M81707FP HVIC High Voltage Half-Bridge Driver 600V +

M81707FP
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
HVIC
High Voltage
Half-Bridge Driver
600 Volts/±100mA
16
9
RECOMMENDED MOUNT PAD
D
T
E
R
A C
S
1
8
DETAIL "A"
DETAIL "B"
PIN NUMBER
DETAIL "A"
B
H
J
N
E
DETAIL "B"
FxU
Q
P
G
K
L
M
VCC 11
HIN 12
HV
LEVEL
SHIFT
VREG
VREG/VCC
LEVEL
SHIFT
PULSE
GEN
1
2
3
4
5
6
7
8
LO
VCOM
VCC2
NC
NC
VS
VB
HO
9
10
11
12
13
14
15
16
NC
NC
VCC
HIN
NC
LIN
GND
NC
7 VB
UV DETECT
FILTER
INTER
LOCK
RQ
R
S
8 HO
6 VS
HV
LEVEL
SHIFT
LIN 14
VREG/VCC
LEVEL
SHIFT
PULSE
GEN
3 VCC2
UV DETECT
FILTER
INTER
LOCK
RQ
R
S
1 LO
2 VCOM
GND 15
Description:
M81707FP is a high voltage Power
MOSFET and IGBT module driver
for half-bridge applications.
Features:
£ Output Current ±100mA
£ Half-Bridge Driver
£ SOP-16 Package
Applications:
£ HID Ballast
£ PDP
£ MOSFET Driver
£ IGBT Driver
£ Inverter Module Control
Ordering Information:
M81707FP is a ±100mA,
600 Volt HVIC, High Voltage
Half-Bridge Driver
Outline Drawing and Circuit Diagram
Dimensions
A
B
C
D
E
F
G
H
J
K
6/05
Inches
0.31±0.01
0.41±0.004
0.21±0.004
0.12
0.05
0.02±0.002
0.004
0.07
0.01±0.004
0.05
Millimeters
7.8±0.3
10.1±0.1
5.3±0.1
2.10
1.27
0.4±0.05
0.1
1.8
0.1±0.1
1.25
Dimensions
L
M
N
P
Q
R
S
T
U
Inches
0.024±0.008
0.1±0.002
8°
0.03
0.023
0.05 Min.
0.30
0.029
0.098 Dia.
Millimeters
0.6±0.2
0.2±0.05
8°
0.755
0.605
1.27 Min.
7.62
0.76
0.25 Dia.
1
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81707FP
HVIC, High Voltage Half-Bridge Driver
600 Volts/±100mA
Absolute Maximum Ratings, Ta = 25°C unless otherwise specified
Characteristics
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
Symbol
M81707FP
Units
VB
-0.5 ~ 624
Volts
VS
VB-24 ~ VB+0.5
Volts
VBS
-0.5 ~ 24
Volts
High Side Output Voltage
VHO
VS-0.5 ~ VB+0.5
Volts
Low Side Floating Supply Absolute Voltage
VCC2
-0.5 ~ 624
Volts
High Side Floating Supply Voltage (VBS = VB – VS)
Output Standard Voltage
Vcom
VCC2-24 ~ VCC2+0.5
Volts
VCC2com
-0.5 ~ 24
Volts
Low Side Output Voltage
VLO
Vcom-0.5 ~ VCC2+0.5
Volts
Low Side Fixed Supply Voltage
VCC
-0.5 ~ 24
Volts
Low Side Floating Supply Voltage (VCC2com = VCC2 – Vcom)
Logic Input Voltage (HIN, LIN)
VIN
-0.5 ~ VCC+0.5
Volts
dVs/dt
±50
Volts/ns
Package Power Dissipation (Ta = 25°C, On Board)
Pd
0.89
Watts
Linear Derating Factor (Ta > 25°C, On Board)
Kθ
-8.9
mW/°C
Rth(j-c)
45
°C/W
Tj
-40 ~ 125
°C
Allowable Offset Voltage Transient
Junction to Case Thermal Resistance
Junction Temperature
Operation Temperature
Topr
-40 ~ 100
°C
Storage Temperature
Tstg
-55 ~ 125
°C
TL
255 : 10s, Max. 260
°C
Solder Heat Resistance (Pb Free)
Recommended Operating Conditions
Characteristics
High Side Floating Supply Absolute Voltage
Test Conditions
VB
Min.
