MITSUBISHI M81720FP

MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
DESCRIPTION
M81720FP is high voltage Power MOSFET and IGBT module
driver for half bridge applications.
PIN CONFIGURATION (TOP VIEW)
FEATURES
¡FLOATING SUPPLY VOLTAGE ................................. 600V
¡OUTPUT CURRENT ..................... +120mA/–250mA (min)
¡HALF BRIDGE DRIVER
¡SOP-8 PACKAGE
APPLICATIONS
MOSFET and IGBT module inverter driver for Automotive,
PDP, HID lamp, refrigerator, air-conditioner, washing machine, AC-servomotor and general purpose.
1. VCC
8. VB
2. HIN
7. HO
3. LIN
6. VS
4. GND
5. LO
Outline:8P2S
BLOCK DIAGRAM
HV LEVEL
SHIFT
VREG
HIN
2
FILTER
3
FILTER
7
HO
6
VS
1
VCC
5
LO
4
GND
R
S
PULSE
GEN
UV DETECT
FILTER
LIN
VB
RQ
INTER
LOCK
VREG/VCC
LEVEL
SHIFT
8
UV DETECT
FILTER
VREG/VCC
LEVEL
SHIFT
DELAY
Aug. 2009
1
MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C unless otherwise specified)
Symbol
VB
Parameter
High Side Floating Supply Absolute Voltage
Test conditions
VS
High Side Floating Supply Offset Voltage
VBS
High Side Floating Supply Voltage
VHO
High Side Output Voltage
VCC
Low Side Fixed Supply Voltage
VLO
Low Side Output Voltage
VIN
Logic Input Voltage
HIN, LIN
Pd
Package Power Dissipation
Kq
Linear Derating Factor
Rth(j-c)
Junction-Case Thermal Resistance
Tj
VBS = VB–VS
Ratings
–0.5 ~ 624
Unit
V
–5 ~ 600
V
–0.5 ~ 24
V
VS–0.5 ~ VB+0.5
V
–0.5 ~ 24
V
–0.5 ~ VCC+0.5
V
–0.5 ~ VCC+0.5
V
Ta = 25°C, On Board
0.6
W
Ta > 25°C, On Board
6.0
mW/°C
50
°C/W
Junction Temperature
–20 ~ 125
°C
Topr
Operation Temperature
–20 ~ 100
°C
Tstg
Storage Temperature
–40 ~ 125
°C
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Test conditions
Min.
Limits
Typ.
Max.
VS+10
—
VS+20
V
0
—
500
V
10
—
20
V
Unit
VB
High Side Floating Supply Absolute Voltage
VS
High Side Floating Supply Offset Voltage
VBS
High Side Floating Supply Voltage
VHO
High Side Output Voltage
VS
—
VB
V
VCC
Low Side Fixed Supply Voltage
10
—
20
V
VLO
Low Side Output Voltage
0
—
VCC
V
VIN
Logic Input Voltage
0
—
7
V
VBS = VB–VS
HIN, LIN
* For proper operation, the device should be used within the recommended conditions.
THERMAL DERATING FACTOR CHARACTERISTIC (MAXIMUM RATING)
Package Power Dissipation Pd (W)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
25
50
75
100
125
150
Temperature Ta (°C)
Aug. 2009
2
MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vcc=VBS(=VB-VS)=15V, unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Limits
Typ.*
Max.
Unit
IFS
Floating Supply Leakage Current
VB = VS = 600V
—
—
1.0
µA
IBS
VBS Standby Current
HIN = LIN = 0V
—
0.2
0.5
mA
ICC
VCC Standby Current
HIN = LIN = 0V
0.2
0.6
1.0
mA
—
V
VOH
High Level Output Voltage
IO = –20mA, LO, HO
13.6
14.2
VOL
Low Level Output Voltage
IO = 20mA, LO, HO
—
0.3
0.6
V
VIH
High Level Input Threshold Voltage
HIN, LIN
2.7
—
—
V
VIL
Low Level Input Threshold Voltage
HIN, LIN
—
—
0.8
V
IIH
High Level Input Bias Current
VIN = 5V
—
5
20
µA
IIL
Low Level Input Bias Current
VIN = 0V
—
—
2
µA
VBSuvr
VBS Supply UV Reset Voltage
8.0
8.9
9.8
V
VBSuvt
VBS Supply UV Trip Voltage
7.4
8.2
9.0
V
VBSuvh
VBS Supply UV Hysteresis Voltage
0.5
0.7
—
V
tVBSuv
VBS Supply UV Filter Time
—
7.5
—
µs
VCCuvr
VCC Supply UV Reset Voltage
8.0
8.9
9.8
V
VCCuvt
VCC Supply UV Trip Voltage
7.4
8.2
9.0
V
VCCuvh
VCC Supply UV Hysteresis Voltage
0.5
0.7
—
V
tVCCuv
VCC Supply UV Filter Time
—
7.5
—
µs
IOH
Output High Level Short Circuit Pulsed Current
VO = 0V, VIN = 5V, PW < 10µs
120
200
—
mA
IOL
Output Low Level Short Circuit Pulsed Current
VO = 15V, VIN = 0V, PW < 10µs
250
350
—
mA
ROH
Output High Level On Resistance
IO = –20mA, ROH = (VCC–VO)/IO
—
40
70
Ω
15
30
Ω
ROL
Output Low Level On Resistance
IO = 20mA, ROL = VO/IO
—
tdLH(HO)
High Side Turn-On Propagation Delay
CL = 1000pF between HO-VS
—
450
650
ns
tdHL(HO)
High Side Turn-Off Propagation Delay
CL = 1000pF between HO-VS
—
450
650
ns
trH
High Side Turn-On Rise Time
CL = 1000pF between HO-VS
—
130
220
ns
tfH
High Side Turn-Off Fall Time
CL = 1000pF between HO-VS
—
50
80
ns
tdLH(LO)
Low Side Turn-On Propagation Delay
CL = 1000pF between LO-GND
—
450
650
ns
tdHL(LO)
Low Side Turn-Off Propagation Delay
CL = 1000pF between LO-GND
—
450
650
ns
trL
Low Side Turn-On Rise Time
CL = 1000pF between LO-GND
—
130
220
ns
tfL
CL = 1000pF between LO-GND
—
50
80
ns
∆tdLH
Low Side Turn-Off Fall Time
Delay Matching, High Side and Low Side Turn-On
|tdLH(HO)–tdLH(LO)|
—
0
30
ns
∆tdHL
Delay Matching, High Side and Low Side Turn-Off
|tdHL(HO)–tdHL(LO)|
—
0
30
ns
CONVEX PULSE
150
250
350
ns
CONCAVE PULSE
250
350
450
ns
CONVEX PULSE
150
250
350
ns
CONCAVE PULSE
250
350
450
ns
|PW(IN)–PW(OUT)|
–40
0
100
ns
Tinon
Tinoff
∆PWIO
Input Filter Time (ON)
Input Filter Time (OFF)
I/O Pulse Width Difference
* Typ. is not specified.
