Technical Data Sheet - Freescale Semiconductor

Pressure
MPXV7025
Rev 6, 10/2012
Freescale Semiconductor
Data Sheet: Technical Data
Integrated Silicon Pressure Sensor
On-Chip Signal Conditioned,
Temperature Compensated and
Calibrated
MPXV7025
Series
-25 to 25 kPa (-3.6 to 3.6 psi)
0.2 to 4.7 V Output
The MPXV7025 series piezoresistive transducer is a state-of-the-art
monolithic silicon pressure sensor designed for a wide range of applications,
but particularly those employing a microcontroller or microprocessor with A/D
inputs. This patented, single element transducer combines advanced
micromachining techniques, thin-film metallization, and bipolar processing to
provide an accurate, high level analog output signal that is proportional to the
applied pressure.
Application Examples
•
•
•
•
Features
•
•
•
•
•
•
Respiratory Systems
Process Control
Patient Monitoring
Remote Monitoring Devices
5.0% Maximum Error Over 0 to 85C
Ideally Suited for Microprocessor or Microcontroller-Based Systems
Temperature Compensated Over –40 to +125C
Thermoplastic (PPS) Surface Mount Package
Patented Silicon Shear Stress Strain Gauge
Available in Differential and Gauge Configurations
ORDERING INFORMATION
Package
Case
Device Name
No.
Options
Small Outline Package (MPXV7025 Series)
MPXV7025GC6U
Rails
482A
MPXV7025GC6T1
482A
Tape & Reel
MPXV7025GP
Trays
None
# of Ports
Single
Dual
•
•
•
1369
MPXV7025DP
1351
Trays
Small Outline Package (Media Resistant Gel) (MPVZ7025 Series)
MPVZ7025GC6U
482A
Rails
•
MPVZ7025GP
Trays
1369
•
MPVZ7025G6U
Rails
482
MPVZ7025DP
Trays
1351
Gauge
Pressure Type
Differential
Absolute
MPXV7025G
•
•
•
•
MPXV7025G
MPXV7025GP
MPXV7025DP
•
MPVZ7025G
•
•
•
•
MPVZ7025GP
MPVZ7025G
•
•
MPVZ7025DP
SMALL OUTLINE PACKAGE
MPXV7025GC6U/T1
MPVZ7025GC6U
CASE 482A-01
MPVZ7025G6U
CASE 482-01
© 2007-2009, 2012 Freescale Semiconductor, Inc. All rights reserved.
MPXV7025GP
MPVZ7025GP
CASE 1369-01
Device
Marking
MPXV7025DP
MPVZ7025DP
CASE 1351-01
Pressure
Operating Characteristics
Table 1. Operating Characteristics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2. Decoupling circuit shown in
Figure 3 required to meet electrical specifications.)
Characteristic
Symbol
Min
Typ
Max
Unit
Pressure Range(1)
POP
-25
—
25
kPa
Supply Voltage(2)
VS
4.75
5.0
5.25
Vdc
Supply Current
Io
—
7.0
10
mAdc
Minimum Pressure Offset(3)
@ VS = 5.0 Volts
(0 to 85C)
Voff
0.116
0.25
0.384
Vdc
Full Scale Output(4)
@ VS = 5.0 Volts
(0 to 85C)
VFSO
4.610
4.75
4.890
Vdc
Full Scale Span(5)
@ VS = 5.0 Volts
(0 to 85C)
VFSS
—
4.5
—
Vdc
Accuracy
(0 to 85C)
—
—
—
5.0
%VFSS
V/P
—
90
—-
mV/kPa
Response Time(6)
tR
—
1.0
—-
ms
Output Source Current at Full Scale Output
Io+
—
0.1
—-
mAdc
Warm-Up Time(7)
—
—
20
—-
ms
Offset Stability(8)
—
—
0.5
—-
%VFSS
Sensitivity
1. 1.0 kPa (kiloPascal) equals 0.145 psi.
2. Device is ratiometric within this specified excitation range.
3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure.
5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the
minimum rated pressure.
6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to
a specified step change in pressure.
7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
8. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
MPXV7025
2
Sensors
Freescale Semiconductor, Inc.
Pressure
Maximum Ratings
Table 2. Maximum Ratings(1)
Rating
Symbol
Value
Unit
Maximum Pressure (P1 > P2)
Pmax
200
kPa
Storage Temperature
Tstg
–40 to +125
C
Operating Temperature
TA
–40 to +125
C
1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.
VS 2
Thin Film
Temperature
Compensation
and
Gain Stage #1
Sensing
Element
GND
3
Gain Stage #2
and
Ground
Reference
Shift Circuitry
Vout
4
Pins 1, 5, 6, 7, and 8 are NO CONNECTS
for Small Outline Package Device
Figure 1. Integrated Pressure Sensor Schematic
MPXV7025
Sensors
Freescale Semiconductor, Inc.
