SPC560D30x SPC560D40x 32-bit MCU family built on the Power Architecture® for automotive body electronics applications Preliminary data Features ■ High-performance up to 48 MHz e200z0h CPU – 32-bit Power Architecture® technology CPU – Variable length encoding (VLE) ■ Memory – Up to 256 KB Code Flash with ECC – Up to 64 (4x16) KB Data Flash with ECC – Up to 16 KB SRAM with ECC ■ Interrupts – 16 priority levels – Non-maskable interrupt (NMI) – Up to 38 external interrupts incl. 18 wakeup lines LQFP64 (10 x 10 x 1.4 mm) LQFP100 (14 x 14 x 1.4 mm) ■ Communications interfaces – 1 FlexCAN interface (2.0B active) with 32 message buffers – 3 LINFlex/UART, 1 with DMA capability – 2 DSPI ■ Clock generation – 4 to 16 MHz fast external crystal oscillator – 16 MHz fast internal RC oscillator – 128 kHz slow internal RC oscillator – Software-controlled FMPLL – Clock monitoring unit ■ 16-channel eDMA ■ GPIOs: 45 (LQFP64), 79 (LQFP100) ■ Timer units – 4-channel 32-bit periodic interrupt timers – 4-channel 32-bit system timer module – System watchdog timer – 32 bit real-time clock timer ■ Exhaustive debugging capability – Nexus1 on all packages – Nexus2+ available on emulation device (SPC560B64B2-ENG) ■ On-chip CAN/UART bootstrap loader ■ 16-bit counter time-triggered I/Os – Up to 28 channels with PWM/MC/IC/OC – 5 independent counters – 27 ch. with ADC trigger capability ■ ■ 12-bit analog-to-digital converter (ADC) with up to 33 channels – Up to 61 channels via external multiplexing – Individual conversion registers – Cross triggering unit (CTU) Low power capabilities – Several low power mode configurations – Ultra-low power standby with RTC,SRAM and CAN monitoring – Fast wakeup schemes ■ Single 5 V or 3.3 V supply ■ Operates in ambient temperature range of -40 to 125 °C ■ Dedicated diagnostic module for lighting – Advanced PWM generation – Time-triggered diagnostics – PWM-synchronized ADC measurements December 2011 Table 1. Device summary Part number Package 128 Kbyte code Flash 256 Kbyte code Flash LQFP100 SPC560D30L3 SPC560D40L3 LQFP64 SPC560D30L1 SPC560D40L1 Doc ID 16315 Rev 5 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/82 www.st.com 1 Contents SPC560D30x, SPC560D40x Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 11 4 3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 27 4.3.3 NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 27 4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.7 4.8 2/82 4.3.1 4.6.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.6.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.7.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x 4.9 4.9.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 42 4.9.2 Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . . 45 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.11 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.11.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.11.2 Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 50 4.12.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 50 4.12.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.12.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 51 4.13 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 52 4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 56 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 57 4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.18 6 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 42 4.10 4.12 5 Contents 4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.17.2 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.17.3 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.18.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.18.3 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2.1 LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2.2 LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Doc ID 16315 Rev 5 3/82 List of tables SPC560D30x, SPC560D40x List of tables Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. 4/82 SPC560D30, SPC560D40 device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SPC560D30, SPC560D40 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Voltage supply pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 OSCILLATOR_MARGIN field description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 WATCHDOG_EN field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 34 MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 35 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I/O supply segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power consumption on VDD_BV and VDD_HV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Program and erase specifications (code flash). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Program and erase specifications (data flash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Flash module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Flash power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. . . . . . . . . . . . . . . . 54 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 56 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 57 ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 On-chip peripherals current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. SPC560D30, SPC560D40 series block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 LQFP100 pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 LQFP64 pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Fast external crystal oscillator (4 to 16 MHz) timing diagram . . . . . . . . . . . . . . . . . . . . . . . 54 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 DSPI classic SPI timing – master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DSPI classic SPI timing – master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DSPI classic SPI timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DSPI classic SPI timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DSPI modified transfer format timing – master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 70 DSPI modified transfer format timing – master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 70 DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DSPI modified transfer format timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Timing diagram – JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LQFP100 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LQFP64 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Doc ID 16315 Rev 5 5/82 Introduction SPC560D30x, SPC560D40x 1 Introduction 1.1 Document overview This document describes the device features and highlights the important electrical and physical characteristics. 1.2 Description These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices designed to be central to the development of the next wave of central vehicle body controller, smart junction box, front module, peripheral body, door control and seat control applications. This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology and designed specifically for embedded applications. The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (auxiliary processing unit), providing improved code density. It operates at speeds of up to 48 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with the user’s implementations. The device platform has a single level of memory hierarchy and can support a wide range of on-chip static random access memory (SRAM) and internal flash memory. Table 2. SPC560D30, SPC560D40 device comparison Device Feature SPC560D30L1 SPC560D30L3 CPU Static – up to 48 MHz Code flash memory 128 KB 256 KB Data flash memory 64 KB (4 × 16 KB) SRAM 12 KB 16 KB eDMA 16 ch ADC (12-bit) 16 ch 33 ch CTU 16 ch 33 ch 16 ch Total timer I/O(1) eMIOS – Type X(2) Y(3) (4) – Type G 6/82 SPC560D40L3 e200z0h Execution speed – Type SPC560D40L1 14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit 2 ch 5 ch 2 ch 5 ch — 9 ch — 9 ch 7 ch 7 ch 7 ch 7 ch Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Table 2. Introduction SPC560D30, SPC560D40 device comparison (continued) Device Feature – Type H(5) SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3 4 ch 7 ch 4 ch 7 ch 45 79 LQFP64 LQFP100 SCI (LINFlex) 3 SPI (DSPI) 2 CAN (FlexCAN) 1 GPIO(6) 45 79 Debug Package JTAG LQFP64 LQFP100 1. Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions. 2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC. 3. Type Y = OPWMT + OPWMB + SAIC + SAOC. 4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC. 5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC. 6. I/O count based on multiplexing with peripherals. Doc ID 16315 Rev 5 7/82 Block diagram 2 SPC560D30x, SPC560D40x Block diagram Figure 1 shows a top-level block diagram of the SPC560D30, SPC560D40 device series. Figure 1. SPC560D30, SPC560D40 series block diagram SRAM 16 KB JTAG Code Flash 256 KB Data Flash 64 KB 64-bit 3 x 3 Crossbar Switch JTAG Port Instructions (Master) Nexus 1 e200z0h Data NMI (Master) SIUL Voltage Regulator Interrupt requests from peripheral blocks NMI Flash Controller (Slave) (Slave) (Slave) (Master) INTC Clocks SRAM Controller eDMA CMU FMPLL RTC STM SWT MC_RGM MC_CGM PIT ECSM MC_ME MC_PCU BAM SSCM Peripheral Bridge Interrupt Request SIUL Reset Control 33 ch. ADC 1x eMIOS CTU 3x LINFlex 2x DSPI 1x FlexCAN WKPU External Interrupt Request IMUX Interrupt Request GPIO & Pad Control I/O ... ... ... ... Legend: ADC BAM CMU CTU DSPI ECSM eDMA eMIOS Flash FlexCAN FMPLL IMUX INTC JTAG LINFlex 8/82 Analog-to-Digital Converter Boot Assist Module Clock Monitor Unit Cross Triggering Unit Deserial Serial Peripheral Interface Error Correction Status Module Enhanced Direct Memory Access Enhanced Modular Input Output System Flash memory Controller Area Network (FlexCAN) Frequency-Modulated Phase-Locked Loop Internal Multiplexer Interrupt Controller JTAG controller Serial Communication Interface (LIN support) MC_CGM MC_ME MC_PCU MC_RGM NMI PIT RTC SIUL SRAM SSCM STM SWT WKPU XBAR Doc ID 16315 Rev 5 Clock Generation Module Mode Entry Module Power Control Unit Reset Generation Module Non-Maskable Interrupt Periodic Interrupt Timer Real-Time Clock System Integration Unit Lite Static Random-Access Memory System Status Configuration Module System Timer Module Software Watchdog Timer Wakeup Unit Crossbar switch SPC560D30x, SPC560D40x Block diagram Table 3 summarizes the functions of all blocks present in the SPC560D30, SPC560D40 series of microcontrollers. Please note that the presence and number of blocks varies by device and package. Table 3. SPC560D30, SPC560D40 series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to digital-converter Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Clock monitor unit (CMU) Monitors clock source (internal and external) integrity Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Enhanced direct memory access (eDMA) Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels. Enhanced modular input output system (eMIOS) Provides the functionality to generate or measure events Error correction status module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes Flash memory Provides non-volatile storage for program code, constants and variables FlexCAN (controller area network) Supports the standard CAN communications protocol Frequency-modulated phaselocked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Internal multiplexer (IMUX) SIU subblock Allows flexible mapping of peripheral interface on the different pins of the device Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller (JTAGC) Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Non-maskable interrupt (NMI) Handles external events that must produce an immediate response, such as power down detection Doc ID 16315 Rev 5 9/82 Block diagram Table 3. SPC560D30x, SPC560D40x SPC560D30, SPC560D40 series block summary (continued) Block Function Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Real-time counter (RTC) Provides a free-running counter and interrupt generation capability that can be used for timekeeping applications Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks Software watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events. 