Aug. 2009
3
MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
TIMING REQUIREMENT (Input Signal Frequency : 200kHz Duty < 50%)
IN
50%
50%
tr
tdLH
tdHL
90%
OUT
tf
90%
10%
10%
FUNCTION TABLE
HIN
LIN
VBS UV
VCC UV
HO
LO
H→L
L
H
H
L
L
LO = HO = Low
H→L
H
H
H
L
H
LO = High
L→H
L
H
H
H
L
HO = High
L→H
H
H
H
L
L
LO = HO = Low
X
L
L
H
L
L
HO = Low, VBS UV tripped
X
H
L
H
L
H
LO = High, VBS UV tripped
H→L
X
H
L
L
L
LO = Low, VCC UV tripped
L→H
X
H
L
L
L
HO = LO = Low, VCC UV tripped
Behavioral state
Note1 : “L” state of VBS UV, VCC UV means that UV trip voltage.
2 : In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “L”.
3 : X (HIN) : L→H or H→L.X(LIN) : H or L.
4 : Output signal (HO) is triggered by the edge of input signal.
HIN
HO
Aug. 2009
4
MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
TIMING DIAGRAM
1. Input/Output Timing Diagram
HIGH ACTIVE (When input signal (HIN or LIN) is “H”, then output signal (HO or LO) is “H”.)
In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “L”.
HIN
LIN
HO
LO
2. VCC (VBS) Supply Under Voltage Lockout Timing Diagram
If VCC supply voltage drops below UV trip voltage (VCCuvt) for VCC Supply UV filter time, output signal is shut down. As
soon as VCC supply voltage rises over UV reset voltage, output signal LO becomes “H” it LIN is “H”.
VCCuvh
VCC
VCCuvr
VCCuvt
tVCCuv
LO
LIN
If VCC supply voltage drops below UV trip voltage (VCCuvt) for VCC supply UV filter time, output signal is shut down. As
soon as VCC supply voltage rises over UV reset voltage, output signal HO becomes “H” it HIN is “H”.
VBS(H)
LIN(L)
VCCuvh
VCC
VCCuvr
VCCuvt
tVCCuv
HO
HIN
Aug. 2009
5
MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
If VBS supply voltage drops below UV trip voltage (V BSuvt) for VBS supply UV filter time, output signal is shut down. As
soon as VBS supply voltage rises over UV reset voltage, output signal HO becomes “H” at following “H” HIN input signal.
VBSuvh
VBS
VBSuvr
VBSuvt
tVBSuv
HO
HIN
3. Allowable Supply Voltage Transient
It is recommended to supply VCC firstly and supply VBS secondly. In the case of shutting off supply voltage, please shut
off VBS firstly and shut off VCC secondly. When applying VCC and VBS, power supply should be applied slowly. If it rises
rapidly, output signal (HO or LO) may be malfunction.
4. About the deadtime between HIN and LIN.
Due to input filter circuit, the pulse width of output maybe longer than the pulse width of input. In that case, please assure that the deadtime between HIN and LIN is over 300ns, or HO and LO maybe on at the same time (shut-through).
Aug. 2009
6
MITSUBISHI SEMICONDUCTORS <HVIC>
M81720FP
HIGH VOLTAGE HALF BRIDGE DRIVER
Consideration
As for this product, the terminal of low voltage part and high-voltage part is very clear (The Fifth: LO, The Sixth: VS).
Therefore, pin insulation space distance should be taken enough.
PACKAGE OUTLINE
e
8
b2
E
Recommended Mount Pad
1
Symbol
F
4
A
D
G
b
x
M
A1
A2
e
y
L
L1
HE
e1
I2
5
c
z
Z1
Detail G
Detail F
A
A1
A2
b
c
D
E
e
HE
L
L1
z
Z1
x
y
b2
e1
I2
Dimension in Millimeters
Min
Nom
Max
–
–
1.9
0.05
–
–
–
1.5
–
0.35
0.4
0.5
0.13
0.15
0.2
4.8
5.0
5.2
4.2
4.4
4.6
–
1.27
–
5.9
6.2
6.5
0.2
0.4
0.6
–
0.9
–
–
0.595
–
–
–
0.745
–
–
0.25
–
–
0.1
0°
–
10°
–
0.76
–
–
5.72
–
1.27
–
–
Aug. 2009
7