HVIC M81019FP

M81019FP
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
HVIC
High Voltage
Half-Bridge Driver
1200 Volts/±1 Ampere
��
��
���������������������
�
���
������
�
�
�
� �
�
�
��
����������
����������
�
����������
�
�
�
�
����������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
������
�������
�������
���
���
���
���
���
���
���
������
������
�����
���
��
���
���
������
���
���
���
� ��
��
��� ��
�����
������
��������
�����
�����
� �����
���
�
�
����
�
�
�
�����
�
�
� ������
� ������
���
� ��
��� ����
��� ��
������
����
������
���
������
��� ��
��
������������
��� ���
�� ������
�� ������
���
�
���� �
������ ��
�
����
�� �����
��������
�����
�����
�����
��� ��
����
���
��������������
���
�
�
�����
�
������
�� ���
���
������
�� ��
Description:
M81019FP is a high voltage
Power MOSFET and IGBT driver
for half-bridge applications.
Features:
£ Shoot Through Interlock
£ Output Current ±1 Ampere
£ Half-Bridge Driver
£ 24-Lead SSOP Package
£ Internal Dead Time - Fixed
Applications:
£ HID Ballast
£ PDP
£ MOSFET Driver
£ IGBT Driver
£ Inverter Module Control
���
Outline Drawing and Circuit Diagram
Dimensions
Inches
Millimeters
A
0.31±0.01
7.8±0.3
B
0.40±0.004
10.1±0.1
C
0.21±0.004
5.3±0.1
D
0.08 Max.
2.1 Max.
E
0.03
0.8
F
0.01+0.004/0.002 0.35+0.1/-0.05
G
0.004
0.1
H
0.07
1.8
J
0.008 Max.
0.2 Max.
8/05
Dimensions
Inches
Millimeters
K
0.05
1.25
L
0.02±0.008
0.6±0.2
M 0.008+0.002/-0.008 0.2+0.05/-0.2
N
8° Max.
8° Max.
P
0.03 Max.
0.8 Max.
Q
0.026
0.65
R
0.051 Min.
1.27 Min.
S
0.30
7.62
T
0.02
0.5
Ordering Information:
M81019FP is a ±1 Ampere,
1200 Volt HVIC, High Voltage
Half-Bridge Driver
1
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
Absolute Maximum Ratings, Ta = 25°C unless otherwise specified
Characteristics
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
Symbol
M81019FP
Units
VB
-0.5 ~ 1224
Volts
VS
VB-24 ~ VB+0.5
Volts
High Side Floating Supply Voltage (VBS = VB – VS)
VBS
-0.5 ~ 24
Volts
High Side Output Voltage
VHO
VS-0.5 ~ VB+0.5
Volts
Low Side Fixed Supply Voltage
VCC
-0.5 ~ 24
Volts
Power Ground
VNO
VCC-24 ~ VCC+0.5
Volts
Low Side Output Voltage
VLO
VNO-0.5 ~ VCC+0.5
Volts
Logic Input Voltage (HIN, LIN, FO_RST)
VIN
-0.5 ~ VCC+0.5
Volts
FO Input/Output Voltage
VFO
-0.5 ~ VCC+0.5
Volts
CIN Input Voltage
VCIN
-0.5 ~ VCC+0.5
Volts
dVs/dt
±50
V/ns
Package Power Dissipation (Ta = 25°C, On Board)
Pd
~1.6
Watts
Linear Derating Factor (Ta > 25°C, On Board)
Kθ
~16
mW/°C
Rth(j-c)
~60
°C/W
Tj
-20 ~ 150
°C
Allowable Offset Voltage Slew Rate
Junction to Case Thermal Resistance
Junction Temperature
Operation Temperature
Topr
-20 ~ 125
°C
Storage Temperature
Tstg
-40 ~ 150
°C
Recommended Operating Conditions
All voltage parameters are absolute voltages referenced to GND unless otherwise specified.
Characteristics
Symbol
Test Conditions
Min.
Typ.
Max.
