MAXIM MAX1600/MAX1603

19-4752; Rev 3; 5/98
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
Other key features include guaranteed specifications
for output current limit level, and guaranteed specifications for output rise/fall times (in compliance with
PCMCIA specifications). Reliability is enhanced by
thermal-overload protection, accurate current limiting,
an overcurrent-fault flag output, and undervoltage lockout. The CMOS/TTL-logic interface is flexible, and can
tolerate logic input levels in excess of the positive supply rail.
The MAX1600 and MAX1603 are identical, except for
the MAX1603’s VY switch on-resistance (typically
140mΩ). The MAX1600/MAX1603 fit two complete
CardBus/ PCMCIA switches into a space-saving, narrow
(0.2in. or 5mm wide) SSOP package.
____________________________Features
♦ Supports Two PC Card/CardBus Sockets
♦ 1A, 0.08Ω Max 3.3V VCC Switch (MAX1600 only)
1A, 0.14Ω Max 5V VCC Switch
♦ Soft Switching for Low Inrush Surge Current
♦ Overcurrent Protection
♦ Overcurrent/Thermal-Fault Flag Output
♦ Thermal Shutdown at Tj = +150°C
♦ Independent Internal Charge Pumps
♦ Break-Before-Make Switching Action
♦ 10µA Max Standby Supply Current
♦ 5V and 12V Not Required for Low-RDS(ON)
3.3V Switching
♦ Complies with PCMCIA 3V/5V Switching
Specifications
♦ Super-Small 28-Pin SSOP Package
(0.2in. or 5mm wide)
♦ Code Compatible with:
Cirrus CL-PD67XX Family
Databook DB86184
Intel 82365SL (industry-standard coding)
Simplified Block Diagram
VPPA
12IN
MAX1600/MAX1603
VY
VCCA
VY
VX
________________________Applications
Desktop Computers
Data Loggers
Notebook Computers
Docking Stations
Handy-Terminals
PCMCIA Read/Write Drives
Ordering Information
PART
TEMP. RANGE
PIN-PACKAGE
MAX1600EAI
-40°C to +85°C
28 SSOP
MAX1603EAI
-40°C to +85°C
28 SSOP
VCCA
VX
VL
VCCA
VDD
DECODE
LOGIC
CONTROL
INPUTS
CODE
SELECT
GND
OVERCURRENT
AND
THERMAL
SHUTDOWN
FAULT
CODE
VPPB
12IN
VY
VCCB
VCCB
VX
VCCB
Pin Configuration appears on last page.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 408-737-7600 ext. 3468.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
MAX1600/MAX1603
General Description
The MAX1600/MAX1603 DC power-switching ICs contain a network of low-resistance MOSFET switches that
deliver selectable VCC and VPP voltages to two
CardBus or PC Card host sockets. Key features include
ultra-low-resistance switches, small packaging, softswitching action, and compliance with PCMCIA specifications for 3V/5V switching. 3.3V-only power switching
for fast, 32-bit CardBus applications is supported in two
ways: stiff, low-resistance 3.3V switches allow high 3.3V
load currents (up to 1A); and completely independent
internal charge pumps let the 3.3V switch operate normally, even if the +5V and +12V supplies are disconnected or turned off to conserve power. The internal
charge pumps are regulating types that draw reduced
input current when the VCC switches are static. Also,
power consumption is automatically reduced to 10µA
max when the control logic inputs are programmed to
high-Z or GND states, unlike other solutions that may
require a separate shutdown-control input.
