19-4752; Rev 3; 5/98 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks Other key features include guaranteed specifications for output current limit level, and guaranteed specifications for output rise/fall times (in compliance with PCMCIA specifications). Reliability is enhanced by thermal-overload protection, accurate current limiting, an overcurrent-fault flag output, and undervoltage lockout. The CMOS/TTL-logic interface is flexible, and can tolerate logic input levels in excess of the positive supply rail. The MAX1600 and MAX1603 are identical, except for the MAX1603’s VY switch on-resistance (typically 140mΩ). The MAX1600/MAX1603 fit two complete CardBus/ PCMCIA switches into a space-saving, narrow (0.2in. or 5mm wide) SSOP package. ____________________________Features ♦ Supports Two PC Card/CardBus Sockets ♦ 1A, 0.08Ω Max 3.3V VCC Switch (MAX1600 only) 1A, 0.14Ω Max 5V VCC Switch ♦ Soft Switching for Low Inrush Surge Current ♦ Overcurrent Protection ♦ Overcurrent/Thermal-Fault Flag Output ♦ Thermal Shutdown at Tj = +150°C ♦ Independent Internal Charge Pumps ♦ Break-Before-Make Switching Action ♦ 10µA Max Standby Supply Current ♦ 5V and 12V Not Required for Low-RDS(ON) 3.3V Switching ♦ Complies with PCMCIA 3V/5V Switching Specifications ♦ Super-Small 28-Pin SSOP Package (0.2in. or 5mm wide) ♦ Code Compatible with: Cirrus CL-PD67XX Family Databook DB86184 Intel 82365SL (industry-standard coding) Simplified Block Diagram VPPA 12IN MAX1600/MAX1603 VY VCCA VY VX ________________________Applications Desktop Computers Data Loggers Notebook Computers Docking Stations Handy-Terminals PCMCIA Read/Write Drives Ordering Information PART TEMP. RANGE PIN-PACKAGE MAX1600EAI -40°C to +85°C 28 SSOP MAX1603EAI -40°C to +85°C 28 SSOP VCCA VX VL VCCA VDD DECODE LOGIC CONTROL INPUTS CODE SELECT GND OVERCURRENT AND THERMAL SHUTDOWN FAULT CODE VPPB 12IN VY VCCB VCCB VX VCCB Pin Configuration appears on last page. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468. Powered by ICminer.com Electronic-Library Service CopyRight 2003 MAX1600/MAX1603 General Description The MAX1600/MAX1603 DC power-switching ICs contain a network of low-resistance MOSFET switches that deliver selectable VCC and VPP voltages to two CardBus or PC Card host sockets. Key features include ultra-low-resistance switches, small packaging, softswitching action, and compliance with PCMCIA specifications for 3V/5V switching. 3.3V-only power switching for fast, 32-bit CardBus applications is supported in two ways: stiff, low-resistance 3.3V switches allow high 3.3V load currents (up to 1A); and completely independent internal charge pumps let the 3.3V switch operate normally, even if the +5V and +12V supplies are disconnected or turned off to conserve power. The internal charge pumps are regulating types that draw reduced input current when the VCC switches are static. Also, power consumption is automatically reduced to 10µA max when the control logic inputs are programmed to high-Z or GND states, unlike other solutions that may require a separate shutdown-control input. MAX1600/MAX1603 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks ABSOLUTE MAXIMUM RATINGS Inputs/Outputs to GND (VL, VX, VY, VCCA, VCCB) (Note 1)........................-0.3V, +6V VPP Inputs/Outputs to GND (12INA, 12INB, VPPA, VPPB) (Note 1) ..................-0.3V, +15V Logic Inputs to GND (A0VCC, A1VCC, B0VCC, B1VCC, A0VPP, A1VPP, B0VPP, B1VPP) (Note 1) ...............-0.3V, +6V CODE Input to GND.........................................