Typ.
Max.
Units
VS+10
—
VS+20
Volts
High Side Floating Supply Offset Voltage
VS
VB > 10V
-5
—
500
Volts
High Side Floating Supply Voltage
VBS
VB = VB – VS
10
—
20
Volts
High Side Output Voltage
VHO
VS
—
VB
Volts
Low Side Floating Supply Absolute Voltage
VCC2
Vcom+10
—
Vcom+20
Volts
Output Standard Voltage
Low Side Floating Supply Voltage
2
Symbol
Vcom
VCC2com
VCC2 > 10V
VCC2com = VCC2 – Vcom
-5
—
500
Volts
10
—
20
Volts
Low Side Output Voltage
VLO
Vcom
—
VCC2
Volts
Low Side Fixed Supply Voltage
VCC
10
—
20
Volts
Logic Input Voltage
VIN
0
—
VCC
Volts
HIN, LIN
6/05
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81707FP
HVIC, High Voltage Half-Bridge Driver
600 Volts/±100mA
Electrical Characteristics
Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics
Floating Supply Leakage Current
Vcom Floating Supply Leakage Current
VBS Standby Current
Symbol
Min.
Typ.
Max.
Units
IFS
VB = VS = 600V
Test Conditions
—
—
1.0
µA
IFScom
VCC2 = Vcom = 600V
—
—
1.0
µA
IBS
HIN = LIN = 0V
—
0.18
0.4
mA
VCC Standby Current
ICC
HIN = LIN = 0V
—
0.30
0.6
mA
VCC2 Standby Current
ICC2
HIN = LIN = 0V
—
0.18
0.4
mA
VBS Standby Current H
IBSH
HIN = 5V
—
0.25
0.5
mA
VCC Standby Current H
ICCH
HIN = 5V
—
0.37
0.75
mA
VCC2 Standby Current H
ICC2H
HIN = 5V
—
0.18
0.4
mA
IBSL
LIN = 5V
—
0.18
0.4
mA
VCC Standby Current L
ICCL
LIN = 5V
—
0.37
0.75
mA
VCC2 Standby Current H
ICC2L
LIN = 5V
—
0.25
0.5
mA
High Level Output Voltage
VOH
IO = 0A, LO, HO
14.9
—
—
Volts
Low Level Output Voltage
VOL
IO = 0A, LO, HO
—
—
0.1
Volts
High Level Input Threshold Voltage
VIH
HIN, LIN
2.0
3.0
4.0
Volts
Low Level Input Threshold Voltage
VIL
HIN, LIN
0.6
1.5
2.5
Volts
Input Hysteresis Voltage
VINh
VINh = VIH – VIL
1.0
1.5
2.0
Volts
High Level Input Bias Current 5
IIH5
VIN = 5V
—
25
75
µA
High Level Input Bias Current 15
IIH15
VIN = 15V
—
75
150
µA
IIL
VIN = 0V
—
—
1.0
µA
VBS Standby Current L
Low Level Input Bias Current
VBS Supply UV Reset Voltage
VBSuvr
7.5
8.6
9.7
Volts
VBS Supply UV Hysteresis Voltage
VBSuvh
0.1
0.4
0.7
Volts
VBS Supply UV Filter Time
tVBSuv
—
7.5
—
µs
VCC Supply UV Reset Voltage
VCCuvr
7.5
8.6
9.7
Volts
VCC Supply UV Hysteresis Voltage
VCCuvh
0.1
0.4
0.7
Volts
VCC Supply UV Filter Time
tVCCuv
—
7.5
—
µs
Output High Level Short Circuit Pulsed Current
IOH
VO = 0V, VIN = 5V, PW < 10µs
-60
-100
-140
mA
Output Low Level Short Circuit Pulsed Current
IOL
VO = 15V, VIN = 0V, PW < 10µs
60
100
140
mA
Output High Level ON Resistance
ROH
IO = -20mA, ROH = (VOH – VO)/IO
—
35
70
Ω
Output Low Level ON Resistance
ROL
IO = 20mA, ROL = VO /IO
—
50
100
Ω
High Side Turn-On Propagation Delay
tdLH(HO)
CL = 200pF between HO – VS