MAX1600/MAX1603
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
ABSOLUTE MAXIMUM RATINGS
Inputs/Outputs to GND
(VL, VX, VY, VCCA, VCCB) (Note 1)........................-0.3V, +6V
VPP Inputs/Outputs to GND
(12INA, 12INB, VPPA, VPPB) (Note 1) ..................-0.3V, +15V
Logic Inputs to GND (A0VCC, A1VCC, B0VCC, B1VCC,
A0VPP, A1VPP, B0VPP, B1VPP) (Note 1) ...............-0.3V, +6V
CODE Input to GND.........................................-0.3V, (VL + 0.3V)
VCCA, VCCB Output Current (Note 2).....................................4A
VPPA, VPPB Output Current (Note 2) ...............................250mA
VCCA, VCCB Short Circuit to GND ............................Continuous
VPPA, VPPB Short Circuit to GND..............................Continuous
Continuous Power Dissipation (TA = +70°C)
SSOP (derate 9.52mW/°C above +70°C) ....................762mW
Operating Temperature Range
MAX160_EAI/MAX1603EAI..............................-40°C to +85°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10sec) .............................+300°C
Note 1: There are no parasitic diodes between any of these pins, so there are no power-up sequencing restrictions (for example,
logic input signals can be applied even if all of the supply voltage inputs are grounded).
Note 2: VCC and VPP outputs are internally current limited. See the Electrical Characteristics.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
5.5
13
2.8
UNITS
POWER-SUPPLY SECTION
Input Voltage Range
Undervoltage Lockout Threshold
VX, VY or VL
12INA, 12INB
VL falling edge
3.0
11
2.4
2.5
12IN falling edge
1.8
3.0
12IN rising edge
5.0
8.0
10.0
VX, VY falling edge
1.4
2.5
2.8
Standby Supply Current
VX or VY, all switches 0V or high-Z,
control inputs = 0V or VL, TA = +25°C
VY Quiescent Supply Current
Any combination of VY switches on,
control inputs = 0V or VL, no VCC loads
VX Quiescent Supply Current
Any combination of VX switches on,
control inputs = 0V or high-Z, no VCC loads
12IN_ Standby Supply Current
12INA tied to 12INB, all switches 0V or high-Z,
control inputs = 0V or VL, TA = +25°C
12IN_ Quiescent Supply Current
12INA tied to 12INB, VPPA and VPPB 12V switches on,
control inputs = 0V or VL, no VPP loads
VL Standby Supply Current
V
V
1
µA
20
100
µA
20
100
µA
1
µA
15
100
µA
All switches 0V or high-Z,
control inputs = 0V or VL, TA = +25°C
4
10
µA
VL Quiescent Supply Current
Any combination of switches on
25
VL Fall Rate
When using VL as shutdown pin (Note 3)
150
µA
0.05
V/µs
1
A
VCC SWITCHES
Operating Output Current Range
VCCA or VCCB, VX = VY = 3V to 5.5V
On-Resistance, VY Switches
12INA = 12INB = 0V to 13V,
VY = 3V, VX = 0V to 5.5V,
ISWITCH = 1A, TA = +25°C
0
MAX1600
0.06
0.08
MAX1603
0.14
0.24
0.10
0.14
Ω
4
A
On-Resistance, VX Switches
12INA = 12INB = 0V to 13V, VX = 4.5V, VY = 0V to 5.5V,
ISWITCH = 1A, TA = +25°C
Output Current Limit
VCCA or VCCB
2
1.2
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
Ω
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
MAX1600/MAX1603
ELECTRICAL CHARACTERISTICS (continued)
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
CONDITIONS
MIN
TYP
Output Sink Current
VCCA or VCCB < 0.4V, programmed to 0V state
Output Leakage Current
VCCA or VCCB forced to 0V, high-Z state, TA = +25°C
Output Propagation Delay
Plus Rise Time
VCCA or VCCB, 0V to VX or VY, CL = 30µF,
RL = 25Ω, 50% of input to 90% of output, TA = +25°C
Output Rise Time
VCCA or VCCB, 0V to VX or VY, CL = 1µF,
RL = open circuit, 10% to 90% points, TA = +25°C
