M81707FP Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 HVIC High Voltage Half-Bridge Driver 600 Volts/±100mA 16 9 RECOMMENDED MOUNT PAD D T E R A C S 1 8 DETAIL "A" DETAIL "B" PIN NUMBER DETAIL "A" B H J N E DETAIL "B" FxU Q P G K L M VCC 11 HIN 12 HV LEVEL SHIFT VREG VREG/VCC LEVEL SHIFT PULSE GEN 1 2 3 4 5 6 7 8 LO VCOM VCC2 NC NC VS VB HO 9 10 11 12 13 14 15 16 NC NC VCC HIN NC LIN GND NC 7 VB UV DETECT FILTER INTER LOCK RQ R S 8 HO 6 VS HV LEVEL SHIFT LIN 14 VREG/VCC LEVEL SHIFT PULSE GEN 3 VCC2 UV DETECT FILTER INTER LOCK RQ R S 1 LO 2 VCOM GND 15 Description: M81707FP is a high voltage Power MOSFET and IGBT module driver for half-bridge applications. Features: £ Output Current ±100mA £ Half-Bridge Driver £ SOP-16 Package Applications: £ HID Ballast £ PDP £ MOSFET Driver £ IGBT Driver £ Inverter Module Control Ordering Information: M81707FP is a ±100mA, 600 Volt HVIC, High Voltage Half-Bridge Driver Outline Drawing and Circuit Diagram Dimensions A B C D E F G H J K 6/05 Inches 0.31±0.01 0.41±0.004 0.21±0.004 0.12 0.05 0.02±0.002 0.004 0.07 0.01±0.004 0.05 Millimeters 7.8±0.3 10.1±0.1 5.3±0.1 2.10 1.27 0.4±0.05 0.1 1.8 0.1±0.1 1.25 Dimensions L M N P Q R S T U Inches 0.024±0.008 0.1±0.002 8° 0.03 0.023 0.05 Min. 0.30 0.029 0.098 Dia. Millimeters 0.6±0.2 0.2±0.05 8° 0.755 0.605 1.27 Min. 7.62 0.76 0.25 Dia. 1 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81707FP HVIC, High Voltage Half-Bridge Driver 600 Volts/±100mA Absolute Maximum Ratings, Ta = 25°C unless otherwise specified Characteristics High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage Symbol M81707FP Units VB -0.5 ~ 624 Volts VS VB-24 ~ VB+0.5 Volts VBS -0.5 ~ 24 Volts High Side Output Voltage VHO VS-0.5 ~ VB+0.5 Volts Low Side Floating Supply Absolute Voltage VCC2 -0.5 ~ 624 Volts High Side Floating Supply Voltage (VBS = VB – VS) Output Standard Voltage Vcom VCC2-24 ~ VCC2+0.5 Volts VCC2com -0.5 ~ 24 Volts Low Side Output Voltage VLO Vcom-0.5 ~ VCC2+0.5 Volts Low Side Fixed Supply Voltage VCC -0.5 ~ 24 Volts Low Side Floating Supply Voltage (VCC2com = VCC2 – Vcom) Logic Input Voltage (HIN, LIN) VIN -0.5 ~ VCC+0.5 Volts dVs/dt ±50 Volts/ns Package Power Dissipation (Ta = 25°C, On Board) Pd 0.89 Watts Linear Derating Factor (Ta > 25°C, On Board) Kθ -8.9 mW/°C Rth(j-c) 45 °C/W Tj -40 ~ 125 °C Allowable Offset Voltage Transient Junction to Case Thermal Resistance Junction Temperature Operation Temperature Topr -40 ~ 100 °C Storage Temperature Tstg -55 ~ 125 °C TL 255 : 10s, Max. 260 °C Solder Heat Resistance (Pb Free) Recommended Operating Conditions Characteristics High Side Floating Supply Absolute Voltage Test Conditions VB Min. Typ. Max. Units VS+10 — VS+20 Volts High Side Floating Supply Offset Voltage VS VB > 10V -5 — 500 Volts High Side Floating Supply Voltage VBS VB = VB – VS 10 — 20 Volts High Side Output Voltage VHO VS — VB Volts Low Side Floating Supply Absolute Voltage VCC2 Vcom+10 — Vcom+20 Volts Output Standard Voltage Low Side Floating Supply Voltage 2 Symbol Vcom VCC2com VCC2 > 10V VCC2com = VCC2 – Vcom -5 — 500 Volts 10 — 20 Volts Low Side Output Voltage VLO Vcom — VCC2 Volts Low Side Fixed Supply Voltage VCC 10 — 20 Volts Logic Input Voltage VIN 0 — VCC Volts HIN, LIN 6/05 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81707FP HVIC, High Voltage Half-Bridge Driver 600 Volts/±100mA Electrical Characteristics Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified Characteristics Floating Supply Leakage Current Vcom Floating Supply Leakage Current VBS Standby Current Symbol Min. Typ. Max. Units IFS VB = VS = 600V Test Conditions — — 1.0 µA IFScom VCC2 = Vcom = 600V — — 1.0 µA IBS HIN = LIN = 0V — 0.18 0.4 mA VCC Standby Current ICC HIN = LIN = 0V — 0.30 0.6 mA VCC2 Standby Current ICC2 HIN = LIN = 0V — 0.18 0.4 mA VBS Standby Current H IBSH HIN = 5V — 0.25 0.5 mA VCC Standby Current H ICCH HIN = 5V — 0.37 0.75 mA VCC2 Standby Current H ICC2H HIN = 5V — 0.18 0.4 mA IBSL LIN = 5V — 