M81708FP Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 HVIC High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA 16 9 RECOMMENDED MOUNT PAD D T E R A C S 1 8 DETAIL "A" DETAIL "B" PIN NUMBER DETAIL "A" B H J N DETAIL "B" E FxU K Q P G L M 1 2 3 4 5 6 7 8 LO GND VCC NC NC VS VB HO 9 10 11 12 13 14 15 16 NC NC NC HIN NC LIN NC NC 7 VB VREG HIN 12 HV LEVEL SHIFT UV DETECT FILTER INTER LOCK VREG/VCC LEVEL SHIFT RQ R S PULSE GEN 6 VS UV DETECT FILTER LIN 14 VREG/VCC LEVEL SHIFT 8 HO DELAY 3 VCC 1 LO 2 GND Outline Drawing and Circuit Diagram Dimensions A B C D E F G H J K 7/05 Inches 0.31±0.01 0.41±0.004 0.21±0.004 0.12 0.05 0.02±0.002 0.004 0.07 0.01±0.004 0.05 Millimeters 7.8±0.3 10.1±0.1 5.3±0.1 2.10 1.27 0.4±0.05 0.1 1.8 0.1±0.1 1.25 Dimensions L M N P Q R S T U Inches 0.024±0.008 0.1±0.002 8° 0.03 0.023 0.05 Min. 0.30 0.029 0.098 Dia. Millimeters 0.6±0.2 0.2±0.05 8° 0.755 0.605 1.27 Min. 7.62 0.76 0.25 Dia. Description: M81708FP is a high voltage Power MOSFET and IGBT module driver for half-bridge applications. Features: £ Shoot Through Interlock £ Output Current +120mA/-250mA £ Half-Bridge Driver £ SOP-16 Package Applications: £ HID Ballast £ PDP £ MOSFET Driver £ IGBT Driver £ Inverter Module Control Ordering Information: M81708FP is a +120mA/-250mA, 600 Volt HVIC, High Voltage Half-Bridge Driver 1 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81708FP HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA Absolute Maximum Ratings, Ta = 25°C unless otherwise specified Characteristics Symbol M81708FP Units VB -0.5 ~ 624 Volts High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage VS VB-24 ~ VB+0.5 Volts High Side Floating Supply Voltage (VBS = VB – VS) VBS -0.5 ~ 24 Volts High Side Output Voltage VHO VS-0.5 ~ VB+0.5 Volts Low Side Fixed Supply Voltage VCC -0.5 ~ 24 Volts Low Side Output Voltage VLO -0.5 ~ VCC+0.5 Volts Logic Input Voltage (HIN, LIN) VIN -0.5 ~ VCC+0.5 Volts Allowable Offset Voltage Transient dVs/dt ±50 V/ns Pd 0.84 Watts Package Power Dissipation (Ta = 25°C, On Board) Linear Derating Factor (Ta > 25°C, On Board) Junction to Case Thermal Resistance Kθ 8.4 mW/°C Rth(j-c) 50 °C/W Junction Temperature Tj -20 ~ 125 °C Operation Temperature Topr -20 ~ 100 °C Storage Temperature Tstg -40 ~ 125 °C Recommended Operating Conditions Characteristics High Side Floating Supply Absolute Voltage Symbol Test Conditions VB Min. Typ. Max. Units VS+10 — VS+20 Volts High Side Floating Supply Offset Voltage VS VB > 10V -5 — 500 Volts High Side Floating Supply Voltage VBS VB = VB – VS 10 — 20 Volts High Side Output Voltage VHO VS — VB Volts Low Side Fixed Supply Voltage VCC 10 — 20 Volts Logic Supply Voltage VLO 0 — VCC Volts Logic Input Voltage VIN 0 — VCC Volts HIN, LIN Electrical Characteristics Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified Characteristics 2 Symbol Test Conditions Min. Typ. Max. Units Floating Supply Leakage Current IFS VB = VS = 600V — — 1.0 µA VBS Standby Current IBS HIN = LIN = 0V — 0.2 0.5 mA VCC Standby Current ICC HIN = LIN = 0V 0.2 0.5 1.0 mA High Level Output Voltage VOH IO = 0A, LO, HO 14.9 — — Volts Low Level Output Voltage VOL IO = 0A, LO, HO — — 0.1 Volts High Level Input Threshold Voltage VIH HIN, LIN 2.1 3.0 4.0 Volts Low Level Input Threshold Voltage VIL HIN, LIN 0.6 1.5 2.0 Volts High Level Input Bias Current IIH VIN = 5V — 5 20 µA Low Level Input Bias Current IIL VIN = 0V — — 2.0 µA VBS Supply UV Reset Voltage VBSuvr 8.0 8.9 9.8 Volts VBS Supply UV Hysteresis Voltage VBSuvh 0.3 0.7 — Volts VBS Supply UV Filter Time tVBSuv — 7.5 — µs VCC Supply UV Reset Voltage VCCuvr 8.0 8.9 9.8 Volts 7/05 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81708FP HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA Electrical Characteristics Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified Characteristics Symbol VCC Supply UV Hysteresis Voltage VCCuvh VCC Supply UV Filter Time tVCCuv Output High Level Short Circuit Pulsed Current IOH Test Conditions Min. Typ. Max. Units 0.3 0.7 — Volts — 7.5 — µs VO = 0V, VIN = 5V, PW < 10µs 120 200 — mA Output Low Level Short Circuit Pulsed Current IOL VO = 15V, VIN = 0V, PW < 10µs 250 350 — mA Output High Level ON Resistance ROH IO = -20mA, ROH = (VOH – VO)/IO — 35 70 Ω Output Low Level ON Resistance ROL IO = 20mA, ROL = VO /IO — 15 30 Ω High Side Turn-On Propagation Delay tdLH(HO) CL = 1000pF between HO – VS 105 140 175 ns High Side Turn-Off Propagation Delay tdHL(HO) CL = 1000pF between HO – VS 95 130 165 ns trH CL = 1000pF between HO – VS — 100 220 ns High Side Turn-On Rise Time High Side Turn-Off Fall Time tfH CL = 1000pF between HO – VS — 50 80 ns LowSide Turn-On Propagation Delay tdLH(LO) CL = 1000pF between LO – GND 105 140 175 ns Low Side Turn-Off Propagation Delay tdHL(LO) CL = 1000pF between LO – GND 95 130 165 ns trL CL = 1000pF between LO – GND — 100 220 ns Low Side Turn-On Rise Time Low Side Turn-Off Fall Time tfL CL = 1000pF between LO – GND — 50 80 ns Delay Matching, High Side and Low Side Turn-On ΔtdLH | tdLH(HO) – tdLH(LO) | — — 30 ns Delay Matching, High Side and Low Side Turn-Off ΔtdHL | tdHL(HO) – tdHL(LO) | — — 30 ns THERMAL DERATING FACTOR CHARACTERISTICS PACKAGE POWER DISSIPATION, Pd, (WATTS) 2.0 1.5 1.0 0.5 0 0 25 50 75 100 125 TEMPERATURE, Ta, (°C) FUNCTION TABLE (X : HORL) HIN LIN VBS UV VCC UV L L H H L H H H H L H H H H H H X L L H X H L H L X H L H X H L HO L L H L L L L L LO L H L L L H L L Behavorial State LO = HO = Low LO = High HO = High LO = HO = Low HO = Low, VBS UV Tripped LO = High, VBS UV Tripped LO = Low, VCC UV Tripped HO = LO = Low, VCC UV Tripped NOTE: “L” state of VBS UV, VCC UV means that UV trip voltage. In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “L”. 7/05 3 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81708FP HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA TIMING DIAGRAM 1. Input/Output Timing Diagram HIGH ACTIVE – When input signal (HIN or LIN) is “H”, then output signal (HO or LO) is “H”. In the case of both input signals (HIN and LIN) are “H”, then output signals (HO and LO) become “L”. HIN LIN HO LO 2. VCC(VBS) Supply Under Voltage Lockout Timing Diagram When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr – VCCuvh) for VCC supply UV filter time, output signal becomes “L”. And then, when VCC supply voltage is higher than UV reset voltage, output signal LO becomes “H”. VCCuvh VCC VCCuvr VCCuvt tVCCuv LO LIN When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr – VCCuvh) for VCC supply UV filter time, output signal becomes “L”. And then, when VCC supply voltage is higher than UV reset voltage, input signal (LIN) is “L”; output signal HO becomes “H”. VBS(H) LIN(L) VCCuvh VCC VCCuvr VCCuvt tVCCuv HO HIN When VBS supply voltage keeps lower UV trip voltage (VBSuvt = VBSuvr – VBSuvh) for VBS supply UV filter time, output signal becomes “L”. And then, VBS supply voltage is higher than UV reset voltage, output signal HO keeps “L” until next input signal HIN is “H”. VBSuvh VBS VBSuvt tVBSuv VBSuvr HO HIN 3. Allowable Supply Voltage Transient It is recommended supplying VCC first and supplying VBS second. In the case of shutting off supply voltage, shut off VBS firstly and shut off VCC second. At the time of starting VCC and VBS, power supply should be increased slowly. If it is increased rapidly, output signal (HO or LO) may be “H”. 4 7/05