Output Propagation Delay
Plus Fall Time
VCCA or VCCB, VX or VY to 0V, CL = 30µF,
RL = open circuit, 50% of input to 10% of output,
TA = +25°C
60
Output Fall Time
VCCA or VCCB, VX or VY to 0V, CL = 1µF,
RL = 25Ω, 90% to 10% points
6
MAX
20
mA
2
100
UNITS
10
µA
10
ms
1200
µs
100
ms
ms
VPP SWITCHES
Operating Output Current Range
VPPA or VPPB
On-Resistance, 12V Switches
12IN = 11.6V, ISWITCH = 100mA, TA = +25°C
0
120
mA
0.70
1
On-Resistance, VPP = VCC Switches
Programmed to VX (5V) or VY (3.3V), TA = +25°C
Ω
1
3
Ω
Output Current Limit
VPPA or VPPB, programmed to 12V
130
Output Sink Current
VPPA or VPPB < 0.4V, programmed to 0V state
10
200
260
mA
Output Leakage Current
VPPA or VPPB forced to 0V, high-Z state, TA = +25°C
Output Propagation Delay
Plus Rise Time
VPPA or VPPB, 0V to 12IN_, CL = 0.1µF,
50% of input to 90% of output, TA = +25°C
Output Rise Time
VPPA or VPPB, 0V to 12IN_, CL = 0.1µF,
10% to 90% points, TA = +25°C
Output Propagation Delay
Plus Fall Time
VPPA or VPPB, 12IN_ to 0V, CL = 0.1µF,
50% of input to 10% of output, TA = +25°C
9
Output Fall Time
VPPA or VPPB, 12IN_ to 0V, CL = 0.1µF,
90% to 10% points
1
ms
FAULT Signal Propagation Delay
VCC_ or VPP_, load step to FAULT output,
50% point to 50% point (Note 3)
1
µs
FAULT Output Low Voltage
ISINK = 1mA, low state
FAULT Output Leakage Current
V FAULT = 5.5V, high state
Thermal Shutdown Threshold
Hysteresis = 20°C (Note 4)
Logic Input Low Voltage
__VCC, __VPP
Logic Input High Voltage
__VCC, __VPP
Code Input Low Voltage
“Intel” code
Code Input High Voltage
“Cirrus” code
Code Input Mid-Level Voltage
“Databook” code
Logic Input Bias Current
__VCC, __VPP, code
mA
1.2
100
10
µA
30
ms
800
µs
60
ms
INTERFACE AND LOGIC SECTION
-0.5
0.4
V
0.5
µA
150
°C
0.6
1.5
0
V
V
0.4
V
VL - 0.4
VL
V
1.2
VL - 1.2
V
-1
1
µA
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
3
MAX1600/MAX1603
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
ELECTRICAL CHARACTERISTICS
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, TA = -40°C to +85°C, unless otherwise noted.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
POWER-SUPPLY SECTION
Input Voltage Range
Undervoltage Lockout Threshold
VX, VY or VL
12INA, 12INB
VL falling edge, hysteresis = 1%
3.0
11
2.3
12IN falling edge
1.8
12IN rising edge
5
10
1.4
2.9
VX, VY falling edge
5.5
13
2.9
V
V
Standby Supply Current
VX or VY, all switches 0V or high-Z,
control inputs = 0V or VL, TA = TMIN to TMAX
15
µA
VY Quiescent Supply Current
Any combination of VY switches on,
control inputs = 0V or VL, no VCC loads
100
µA
VX Quiescent Supply Current
Any combination of VX switches on,
control inputs = 0V or high-Z, no VCC loads
100
µA
12IN_ Standby Supply Current
12INA tied to 12INB, all switches 0V or high-Z,
control inputs = 0V or VL
15
µA
12IN_ Quiescent Supply Current
12INA tied to 12INB, VPPA and VPB 12V switches on,
control inputs = 0V or VL, no VPP loads
100
µA
VL Standby Supply Current
All switches 0V or high-Z, control inputs = 0V or VL
15
µA
VL Quiescent Supply Current
Any combination of switches on
150
µA
FAULT Output Low Voltage
Logic Input Low Voltage
ISINK = 1mA, low state
0.4
V
__VCC, __VPP
0.6
V
Logic Input High Voltage
__VCC, __VPP
1.6
V
Note 3: Not production tested.
Note 4: Thermal limit not active in standby state (all switches programmed to GND or high-Z state).
__________________________________________Typical Operating Characteristics
(VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.)