10/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Package pinouts and signal descriptions 3 Package pinouts and signal descriptions 3.1 Package pinouts The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please refer to Table 6. Figure 2 shows the SPC560D30, SPC560D40 in the LQFP100 package. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PB[2] PC[8] PC[13] PC[12] PE[7] PE[6] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PE[12] LQFP100 pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PA[11] PA[10] PA[9] PA[8] PA[7] VDD_HV VSS_HV PA[3] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PB[3] PC[9] PC[14] PC[15] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[11] PC[10] PB[0] PB[1] PC[6] PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PB[4] Figure 2. Figure 3 shows the SPC560D30, SPC560D40 in the LQFP64 package. Doc ID 16315 Rev 5 11/82 Package pinouts and signal descriptions LQFP64 pin configuration (top view) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PB[2] PC[8] PC[4] PC[5] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] Figure 3. SPC560D30x, SPC560D40x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LQFP64 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PA[11] PA[10] PA[9] PA[8] PA[7] PA[3] PB[15] PB[14] PB[13] PB[12] PB[11] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PB[4] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PB[3] PC[9] PA[2] PA[1] PA[0] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[10] PB[0] PB[1] PC[6] 3.2 Pad configuration during reset phases All pads have a fixed configuration under reset. During the power-up phase, all pads are forced to tristate. After power-up phase, all pads are forced to tristate with the following exceptions: 3.3 ● PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash. ● PA[8] (ABS[0]) is pull-up. ● RESET pad is driven low. This is pull-up only after PHASE2 reset completion. ● JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate. ● Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available). ● Main oscillator pads (EXTAL, XTAL) are tristate. Voltage supply pins Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization. 12/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Table 4. Package pinouts and signal descriptions Voltage supply pin descriptions Pin number Port pin Function LQFP64 LQFP100 7, 28, 34, 56 15, 37, 52, 70, 84 6, 8, 26, 33, 55 14, 16, 35, 51, 69, 83 VDD_HV Digital supply voltage VSS_HV Digital ground 1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest VSS_LV pin.(1) 11, 23, 57 19, 32, 85 VDD_LV 1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest VDD_LV pin.(1) 10, 24, 58 18, 33, 86 VSS_LV VDD_BV Internal regulator supply voltage 12 20 1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details). 3.4 Pad types In the device the following types of pads are available for system pins and functional port pins: S = Slow(a) M = Medium(a) (b) F = Fast(a) (b) I = Input only with analog feature(a) J = Input/Output (‘S’ pad) with analog feature X = Oscillator 3.5 System pins The system pins are listed in Table 5. a. See the I/O pad electrical characteristics in the device datasheet for details. b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see the PCR[SRC] description in the device reference manual). Doc ID 16315 Rev 5 13/82 Package pinouts and signal descriptions Table 5. System pin descriptions Port pin RESET SPC560D30x, SPC560D40x I/O Function Pin number direction I/O M Input, weak pull-up only after PHASE2 9 17 I/O X Tristate 27 36 I X Tristate 25 34 Bidirectional reset with Schmitt-Trigger characteristics and noise filter. Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass EXTAL mode. Analog input for the clock generator when the oscillator is in bypass mode.(1) XTAL RESET Pad type Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode.(1) configuration LQFP64 LQFP100 1. Refer to the relevant section of the device datasheet. 3.6 Functional ports The functional port pins are listed in Table 6. PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions configuration Table 6. Pin number LQFP64 LQFP100 Port A PA[0] PA[1] PA[2] 14/82 PCR[0] AF0 AF1 AF2 AF3 — GPIO[0] E0UC[0] CLKOUT E0UC[13] WKPU[19](3) SIUL eMIOS_0 CGL eMIOS_0 WKPU I/O I/O O I/O I M Tristate 5 12 PCR[1] AF0 AF1 AF2 AF3 — — GPIO[1] E0UC[1] — — NMI(4) WKPU[2](3) SIUL eMIOS_0 — — WKPU WKPU I/O I/O — — I I S Tristate 4 7 PCR[2] AF0 AF1 AF2 AF3 — GPIO[2] E0UC[2] — MA[2] WKPU[3](3) SIUL eMIOS_0 — ADC WKPU I/O I/O — O I S Tristate 3 5 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x PA[3] PA[4] PA[5] PA[6] PA[7] PA[8] PA[9] PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. Package pinouts and signal descriptions Pin number LQFP64 LQFP100 PCR[3] AF0 AF1 AF2 AF3 — — GPIO[3] E0UC[3] — CS4_0 EIRQ[0] ADC1_S[0] SIUL eMIOS_0 — DSPI_0 SIUL ADC I/O I/O — I/O I I S Tristate 43 68 PCR[4] AF0 AF1 AF2 AF3 — GPIO[4] E0UC[4] — CS0_1 WKPU[9](3) SIUL eMIOS_0 — DSPI_1 WKPU I/O I/O — I/O I S Tristate 20 29 PCR[5] AF0 AF1 AF2 AF3 GPIO[5] E0UC[5] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate 51 79 PCR[6] AF0 AF1 AF2 AF3 — GPIO[6] E0UC[6] — CS1_1 EIRQ[1] SIUL eMIOS_0 — DSPI_1 SIUL I/O I/O — I/O I S Tristate 52 80 PCR[7] AF0 AF1 AF2 AF3 — — GPIO[7] E0UC[7] — — EIRQ[2] ADC1_S[1] SIUL eMIOS_0 — — SIUL ADC I/O I/O — — I I S Tristate 44 71 PCR[8] AF0 AF1 AF2 AF3 — N/A(5) GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0] SIUL eMIOS_0 eMIOS_0 — SIUL BAM I/O I/O — — I I S Input, weak pullup 45 72 PCR[9] AF0 AF1 AF2 AF3 N/A(5) GPIO[9] E0UC[9] — CS2_1 FAB SIUL eMIOS_0 — DSPI_1 BAM I/O I/O — I/O I S Pull-down 46 73 Doc ID 16315 Rev 5 15/82 Package pinouts and signal descriptions PA[10] PA[11] PA[12] PA[13] PA[14] PA[15] PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. SPC560D30x, SPC560D40x Pin number LQFP64 LQFP100 PCR[10] AF0 AF1 AF2 AF3 — GPIO[10] E0UC[10] — LIN2TX ADC1_S[2] SIUL eMIOS_0 — LINFlex_2 ADC I/O I/O — O I S Tristate 47 74 PCR[11] AF0 AF1 AF2 AF3 — — — GPIO[11] E0UC[11] — — EIRQ[16] ADC1_S[3] LIN2RX SIUL eMIOS_0 — — SIUL ADC LINFlex_2 I/O I/O — — I I I S Tristate 48 75 PCR[12] AF0 AF1 AF2 AF3 — — GPIO[12] — — — EIRQ[17] SIN_0 SIUL — — — SIUL DSPI_0 I/O — — — I I S Tristate 22 31 PCR[13] AF0 AF1 AF2 AF3 GPIO[13] SOUT_0 — CS3_1 SIUL DSPI_0 — DSPI_1 I/O O — I/O M Tristate 21 30 PCR[14] AF0 AF1 AF2 AF3 — GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4] SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL I/O I/O I/O I/O I M Tristate 19 28 PCR[15] AF0 AF1 AF2 AF3 — GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10](3) SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU I/O I/O I/O I/O I M Tristate 18 27 I/O O — O M Tristate 14 23 Port B PB[0] 16/82 PCR[16] AF0 AF1 AF2 AF3 GPIO[16] CAN0TX — LIN2TX SIUL FlexCAN_0 — LINFlex_2 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x PB[1] PB[2] PB[3] PB[4] PB[5] PB[6] PB[7] PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. Package pinouts and signal descriptions Pin number LQFP64 LQFP100 PCR[17] AF0 AF1 AF2 AF3 — — GPIO[17] — — LIN0RX WKPU[4](3) CAN0RX SIUL — — LINFlex_0 WKPU FlexCAN_0 I/O — — I I I S Tristate 15 24 PCR[18] AF0 AF1 AF2 AF3 GPIO[18] LIN0TX — — SIUL LINFlex_0 — — I/O O — — M Tristate 64 100 PCR[19] AF0 AF1 AF2 AF3 — — GPIO[19] — — — WKPU[11](3) LIN0RX SIUL — — — WKPU LINFlex_0 I/O — — — I I S Tristate 1 1 PCR[20] AF0 AF1 AF2 AF3 — GPIO[20] — — — ADC1_P[0] SIUL — — — ADC I — — — I I Tristate 32 50 PCR[21] AF0 AF1 AF2 AF3 — GPIO[21] — — — ADC1_P[1] SIUL — — — ADC I — — — I I Tristate 35 53 PCR[22] AF0 AF1 AF2 AF3 — GPIO[22] — — — ADC1_P[2] SIUL — — — ADC I — — — I I Tristate 36 54 PCR[23] AF0 AF1 AF2 AF3 — GPIO[23] — — — ADC1_P[3] SIUL — — — ADC I — — — I I Tristate 37 55 Doc ID 16315 Rev 5 17/82 Package pinouts and signal descriptions PB[8] PB[9] PB[10] PB[11] PB[12] PB[13] PB[14] 18/82 PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. SPC560D30x, SPC560D40x Pin number LQFP64 LQFP100 PCR[24] AF0 AF1 AF2 AF3 — — GPIO[24] — — — ADC1_S[4] WKPU[25](3) SIUL — — — ADC WKPU I — — — I I I Tristate 30 39 PCR[25] AF0 AF1 AF2 AF3 — — GPIO[25] — — — ADC1_S[5] WKPU[26](3) SIUL — — — ADC WKPU I — — — I I I Tristate 29 38 PCR[26] AF0 AF1 AF2 AF3 — — GPIO[26] — — — ADC1_S[6] WKPU[8](3) SIUL — — — ADC WKPU I/O — — — I I J Tristate 31 40 PCR[27] AF0 AF1 AF2 AF3 — GPIO[27] E0UC[3] — CS0_0 ADC1_S[12] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — I/O I J Tristate 38 59 PCR[28] AF0 AF1 AF2 AF3 — GPIO[28] E0UC[4] — CS1_0 ADC1_X[0] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 39 61 PCR[29] AF0 AF1 AF2 AF3 — GPIO[29] E0UC[5] — CS2_0 ADC1_X[1] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 40 63 PCR[30] AF0 AF1 AF2 AF3 — GPIO[30] E0UC[6] — CS3_0 ADC1_X[2] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 41 65 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x PB[15] PCR PCR[31] Alternate function(1) AF0 AF1 AF2 AF3 — I/O Function GPIO[31] E0UC[7] — CS4_0 ADC1_X[3] Peripheral SIUL eMIOS_0 — DSPI_0 ADC direction Pad (2) type I/O I/O — O I J RESET Port pin Functional port pin descriptions (continued) configuration Table 6. Package pinouts and signal descriptions Pin number LQFP64 LQFP100 Tristate 42 67 Port C PC[0](6) PCR[32] AF0 AF1 AF2 AF3 GPIO[32] — TDI — SIUL — JTAGC — I/O — I — M Input, weak pullup 59 87 PC[1](6) PCR[33] AF0 AF1 AF2 AF3 GPIO[33] — TDO — SIUL — JTAGC — I/O — O — F Tristate 54 82 PCR[34] AF0 AF1 AF2 AF3 — GPIO[34] SCK_1 — — EIRQ[5] SIUL DSPI_1 — — SIUL I/O I/O — — I M Tristate 50 78 PCR[35] AF0 AF1 AF2 AF3 — GPIO[35] CS0_1 MA[0] — EIRQ[6] SIUL DSPI_1 ADC — SIUL I/O I/O O — I S Tristate 49 77 PCR[36] AF0 