Units
High Side Floating Supply Absolute Voltage
VB
VS+13.5
VS+15
VS+20
Volts
High Side Floating Supply Offset Voltage
VS
VBS > 10V
-5*
—
900**
Volts
High Side Floating Supply Voltage
VBS
VB = VB – VS
13.5
15
20
Volts
High Side Output Voltage
VHO
VS
—
VS+20
Volts
Low Side Fixed Supply Voltage
VCC
13.5
—
20
Volts
Power Ground
VNO
-5
—
5
Volts
Low Side Output Voltage
VLO
VNO
—
VCC
Volts
Logic Input Voltage
VIN
—
5
VCC
Volts
HIN, LIN, FO_RST
FO Input/Output Voltage
VFO
—
—
VCC
Volts
CIN Input Voltag
VCIN
—
—
5
Volts
dVs/dt
-8
—
8
KV/µs
Allowable Offset Voltage Slew Rate***
*The lowest logic operational condition for VS is -5V. The lowest state held condition for VS is -VBS. The surge of -VS should not exceed -100V to avoid improper operation of output.
**The maximum of allowable instantaneous voltage spike is up to 1200V.
***At operation mode, dVs/dt should not go beyond recommended operation conditions or it will cause improper operation output.
2
8/05
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
Electrical Characteristics, Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics
High Side Leakage Current
Symbol
Test Conditions
Min.
Typ.
Max.
Units
IFS
VB = VS = 1200V
—
—
1.0
µA
VBS Quiescent Supply Current
IBS
HIN = LIN = 0V
—
0.4
0.8
mA
VCC Quiescent Supply Current
ICC
HIN = LIN = 0V
—
0.9
1.5
mA
High Level Output Voltage
VOH
IO = -20mA, HPOUT, LPOUT
14.5
—
—
Volts
Low Level Output Voltage
VOL
IO = 20mA, HNOUT1, LNOUT1
—
—
0.5
Volts
High Level Input Threshold Voltage
VIH
HIN, LIN, FO_RST
3.0
—
—
Volts
Low Level Input Threshold Voltage
VIL
HIN, LIN, FO_RST
—
—
1.5
Volts
High Level Input Bias Current
IIH
VIN = 5V
—
1.0
1.4
mA
Low Level Input Bias Current
IIL
VIN = 0V
-1.0
—
—
µA
Input Signals Filter Time
tFilter
HIN, LIN, FO_RST, FO
100
200
400
ns
VHNO2
VIN = 0V
2.5
3.4
5.0
Volts
VLNO2
VIN = 0V
6.5
7.6
9.0
Volts
Low Impedance NMOS Filter Time
tVNO2
VIN = 0V
200
400
650
ns
Low Level FO Output Voltage
VOLFO
IFO = 1mA
—
—
0.95
Volts
High Level FO Input Threshold Voltage
VIHFO
—
3.0
—
—
Volts
Low Level FO Input Threshold Voltage
VILFO
—
—
—
1.5
Volts
VBS Supply UV Reset Voltage
VBSuvr
—
10.5
11.3
12.1
Volts
High Side Low Impedance
NMOS Input Threshold Voltage
Low Side Low Impedance
NMOS Input Threshold Voltage
VBS Supply UV Trip Voltage
VBSuvt
—
10.0
10.8
11.6
Volts
VBS Supply UV Hysteresis Voltage
VBSuvh
VBSuvh = VBSuvr – VBSuvt
0.3
0.5
0.8
Volts
VBS Supply UV Filter Time
tVBSuv
—
4.0
8.0
16.0
µs
CIN Trip Voltage
VCIN
—
0.4
0.5
0.6
Volts
POR Trip Voltage
VPOR
—
4.5
5.5
7.0
Volts
Output High Level Short Circuit Pulsed Current
IOH
HPOUT(LPOUT) = 0V, HIN = 5V, PW < 5µs
—
1.0
—
A
Output Low Level Short Circuit Pulsed Current
IOL1
HNOUT1(LNOUT1) = 15V, LIN = 5V, PW < 5µs
—
-1.0
—
A
Low Impedance NMOS Output Low Level
IOL2
HNOUT2(LNOUT2) = 15V, LIN = 5V, PW < 5µs
—
-1.0
—
A
ROH
IO = -200mA, ROH = (VOH – VO)/IO
—
15
—
Ω
15
—
Ω
15
—
Ω
Short Circuit Pulsed Current
Output High Level ON Resistance
Output Low Level ON Resistance
ROL1
IO = 200mA, ROL1 = VO /IO
—
Low Impedance NMOS Output Low Level
ROL2
IO = 200mA, ROL2 = VO /IO
—
ON Resistance
8/05
3
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
Electrical Characteristics, Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics
Symbol
Test Conditions
Min.