MAX1600/3 TOC-01
6
VCC_
(V)
4
3
VCC_
(V)
2
2
1
0
0
CONTROL 5
INPUT
0
(V)
CONTROL 5
INPUT
0
(V)
200µs/div
CL = 30µF, RL = 25Ω
4
MAX1600/3 TOC-02
VCC_ SWITCHING (RISE)
VCC_ SWITCHING (RISE)
CL = 1µF, RL = ∞
500µs/div
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
(VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.)
MAX1600/3 TOC-03
6
4
6
4
VCC_
(V)
2
2
0
0
CONTROL 5
INPUT
0
(V)
CONTROL 5
INPUT
0
(V)
10ms/div
10ms/div
CL = 1µF, RL = 25Ω
VPP_ SWITCHING (RISE)
MAX1600/3 TOC-05
VPP_ SWITCHING (FALL)
15
10
VPP_
(V)
15
10
VPP_
(V)
5
5
0
0
CONTROL 5
INPUT
0
(V)
CONTROL 5
INPUT
0
(V)
CL = 0.1µF, RL = ∞
200µs/div
CL = 0.1µF, RL = ∞
VCC_
(V)
MAX1600/3 TOC-08
2.0
1.5
IVY
(A)
2
2ms/div
INPUT CURRENT (VCC OUTPUT SHORTED)
VCC_ CURRENT LIMITING
4
MAX1600/3 TOC-06
CL = 33µF, RL = ∞
MAX1600/3 TOC-09
VCC_
(V)
MAX1600/3 TOC-04
VCC_ SWITCHING (FALL)
VCC_ SWITCHING (FALL)
1.0
0.5
0
0
2ms/div
CL = 1µF, RESISTIVE OVERLOAD, RL = 1Ω
1ms/div
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
5
MAX1600/MAX1603
_____________________________Typical Operating Characteristics (continued)
_____________________________Typical Operating Characteristics (continued)
(VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.)
VPP_ CURRENT LIMITING
10
VPP_
(V)
MAX1600/3 TOC-11
INPUT CURRENT (VPP OUTPUT SHORTED)
MAX1600/3 TOC-10
MAX1600/MAX1603
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
10
5
VPP_
(V)
5
0
0
300
I12IN_
(mA)
200
100
0
2ms/div
100µs/div
CL = 1µF, RL = 50Ω
RL = 0.1Ω
MAX1600/3 TOC-12
VCC_ SHUTDOWN RESPONSE
4
VL
(V)
2
0
4
VCC_
(V)
2
0
100µs/div
CIRCUIT OF FIGURE 2
12IN SUPPLY CURRENT
vs. INPUT VOLTAGE
5
4
3
2
1
VX = VY = 0V
12IN
60
50
NORMAL
OPERATION
40
30
20
10
0
SHUTDOWN
0
0
2
4
6
8
10
12
INPUT VOLTAGE (V)
6
MAX1600/3 TOC-19
12IN SUPPLY CURRENT (µA)
6
70
VL SUPPLY CURRENT (µA)
MAX1600/3 TOC-18
7
VL SUPPLY CURRENT
vs. VL INPUT VOLTAGE
0
1
2
3
4
5
INPUT VOLTAGE (V)
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
6
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
(VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.)