AF1 AF2 AF3 — — GPIO[36] — — — SIN_1 EIRQ[18] SIUL — — — DSPI_1 SIUL I/O — — — I I M Tristate 62 92 PCR[37] AF0 AF1 AF2 AF3 — GPIO[37] SOUT_1 — — EIRQ[7] SIUL DSPI_1 — — SIUL I/O O — — I M Tristate 61 91 PCR[38] AF0 AF1 AF2 AF3 GPIO[38] LIN1TX — — SIUL LINFlex_1 — — I/O O — — S Tristate 16 25 PC[2] PC[3] PC[4] PC[5] PC[6] Doc ID 16315 Rev 5 19/82 Package pinouts and signal descriptions PC[7] PC[8] PC[9] PC[10] PC[11] PC[12] PC[13] PC[14] 20/82 PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. SPC560D30x, SPC560D40x Pin number LQFP64 LQFP100 PCR[39] AF0 AF1 AF2 AF3 — — GPIO[39] — — — LIN1RX WKPU[12](3) SIUL — — — LINFlex_1 WKPU I/O — — — I I S Tristate 17 26 PCR[40] AF0 AF1 AF2 AF3 GPIO[40] LIN2TX E0UC[3] — SIUL LINFlex_2 eMIOS_0 — I/O O I/O — S Tristate 63 99 PCR[41] AF0 AF1 AF2 AF3 — — GPIO[41] — E0UC[7] — LIN2RX WKPU[13](3) SIUL — eMIOS_0 — LINFlex_2 WKPU I/O — I/O — I I S Tristate 2 2 PCR[42] AF0 AF1 AF2 AF3 GPIO[42] — — MA[1] SIUL — — ADC I/O — — O M Tristate 13 22 PCR[43] AF0 AF1 AF2 AF3 — GPIO[43] — — MA[2] WKPU[5](3) SIUL — — ADC WKPU I/O — — O I S Tristate — 21 PCR[44] AF0 AF1 AF2 AF3 — GPIO[44] E0UC[12] — — EIRQ[19] SIUL eMIOS_0 — — SIUL I/O I/O — — I M Tristate — 97 PCR[45] AF0 AF1 AF2 AF3 GPIO[45] E0UC[13] — — SIUL eMIOS_0 — — I/O I/O — — S Tristate — 98 PCR[46] AF0 AF1 AF2 AF3 — GPIO[46] E0UC[14] — — EIRQ[8] SIUL eMIOS_0 — — SIUL I/O I/O — — I S Tristate — 3 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x PC[15] PCR PCR[47] Alternate function(1) AF0 AF1 AF2 AF3 — I/O Function GPIO[47] E0UC[15] — — EIRQ[20] Peripheral SIUL eMIOS_0 — — SIUL direction Pad (2) type I/O I/O — — I M RESET Port pin Functional port pin descriptions (continued) configuration Table 6. Package pinouts and signal descriptions Pin number LQFP64 LQFP100 Tristate — 4 Port D PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PCR[48] AF0 AF1 AF2 AF3 — — GPIO[48] — — — WKPU[27](3) ADC1_P[4] SIUL — — — WKPU ADC I — — — I I I Tristate — 41 PCR[49] AF0 AF1 AF2 AF3 — — GPIO[49] — — — WKPU[28](3) ADC1_P[5] SIUL — — — WKPU ADC I — — — I I I Tristate — 42 PCR[50] AF0 AF1 AF2 AF3 — GPIO[50] — — — ADC1_P[6] SIUL — — — ADC I — — — I I Tristate — 43 PCR[51] AF0 AF1 AF2 AF3 — GPIO[51] — — — ADC1_P[7] SIUL — — — ADC I — — — I I Tristate — 44 PCR[52] AF0 AF1 AF2 AF3 — GPIO[52] — — — ADC1_P[8] SIUL — — — ADC I — — — I I Tristate — 45 PCR[53] AF0 AF1 AF2 AF3 — GPIO[53] — — — ADC1_P[9] SIUL — — — ADC I — — — I I Tristate — 46 Doc ID 16315 Rev 5 21/82 Package pinouts and signal descriptions PD[6] PD[7] PD[8] PD[9] PD[10] PD[11] PD[12] PD[13] 22/82 PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. SPC560D30x, SPC560D40x Pin number LQFP64 LQFP100 PCR[54] AF0 AF1 AF2 AF3 — GPIO[54] — — — ADC1_P[10] SIUL — — — ADC I — — — I I Tristate — 47 PCR[55] AF0 AF1 AF2 AF3 — GPIO[55] — — — ADC1_P[11] SIUL — — — ADC I — — — I I Tristate — 48 PCR[56] AF0 AF1 AF2 AF3 — GPIO[56] — — — ADC1_P[12] SIUL — — — ADC I — — — I I Tristate — 49 PCR[57] AF0 AF1 AF2 AF3 — GPIO[57] — — — ADC1_P[13] SIUL — — — ADC I — — — I I Tristate — 56 PCR[58] AF0 AF1 AF2 AF3 — GPIO[58] — — — ADC1_P[14] SIUL — — — ADC I — — — I I Tristate — 57 PCR[59] AF0 AF1 AF2 AF3 — GPIO[59] — — — ADC1_P[15] SIUL — — — ADC I — — — I I Tristate — 58 PCR[60] AF0 AF1 AF2 AF3 — GPIO[60] CS5_0 E0UC[24] — ADC1_S[8] SIUL DSPI_0 eMIOS_0 — ADC I/O O I/O — I J Tristate — 60 PCR[61] AF0 AF1 AF2 AF3 — GPIO[61] CS0_1 E0UC[25] — ADC1_S[9] SIUL DSPI_1 eMIOS_0 — ADC I/O I/O I/O — I J Tristate — 62 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x PD[14] PD[15] PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. Package pinouts and signal descriptions Pin number LQFP64 LQFP100 PCR[62] AF0 AF1 AF2 AF3 — GPIO[62] CS1_1 E0UC[26] — ADC1_S[10] SIUL DSPI_1 eMIOS_0 — ADC I/O O I/O — I J Tristate — 64 PCR[63] AF0 AF1 AF2 AF3 — GPIO[63] CS2_1 E0UC[27] — ADC1_S[11] SIUL DSPI_1 eMIOS_0 — ADC I/O O I/O — I J Tristate — 66 Port E PE[0] PE[1] PE[2] PE[3] PE[4] PE[5] PCR[64] AF0 AF1 AF2 AF3 — GPIO[64] E0UC[16] — — WKPU[6](3) SIUL eMIOS_0 — — WKPU I/O I/O — — I S Tristate — 6 PCR[65] AF0 AF1 AF2 AF3 GPIO[65] E0UC[17] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate — 8 PCR[66] AF0 AF1 AF2 AF3 — — GPIO[66] E0UC[18] — — EIRQ[21] SIN_1 SIUL eMIOS_0 — — SIUL DSPI_1 I/O I/O — — I I M Tristate — 89 PCR[67] AF0 AF1 AF2 AF3 GPIO[67] E0UC[19] SOUT_1 — SIUL eMIOS_0 DSPI_1 — I/O I/O O — M Tristate — 90 PCR[68] AF0 AF1 AF2 AF3 — GPIO[68] E0UC[20] SCK_1 — EIRQ[9] SIUL eMIOS_0 DSPI_1 — SIUL I/O I/O I/O — I M Tristate — 93 PCR[69] AF0 AF1 AF2 AF3 GPIO[69] E0UC[21] CS0_1 MA[2] SIUL eMIOS_0 DSPI_1 ADC I/O I/O I/O O M Tristate — 94 Doc ID 16315 Rev 5 23/82 Package pinouts and signal descriptions PE[6] PE[7] PE[8] PE[9] PE[10] PE[11] PE[12] PCR Alternate function(1) I/O Function Peripheral direction (2) type Pin number LQFP64 LQFP100 PCR[70] AF0 AF1 AF2 AF3 — GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22] SIUL eMIOS_0 DSPI_0 ADC SIUL I/O I/O O O I M Tristate — 95 PCR[71] AF0 AF1 AF2 AF3 — GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23] SIUL eMIOS_0 DSPI_0 ADC SIUL I/O I/O O O I M Tristate — 96 PCR[72] AF0 AF1 AF2 AF3 GPIO[72] — E0UC[22] — SIUL — eMIOS_0 — I/O — I/O — M Tristate — 9 PCR[73] AF0 AF1 AF2 AF3 — GPIO[73] — E0UC[23] — WKPU[7](3) SIUL — eMIOS_0 — WKPU I/O — I/O — I S Tristate — 10 PCR[74] AF0 AF1 AF2 AF3 — GPIO[74] — CS3_1 — EIRQ[10] SIUL — DSPI_1 — SIUL I/O — O — I S Tristate — 11 PCR[75] AF0 AF1 AF2 AF3 — GPIO[75] E0UC[24] CS4_1 — WKPU[14](3) SIUL eMIOS_0 DSPI_1 — WKPU I/O I/O O — I S Tristate — 13 PCR[76] AF0 AF1 AF2 AF3 — — GPIO[76] — — — ADC1_S[7] EIRQ[11] SIUL — — — ADC SIUL I/O — — — I I S Tristate — 76 Port H 24/82 Pad RESET Port pin Functional port pin descriptions (continued) configuration Table 6. SPC560D30x, SPC560D40x Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x PCR Alternate function(1) I/O Function Peripheral direction Pad (2) type RESET Port pin Functional port pin descriptions (continued) configuration Table 6. Package pinouts and signal descriptions Pin number LQFP64 LQFP100 PH[9](6) PCR[121] AF0 AF1 AF2 AF3 GPIO[121] — TCK — SIUL — JTAGC — I/O — I — S Input, weak pullup 60 88 PH[10](6) PCR[122] AF0 AF1 AF2 AF3 GPIO[122] — TMS — SIUL — JTAGC — I/O — I — S Input, weak pullup 53 81 1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. 3. All WKPU pins also support external interrupt capability. See “wakeup unit” chapter of the device reference manual for further details. 4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored. 5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the device reference manual for details. 6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001. Doc ID 16315 Rev 5 25/82 Electrical characteristics SPC560D30x, SPC560D40x 4 Electrical characteristics 4.1 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. Caution: All of the following parameter values can vary depending on the application and must be confirmed during silicon validation, silicon characterization or silicon reliability trial. 4.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where appropriate. Table 7. Parameter classifications Classification tag Note: 26/82 Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x 4.3 Electrical characteristics NVUSRO register Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset). For a detailed description of the NVUSRO register, please refer to the device reference manual. 4.3.1 NVUSRO[PAD3V5V] field description The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 8. PAD3V5V field description Value(1) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. 4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration. Table 9. OSCILLATOR_MARGIN field description Value(1) Description 0 Low consumption configuration (4 MHz/8 MHz) 1 High margin configuration (4 MHz/16 MHz) 1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. 4.3.3 NVUSRO[WATCHDOG_EN] field description The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 9 shows how NVUSRO[WATCHDOG_EN] controls the device configuration. Table 10. WATCHDOG_EN field description Value(1) Description 0 Disable after reset) 1 Enable after reset 1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. Doc ID 16315 Rev 5 27/82 Electrical characteristics SPC560D30x, SPC560D40x 4.4 Absolute maximum ratings Table 11. Absolute maximum ratings Value Symbol Parameter VSS SR Digital ground on VSS_HV pins VDD SR VSS_LV Conditions Voltage on VDD_HV pins with respect to ground (VSS) Voltage on VSS_LV (low voltage digital SR supply) pins with respect to ground (VSS) VDD_BV SR Max — 0 0 V — −0.3 6.0 V — — Voltage on VDD_BV (regulator supply) pin with respect to ground (VSS) Relative to VDD Voltage on VSS_HV_ADC (ADC VSS_ADC SR reference) pin with respect to ground (VSS) Voltage on VDD_HV_ADC (ADC VDD_ADC SR reference) pin with respect to ground (VSS) Unit Min — — VSS − 0.1 VSS + 0.1 −0.3 6.0 VDD − 0.3 VDD + 0.3 VSS − 0.1 VSS + 0.1 −0.3 −0.3 V V 6.0 VDD − 0.3 VDD + 0.3 Relative to VDD V V VIN SR — Voltage on any GPIO pin with respect to ground (VSS) Relative to VDD IINJPAD SR Injected input current on any pin during overload condition — −10 10 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — −50 50 mA Sum of all the static I/O current within a VDD = 5.0 V ± 10%, PAD3V5V = 0 supply segment(1) VDD = 3.3 V ± 10%, PAD3V5V = 1 — 70 IAVGSEG SR — 64 ICORELV SR Low voltage static current sink through VDD_BV — — 150 mA — −55 150 °C TSTORAGE SR Storage temperature 6.0 VDD − 0.3 VDD + 0.3 V mA 1. Supply segments are described in Section 4.7.5: I/O pad current specification. Note: 28/82 Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics 4.5 Recommended operating conditions Table 12. Recommended operating conditions (3.3 V) Value Symbol C Parameter Conditions Unit Min Max — 0 0 V Voltage on VDD_HV pins with respect to ground (VSS) — 3.0 3.6 V VSS_LV(2) SR — Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VDD_BV(3) SR — Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) VSS_ADC SR — Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (VSS) VSS VDD(1) VDD_ADC SR — Digital ground on VSS_HV pins SR — (4) SR — VIN SR — IINJPAD SR — IINJSUM SR — TVDD Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) — VSS − 0.1 VSS + 0.1 3.0 3.6 Relative to VDD VDD − 0.1 VDD + 0.1 — VSS − 0.1 VSS + 0.1 — Relative to VDD 3.0(5) V V V 3.6 V VDD − 0.1 VDD + 0.1 — VSS − 0.1 — Relative to VDD — VDD + 0.1 Injected input current on any pin during overload condition — −5 5 mA Absolute sum of all injected input currents during overload condition — −50 50 mA — — 0.25 V/µs −40 125 −40 150 Voltage on any GPIO pin with respect to ground (VSS) SR — VDD slope to ensure correct power up(6) TA SR — Ambient temperature under bias TJ SR — Junction temperature under bias fCPU ≤ 48 MHz — V °C 1. 100 nF capacitance needs to be provided between each VDD/VSS pair. 2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 3. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). 4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. 5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is reset. 6. Guaranteed by device validation. Doc ID 16315 Rev 5 29/82 Electrical characteristics Table 13. SPC560D30x, SPC560D40x Recommended operating conditions (5.0 V) Value Symbol C Parameter Conditions S — Digital ground on VSS_HV pins R VSS VDD(1) S Voltage on VDD_HV pins with respect to — R ground (VSS) VSS_LV(3) S Voltage on VSS_LV (low voltage digital — R supply) pins with respect to ground (VSS) VDD_BV (4) S Voltage on VDD_BV pin (regulator supply) — R with respect to ground (VSS) Max 0 0 4.5 5.5 3.0 5.5 — VSS − 0.1 VSS + 0.1 — 4.5 5.5 3.0 5.5 VDD − 0.1 VDD + 0.1 — VSS − 0.1 VSS + 0.1 — 4.5 5.5 3.0 5.5 VDD − 0.1 VDD + 0.1 VSS − 0.1 — — VDD + 0.1 — — Voltage drop Voltage VDD_ADC (5) S Voltage on VSS_HV_ADC (ADC reference) — R pin with respect to ground (VSS S Voltage on VDD_HV_ADC pin (ADC — R reference) with respect to ground (VSS) Voltage drop(2) drop(2) Relative to VDD — V V (2) Relative to VDD VSS_ADC Unit Min VIN S Voltage on any GPIO pin with respect to — R ground (VSS) IINJPAD S Injected input current on any pin during — R overload condition — −5 5 IINJSUM S Absolute sum of all injected input currents — R during overload condition — −50 50 S — VDD slope to ensure correct power up(6) R — — 0.25 −40 125 −40 150 Relative to VDD V V V V V mA TVDD TA S — Ambient temperature under bias R TJ S — Junction temperature under bias R fCPU ≤ 48 MHz V/µs °C — 1. 100 nF capacitance needs to be provided between each VDD/VSS pair. 2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits. 3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 4. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). 5. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. 6. Guaranteed by device validation Note: 30/82 SRAM data retention is guaranteed with VDD_LV not below 1.08 V. Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics 4.6 Thermal characteristics 4.6.1 Package thermal characteristics Table 14. LQFP thermal characteristics(1) Symbol C Value Conditions(2) Parameter (3) LQFP64 72.1 LQFP100 65.2 LQFP64 57.3 LQFP100 51.8 LQFP64 44.1 LQFP100 41.3 LQFP64 26.5 LQFP100 23.9 LQFP64 26.2 LQFP100 23.7 LQFP64 41 LQFP100 41.6 LQFP64 43 LQFP100 43.4 LQFP64 11.5 LQFP100 10.4 LQFP64 11.1 LQFP100 10.2 Unit Single-layer board —1s RθJA C C D Thermal resistance, junction-to-ambient natural convection(4) °C/W Four-layer board — 2s2p RθJB C C D Thermal resistance, junction-to-board(5) Four-layer board — 2s2p °C/W Single-layer board — 1s RθJC C C D Thermal resistance, junction-to-case(6) °C/W Four-layer board — 2s2p ΨJB C C Junction-to-board thermal D characterization parameter, natural convection Single-layer board — 1s °C/W Four-layer board — 2s2p Single-layer board — 1s ΨJC C C D Junction-to-case thermal characterization parameter, natural convection °C/W Four-layer board — 2s2p 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C 3. All values need to be confirmed during device validation. 4. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA. 5. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB. 6. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as RthJC. Doc ID 16315 Rev 5 31/82 Electrical characteristics 4.6.2 SPC560D30x, SPC560D40x Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1: Equation 1: TJ = TA + (PD x RθJA) Where: TA is the ambient temperature in °C. RθJA is the package junction-to-ambient thermal resistance, in °C/W. PD is the sum of PINT and PI/O (PD = PINT + PI/O). PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; user determined. Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device is configured to continuously drive external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: Equation 2: PD = K / (TJ + 273 °C) Therefore, solving equations Equation 1 and Equation 2: Equation 3: K = PD x (TA + 273 °C) + RθJA x PD2 Where: K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations Equation 1 and Equation 2 iteratively for any value of TA. 4.7 I/O pad electrical characteristics 4.7.1 I/O pad types The device provides four main I/O pad types depending on the associated alternate functions: ● Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission. ● Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. ● Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage. Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance. 4.7.2 I/O input DC characteristics Table 15 provides input DC electrical characteristics as described in Figure 4. 32/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Figure 4. Electrical characteristics Input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Table 15. Symbol I/O input DC electrical characteristics C Value(2) Conditions(1) Parameter Unit Min Typ Max VIH SR P Input high level CMOS (Schmitt Trigger) — 0.65VDD — VDD+0.4 VIL SR P Input low level CMOS (Schmitt Trigger) — −0.4 — 0.35VDD Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — TA = −40 °C No TA = 25 °C injection on TA = 85 °C adjacent TA = 105 °C pin TA = 125 °C — 2 200 — 2 200 — 5 300 — 12 500 — 70 1000 — — — 40 ns — 1000 — — ns VHYS CC C D D ILKG CC D Digital input leakage D P WFI(3) SR P Digital input filtered pulse WNFI (3) SR P Digital input not filtered pulse V nA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage. Doc ID 16315 Rev 5 33/82 Electrical characteristics 4.7.3 SPC560D30x, SPC560D40x I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads: Table 16. ● Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported. ● Table 17 provides output driver characteristics for I/O pads when in SLOW configuration. ● Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration. I/O pull-up/pull-down DC electrical characteristics Symbol C Parameter Value Conditions(1) Unit Min Typ Max PAD3V5V = 0 10 — 150 10 — 250 VIN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 PAD3V5V = 0 10 — 150 PAD3V5V = 1 10 — 250 VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 P Weak pull-up current |IWPU| CC C absolute value P VIN = VIL, VDD = 5.0 V ± 10% P Weak pull-down current |IWPD| CC C absolute value P VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 1(2) (2) µA µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. Table 17. SLOW configuration output buffer electrical characteristics Symbol C P VOH CC C Parameter Conditions(1) IOH = −2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) Output high level I = −2 mA, Push Pull OH VDD = 5.0 V ± 10%, PAD3V5V = 1(2) SLOW configuration Value Min Typ Max 0.8VDD — — 0.8VDD — — — — C IOH = −1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD − 0.8 P IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD — — 0.1VDD — — VOL CC C C Output low level I = 2 mA, Push Pull OL SLOW configuration VDD = 5.0 V ± 10%, PAD3V5V = 1(2) IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) Unit 0.5 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. 34/82 Doc ID 16315 Rev 5 V V SPC560D30x, SPC560D40x Table 18. Symbol C Electrical characteristics MEDIUM configuration output buffer electrical characteristics Parameter Value Conditions(1) Unit Min Typ Max C IOH = −3.8 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — P IOH = −2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 0.8VDD — — 0.8VDD — — VDD − 0.8 — — VOH CC C Output high level I = −1 mA, Push Pull OH MEDIUM configuration VDD = 5.0 V ± 10%, PAD3V5V = 1(2) C IOH = −1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) C IOH = −100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD C IOL = 3.8 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.2VDD P IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD — — 0.1VDD VOL CC C Output low level I = 1 mA, Push Pull OL MEDIUM configuration VDD = 5.0 V ± 10%, PAD3V5V = 1(2) — V — C IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — C IOL = 100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.1VDD V 0.5 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. Doc ID 16315 Rev 5 35/82 Electrical characteristics SPC560D30x, SPC560D40x 4.7.4 Output pin transition times Table 19. Output pin transition times Symbol C Value(2) (1) Parameter Conditions Unit Min Typ Max ttr CC D CL = 25 pF — — 50 T CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 100 D Output transition time output pin(3) D SLOW configuration CL = 100 pF — — 125 CL = 25 pF — — 50 T CL = 50 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 100 D CL = 100 pF — — 125 D — VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 50 pF — SIUL.PCRx.SRC = 1 CL = 100 pF — — 10 — 20 — 40 CL = 25 pF — 12 — 25 — 40 ns CL = 25 pF T D Output transition time output ttr CC pin(3) D MEDIUM configuration — VDD = 3.3 V ± 10%, PAD3V5V = 1 — SIUL.PCRx.SRC = 1 CL = 100 pF — CL = 50 pF T D ns 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. CL includes device and package capacitances (CPKG < 5 pF). 4.7.5 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 20. Table 21 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. Table 20. I/O supply segment Supply segment Package 36/82 1 2 3 4 LQFP100 pin 16 – pin 35 pin 37 – pin 69 pin 70 – pin 83 pin 84 – pin 15 LQFP64 pin 8 – pin 26 pin 28 – pin 55 pin 56 – pin 7 — Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Table 21. Symbol ISWTSLW(3) ISWTMED (3) Electrical characteristics I/O consumption C Value(2) (1) Parameter Conditions Unit Min Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 — — 6.6 — — 13.4 CL = 100 pF, 13 MHz — — 18.3 CL = 25 pF, 13 MHz — — 5 — — 8.5 CL = 100 pF, 13 MHz — — 11 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 Dynamic I/O current CC D for SLOW CL = 25 pF configuration Dynamic I/O current CC D for MEDIUM CL = 25 pF configuration mA mA CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz IRMSSLW VDD = 5.0 V ± 10%, PAD3V5V = 0 Root mean square CL = 100 pF, 2 MHz CC D I/O current for SLOW CL = 25 pF, 2 MHz configuration CL = 25 pF, 4 MHz mA VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz CL = 25 pF, 13 MHz IRMSMED Root mean square I/O current for CC D MEDIUM configuration CL = 25 pF, 40 MHz CL = 25 pF, 40 MHz IAVGSEG Sum of all the static SR D I/O current within a supply segment VDD = 5.0 V ± 10%, PAD3V5V = 0 mA VDD = 3.3 V ± 10%, PAD3V5V = 1 mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. Table 22 provides the weight of concurrent switching I/Os. In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%. Doc ID 16315 Rev 5 37/82 Electrical characteristics Table 22. SPC560D30x, SPC560D40x I/O weight(1) LQFP100/LQFP64 Pad 38/82 Weight 5 V Weight 3.3 V SRC(2) = 0 SRC = 1 SRC = 0 SRC = 1 PB[3] 9% 9% 10% 10% PC[9] 8% 8% 10% 10% PC[14] 8% 8% 10% 10% PC[15] 8% 11% 9% 10% PA[2] 8% 8% 9% 9% PE[0] 7% 7% 9% 9% PA[1] 7% 7% 8% 8% PE[1] 7% 10% 8% 8% PE[8] 6% 9% 8% 8% PE[9] 6% 6% 7% 7% PE[10] 6% 6% 7% 7% PA[0] 5% 7% 6% 7% PE[11] 5% 5% 6% 6% PC[11] 7% 7% 9% 9% PC[10] 