Typ.
Max.
Units
High Side Turn-On Propagation Delay
tdLH(HO)
HPOUT Short to HNOUT1
1.0
1.29
1.6
µs
High Side Turn-Off Propagation Delay
tdHL(HO)
HPOUT Short to HNOUT1
0.9
1.19
1.5
µs
Low Side Turn-On Propagation Delay
tdLH(LO)
LPOUT Short to LNOUT1
1.0
1.27
1.6
µs
Low Side Turn-Off Propagation Delay
tdHL(LO)
LPOUT Short to LNOUT1
0.9
1.21
1.5
µs
CL = 1nF
—
40.0
—
ns
& HNOUT2, CL = 1nF
& HNOUT2, CL = 1nF
& LNOUT2, CL = 1nF
& LNOUT2, CL = 1nF
Output Turn-On Rise Time
tr
Ouyput Turn-Off Fall Time
Delay Matching, High Side Turn-On
tf
CL = 1nF
—
40.0
—
ns
∠tdLH
tdLH(HO) – tdLH(LO)
—
80.0
—
ns
∠tdHL
tdHL(HO) – tdHL(LO)
—
80.0
—
ns
& Low Side Turn-Off
Delay Matching, High Side Turn-Off
& Low Side Turn-On
THERMAL DERATING FACTOR
CHARACTERISTICS
PACKAGE POWER DISSIPATION, Pd, (WATTS)
1.8
1.6
1.2
0.8
0.4
0
0
25
50
75
100
125 150
TEMPERATURE, (°C)
4
8/05
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
DIODE CLAMP CIRCUITS FOR INPUT AND OUTPUT PINS
VCC
VCC
HIN
LIN
FO_RST
CIN
GND
GND
GND
VCC
VB
VB
LPOUT
LNOUT1
LNOUT2
HPOUT
HNOUT1
HNOUT2
GND
VS
FO
VCC
VNO
FUNCTION TABLE (X = H or L; Z = High Impedance; Q = Keep Previous Status)
HIN LIN FO_RST CIN
FO
VBS/UV VCC/POR HO LO
FO
Behavorial State
(Input)
(Output)
L
L
L
L
–
H
H
L
L
H
L
H
L
L
–
H
H
L
H
H
H
L
L
L
–
H
H
H
L
H
H
H
L
L
–
H
H
Q
Q
H
For Interlock
X
H
X
H
–
X
H
L
L
L
CIN Tripped When LIN = H
X
L
X
H
–
X
H
Q
Q
H
CIN Not Tripped When LIN = L
X
X
X
X
L
X
H
L
L
L
Output Shut Down When FO = L
X
X
X
X
–
X
L
L
L
H
VCC Power Reset Tripped
X
L
L
L
–
L
H
L
L
H
VBS Power Reset Tripped
X
H
L
L
–
L
H
L
H
H
VBS Power Reset Tripped When LIN = H
NOTE: “L” status of VBS/UV indicates high side UV tripped.
“L” status of VCC/POR indicates VCC power reset tripped.
8/05
5
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
TIMING DIAGRAM
1. Input Interlock Timing Diagram
When the input signals (HIN/LIN) are high at the same time, the output (HOUT/LOUT) will maintain previous status. But if the input signals
(HIN/LIN) go high simultaneously, HIN signals would be active and cause HOUT to enter into high status.
NOTE 1: Input pulse width should be set to more than
200ns for HIN/LIN input filter circuit.
HIN
NOTE 2: If high-high status of input signals HIN/LIN
completes with one input signal in low level and the
other in high level, the output will enter into high-low
status without dead time.