85
110
135
ns
High Side Turn-Off Propagation Delay
tdHL(HO)
CL = 200pF between HO – VS
100
130
160
ns
High Side Turn-On Rise Time
trH
CL = 200pF between HO – VS
15
30
70
ns
High Side Turn-Off Fall Time
tfH
CL = 200pF between HO – VS
20
45
90
ns
LowSide Turn-On Propagation Delay
tdLH(LO)
CL = 200pF between LO – GND
85
110
135
ns
Low Side Turn-Off Propagation Delay
tdHL(LO)
CL = 200pF between LO – GND
100
130
160
ns
Low Side Turn-On Rise Time
trL
CL = 200pF between LO – GND
15
30
70
ns
Low Side Turn-Off Fall Time
tfL
CL = 200pF between LO – GND
20
45
90
ns
Delay Matching, High Side and Low Side Turn-On
ΔtdLH
| tdLH(HO) – tdLH(LO) |
—
—
15
ns
Delay Matching, High Side and Low Side Turn-Off
ΔtdHL
| tdHL(HO) – tdHL(LO) |
—
—
15
ns
Output Pulse Width
VOPW
VIN : PW = 200ns
200
220
240
ns
6/05
3
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81707FP
HVIC, High Voltage Half-Bridge Driver
600 Volts/±100mA
THERMAL DERATING FACTOR
CHARACTERISTICS
FUNCTION TABLE (X : HORL)
HIN
LIN
VBS UV
VCC2COM UV
L
L
H
H
L
H
H
H
H
L
H
H
H
H
H
H
X
L
L
H
X
H
L
H
L
X
H
L
H
X
H
L
PACKAGE POWER DISSIPATION, Pd, (WATTS)
2.0
1.5
1.0
0.5
0
HO
L
L
H
H
L
L
L
H
LO
L
H
L
H
L
H
L
L
Behavorial State
LO = HO = Low
LO = High
HO = High
LO = HO = High
HO = Low, VBS UV Tripped
LO = High, VBS UV Tripped
LO = Low, VCC2COM UV Tripped
HO = High, VCC2COM UV Tripped
NOTE: “L” state of VBS UV, VCC2COM UV means that UV trip voltage.
In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “H”.
0
25
50
75
100
125
TEMPERATURE, (°C)
TIMING DIAGRAM
1. Input/Output Timing Diagram
HIGH ACTIVE – When input signal (HIN or LIN) is “H”, then output signal (HO or LO) is “H”. In the case of both input signals (HIN and LIN)
are “H”, then output signals (HO and LO) become “H”.
HIN
LIN
HO
LO
2. VCC2COM(VBS) Supply Under Voltage Lockout Timing Diagram
When VCC2COM supply voltage keeps lower UV trip voltage (VCC2COMuvt = VCC2COMuvr – VCC2COMuvh) for VCC2COM supply UV filter
time, output signal becomes “L”. And then, when VCC2COM supply voltage is higher than UV reset voltage, output signal becomes
normal.
VCC2COM (VBS)
VCC2COMuvh (VBSuvh)
VCC2COMuvt (VBSuvt)
tVCC2COMuv (tVBSuv)
VCC2COMuvr (VBSuvr)
LO(HO)
LIN(HIN)
Consideration – Allowable Supply Voltage Transient
It is recommended supplying VCC first, VCC2COM second and VBS last. In the case of shutting
off supply voltage, shut off VBS supply voltage first. Second, shut off VCC2COM supply voltage, and last, shut off
VCC supply voltage.
At the time of starting VCC2COM and VBS, power supply should be increased slowly. If it is increased rapidly,
output signal (HO and LO) may be “H”.
4
6/05