8% 11% 9% 10% PB[0] 8% 11% 9% 10% PB[1] 8% 8% 10% 10% PC[6] 8% 8% 10% 10% PC[7] 8% 8% 10% 10% PA[15] 8% 11% 9% 10% PA[14] 7% 11% 9% 9% PA[4] 7% 7% 8% 8% PA[13] 7% 10% 8% 9% PA[12] 7% 7% 8% 8% PB[9] 1% 1% 1% 1% PB[8] 1% 1% 1% 1% PB[10] 5% 5% 6% 6% PD[0] 1% 1% 1% 1% PD[1] 1% 1% 1% 1% PD[2] 1% 1% 1% 1% PD[3] 1% 1% 1% 1% PD[4] 1% 1% 1% 1% Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Table 22. Electrical characteristics I/O weight(1) (continued) LQFP100/LQFP64 Pad Weight 5 V Weight 3.3 V SRC(2) = 0 SRC = 1 SRC = 0 SRC = 1 PD[5] 1% 1% 1% 1% PD[6] 1% 1% 1% 1% PD[7] 1% 1% 1% 1% PD[8] 1% 1% 1% 1% PB[4] 1% 1% 1% 1% PB[5] 1% 1% 1% 1% PB[6] 1% 1% 1% 1% PB[7] 1% 1% 1% 1% PD[9] 1% 1% 1% 1% PD[10] 1% 1% 1% 1% PD[11] 1% 1% 1% 1% PB[11] 9% 9% 11% 11% PD[12] 8% 8% 10% 10% PB[12] 8% 8% 10% 10% PD[13] 8% 8% 9% 9% PB[13] 8% 8% 9% 9% PD[14] 7% 7% 9% 9% PB[14] 7% 7% 8% 8% PD[15] 7% 7% 8% 8% PB[15] 6% 6% 7% 7% PA[3] 6% 6% 7% 7% PA[7] 4% 4% 5% 5% PA[8] 4% 4% 5% 5% PA[9] 4% 4% 5% 5% PA[10] 5% 5% 6% 6% PA[11] 5% 5% 6% 6% PE[12] 5% 5% 6% 6% PC[3] 5% 5% 6% 6% PC[2] 5% 7% 6% 6% PA[5] 5% 6% 5% 6% PA[6] 4% 4% 5% 5% PC[1] 5% 17% 4% 12% Doc ID 16315 Rev 5 39/82 Electrical characteristics Table 22. SPC560D30x, SPC560D40x I/O weight(1) (continued) LQFP100/LQFP64 Pad Weight 5 V Weight 3.3 V SRC(2) = 0 SRC = 1 SRC = 0 SRC = 1 PC[0] 6% 9% 7% 8% PE[2] 7% 10% 8% 9% PE[3] 7% 10% 9% 9% PC[5] 8% 11% 9% 10% PC[4] 8% 11% 9% 10% PE[4] 8% 12% 10% 10% PE[5] 8% 12% 10% 11% PE[6] 9% 12% 10% 11% PE[7] 9% 12% 10% 11% PC[12] 9% 13% 11% 11% PC[13] 9% 9% 11% 11% PC[8] 9% 9% 11% 11% PB[2] 9% 13% 11% 12% 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. SRC: “Slew Rate Control” bit in SIU_PCR. 4.8 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. Figure 5. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET 40/82 device start-up phase Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Figure 6. Electrical characteristics Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Table 23. Symbol Reset electrical characteristics C Parameter Value(2) Conditions(1) Unit Min Typ Max VIH SR P Input High Level CMOS (Schmitt Trigger) — 0.65VDD — VDD + 0.4 V VIL SR P Input low Level CMOS (Schmitt Trigger) — −0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 VOL CC P Output low level Doc ID 16315 Rev 5 V 41/82 Electrical characteristics Table 23. Symbol ttr SPC560D30x, SPC560D40x Reset electrical characteristics (continued) C Output transition time CC D output pin(4) MEDIUM configuration Value(2) Conditions(1) Parameter Unit Min Typ Max CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 ns WFRST SR P RESET input filtered pulse — — — 40 ns WNFRST SR P RESET input not filtered pulse — 1000 — — ns VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 Weak pull-up current |IWPU| CC P absolute value VDD = 5.0 V ± 10%, PAD3V5V = 1(5) µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the device reference manual). 4. CL includes device and package capacitance (CPKG < 5 pF). 5. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. 4.9 Power management electrical characteristics 4.9.1 Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD. The following supplies are involved: 42/82 ● HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD power pin. ● BV: High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with VDD. ● LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device: Figure 7. – LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding. – LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding. Voltage regulator capacitance connection CREG2 (LV_COR/LV_CFLA) VDD VSS_LV VDD_BV Voltage Regulator I VSS_LVn VDD_BV CREG1 (LV_COR/LV_DFLA) VDD_LVn CDEC1 (Ballast decoupling) VREF VDD_LV VDD_LV VSS_LV VSS_LV DEVICE DEVICE VDD_LV CREG3 (LV_COR/LV_PLL) VSS VDD CDEC2 (supply/IO decoupling) The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH. Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see Section 4.5: Recommended operating conditions). Doc ID 16315 Rev 5 43/82 Electrical characteristics Table 24. SPC560D30x, SPC560D40x Voltage regulator electrical characteristics Symbol C Conditions(1) Parameter CREGn SR — Internal voltage regulator external capacitance RREG SR — Stability capacitor equivalent serial resistance CDEC1 SR — Decoupling capacitance(2) ballast CDEC2 SR — VMREG CC IMREG SR — T P IMREGINT CC D Decoupling capacitance regulator supply Main regulator output voltage Main regulator module current consumption CC P Low-power regulator output voltage ILPREG SR — ILPREGINT CC — Low-power regulator module current consumption Ultra low power regulator output voltage IULPREG Ultra low power regulator current provided to VDD_LV domain Ultra low power regulator module IULPREGINT CC D current consumption IDD_BV CC D VDD_BV/VSS_LV pair: VDD_BV = 4.5 V to 5.5 V Unit Min Typ Max 200 — 500 nF — — 0.2 W 100(3) — 470(4) nF VDD_BV/VSS_LV pair: VDD_BV = 3 V to 3.6 V 400 VDD/VSS pair 10 100 — Before exiting from reset — 1.32 — 1.16 1.28 — — — 150 IMREG = 200 mA — — 2 IMREG = 0 mA — — 1 After trimming 1.16 1.28 — V — — 15 mA ILPREG = 15 mA; TA = 55 °C — — 600 ILPREG = 0 mA; TA = 55 °C — 5 — After trimming 1.16 1.28 — V — — 5 mA IULPREG = 5 mA; TA = 55 °C — — 100 IULPREG = 0 mA; TA = 55 °C — 2 — — — 300(6) After trimming — Low power regulator current provided to VDD_LV domain VULPREG CC P SR — Range: 10 kHz to 20 MHz Main regulator current provided to VDD_LV domain VLPREG D — Value — — In-rush average current on VDD_BV during power-up(5) — — nF V mA mA µA µA mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical value is in the range of 470 nF. 3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V. 4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating range. 5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded). 6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc. 44/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x 4.9.2 Electrical characteristics Low voltage detector electrical characteristics The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the VDD and the VDD_LV voltage while device is supplied: ● POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual) ● LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual) ● LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual) ● LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual) ● LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual) ● LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual) Figure 8. Low voltage detector vs reset VDD VLVDHVxH VLVDHVxL RESET Doc ID 16315 Rev 5 45/82 Electrical characteristics Table 25. SPC560D30x, SPC560D40x Low voltage detector electrical characteristics Symbol C Value Conditions(1) Parameter Unit Min Typ Max VPORUP SR P Supply for functional POR module 1.0 — 5.5 VPORH CC P Power-on reset threshold 1.5 — 2.6 VLVDHV3H CC T LVDHV3 low voltage detector high threshold — — 2.95 VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.7 — 2.9 — — 2.95 2.7 — 2.9 VLVDHV3BH CC P LVDHV3B low voltage detector high threshold TA = 25 °C, after trimming VLVDHV3BL CC P LVDHV3B low voltage detector low threshold V VLVDHV5H CC T LVDHV5 low voltage detector high threshold — — 4.5 VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 — 4.4 VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold 1.08 — 1.16 VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 — 1.16 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 4.10 Power consumption Table 26 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. Table 26. Power consumption on VDD_BV and VDD_HV Symbol IDDMAX(2) IDDRUN(4) C CC D CC IDDSTOP 46/82 Value Conditions(1) RUN mode maximum average current Unit — Min Typ — 90 Max 130(3) mA T fCPU = 8 MHz — 7 — T RUN mode typical (5) T average current fCPU = 16 MHz — 18 — fCPU = 32 MHz — 29 — P fCPU = 48 MHz — 40 100 Slow internal RC oscillator TA = 25 °C (128 kHz) running TA = 125 °C — 8 15 — 14 25 C IDDHALT Parameter CC HALT mode current(6) P mA mA P TA = 25 °C — 180 700(8) D TA = 55 °C — 500 — — 1 6(8) — 2 9(8) — 4.5 12(8) D Slow internal RC oscillator TA = 85 °C (128 kHz) running TA = 105 °C P TA = 125 °C CC D STOP mode current(7) Doc ID 16315 Rev 5 µA mA SPC560D30x, SPC560D40x Table 26. Symbol Electrical characteristics Power consumption on VDD_BV and VDD_HV (continued) C Unit TA = 25 °C P D IDDSTDBY Value Conditions(1) Parameter Min Typ Max — 30 100 — 75 — — 180 700 D TA = 55 °C internal RC oscillator TA = 85 °C (128 kHz) running TA = 105 °C — 315 1000 P TA = 125 °C — 560 1700 (9) Slow CC D STANDBY mode current µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible. 3. Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current on Table 24. 4. RUN current measured with typical application with accesses on both flash memory and SRAM. 5. Only for the “P” classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled. 6. Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs. 7. Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode. 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA. 9. Only for the “P” classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off. 4.11 Flash memory electrical characteristics The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled. 4.11.1 Program/Erase characteristics Table 27 shows the program and erase characteristics. Doc ID 16315 Rev 5 47/82 Electrical characteristics Table 27. SPC560D30x, SPC560D40x Program and erase specifications (code flash) Value Symbol C Parameter Min Typ(1) Initial max(2) Max(3) Unit tdwprogram Double word (64 bits) program time(4) — 22 50 500 µs t16Kpperase 16 KB block preprogram and erase time — 300 500 5000 ms t32Kpperase CC C 32 KB block preprogram and erase time — 400 600 5000 ms 128 KB block preprogram and erase time — 800 1300 7500 ms Erase suspend latency — — 30 30 µs t128Kpperase tesus 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. Table 28. Program and erase specifications (data flash) Value Symbol C Parameter Single word (32 bits) program time(4) tswprogram t16Kpperase tBank_D C C 16 KB block preprogram and erase time C 64 KB block preprogram and erase time Unit Min Typ(1) Initial max(2) Max(3) — 30 70 300 µs — 700 800 1500 ms — 1900 2300 4800 ms 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. Table 29. Flash module life Value Symbol P/E 48/82 C Parameter Conditions 16 KB blocks Number of program/erase cycles per CC C block over the operating temperature 32 KB blocks range (TJ) 128 KB blocks Doc ID 16315 Rev 5 Unit Min Typ Max 100 — — 10 100(1) — (1) — 1 100 kcycles SPC560D30x, SPC560D40x Table 29. Electrical characteristics Flash module life (continued) Value Symbol C Retention CC C Parameter Conditions Minimum data retention at 85 °C average ambient temperature(2) Unit Min Typ Max Blocks with 0–1000 P/E cycles 20 — — Blocks with 1001–10000 P/E cycles 10 — — Blocks with 10001–100000 P/E cycles 5 — — years 1. To be confirmed. 