-0.3V, (VL + 0.3V) VCCA, VCCB Output Current (Note 2).....................................4A VPPA, VPPB Output Current (Note 2) ...............................250mA VCCA, VCCB Short Circuit to GND ............................Continuous VPPA, VPPB Short Circuit to GND..............................Continuous Continuous Power Dissipation (TA = +70°C) SSOP (derate 9.52mW/°C above +70°C) ....................762mW Operating Temperature Range MAX160_EAI/MAX1603EAI..............................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Note 1: There are no parasitic diodes between any of these pins, so there are no power-up sequencing restrictions (for example, logic input signals can be applied even if all of the supply voltage inputs are grounded). Note 2: VCC and VPP outputs are internally current limited. See the Electrical Characteristics. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER CONDITIONS MIN TYP MAX 5.5 13 2.8 UNITS POWER-SUPPLY SECTION Input Voltage Range Undervoltage Lockout Threshold VX, VY or VL 12INA, 12INB VL falling edge 3.0 11 2.4 2.5 12IN falling edge 1.8 3.0 12IN rising edge 5.0 8.0 10.0 VX, VY falling edge 1.4 2.5 2.8 Standby Supply Current VX or VY, all switches 0V or high-Z, control inputs = 0V or VL, TA = +25°C VY Quiescent Supply Current Any combination of VY switches on, control inputs = 0V or VL, no VCC loads VX Quiescent Supply Current Any combination of VX switches on, control inputs = 0V or high-Z, no VCC loads 12IN_ Standby Supply Current 12INA tied to 12INB, all switches 0V or high-Z, control inputs = 0V or VL, TA = +25°C 12IN_ Quiescent Supply Current 12INA tied to 12INB, VPPA and VPPB 12V switches on, control inputs = 0V or VL, no VPP loads VL Standby Supply Current V V 1 µA 20 100 µA 20 100 µA 1 µA 15 100 µA All switches 0V or high-Z, control inputs = 0V or VL, TA = +25°C 4 10 µA VL Quiescent Supply Current Any combination of switches on 25 VL Fall Rate When using VL as shutdown pin (Note 3) 150 µA 0.05 V/µs 1 A VCC SWITCHES Operating Output Current Range VCCA or VCCB, VX = VY = 3V to 5.5V On-Resistance, VY Switches 12INA = 12INB = 0V to 13V, VY = 3V, VX = 0V to 5.5V, ISWITCH = 1A, TA = +25°C 0 MAX1600 0.06 0.08 MAX1603 0.14 0.24 0.10 0.14 Ω 4 A On-Resistance, VX Switches 12INA = 12INB = 0V to 13V, VX = 4.5V, VY = 0V to 5.5V, ISWITCH = 1A, TA = +25°C Output Current Limit VCCA or VCCB 2 1.2 _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 Ω Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks MAX1600/MAX1603 ELECTRICAL CHARACTERISTICS (continued) (VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER CONDITIONS MIN TYP Output Sink Current VCCA or VCCB < 0.4V, programmed to 0V state Output Leakage Current VCCA or VCCB forced to 0V, high-Z state, TA = +25°C Output Propagation Delay Plus Rise Time VCCA or VCCB, 0V to VX or VY, CL = 30µF, RL = 25Ω, 50% of input to 90% of output, TA = +25°C Output Rise Time VCCA or VCCB, 0V to VX or VY, CL = 1µF, RL = open circuit, 10% to 90% points, TA = +25°C Output Propagation Delay Plus Fall Time VCCA or VCCB, VX or VY to 0V, CL = 30µF, RL = open circuit, 50% of input to 10% of output, TA = +25°C 60 Output Fall Time VCCA or VCCB, VX or VY to 0V, CL = 1µF, RL = 25Ω, 90% to 10% points 6 MAX 20 mA 2 100 UNITS 10 µA 10 ms 1200 µs 100 ms ms VPP SWITCHES Operating Output Current Range VPPA or VPPB On-Resistance, 12V Switches 12IN = 11.6V, ISWITCH = 100mA, TA = +25°C 0 120 mA 0.70 1 On-Resistance, VPP = VCC Switches Programmed to VX (5V) or VY (3.3V), TA = +25°C Ω 1 3 Ω Output Current Limit VPPA or VPPB, programmed to 12V 130 Output Sink Current VPPA or VPPB < 0.4V, programmed to 0V state 10 200 260 mA Output Leakage Current VPPA or VPPB forced to 0V, high-Z