1.1 1.26 1.5 RPUR Embedded USB_DP pull-up value during reception 2.0 2.26 2.6 ZDRV(2) Output driver impedance(3) 28 40 44 k Driving high and low 1. The STM32F078xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range. 2. Guaranteed by design, not tested in production. 3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver. DocID026006 Rev 2 99/123 Package characteristics STM32F078xx 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 100/123 DocID026006 Rev 2 STM32F078xx Package characteristics Figure 33. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline 0.10 Z D1 D X A1 ball pad corner FD Y A1 ball pad corner 0.50 1.75 b 1.75 E1 E e A1 A 0.10 FE A2 Side view Top view Bottom view A0C2_ME 1. Drawing is not to scale. Table 70. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.060 0.080 0.100 0.0024 0.0031 0.0039 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 D - 7.000 - - 0.2756 - D1 - 5.500 - - 0.2165 - E - 7.000 - - 0.2756 - E1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - FD - 0.750 - - 0.0295 - FE - 0.750 - - 0.0295 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID026006 Rev 2 101/123 121 Package characteristics STM32F078xx Figure 34. UFBGA100 recommended footprint 'SDG 'VP 069 Table 71. UFBGA100 recommended PCB design rules Dimension Recommended values Pitch 0.50 mm Dpad 0.27 mm Dsm 0.35 mm typ (depending on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter Marking of engineering samples for UFBGA100 The following figure shows the engineering sample marking for the UFBGA100 package. Only the information field containing the engineering sample marking is shown. Figure 35. UFBGA100 package top view (QJLQHHULQJVDPSOHPDUNLQJ (6 069 1. Samples marked “E” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 102/123 DocID026006 Rev 2 STM32F078xx Package characteristics Figure 36. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% , $ ! + CCC # , $ $ % % % B 0). )$%.4)&)#!4)/. E ,?-%?6 1. Drawing is not to scale. Table 72. LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DocID026006 Rev 2 103/123 121 Package characteristics STM32F078xx Table 72. LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0° 3.5° 7° 0° 3.5° 7° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 37. LQFP100 recommended footprint 75 76 51 50 0.5 0.3 16.7 14.3 100 26 1.2 1 25 12.3 16.7 ai14906b 1. Dimensions are in millimeters. 104/123 DocID026006 Rev 2 STM32F078xx Package characteristics Marking of engineering samples for LQFP100 The following figure shows the engineering sample marking for the LQFP100 package. Only the information field containing the engineering sample marking is shown. Figure 38. LQFP100 package top view (QJLQHHULQJVDPSOHPDUNLQJ (6 .47 1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. DocID026006 Rev 2 105/123 121 Package characteristics STM32F078xx Figure 39. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline ! C ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% ! CCC # + , $ , $ $ % % % B 0). )$%.4)&)#!4)/. E 7?-%?6 1. Drawing is not to scale. Table 73. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 - 0.0079 D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3858 0.3937 0.4016 D3 - 7.500 - - 0.2953 - 106/123 DocID026006 Rev 2 STM32F078xx Package characteristics Table 73. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3858 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0° 3.5° 7° 0° 3.5° 7° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 40. LQFP64 recommended footprint AIB 1. Dimensions are in millimeters. DocID026006 Rev 2 107/123 121 Package characteristics STM32F078xx Marking of engineering samples for LQFP64 The following figure shows the engineering sample marking for the LQFP64 package. Only the information field containing the engineering sample marking is shown. Figure 41. LQFP64 package top view (QJLQHHULQJVDPSOHPDUNLQJ (6 .47 1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 108/123 DocID026006 Rev 2 STM32F078xx Package characteristics Figure 42. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ % % % B 0). )$%.4)&)#!4)/. E "?-%?6 1. Drawing is not to scale. Table 74. LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - DocID026006 Rev 2 109/123 121 Package characteristics STM32F078xx Table 74. LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0° 3.5° 7° 0° 3.5° 7° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 43. LQFP48 recommended footprint AID 1. Dimensions are in millimeters. 110/123 DocID026006 Rev 2 STM32F078xx Package characteristics Marking of engineering samples for LQFP48 The following figure shows the engineering sample marking for the LQFP48 package. Only the information field containing the engineering sample marking is shown. Figure 44. LQFP48 package top view (QJLQHHULQJVDPSOHPDUNLQJ (6 069 1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. DocID026006 Rev 2 111/123 121 Package characteristics STM32F078xx Figure 45. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < ' / &[ SLQFRUQHU ( 5W\S 'HWDLO= = $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 112/123 DocID026006 Rev 2 STM32F078xx Package characteristics Table 75. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 46. UFQFPN48 recommended footprint 7.30 48 37 1 36 6.20 0.20 6.20 7.30 5.80 5.60 5.60 0.30 12 25 13 0.55 24 5.80 0.50 0.75 ai15697 1. Dimensions are in millimeters. DocID026006 Rev 2 113/123 121 Package characteristics STM32F078xx Marking of engineering samples for UFQFPN48 The following figure shows the engineering sample marking for the UFQFPN48 package. Only the information field containing the engineering sample marking is shown. Figure 47. UFQFPN48 package top view (QJLQHHULQJVDPSOHPDUNLQJ (6 069 1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 114/123 DocID026006 Rev 2 STM32F078xx Package characteristics Figure 48. WLCSP49 – 0.4 mm pitch, package outline H EEE = ) $EDOOORFDWLRQ $ * 'HWDLO$ H ( H * $ $ H %XPSVLGH 6LGHYLHZ $ )URQWYLHZ %XPS ' $ HHH = E 6HDWLQJSODQH ( 'HWDLO$ URWDWHG $RULHQWDWLRQ UHIHUHQFH DDD ; :DIHUEDFNVLGH $;/B0(B9 1. Drawing is not to scale. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z DocID026006 Rev 2 115/123 121 Package characteristics STM32F078xx Table 76. WLCSP49 – 0.4 mm pitch package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - A3 - 0.025 - - 0.0010 - b 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 3.242 3.277 3.312 0.1276 0.1290 0.1304 E 3.074 3.109 3.144 0.1210 0.1224 0.1238 e - 0.400 - - 0.0157 - e1 - 2.400 - - 0.0945 - e2 - 2.400 - - 0.0945 - F - 0.438 - - 0.0173 - G - 0.354 - - 0.0140 - N 49 aaa - 0.100 - - 0.0039 - bbb - 0.100 - - 0.0039 - ccc - 0.100 - - 0.0039 - ddd - 0.050 - - 0.0020 - eee - 0.050 - - 0.0020 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 49. WLCSP49 recommended footprint 'SDG 'VP 116/123 DocID026006 Rev 2 069 STM32F078xx Package characteristics Table 77. WLCSP49 recommended PCB design rules (0.4 mm pitch BGA) Dimension Recommended values Pitch 0.4 mm Dpad 260 μm max. (circular) 220 μm recommended Dsm 300 μm min. (for 260 μm diameter pad) PCB pad design Non-solder mask defined via underbump allowed Marking of engineering samples for WLCSP49 The following figure shows the engineering sample marking for the WLCSP49 package. Only the information field containing the engineering sample marking is shown. Figure 50. WLCSP49 package top view (QJLQHHULQJVDPSOHPDUNLQJ ( 069 1. Samples marked “E” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. DocID026006 Rev 2 117/123 121 Package characteristics 7.2 STM32F078xx Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 24: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: TA max is the maximum temperature in °C, JA is the package junction-to- thermal resistance, in C/W, PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 78. Package thermal characteristics Symbol JA 7.2.1 Parameter Value Thermal resistance junctionUFBGA100 - 7 × 7 mm 55 Thermal resistance junctionLQFP100 - 14 × 14 mm 42 Thermal resistance junctionLQFP64 - 10 × 10 mm / 0.5 mm pitch 44 Thermal resistance junctionLQFP48 - 7 × 7 mm 54 Thermal resistance junctionUFQFPN48 - 7 × 7 mm 32 Thermal resistance junctionWLCSP49 - 0.4 mm pitch 49 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 7.2.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering. Each temperature range suffix corresponds to a specific guaranteed temperature at maximum dissipation and to a specific maximum junction temperature. 118/123 DocID026006 Rev 2 STM32F078xx Package characteristics As applications do not commonly use the STM32F078xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Using the values obtained in Table 78 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering). Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7). Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW Using the values obtained in Table 78 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C DocID026006 Rev 2 119/123 121 Package characteristics STM32F078xx This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering) unless we reduce the power dissipation in order to be able to use suffix 6 parts. Refer to Figure 51 to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements. Figure 51. LQFP64 PD max vs. TA 3'P: 6XIIL[ 6XIIL[ 7$& 120/123 DocID026006 Rev 2 06Y9 STM32F078xx 8 Part numbering Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 79. Ordering information scheme Example: STM32 F 078 R B T 6 x Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Sub-family 078 = STM32F078xx Pin count C = 48/49 pins R = 64 pins V = 100 pins Code size B = 128 Kbytes of Flash memory Package H = UFBGA T = LQFP U = UFQFPN Y = WLCSP Temperature range 6 = –40 to 85 °C 7 = –40 to 105 °C Options xxx = programmed parts TR = tape and reel DocID026006 Rev 2 121/123 121 Revision history 9 STM32F078xx Revision history Table 80. Document revision history 122/123 Date Revision Changes 03-Apr-2014 1 Internal release. 28-May-2014 2 Initial release. DocID026006 Rev 2 STM32F078xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID026006 Rev 2 123/123