2. Ambient temperature averaged over application duration. It is recommended not to exceed the product operating temperature range. ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability. Table 30. Symbol fCFREAD CC Flash memory read access timing C Conditions Parameter (1) P Maximum working frequency for reading code flash memory at given C number of wait states in worst conditions fDFREAD CC P Maximum working frequency for reading data flash memory at given number of wait states in worst conditions Max Unit 2 wait states 48 0 wait states 20 6 wait states 48 MHz MHz 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 4.11.2 Flash power supply DC characteristics Table 31 shows the power supply DC characteristics on external supply. Note: Power supply for data flash is actually provided by code flash; this means that data flash cannot work if code flash is not powered. Table 31. Flash power supply DC electrical characteristics Symbol C Value(2) Conditions(1) Parameter Unit Min Typ Max ICFREAD IDFREAD ICFMOD CC D Code flash — — 33 Data flash — — 4 Program/Erase on-going Code flash while reading flash registers, Data flash fCPU = 48 MHz — — 33 — — 6 Sum of the current consumption on Flash module read VDDHV and VDDBV on read access fCPU = 48 MHz Sum of the current consumption on CC D VDDHV and VDDBV on matrix IDFMOD modification (program/erase) Doc ID 16315 Rev 5 mA mA 49/82 Electrical characteristics Table 31. Symbol SPC560D30x, SPC560D40x Flash power supply DC electrical characteristics (continued) C Value(2) Conditions(1) Parameter Unit Min Typ Max Sum of the current consumption on CC D VDDHV and VDDBV during flash low-power mode — Sum of the current consumption on CC D VDDHV and VDDBV during IDFPWD flash power-down mode — IFLPW ICFPWD Code flash — — 910 µA Code flash — — 125 Data flash — — µA 25 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 4.11.3 Start-up/Switch-off timings Table 32. Start-up time/Switch-off time Symbol C Value Conditions(1) Parameter Unit Min Typ Max Code flash — — 125 Data flash — — 150 tFLARSTEXIT C C T Delay for flash module to exit reset mode tFLALPEXIT C C T Delay for flash module to exit low-power mode(2) Code flash — — 0.5 C C — 30 T Delay for flash module to exit power-down Code flash mode Data flash — tFLAPDEXIT tFLALPENTRY C C T Delay for flash module to enter low-power Code flash mode — — 0.5 C C Delay for flash module to enter Code flash — — 1.5 tFLAPDENTRY T power-down mode Data flash — — 4(3) 30(3) µs 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Data flash does not support low-power mode. 3. If code flash is already switched-on. 4.12 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 4.12.1 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. 50/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application. ● ● Software recommendations − The software flowchart must include the management of runaway conditions such as: – Corrupted program counter – Unexpected reset – Critical data corruption (control registers...) Prequalification trials − Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see the application note Software Techniques For Improving Microcontroller EMC Performance (AN1015)). 4.12.2 Electromagnetic interference (EMI) The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements. EMI radiated emission measurement(1)(2) Table 33. Value Symbol C Parameter Conditions Unit Min Typ — 0.150 — fCPU SR — Operating frequency — — 48 — MHz VDD_LV SR — LV operating voltages — — 1.28 — V — — 18 dBµV — — 14(3) dBµV — SR — Scan range SEMI CC T Peak level No PLL frequency VDD = 5 V, TA = 25 °C, modulation LQFP100 package Test conforming to IEC 61967-2, ± 2% PLL frequency fOSC = 8 MHz/fCPU = 48 MHz modulation Max 1000 MHz 1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4. 2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative. 3. All values need to be confirmed during device validation. 4.12.3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts * (n + 1) supply pin). This test Doc ID 16315 Rev 5 51/82 Electrical characteristics SPC560D30x, SPC560D40x conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the application note Electrostatic Discharge Sensitivity Measurement (AN1181). Table 34. ESD absolute maximum ratings(1) (2) Symbol Ratings Conditions Class Max value VESD(HBM) CC T Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 CC T Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 VESD(CDM) CC T Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A VESD(MM) C Unit V 500 750 (corners) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin. ● A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 35. Symbol LU 4.13 CC Latch-up results C Parameter Conditions T Static latch-up class TA = 125 °C conforming to JESD 78 Class II level A Fast external crystal oscillator (4 to 16 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations. 52/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Figure 9. Electrical characteristics Crystal oscillator and resonator connection scheme EXTAL C1 Crystal EXTAL XTAL C2 DEVICE VDD I R EXTAL XTAL Resonator DEVICE XTAL DEVICE Notes: 1. XTAL/EXTAL must not be directly used to drive external circuits 2. A series resistor may be required, according to crystal oscillator supplier recommendations. Table 36. Crystal description Crystal equivalent series resistance Shunt capacitance between xtalout and xtalin Crystal motional capacitance Crystal motional inductance (Cm) fF (Lm) mH 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 120 3.11 56.5 15 2.93 120 3.90 25.3 10 3.00 Nominal frequency NDK crystal (MHz) reference 4 12 16 (ESR) Ω NX8045GB NX5032GA Load on xtalin/xtalout C1 = C2 (pF)(1) C0(2) (pF) 1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). Doc ID 16315 Rev 5 53/82 Electrical characteristics SPC560D30x, SPC560D40x Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram S_MTRANS bit (ME_GS register) ‘1’ ‘0’ VXTAL 1/fFXOSC VFXOSC 90% VFXOSCOP 10% TFXOSCSU Table 37. Symbol fFXOSC gmFXOSC Fast external crystal oscillator (4 to 16 MHz) electrical characteristics C Parameter tFXOSCSU 54/82 Unit Typ Max — 4.0 — 16.0 CC C VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 0 2.2 — 8.2 CC P VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0 2.0 — 7.4 SR — Fast external crystal oscillator frequency Fast external crystal oscillator transconductance V = 3.3 V ± 10%, DD CC C PAD3V5V = 1 OSCILLATOR_MARGIN = 1 Oscillation amplitude at CC T EXTAL VFXOSCOP CC P Oscillation operating point IFXOSC(2) Value Conditions(1) Min CC C VFXOSC valid internal clock CC T Fast external crystal oscillator consumption Fast external crystal CC T oscillator start-up time MHz mA/V 2.7 — 9.7 VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1 2.5 — 9.2 fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 1.3 — — fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 1.3 — — — — 0.95 — — 2 3 fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 — — 6 fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 — — 1.8 V V mA ms Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Table 37. Electrical characteristics Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued) Symbol C Value Conditions(1) Parameter Unit Min Typ Max VIH SR P Input high level CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD — VDD+0.4 V VIL SR P Input low level CMOS (Schmitt Trigger) Oscillator bypass mode −0.4 — 0.35VDD V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals). 4.14 FMPLL electrical characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. Table 38. Symbol FMPLL electrical characteristics C Typ Max — 4 — 48 MHz — 40 — 60 % — 16 — 48 MHz VCO frequency without frequency modulation — 256 — 512 VCO frequency with frequency modulation — 245 — 533 SR — FMPLL reference clock(3) ΔPLLIN SR — FMPLL reference clock duty cycle(3) fPLLOUT CC D FMPLL output clock frequency fVCO Unit Min fPLLIN (4) Value(2) Conditions(1) Parameter MHz CC P fCPU SR — System clock frequency — — — 48 MHz fFREE CC P Free-running frequency — 20 — 150 MHz tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) — 40 100 µs fPLLIN = 16 MHz (resonator), fPLLCLK at 48 MHz, 4000 cycles — — 10 ns TA = 25 °C — — 4 mA ΔtLTJIT CC — FMPLL long term jitter IPLL CC C FMPLL consumption 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN. 4. Frequency modulation is considered ±4%. Doc ID 16315 Rev 5 55/82 Electrical characteristics 4.15 SPC560D30x, SPC560D40x Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device. Table 39. Symbol fFIRC Fast internal RC oscillator (16 MHz) electrical characteristics C Parameter Conditions CC P Fast internal RC oscillator high TA = 25 °C, trimmed SR — frequency — Fast internal RC oscillator high IFIRCRUN(3) CC T frequency current in running TA = 25 °C, trimmed mode IFIRCPWD tFIRCSU ΔFIRCPRE CC C Typ Max — 16 — MHz 12 20 — 200 µA — — 10 µA sysclk = off — 500 — sysclk = 2 MHz — 600 — sysclk = 4 MHz — 700 — sysclk = 8 MHz — 900 — sysclk = 16 MHz — 1250 — — 1.1 2.0 µs 1 % Fast internal RC oscillator startVDD = 5.0 V ± 10% up time Fast internal RC oscillator CC C precision after software trimming of fFIRC TA = 25 °C −1 — Fast internal RC oscillator trimming step TA = 25 °C — 1.6 −5 — ΔFIRCTRIM CC C ΔFIRCVAR Unit Min — Fast internal RC oscillator high CC D frequency current in power TA = 25 °C down mode Fast internal RC oscillator high TA = 25 °C IFIRCSTOP CC T frequency and system clock current in stop mode Value(2) (1) Fast internal RC oscillator variation in temperature and CC C supply with respect to fFIRC at TA = 55 °C in high-frequency configuration — % 5 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 56/82 Doc ID 16315 Rev 5 µA % SPC560D30x, SPC560D40x 4.16 Electrical characteristics Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module. Table 40. Symbol fSIRC Slow internal RC oscillator (128 kHz) electrical characteristics C Value(2) (1) Parameter Conditions CC P Slow internal RC oscillator low SR — frequency TA = 25 °C, trimmed — Unit Min Typ Max — 128 — 100 — 150 — — 5 µA µs kHz ISIRC(3) CC C Slow internal RC oscillator low frequency current tSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10% time — 8 12 ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C after software trimming of fSIRC −2 — 2 ΔSIRCTRIM CC C Slow internal RC oscillator trimming step — 2.7 — ΔSIRCVAR Slow internal RC oscillator variation in temperature and supply with CC P High frequency configuration respect to fSIRC at TA = 55 °C in high frequency configuration −10 — 10 TA = 25 °C, trimmed % — % 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. Doc ID 16315 Rev 5 57/82 Electrical characteristics SPC560D30x, SPC560D40x 4.17 ADC electrical characteristics 4.17.1 Introduction The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter. Figure 11. ADC characteristics and error definitions Offset Error (EO) Gain Error (EG) 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 5 (1) Example of an actual transfer curve (5) (2) The ideal transfer curve 4 (3) Differential non-linearity error (DNL) (4) (4) Integral non-linearity error (INL) 3 (5) Center of a step of the actual transfer curve (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error (EO) 4.17.2 Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. 