850
710
705
VPPB
700
750
700
695
650
690
600
685
20
40
60
80
100
0.5
0.4
0.3
0.2
-20
0
20
60
40
80
100
0
1
2
3
5
4
CURRENT (mA)
TEMPERATURE (°C)
INPUT VOLTAGE (V)
VX ON-RESISTANCE
vs. VCC_ LOAD CURRENT
MAX1600
VY ON-RESISTANCE vs. CURRENT
MAX1603
VY ON-RESISTANCE vs. CURRENT
75
70
TA = +85°C
160
85
TA = +25°C
80
150
VY RON (mΩ)
VY RON (mΩ)
90
60
55
TA = +25°C
50
145
140
45
70
40
65
35
120
30
115
TA = -40°C
200
400
600
800
1000
TA = +25°C
135
75
60
TA = +85°C
155
65
95
6
165
MAX1600/3 TOC-14
TA = +85°C
100
80
MAX1600/3 TOC-13
110
105
0
VY
0.6
0
-40
120 140
VX
0.7
0.1
550
0
VX RON (mΩ)
800
0.8
MAX1600/3 TOC-20
12IN RON (mΩ)
12IN RON (mΩ)
715
0.9
MAX1600/3 TOC-17
900
VX, VY SUPPLY CURRENT (µA)
VPPA
MAX1600/3 TOC-16
720
950
MAX1600/3 TOC-15
725
VX, VY SUPPLY CURRENT
vs. INPUT VOLTAGE
12IN_ ON-RESISTANCE vs. TEMPERATURE
12IN_ ON-RESISTANCE vs. CURRENT
130
TA = -40°C
0
200
400
600
800
125
1000
CURRENT (mA)
VCC_ LOAD CURRENT (mA)
TA = -40°C
0
200
400
600
800
1000
CURRENT (mA)
Pin Description
PIN
NAME
1
GND
FUNCTION
2
A1VPP
Channel A VPP Control Input. See Logic Truth Tables.
3
A0VPP
Channel A VPP Control Input. See Logic Truth Tables.
4
12INA
+12V Supply Voltage Input, internally connects to channel A VPP switch. Tie to VPPA if not used.
5
VPPA
Channel A VPP Output
6, 8, 10
VX
7, 22, 24
VCCA
Channel A VCC Outputs
9, 18, 20
VCCB
Channel B VCC Outputs
11
VPPB
Channel B VPP Output
12
12INB
+12V Supply Voltage Input, internally connects to channel B VPP switch. Tie to VPPB if not used.
Ground
VX Supply Voltage Inputs. VX pins must be connected to one another. Input range is +3V to
+5.5V. VX is normally connected to 5V.
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
7
MAX1600/MAX1603
_____________________________Typical Operating Characteristics (continued)
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
MAX1600/MAX1603
Pin Description (continued)
PIN
NAME
FUNCTION
13
B0VPP
Channel B VPP Control Input. See Logic Truth Tables.
14
B1VPP
Channel B VPP Control Input. See Logic Truth Tables.
15
B0VCC
Channel B VCC Control Input. See Logic Truth Tables.
16
B1VCC
Channel B VCC Control Input. See Logic Truth Tables.
17
FAULT
Fault-Detection Output. FAULT goes low during current limit, undervoltage lockout, or thermal
limit. FAULT is an open-drain output that requires an external pull-up resistor.
19, 21, 23
VY
VY Supply Voltage Inputs. VY pins must be connected to one another. Input range is +3V to +5.5V.
VY is normally connected to 3.3V.
25
CODE
Three-Level Code-Select Input. See Logic Truth Tables.
Low = Standard “Intel” code
High = “Cirrus” code
Mid-supply = “Databook” code (Figure 6)
26
A1VCC
Channel A VCC Control Input. See Logic Truth Tables.
27
A0VCC
Channel A VCC Control Input. See Logic Truth Tables.
28
VL
Logic Supply-Voltage Input. Connect to the +3.3V or +5V host system supply. VL can be supplied
via the output of a CMOS-logic gate to produce an overriding shutdown. When used as a
shutdown input, VL should have a 1kΩ series resistor with a 0.1µF capacitor to ground (Figure 2).
Note that VL must be greater than undervoltage lockout for any switches to be turned on.