LIN
HOUT
NOTE 3: This diagram does not show delay time
between input and output.
LOUT
NO
DEAD-TIME
2. Input/Output Timing Diagram
The M81019FP matches delay between the low side and high side driver allowing minimized dead time control for better speed range and
torque control in motor drive applications.
LIN
50%
50%
HIN
tf
tr
90%
tdLH(HO)
HO
tdLH
LO
tdHL(LO)
10%
90%
tf 10%
90%
tdHL(HO)
tdLH(LO)
10%
tdHL
tr
90%
10%
3. Short Circuit Protection Timing Diagram
When overcurrent is detected, CIN will be tripped if LIN is high; then the short circuit protection will activate and shut down the outputs
and FO will indicate fault by going low. As soon as FO_RST is driven high, short circuit protection will deactivate and FO goes high.
The output will then respond to any subsequent active input signal.
HIN
LIN
NOTE 1: This diagram does not show delay time
between input and output.
NOTE 2: FO_RST pulse width should be set to more
than 400ns for FO_RST input filter circuit.
CIN
FO_RST
HOUT
LOUT
FO
6
8/05
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
4. FO Input Timing Diagram
When FO is pulled low by an enternal signal, the output will be shut down. As soon as FO goes high again, the output will respond to the
next active input signal.
NOTE 1: This diagram does not show delay time
between input and output.
HIN
LIN
NOTE 2: FO pulse width should be set to more than
400ns for FO input filter circuit.
FO
HOUT
LOUT
5. Low Side VCC Supply Power Reset Sequence
When VCC supply voltage is lower than power reset trip voltage, the power reset trips and output is locked out. As soon as VCC supply
voltage does higher than power reset trip voltage, the output will respond to the next active input signal.
VPOR Voltage
VCC
HIN
LIN
HOUT
LOUT
6. High-Side VBS Supply Under Voltage Lockout Sequence
When VBS supply voltage goes lower than VBS supply UV trip voltage for a period than the VBS supply UV filter time, HOUT goes low
regardles of HIN. As soon as VBS supply voltage goes higher than VBS supply reset voltage, the output will respond to the next active
HIN signal.
VBSuvr
VBSuvr
VBSuvt
VBS
HIN
LIN
VBS Supply UV Hysteresis Voltage
VBS Supply UV Filter Time
NOTE 1: This diagram does not show delay time
between input and output.
NOTE 2: At power supply start-up it is recommended
that dVBS/dt should be controlled to avoid H latch of
outputs.
HOUT
LOUT
8/05
7
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81019FP
HVIC, High Voltage Half-Bridge Driver
1200 Volts/±1 Ampere
7. Power Start-Up Sequence
At power supply start-up the following sequence is recommended when bootstrap supply topology is used.
1. Set VCC.
VCC
2. Make sure FO is in high level.
3. Set LIN to high level and set HIN to low
level so that bootstrap capacitor will
charge.
FO
HIN
4. Set LIN to low level.
LIN
NOTE: If two power supplies are used to supply VCC
and VBS individually, it is recommended to set VCC
first, then set VBS.
LOUT
8. Low Impedance NMOS Output Timing Diagram
Output configuration is shown in the following figure. At turn-off an n-channel NMOS with sink current up to 1A is used to offer a low
impedance path (AKA “low impedance NMOS) to prevent the power switch from turning itself on because of the parasitic Miller
capacitor in the power switch.
VBS/VCC
P1
HIN/LIN = 0
Cres
VO
VPG/VN1G
N1
N2
Cies
VS/VNO
VN2G
LOW IMPEDANCE NMOS
When HIN/LIN is low level and VOUT voltage is lower than low impedance NMOS input threshold voltage, the low impedance NMOS
continues to discharge the parasitic current through Cres.
HIN/LIN
P1 Off
VPG
P1 On
P1 On
N1 On
VN1G
N1 Off
Low Impedance NMOS
Input Threshold
N1 Off
VOUT
VN2G
N2 Off
N2 Off
N2 On
Tw
Low Impedance NMOS Stays
Turned On if Tw does not exceed tVNO2
8
8/05