58/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc*CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: Equation 4: R +R +R +R VA +R S F L SW AD • --------------------------------------------------------------------------- < 1--- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on a resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. Doc ID 16315 Rev 5 59/82 Electrical characteristics SPC560D30x, SPC560D40x Figure 12. Input equivalent circuit (precise channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS Current Limiter RF Sampling RSW1 RAD RL CF VA Channel Selection CP1 CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1 and CP2) CS: Sampling capacitance Figure 13. Input equivalent circuit (extended channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF CP1 RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2) RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1, CP2 and CP3) CS: Sampling capacitance 60/82 Doc ID 16315 Rev 5 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS SPC560D30x, SPC560D40x Electrical characteristics A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Figure 14. Transient behavior during sampling phase Voltage transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS << ts τ2 = RL (CS + CP1 + CP2) VA1 ts t In particular two different transient periods can be distinguished: 1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is Equation 5: CP • CS τ 1 = ( R SW + R AD ) • ---------------------CP + CS Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time ts is always much longer than the internal time constant: Equation 6: τ 1 < ( R SW + R AD ) • C S « t s The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Equation 7: V A1 • ( C S + C P1 + C P2 ) = V A • ( C P1 + C P2 ) 2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Doc ID 16315 Rev 5 61/82 Electrical characteristics SPC560D30x, SPC560D40x Equation 8: τ 2 < R L • ( C S + C P1 + C P2 ) In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time ts, a constraints on RL sizing is obtained: Equation 9: 10 • τ 2 = 10 • R L • ( C S + C P1 + C P2 ) < t s Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Equation 10: VA2 • ( C S + C P1 + C P2 + C F ) = V A • C F + V A1 • ( C P1 + C P2 + C S ) The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (ts). The filter is typically designed to act as anti-aliasing. Figure 15. Spectral representation of input signal Analog source bandwidth (VA) tc < 2 RFCF (conversion rate vs. filter pole) Noise fF = f0 (anti-aliasing filtering condition) 2 f0 < fC (Nyquist) f0 f Anti-aliasing filter (fF = RC filter pole) fF Sampled signal spectrum (fC = conversion rate) f0 f fC f Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (tc). Again the conversion period tc is longer than the sampling time ts, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time ts, so the 62/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Equation 11: V A2 C P1 + C P2 + C F ------------ = -------------------------------------------------------VA C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Equation 12: C F > 2048 • C S 4.17.3 ADC electrical characteristics Table 41. ADC input leakage current Value Symbol C Parameter C Input leakage current C P Table 42. Unit Min Typ Max — 1 — — 1 — TA = 105 °C — 8 200 TA = 125 °C — 45 400 TA = −40 °C C ILKG CC Conditions TA = 25 °C No current injection on adjacent pin nA ADC conversion characteristics Symbol C Parameter Value Conditions(1) Unit Min Typ Max Voltage on VSS_HV_ADC (ADC VSS_ADC SR — reference) pin with respect to ground (VSS)(2) — −0.1 — 0.1 V Voltage on VDD_HV_ADC pin VDD_ADC SR — (ADC reference) with respect to ground (VSS) — VDD − 0.1 — VDD + 0.1 V — VSS_ADC − 0.1 — VDD = 5.0 V 3.33 — 32 + 4% VDD = 3.3 V 3.33 — 20 + 4% VAINx SR — Analog input voltage(3) fADC SR — ADC analog frequency Doc ID 16315 Rev 5 VDD_ADC + 0.1 V MHz 63/82 Electrical characteristics Table 42. SPC560D30x, SPC560D40x ADC conversion characteristics (continued) Symbol C Parameter Value Conditions(1) Unit Min ΔADC_SYS SR — Typ Max — 55 % — — 1.5 µs 600 — — ns — — 76.2 µs 500 — — ns fADC = 3.33 MHz, INPSAMP = 255 — — 76.2 µs fADC = 20 MHz, INPCMP = 0 2.4 — — fADC = 13.33 MHz, INPCMP = 0 — — 3.6 fADC = 32 MHz, INPCMP = 0 1.5 — — fADC = 13.33 MHz, INPCMP = 0 — — 3.6 ADC clock duty cycle ADCLKSEL = 1(4) (ipg_clk) tADC_PU SR — ADC power up delay CC Sampling time(5) T VDD = 3.3 V ts Sampling time(5) T VDD = 5.0 V Conversion time(6) P VDD = 3.3 V tc — fADC = 20 MHz, INPSAMP = 12 fADC = 3.33 MHz, INPSAMP = 255 fADC = 24 MHz, INPSAMP = 13 45 µs CC Conversion time(6) P VDD = 5.0 V µs CS CC D ADC input sampling capacitance — 5 pF CP1 CC D ADC input pin capacitance 1 — 3 pF CP2 CC D ADC input pin capacitance 2 — 1 pF CP3 CC D ADC input pin capacitance 3 — 1.5 pF RSW1 CC D Internal resistance of analog source — — — 1 kΩ RSW2 CC D Internal resistance of analog source — — — 2 kΩ RAD CC D Internal resistance of analog source — — — 0.3 kΩ VDD = 3.3 V ± 10% −5 — 5 IINJ Current injection on one ADC input, SR — Input current Injection different from the converted one VDD = 5.0 V ± 10% −5 — 5 — 1 3 INLP 64/82 mA Absolute Integral nonCC T linearity-precise No overload channels Doc ID 16315 Rev 5 LSB SPC560D30x, SPC560D40x Table 42. Electrical characteristics ADC conversion characteristics (continued) Symbol C INLX Absolute Integral nonCC T linearity-extended No overload channels DNL CC T Absolute Differential non-linearity Value Conditions(1) Parameter No overload Unit Min Typ Max — 1.5 5 LSB — 0.5 1 LSB EO CC T Absolute Offset error — — 2 — LSB EG CC T Absolute Gain error — — 2 — LSB TUEP(7) CC TUEX(7) CC P Total unadjusted error Without current injection for precise channels, T input only pins With current injection –6 6 –8 8 T Total unadjusted error Without current injection T for extended channel With current injection –10 10 –12 12 LSB LSB 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Analog and digital VSS must be common (to be tied together externally). 3. VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF. 4. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2. 5. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sampling time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. 6. This parameter does not include the sampling time tS, but only the time for determining the digital result and the time to load the result’s register with the conversion result. 7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. 4.18 On-chip peripherals 4.18.1 Current consumption Table 43. On-chip peripherals current consumption(1) Symbol IDD_BV(CAN) C Parameter Conditions 500 Kbyte/s Total (static + dynamic) consumption: – FlexCAN in loop-back mode CAN (FlexCAN) supply CC T current on VDD_BV – XTAL at 8 MHz used as 125 Kbyte/s CAN engine clock source – Message sending period is 580 µs Doc ID 16315 Rev 5 Typical value(2) Unit 8 * fperiph + 85 µA 8 * fperiph + 27 µA 65/82 Electrical characteristics Table 43. SPC560D30x, SPC560D40x On-chip peripherals current consumption(1) (continued) Symbol IDD_BV(eMIOS) IDD_BV(SCI) IDD_BV(SPI) IDD_BV(ADC) C Parameter Static consumption: – eMIOS channel OFF – Global prescaler enabled eMIOS supply current CC T on VDD_BV CC T Typical value(2) Unit Conditions 29 * fperiph µA 3 µA 5 * fperiph + 31 µA Ballast static consumption (only clocked) 1 µA Ballast dynamic consumption (continuous communication): – Baudrate: 2 Mbit/s – Transmission every 8 µs – Frame: 16 bits 16 * fperiph µA 41 * fperiph µA 5 * fperiph µA 2 * fperiph µA Dynamic consumption: – It does not change varying the frequency (0.003 mA) Total (static + dynamic) consumption: – LIN mode – Baudrate: 20 Kbyte/s SCI (LINFlex) supply current on VDD_BV SPI (DSPI) supply CC T current on VDD_BV ADC supply current on CC T VDD_BV ADC supply current on IDD_HV_ADC(ADC) CC T VDD_HV_ADC Ballast static consumption (no conversion) VDD = 5.5 V Ballast dynamic consumption (continuous conversion)(3) Analog static consumption (no conversion) VDD = 5.5 V Analog dynamic consumption (continuous conversion) 75 * fperiph + 32 µA IDD_HV(FLASH) CC T CFlash + DFlash supply VDD = 5.5 V current on VDD_HV — 8.21 mA IDD_HV(PLL) CC T PLL supply current on VDD_HV — 30 * fperiph µA VDD = 5.5 V 1. Operating conditions: TA = 25 °C, fperiph = 8 MHz to 48 MHz. 2. fperiph is an absolute value. 3. During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., (41 + 5) * fperiph. 66/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x 4.18.2 DSPI characteristics Table 44. DSPI characteristics(1) No. 1 Symbol tSCK C Electrical characteristics DSPI0/DSPI1 Parameter Min Typ Max Unit D Master mode (MTFE = 0) 125 — — D Slave mode (MTFE = 0) 125 — — D Master mode (MTFE = 1) 83 — — D Slave mode (MTFE = 1) 83 — — — — fCPU MHz SR SCK cycle time ns fDSPI SR ΔtCSC Internal delay between pad associated to SCK and pad CC D associated to CSn in master mode Master mode — — 130(2) ns — ΔtASC Internal delay between pad associated to SCK and pad CC D associated to CSn in master mode for CSn1→1 Master mode — — 130(2) ns 2 tCSCext(3) SR D CS to SCK delay Slave mode 32 — — ns 3 tASCext(4) SR D After SCK delay Slave mode 1/fDSPI + 5 — — ns 4 tSDC — tSCK/2 — tSCK/2 — — — — D DSPI digital controller frequency CC D SR D Master mode SCK duty cycle Slave mode ns 5 tA SR D Slave access time — 1/fDSPI + 70 — — ns 6 tDI SR D Slave SOUT disable time — 7 — — ns 9 tSUI SR D Data setup time for inputs Master mode 43 — — Slave mode 5 — — 10 tHI SR D Data hold time for inputs Master mode 0 — — Slave mode 2(5) — — 11 tSUO(6) CC D Data valid after SCK edge Master mode — — 32 Slave mode — — 52 12 tHO(6) CC D Data hold time for outputs Master mode 0 — — Slave mode 8 — — ns ns ns ns 1. Operating conditions: COUT = 10 to 50 pF, SlewIN = 3.5 to 15 ns. 2. Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad. 3. The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtCSC to ensure positive tCSCext. 4. The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtASC to ensure positive tASCext. 5. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR. 6. SCK and SOUT configured as MEDIUM pad. Doc ID 16315 Rev 5 67/82 Electrical characteristics SPC560D30x, SPC560D40x Figure 16. DSPI classic SPI timing – master, CPHA = 0 2 3 PCSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 10 9 SIN First Data Last Data Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 44. Figure 17. DSPI classic SPI timing – master, CPHA = 1 PCSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 SIN Data First Data 12 SOUT 11 Data First Data Last Data Last Data Note: Numbers shown reference Table 44. 