Logic Truth Tables
Table 1. Standard “Intel” Code (82365SL),
CODE = GND
_0VPP
VCC_
VPP_
MODE
_0VPP
VCC_
VPP_
MODE
0
0
0
0
GND
GND
STBY
0
0
0
0
High-Z
High-Z
STBY
0
0
0
1
GND
GND
STBY
0
0
0
1
High-Z
High-Z
STBY
0
0
1
0
GND
GND
STBY
0
0
1
0
High-Z
High-Z
STBY
0
0
1
1
GND
GND
STBY
0
0
1
1
High-Z
High-Z
STBY
0
1
0
0
VY
GND
ACTIVE
0
1
0
0
VX
GND
ACTIVE
0
1
0
1
VY
VCC_
ACTIVE
0
1
0
1
VX
VCC_
ACTIVE
0
1
1
0
VY
12IN
ACTIVE
0
1
1
0
VX
12IN
ACTIVE
0
1
1
1
VY
High-Z ACTIVE
0
1
1
1
VX
1
0
0
0
VX
GND
ACTIVE
1
0
0
0
VY
GND
ACTIVE
1
0
0
1
VX
VCC_
ACTIVE
1
0
0
1
VY
VCC_
ACTIVE
1
0
1
0
VX
12IN
ACTIVE
1
0
1
0
VY
12IN
ACTIVE
1
0
1
1
VX
High-Z ACTIVE
1
0
1
1
VY
1
1
0
0
VY
GND
ACTIVE
1
1
0
0
GND
GND
STBY
1
1
0
1
VY
VCC_
ACTIVE
1
1
0
1
GND
GND
STBY
1
1
1
0
VY
12IN
ACTIVE
1
1
1
0
GND
GND
STBY
1
1
1
1
VY
High-Z ACTIVE
1
1
1
1
GND
GND
STBY
_1VCC _0VCC _1VPP
STBY = Standby Mode
8
Table 2. “Cirrus” Code,
CODE = High (VL)
_1VCC _0VCC _1VPP
STBY = Standby Mode
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
High-Z ACTIVE
High-Z ACTIVE
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
Detailed Description
The MAX1600/MAX1603 power-switching ICs contain a
network of low-resistance MOSFET switches that deliver
selectable VCC and VPP voltages to two CardBus or
PC Card host sockets. The MAX1600/MAX1603 differ
only in the VY switch on-resistance. Figure 1 is the
detailed block diagram.
Table 3. “Databook” Code,
CODE = Mid-Supply (VL/2)
_1VCC _0VCC _1VPP
_0VPP
VCC_
VPP_
MODE
0
0
0
X
GND
High-Z
STBY
0
0
1
X
VY
12IN
ACTIVE
0
1
0
X
GND
GND
STBY
0
1
1
X
VX
12IN
ACTIVE
1
0
0
X
VY
VCC_
ACTIVE
1
0
1
X
VY
GND
ACTIVE
1
1
0
X
VX
VCC_
ACTIVE
1
1
1
X
VX
GND
ACTIVE
STBY = Standby Mode
The power-input pins (VY, VX, 12IN_) are completely
independent. Low inrush current is guaranteed by controlled switch rise times. VCC’s 100µs minimum output
rise time is 100% tested with a 1µF capacitive load, and
VPP’s 1ms minimum rise time is guaranteed with a 0.1µF
load. These respective capacitive loads are chosen as
worst-case card-insertion parameters. The internal
switching control allows VCC and VPP rise times to be
X = Don’t Care
VB12
12IN
VPPA
1/2 MAX1600
1/2 MAX1603
CHARGE
PUMP
CURRENT
LIMIT
3Ω
40Ω
VB3 0.08Ω*
VY
VY
CHARGE
PUMP
VCCA
CURRENT
LIMIT
VCCA
VCCA
VX
VB5
0.14Ω
20Ω
VX
CHARGE
PUMP
CURRENT
LIMIT
FAULT
CONTROL
INPUTS
DECODE
LOGIC
AND UVLO
SHDN
VDD
VL
THERMAL
SHUTDOWN
GND
* 0.24Ω FOR THE MAX1603
Figure 1. Detailed Block Diagram (one channel of two)
_______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
9
MAX1600/MAX1603
Logic Truth Tables (cont.)
MAX1600/MAX1603
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
controlled, and makes them nearly independent of resistive and capacitive loads (see rise-time photos in the
Typical Operating Characteristics ). Fall times are a
function of loading, and are compensated by internal
circuitry.
Power savings is automatic: internal charge pumps draw
very low current when the VCC switches are static.
Standby mode reduces switch supply current to 1µA.