3
Pressure
On-chip Temperature Compensation and Calibration
The MPXV7025 series pressure sensor operating
characteristics, and internal reliability and qualification tests
are based on use of dry air as the pressure media. Media,
other than dry air, may have adverse effects on sensor
performance and long-term reliability. Contact the factory for
information regarding media compatibility in your application.
Figure 2 shows the sensor output signal relative to
pressure input. Typical, minimum, and maximum output
curves are shown for operation over a temperature range of
0 to 85C using the decoupling circuit shown in Figure 3. The
output will saturate outside of the specified pressure range.
Figure 3 shows the recommended decoupling circuit for
interfacing the output of the integrated sensor to the A/D input
of a microprocessor or microcontroller. Proper decoupling of
the power supply is recommended.
5.0
4.5 Transfer Function:
Vout = VS*(0.018*P+0.5) ± ERROR
4.0 VS = 5.0 Vdc
3.5 TEMP = 0 to 85°C
TYPICAL
Output (V)
3.0
2.5
MAX
2.0
MIN
1.5
1.0
0.5
0 -25
0
25
Differential Pressure (kPa)
Figure 2. Output versus Pressure Differential
+5 V
Vout
OUTPUT
Vs
IPS
1.0 F
0.01 F
GND
470 pF
Figure 3. Recommended Power Supply Decoupling
and Output Filtering
(For additional output filtering, please refer to
Application Note AN1646.)
MPXV7025
4
Sensors
Freescale Semiconductor, Inc.
Pressure
Transfer Function
Nominal Transfer Value: Vout = VS (P x 0.018 + 0.5)
± (Pressure Error x Temp. Factor x 0.018 x VS)
VS = 5.0 V  0.25 Vdc
Temperature Error Band
MPXV7025 SERIES
4.0
Temp
3.0
Temperature
Error
Factor
–40
0 to 85
+125
2.0
Multiplier
3
1
3
1.0
0.0
–40
–20
0
20
40
60
80
100
120
140
Temperature in C
NOTE: The Temperature Multiplier is a linear response from 0° to –40°C and from 85° to 125°C.
Pressure Error Band
Error Limits for Pressure
3.0
Pressure Error (kPa)
2.0
1.0
0.0
-25
0
25
Pressure (in kPa)
–1.0
–2.0
–3.0
Pressure
Error (Max)
-25 to 25 (kPa)
±1.25 (kPa)
MPXV7025
Sensors
Freescale Semiconductor, Inc.
5
Pressure
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Freescale designates the two sides of the pressure sensor
as the Pressure (P1) side and the Vacuum (P2) side. The
Pressure (P1) side is the side containing fluorosilicone gel
which protects the die from harsh media. The pressure
Part Number
sensor is designed to operate with positive differential
pressure applied, P1 > P2.
The Pressure (P1) side may be identified by using the
following table:
Pressure (P1)
Side Identifier
Case Type
MPXV7025GC6U/C6T1, MPVZ7025GC6U
482A
Side with Port Attached
MPXV7025GP, MPVZ7025GP
1369
Side with Port Attached
MPXV7025DP, MPVZ7025DP
1351
Side with Part Marking
MPVZ7025G6U
482
Side with Part Marking
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the surface mount packages must be
the correct size to ensure proper solder connection interface
between the board and the package. With the correct
footprint, the packages will self align when subjected to a
solder reflow process. It is always recommended to design
boards with a solder mask layer to avoid bridging and
shorting between solder pads.
0.100 TYP 8X
2.54
0.660
16.76
0.060 TYP 8X
1.52
0.300
7.62
0.100 TYP 8X
2.54
inch
mm
SCALE 2:1
Figure 4. Small Outline Package Footprint
MPXV7025
6
Sensors
Freescale Semiconductor, Inc.