0.18 0.4 mA VCC Standby Current L ICCL LIN = 5V — 0.37 0.75 mA VCC2 Standby Current H ICC2L LIN = 5V — 0.25 0.5 mA High Level Output Voltage VOH IO = 0A, LO, HO 14.9 — — Volts Low Level Output Voltage VOL IO = 0A, LO, HO — — 0.1 Volts High Level Input Threshold Voltage VIH HIN, LIN 2.0 3.0 4.0 Volts Low Level Input Threshold Voltage VIL HIN, LIN 0.6 1.5 2.5 Volts Input Hysteresis Voltage VINh VINh = VIH – VIL 1.0 1.5 2.0 Volts High Level Input Bias Current 5 IIH5 VIN = 5V — 25 75 µA High Level Input Bias Current 15 IIH15 VIN = 15V — 75 150 µA IIL VIN = 0V — — 1.0 µA VBS Standby Current L Low Level Input Bias Current VBS Supply UV Reset Voltage VBSuvr 7.5 8.6 9.7 Volts VBS Supply UV Hysteresis Voltage VBSuvh 0.1 0.4 0.7 Volts VBS Supply UV Filter Time tVBSuv — 7.5 — µs VCC Supply UV Reset Voltage VCCuvr 7.5 8.6 9.7 Volts VCC Supply UV Hysteresis Voltage VCCuvh 0.1 0.4 0.7 Volts VCC Supply UV Filter Time tVCCuv — 7.5 — µs Output High Level Short Circuit Pulsed Current IOH VO = 0V, VIN = 5V, PW < 10µs -60 -100 -140 mA Output Low Level Short Circuit Pulsed Current IOL VO = 15V, VIN = 0V, PW < 10µs 60 100 140 mA Output High Level ON Resistance ROH IO = -20mA, ROH = (VOH – VO)/IO — 35 70 Ω Output Low Level ON Resistance ROL IO = 20mA, ROL = VO /IO — 50 100 Ω High Side Turn-On Propagation Delay tdLH(HO) CL = 200pF between HO – VS 85 110 135 ns High Side Turn-Off Propagation Delay tdHL(HO) CL = 200pF between HO – VS 100 130 160 ns High Side Turn-On Rise Time trH CL = 200pF between HO – VS 15 30 70 ns High Side Turn-Off Fall Time tfH CL = 200pF between HO – VS 20 45 90 ns LowSide Turn-On Propagation Delay tdLH(LO) CL = 200pF between LO – GND 85 110 135 ns Low Side Turn-Off Propagation Delay tdHL(LO) CL = 200pF between LO – GND 100 130 160 ns Low Side Turn-On Rise Time trL CL = 200pF between LO – GND 15 30 70 ns Low Side Turn-Off Fall Time tfL CL = 200pF between LO – GND 20 45 90 ns Delay Matching, High Side and Low Side Turn-On ΔtdLH | tdLH(HO) – tdLH(LO) | — — 15 ns Delay Matching, High Side and Low Side Turn-Off ΔtdHL | tdHL(HO) – tdHL(LO) | — — 15 ns Output Pulse Width VOPW VIN : PW = 200ns 200 220 240 ns 6/05 3 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81707FP HVIC, High Voltage Half-Bridge Driver 600 Volts/±100mA THERMAL DERATING FACTOR CHARACTERISTICS FUNCTION TABLE (X : HORL) HIN LIN VBS UV VCC2COM UV L L H H L H H H H L H H H H H H X L L H X H L H L X H L H X H L PACKAGE POWER DISSIPATION, Pd, (WATTS) 2.0 1.5 1.0 0.5 0 HO L L H H L L L H LO L H L H L H L L Behavorial State LO = HO = Low LO = High HO = High LO = HO = High HO = Low, VBS UV Tripped LO = High, VBS UV Tripped LO = Low, VCC2COM UV Tripped HO = High, VCC2COM UV Tripped NOTE: “L” state of VBS UV, VCC2COM UV means that UV trip voltage. In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “H”. 0 25 50 75 100 125 TEMPERATURE, (°C) TIMING DIAGRAM 1. Input/Output Timing Diagram HIGH ACTIVE – When input signal (HIN or LIN) is “H”, then output signal (HO or LO) is “H”. In the case of both input signals (HIN and LIN) are “H”, then output signals (HO and LO) become “H”. HIN LIN HO LO 2. VCC2COM(VBS) Supply Under Voltage Lockout Timing Diagram When VCC2COM supply voltage keeps lower UV trip voltage (VCC2COMuvt = VCC2COMuvr – VCC2COMuvh) for VCC2COM supply UV filter time, output signal becomes “L”. And then, when VCC2COM supply voltage is higher than UV reset voltage, output signal becomes normal. VCC2COM (VBS) VCC2COMuvh (VBSuvh) VCC2COMuvt (VBSuvt) tVCC2COMuv (tVBSuv) VCC2COMuvr (VBSuvr) LO(HO) LIN(HIN) Consideration – Allowable Supply Voltage Transient It is recommended supplying VCC first, VCC2COM second and VBS last. In the case of shutting off supply voltage, shut off VBS supply voltage first. Second, shut off VCC2COM supply voltage, and last, shut off VCC supply voltage. At the time of starting VCC2COM and VBS, power supply should be increased slowly. If it is increased rapidly, output signal (HO and LO) may be “H”. 4 6/05