Driving the VL pin low with an external logic gate (master
shutdown) reduces total supply current to1µA (Figure 2).
Operating Modes
The MAX1600/MAX1603 are compatible with the Cirrus
CL-PD67XX, Databook DB86184, and Intel 82365SL PC
Card Interface Controllers (PCIC). Eight control inputs
select the internal switches’ positions and the operating
modes according to the input code. Select the proper
code format for the chosen controller with the CODE
input pin (see Pin Description and Tables 1, 2, and 3).
CODE reconfigures the logic decoder to one of three
interface controllers:
Low = Standard “Intel” code (Figure 5)
High = “Cirrus” code (Figure 4)
Midsupply = “Databook” code (Figure 6)
An additional 1µA (3µA max) of VL supply current will
flow if CODE = midsupply (VL / 2).
The MAX1600/MAX1603 have three operating modes:
normal, standby, and shutdown. Normal mode supplies
the selected outputs with their appropriate supply voltages. Standby mode places all switches at ground,
high impedance, or a combination of the two. Shutdown
mode turns all switches off, and puts the VCC and VPP
outputs into a high-impedance state. Pull VL low to
enter shutdown mode. To ensure a 0.05V/µs fall rate on
VL, use a 1kΩ series resistor and a 0.1µF capacitor to
ground (Figure 2).
Overcurrent Protection
Peak detecting circuitry protects both the VCC and VPP
switches against overcurrent conditions. When current
through any switch exceeds the internal current limit
(4A for VCC switches and 200mA for VPP switches) the
switch turns off briefly, then turns on again at the controlled rise rate. If the overcurrent condition lasts more
than 2µs, the FAULT output goes low. FAULT is not
latched. A continuous short-circuit condition results in a
pulsed output current and a pulsed FAULT output until
thermal shutdown is reached. FAULT is open-drain and
requires an external pull-up resistor.
Thermal Shutdown
If the IC junction temperature rises above +150°C, the
thermal shutdown circuitry opens all switches, including
the GND switches, and FAULT is pulled low. When the
temperature falls below +130°C, the switches turn on
again at the controlled rise rate. If the overcurrent condition remains, the part cycles between thermal shutdown and overcurrent.
Undervoltage Lockout
If the VX or VY switch input voltage drops below 1.5V,
the associated switch turns off and FAULT goes low.
For example, if VY is 3.3V and VX is 0V, and if the interface controller selects VY, the VCCA output will be
3.3V. If VX is selected, VCCA changes to a high-impedance output and FAULT goes low.
When a voltage is initially applied to 12IN_, it must be
greater than 8V to allow the switch to operate.
Operation continues until the voltage falls below 2V (the
VPP output is high impedance).
When VL drops to less than 2.3V, all switches are
turned off and the VCC and VPP outputs are high
impedance.
3.3V
VY
1k
VL
74HC04
0.1µF
VPPA
VL
VCCA
TO
SOCKETS
A AND B
MAX1600
MAX1603
+5V
VX
MAX1600
MAX1603
VPPB
VCCB
Figure 2. Master Shutdown Circuit
10
VY
Figure 3. Applying Power to the VL Input
______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
MAX1600/MAX1603
N.C.
VL
CODE
FAULT
3IN
5IN
12IN
MAIN +3.3V
+5V
POWER
SUPPLY +12V
VPPA
17
51
VCCA
0.1µF
0.1µF
VPP1
VPP2
VCC1
VCC2
MAX1600
MAX1603
SOCKET
A
VPPB
0.1µF 0.1µF 0.1µF
VCCB
0.1µF
B0VPP
B1VPP
B1VCC
B0VCC
A0VPP
A1VPP
A1VCC
A0VCC
INTERFACE
CARD DETECT
0.1µF
GND
43
HOST I/O
CONTROLLER
B_VPP_VCC
B_VPP_PGM
B_-VCC_5
B_-VCC_3
A_VPP_VCC
A_VPP_PGM
A_-VCC_5
A_-VCC_3
ISA_VCC
+5V
VDD
VDD
CIRRUS LOGIC
CL-PD6720
CL-PD6722
CL-PD6729
ISA/PCI
INTERFACE
ISA/PCI IBUS
VIDEO
CONTROLLER
A_SLOT_VCC
PCMCIA A
INTERFACE
(~ 60)
(2)
A_-CD [2:1]
A_5V_DET
B_SLOT_VCC
PCMCIA B
INTERFACE
B_VPP_VALID
N.C.