68/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics Figure 18. DSPI classic SPI timing – slave, CPHA = 0 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Note: Numbers shown reference Table 44. Figure 19. DSPI classic SPI timing – slave, CPHA = 1 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 44. Doc ID 16315 Rev 5 69/82 Electrical characteristics SPC560D30x, SPC560D40x Figure 20. DSPI modified transfer format timing – master, CPHA = 0 3 PCSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Note: Numbers shown reference Table 44. Figure 21. DSPI modified transfer format timing – master, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Note: Numbers shown reference Table 44. 70/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Electrical characteristics Figure 22. DSPI modified transfer format timing – slave, CPHA = 0 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) First Data SOUT Data 6 Last Data 10 9 Data First Data SIN 12 11 5 Last Data Note: Numbers shown reference Table 44. Figure 23. DSPI modified transfer format timing – slave, CPHA = 1 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 First Data SOUT 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 44. Doc ID 16315 Rev 5 71/82 Electrical characteristics SPC560D30x, SPC560D40x 4.18.3 JTAG characteristics Table 45. JTAG characteristics Value No. Symbol C Parameter Unit Min Typ Max 1 tJCYC CC D TCK cycle time 83.33 — — ns 2 tTDIS CC D TDI setup time 15 — — ns 3 tTDIH CC D TDI hold time 5 — — ns 4 tTMSS CC D TMS setup time 15 — — ns 5 tTMSH CC D TMS hold time 5 — — ns 6 tTDOV CC D TCK low to TDO valid — — 49 ns 7 tTDOI CC D TCK low to TDO invalid 6 — — ns Figure 24. Timing diagram – JTAG boundary scan TCK 2/4 DATA INPUTS 3/5 INPUT DATA VALID 6 DATA OUTPUTS OUTPUT DATA VALID 7 DATA OUTPUTS Note: Numbers shown reference Table 45. 72/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Package characteristics 5 Package characteristics 5.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.2 Package mechanical data 5.2.1 LQFP100 Figure 25. LQFP100 mechanical drawing Doc ID 16315 Rev 5 73/82 Package characteristics Table 46. SPC560D30x, SPC560D40x LQFP100 mechanical data inches(1) mm Symbol Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 — 12.000 — — 0.4724 — E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 — 12.000 — — 0.4724 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 ° Tolerance mm inches ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 74/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x 5.2.2 Package characteristics LQFP64 Figure 26. LQFP64 mechanical drawing D ccc C D1 A A2 D3 33 48 32 49 b L1 E3 E1 E L A1 K 64 17 Pin 1 identification 16 1 Table 47. c 5W_ME LQFP64 mechanical data inches(1) mm Symbol Min Typ Max Min Typ Max A — — 1.6 — — 0.0630 A1 0.05 — 0.15 0.0020 — 0.0059 A2 1.35 1.4 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 — 0.2 0.0035 — 0.0079 D 11.8 12 12.2 0.4646 0.4724 0.4803 D1 9.8 10 10.2 0.3858 0.3937 0.4016 D3 — 7.5 — — 0.2953 — E 11.8 12 12.2 0.4646 0.4724 0.4803 E1 9.8 10 10.2 0.3858 0.3937 0.4016 E3 — 7.5 — — 0.2953 — e — 0.5 — — 0.0197 — L 0.45 0.6 0.75 0.0177 0.0236 0.0295 L1 — 1 — — 0.0394 — k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc — — 0.08 — — 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 16315 Rev 5 75/82 Ordering information 6 SPC560D30x, SPC560D40x Ordering information Figure 27. Ordering information scheme Example code: SPC56 0 D 40 L3 C 4E0 Y Product identifier Core Family Memory Package Temperature Custom version Packing Y = Tray X = Tape and Reel 90° 3E0 = 32 MHz EEPROM 5V/3V 4E0 = 48 MHz EEPROM 5V/3V B = –40 to 105 °C C = –40 to 125 °C L1 = LQFP64 L3 = LQFP100 40 = 256 KB 30 = 128 KB D = Access family 0 = e200z0h SPC56 = Power Architecture in 90 nm 76/82 Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Appendix A Abbreviations Abbreviations Table 48 lists abbreviations used in this document. Table 48. Abbreviations Abbreviation APU Meaning Auxilliary processing unit CMOS Complementary metal–oxide–semiconductor CPHA Clock phase CPOL Clock polarity CS DAOC Peripheral chip select Double action output compare ECC Error code correction EVTO Event out GPIO General purpose input/output IPM IPWM Input period measurement Input pulse width measurement MB Message buffer MC Modulus counter MCB Modulus counter buffered (up / down) MCKO Message clock out MDO Message data out MSEO Message start/end out MTFE Modified timing format enable NVUSRO Non-volatile user options register OPWFMB Output pulse width and frequency modulation buffered OPWMB Output pulse width modulation buffered OPWMCB OPWMT Center aligned output pulse width modulation buffered with dead time Output pulse width modulation trigger PWM Pulse width modulation SAIC Single action input capture SAOC Single action output compare SCK Serial communications clock SOUT Serial data out TBD To be defined TCK Test clock input TDI Test data input Doc ID 16315 Rev 5 77/82 Abbreviations SPC560D30x, SPC560D40x Table 48. Abbreviations (continued) Abbreviation 78/82 Meaning TDO Test data output TMS Test mode select Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Revision history Revision history Table 49 summarizes revisions to this document. Table 49. Document revision history Date Revision 09-Jul-2009 1 Initial release. 2 Updated the following tables: - Absolute maximum ratings - Low voltage power domain electrical characteristics; - On-chip peripherals current consumption - DSPI characteristics; - JTAG characteristics; - ADC conversion characteristics; Inserted a note on “Flash power supply DC characteristics” section. 18-Feb-2010 10-Aug-2010 3 Changes “Features” section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and low power capabilities “SPC560D30, SPC560D40 device comparison” table: updated the “Execution speed” row “SPC560D30, SPC560D40 series block diagram” figure: – updated max number of Crossbar Switches – updated Legend “SPC560D30, SPC560D40 series block summary” table: added contents concernig the eDMA block “LQFP100 pin configuration (top view)” figure: – removed alternate functions – updated supply pins “LQFP64 pin configuration (top view)” figure: removed alternate functions Added “Pin muxing” section “NVUSRO register” section: Deleted “NVUSRO[WATCHDOG_EN] field description“ section “Recommended operating conditions (3.3 V)” table: – TVDD: deleted min value – In footnote No. 3, changed capacitance value between VDD_BV and VSS_LV “Recommended operating conditions (5.0 V)” table: deleted TVDD min value “LQFP thermal characteristics” table: changed RθJC values “I/O input DC electrical characteristics” table: – WFI: updated max value – WNFI: updated min value “I/O consumption” table: removed IDYNSEG row Added “I/O weight” table “Program and erase specifications (Code Flash)” table: deleted TBank_C row Doc ID 16315 Rev 5 79/82 Revision history SPC560D30x, SPC560D40x Table 49. Document revision history (continued) Date 10-Aug-2010 Revision 3 (cont.) Changes Updated the following tables: – “Voltage regulator electrical characteristics” – “Low voltage monitor electrical characteristics” – “Low voltage power domain electrical characteristics” – “Start-up time/Switch-off time” – “Fast external crystal oscillator (4 to 16 MHz) electrical characteristics” – “FMPLL electrical characteristics” – “Fast internal RC oscillator (16 MHz) electrical characteristics” – “ADC conversion characteristics” – “On-chip peripherals current consumption” – “DSPI characteristics” “DSPI characteristics” section: removed “DSPI PCS strobe (PCSS) timing” figure Updated “Order codes” table Added “Order codes for engineering samples” table Updated “Commercial product code structure” table Formatting and editorial changes throughout Device comparison table: for the “Total timer I/O eMIOS”, changed “13 ch” to “14 ch” 16-Sep-2011 80/82 4 SPC560D30/SPC560D40 series block summary: – added definition for “AUTOSAR” acronym – changed “System watchdog timer” to “Software watchdog timer” LQFP64 pin configuration (top view): changed pin 6 from VPP_TEST to VSS_HV Added section “Pad configuration during reset phases” Added section “Voltage supply pins” Added section “Pad types” Added section “System pins” Renamed and updated section “Functional ports” (was previously section “Pin muxing”); update includes replacing all instances of WKUP with WKPU (WKPU is the correct abbreviation for Wakeup Unit) Section “NVUSRO register”: edited content to separate configuration into electrical parameters and digital functionality Added section “NVUSRO[WATCHDOG_EN] field description” Absolute maximum ratings: Removed “C” column from table Replaced “TBD” with “—” in TVDD min value cell of 3.3 V and 5 V recommended operating conditions tables LQFP thermal characteristics: removed RθJB single layer board conditions; updated footnote 4 I/O input DC electrical characteristics: removed footnote “All values need to be confirmed during device validation”; updated ILKG characteristics Doc ID 16315 Rev 5 SPC560D30x, SPC560D40x Table 49. Revision history Document revision history (continued) Date 16-Sep-2011 Revision 4 (cont.) Changes MEDIUM configuration output buffer electrical characteristics: changed “IOH = 100 µA” to “IOL = 100 µA” in VOL conditions I/O consumption: replaced instances of “Root medium square” with “Root mean square” Updated section “Voltage regulator electrical characteristics” Section “Low voltage detector electrical characteristics”: changed title (was “Voltage monitor electrical characteristics”); added a fifth LVD (LVDHV3B); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of “Low voltage monitor” with “Low voltage detector”; deleted note referencing power domain No. 2 (this domain is not present on the device); updated electrical characteristics table Updated and renamed section “Power consumption” (was previously section “Low voltage domain power consumption”) Program and erase specifications (code flash): updated symbols; updated tesus values Updated Flash memory read access timing EMI radiated emission measurement: updated SEMI values Updated FMPLL electrical characteristics Crystal oscillator and resonator connection scheme: inserted footnote about possibly requiring a series resistor Fast internal RC oscillator (16 MHz) electrical characteristics: updated tFIRCSU values Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in Equation 13 ADC conversion characteristics: – updated conditions for sampling time VDD = 5.0 V – updated conditions for conversion time VDD = 5.0 V Updated Abbreviations Removed Order codes tables. 01-Dec-2011 5 Replaced “TBD” with “8.21 mA” in IDD_HV(FLASH) cell of On-chip peripherals current consumption table Doc ID 16315 Rev 5 81/82 SPC560D30x, SPC560D40x Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 82/82 Doc ID 16315 Rev 5