Pressure
PACKAGE DIMENSIONS
-A-
D
4
0.25 (0.010)
5
N
8 PL
M
T B
A
S
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
-BG
8
1
S
DIM
A
B
C
D
G
H
J
K
M
N
S
V
W
W
V
C
H
J
-TM
K
INCHES
MIN
MAX
0.415 0.425
0.415 0.425
0.500 0.520
0.038 0.042
0.100 BSC
0.002 0.010
0.009 0.011
0.061 0.071
0˚
7˚
0.444 0.448
0.709 0.725
0.245 0.255
0.115 0.125
MILLIMETERS
MIN
MAX
10.54
10.79
10.54
10.79
12.70
13.21
0.96
1.07
2.54 BSC
0.05
0.25
0.23
0.28
1.55
1.80
0˚
7˚
11.28
11.38
18.01
18.41
6.22
6.48
2.92
3.17
SEATING
PLANE
PIN 1 IDENTIFIER
CASE 482A-01
ISSUE A
SMALL OUTLINE PACKAGE
-A-
D 8 PL
0.25 (0.010)
4
5
M
T B
S
A
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
-BG
8
1
S
N
H
C
J
-TPIN 1 IDENTIFIER
K
M
SEATING
PLANE
DIM
A
B
C
D
G
H
J
K
M
N
S
INCHES
MIN
MAX
0.415 0.425
0.415 0.425
0.212 0.230
0.038 0.042
0.100 BSC
0.002 0.010
0.009 0.011
0.061 0.071
0˚
7˚
0.405 0.415
0.709 0.725
MILLIMETERS
MIN
MAX
10.54
10.79
10.54
10.79
5.38
5.84
0.96
1.07
2.54 BSC
0.05
0.25
0.23
0.28
1.55
1.80
0˚
7˚
10.29
10.54
18.01
18.41
CASE 482-01
ISSUE O
SMALL OUTLINE PACKAGE
MPXV7025
Sensors
Freescale Semiconductor, Inc.
7
Pressure
PACKAGE DIMENSIONS
2 PLACES 4 TIPS
0.006 (0.15) C A B
E
A
GAGE
PLANE
e
5
4
e/2
θ
.014 (0.35)
L
D
A1
DETAIL G
8
1
b
0.004 (0.1)
8X
F
M
C A B
E1
B
N
GND
+Vout
Vs
-Vout
N/C
N/C
N/C
N/C
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
N/C
Vs
GND
Vout
N/C
N/C
N/C
N/C
∅T
M
A
P
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
8X
0.004 (0.1)
K
DETAIL G
C
SEATING
PLANE
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M, 1994.
3. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.006 (0.152)
PER SIDE.
4. DIMENSION "b" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.008 (0.203) MAXIMUM.
DIM
A
A1
b
D
E
E1
e
F
K
L
M
N
P
T
θ
INCHES
MILLIMETERS
MIN
MAX
MIN MAX
0.370
0.390
9.39
9.91
0.002
0.010
0.05
0.25
0.038
0.042
0.96
1.07
0.465
0.485
11.81 12.32
0.680
0.700
17.27 17.78
0.465
0.485
11.81 12.32
0.100 BSC
2.54 BSC
0.240
0.260
6.10
6.60
0.115
0.135
2.92
3.43
0.040
0.060
1.02
1.52
0.270
0.290
6.86
7.37
0.160
0.180
4.06
4.57
0.009
0.011
0.23
0.28
0.110
0.130
2.79
3.30
0˚
7˚
0˚
7˚
CASE 1351-01
ISSUE O
SMALL OUTLINE PACKAGE
MPXV7025
8
Sensors
Freescale Semiconductor, Inc.
Pressure
PACKAGE DIMENSIONS
2 PLACES 4 TIPS
0.008 (0.20) C A B
E
A
GAGE
PLANE
e
5
4
e/2
.014 (0.35)
θ
L
D
A1
DETAIL G
8
1
b
0.004 (0.1)
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M, 1994.
3. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.006 (0.152)
PER SIDE.
4. DIMENSION "b" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.008 (0.203) MAXIMUM.
8X
F
M
E1
B
∅T
N
K
A
P
C A B
8X
M
0.004 (0.1)
DETAIL G
C
SEATING
PLANE
DIM
A
A1
b
D
E
E1
e
F
K
L
M
N
P
T
θ
INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
0.300
0.330
7.11
7.62
0.002
0.010
0.05
0.25
0.038
0.042
0.96
1.07
0.465
0.485
11.81
12.32
0.717 BSC
18.21 BSC
0.465
0.485
11.81
12.32
0.100 BSC
2.54 BSC
0.245
0.255
6.22
6.47
0.120
0.130
3.05
3.30
0.061
0.071
1.55
1.80
0.270
0.290
6.86
7.36
0.080
0.090
2.03
2.28
0.009
0.011
0.23
0.28
0.115
0.125
2.92
3.17
0˚
7˚
0˚
7˚
CASE 1369-01
ISSUE O
SMALL OUTLINE PACKAGE
MPXV7025
Sensors
Freescale Semiconductor, Inc.
9
Pressure
Table 3. Revision History
Revision
number
Revision
date
6
10/2012
Description of changes
• Deleted references to device number MPVZ7025GC6T1 and MPVZ7025G6T1 throughout the
document
MPXV7025
10
Sensors
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
Home Page:
freescale.com
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/salestermsandconditions.
Freescale, the Freescale logo, Energy Efficient Solutions logo, are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a trademark of
Freescale Semiconductor, Inc. All other product or service names are the property of
their respective owners.
© 2012 Freescale Semiconductor, Inc.
MPXV7025
Rev. 6
10/2012