N.C.
VPP1
VPP2
VCC1
VCC2
SOCKET
B
(~ 60)
INTERFACE
CARD DETECT
43
3V CARD
DETECT
(2)
B_-CD [2:1]
B_5V_DET
A_VPP_VALID
17
51
3V CARD
DETECT
GND
Figure 4. Application with Cirrus Logic Interface
Applications Information
TO SOCKETS A AND B
VCC
Supply Bypassing
Bypass the VY, VX, and 12IN_ inputs with ceramic 0.1µF
capacitors. Bypass the VCC_ and VPP_ outputs with a
0.1µF capacitor for noise reduction and ESD protection.
Power-Up
Apply power to the VL input before any of the switch
inputs. If VX, VY, or 12IN receive power before VL rises
above 2.8V, the supply current may be artificially high
(about 5mA). When the voltage on VL is greater than
2.8V, the part consumes its specified 24µA. To avoid
power sequencing, diode-OR VX and VY to VL through
a 1kΩ resistor (Figure 3). Take care not to allow VL to
drop below the 2.8V maximum undervoltage lockout
threshold.
VPPA VCCA VPPB VCCB
+3.3V
VL
VY
+5V
VX
+12V
12IN
CODE
MAX1600
MAX1603 B0VPP
GND
B1VPP
B0VCC
B1VCC
A0VPP
A1VPP
A0VCC
A1VCC
SOCKET
INTERFACE
82365SL DF
B: VPP_ENO
B: VPP_EN1
B: VCC_ENO
B: VCC_EN1
A: VPP_ENO
A: VPP_EN1
A: VCC_ENO
A: VCC_EN1
TO
SOCKETS
A AND B
ISA
BUS
SOCKET B
Figure 5. Application with Intel Interface
______________________________________________________________________________________
Powered by ICminer.com Electronic-Library Service CopyRight 2003
11
MAX1600/MAX1603
Dual-Channel CardBus and PCMCIA VCC/VPP
Power-Switching Networks
__________________Pin Configuration
TO SOCKETS A AND B
VPPA VCCA VPPB VCCB
+3.3V
+5V
VL
VY
MAX1600
MAX1603 B0VPP
VX
1M
+12V
12IN
CODE
GND
B1VPP
B0VCC
B1VCC
A0VPP
A1VPP
A0VCC
A1VCC
VCC
TOP VIEW
SOCKET
INTERFACE
GND 1
DB87144
B:_VCTL1
B:_VCTL2
B:_VCTL0
TO
SOCKETS
A AND B
A:_VCTL1
A:_VCTL2
A:_VCTL0
28 VL
A1VPP 2
27 A0VCC
A0VPP 3
26 A1VCC
12INA 4
25 CODE
VPPA 5
VX 6
MAX1600
MAX1603
VCCA 7
NOTE: A0VPP AND B0VPP, PINS 3 AND 13
ON THE MAX1600, ARE TIED TO GND.
Figure 6. Block Diagram of the Databook DB87144 PCI to
CardBus Controller Interface to the MAX1600.
___________________Chip Information
TRANSISTOR COUNT: 4372
23 VY
22 VCCA
21 VY
VX 8
1M
24 VCCA
VCCB 9
20 VCCB
VX 10
19 VY
VPPB 11
18 VCCB
12INB 12
17 FAULT
B0VPP 13
16 B1VCC
B1VPP 14
15 B0VCC
SSOP
SSOP.EPS
________________________________________________________Package Information
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1998 Maxim Integrated Products
Printed USA
Powered by ICminer.com Electronic-Library Service CopyRight 2003
is a registered trademark of Maxim Integrated Products.