state, TA = +25°C Output Propagation Delay Plus Rise Time VPPA or VPPB, 0V to 12IN_, CL = 0.1µF, 50% of input to 90% of output, TA = +25°C Output Rise Time VPPA or VPPB, 0V to 12IN_, CL = 0.1µF, 10% to 90% points, TA = +25°C Output Propagation Delay Plus Fall Time VPPA or VPPB, 12IN_ to 0V, CL = 0.1µF, 50% of input to 10% of output, TA = +25°C 9 Output Fall Time VPPA or VPPB, 12IN_ to 0V, CL = 0.1µF, 90% to 10% points 1 ms FAULT Signal Propagation Delay VCC_ or VPP_, load step to FAULT output, 50% point to 50% point (Note 3) 1 µs FAULT Output Low Voltage ISINK = 1mA, low state FAULT Output Leakage Current V FAULT = 5.5V, high state Thermal Shutdown Threshold Hysteresis = 20°C (Note 4) Logic Input Low Voltage __VCC, __VPP Logic Input High Voltage __VCC, __VPP Code Input Low Voltage “Intel” code Code Input High Voltage “Cirrus” code Code Input Mid-Level Voltage “Databook” code Logic Input Bias Current __VCC, __VPP, code mA 1.2 100 10 µA 30 ms 800 µs 60 ms INTERFACE AND LOGIC SECTION -0.5 0.4 V 0.5 µA 150 °C 0.6 1.5 0 V V 0.4 V VL - 0.4 VL V 1.2 VL - 1.2 V -1 1 µA _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 3 MAX1600/MAX1603 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks ELECTRICAL CHARACTERISTICS (VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, TA = -40°C to +85°C, unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS POWER-SUPPLY SECTION Input Voltage Range Undervoltage Lockout Threshold VX, VY or VL 12INA, 12INB VL falling edge, hysteresis = 1% 3.0 11 2.3 12IN falling edge 1.8 12IN rising edge 5 10 1.4 2.9 VX, VY falling edge 5.5 13 2.9 V V Standby Supply Current VX or VY, all switches 0V or high-Z, control inputs = 0V or VL, TA = TMIN to TMAX 15 µA VY Quiescent Supply Current Any combination of VY switches on, control inputs = 0V or VL, no VCC loads 100 µA VX Quiescent Supply Current Any combination of VX switches on, control inputs = 0V or high-Z, no VCC loads 100 µA 12IN_ Standby Supply Current 12INA tied to 12INB, all switches 0V or high-Z, control inputs = 0V or VL 15 µA 12IN_ Quiescent Supply Current 12INA tied to 12INB, VPPA and VPB 12V switches on, control inputs = 0V or VL, no VPP loads 100 µA VL Standby Supply Current All switches 0V or high-Z, control inputs = 0V or VL 15 µA VL Quiescent Supply Current Any combination of switches on 150 µA FAULT Output Low Voltage Logic Input Low Voltage ISINK = 1mA, low state 0.4 V __VCC, __VPP 0.6 V Logic Input High Voltage __VCC, __VPP 1.6 V Note 3: Not production tested. Note 4: Thermal limit not active in standby state (all switches programmed to GND or high-Z state). __________________________________________Typical Operating Characteristics (VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.) MAX1600/3 TOC-01 6 VCC_ (V) 4 3 VCC_ (V) 2 2 1 0 0 CONTROL 5 INPUT 0 (V) CONTROL 5 INPUT 0 (V) 200µs/div CL = 30µF, RL = 25Ω 4 MAX1600/3 TOC-02 VCC_ SWITCHING (RISE) VCC_ SWITCHING (RISE) CL = 1µF, RL = ∞ 500µs/div _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks (VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.) MAX1600/3 TOC-03 6 4 6 4 VCC_ (V) 2 2 0 0 CONTROL 5 INPUT 0 (V) CONTROL 5 INPUT 0 (V) 10ms/div 10ms/div CL = 1µF, RL = 25Ω VPP_ SWITCHING (RISE) MAX1600/3 TOC-05 VPP_ SWITCHING (FALL) 15 10 VPP_ (V) 15 10 VPP_ (V) 5 5 0 0 CONTROL 5 INPUT 0 (V) CONTROL 5 INPUT 0 (V) CL = 0.1µF, RL = ∞ 200µs/div CL = 0.1µF, RL = ∞ VCC_ (V) MAX1600/3 TOC-08 2.0 1.5 IVY (A) 2 2ms/div INPUT CURRENT (VCC OUTPUT SHORTED) VCC_ CURRENT LIMITING 4 MAX1600/3 TOC-06 CL = 33µF, RL = ∞ MAX1600/3 TOC-09 VCC_ (V) MAX1600/3 TOC-04 VCC_ SWITCHING (FALL) VCC_ SWITCHING (FALL) 1.0 0.5 0 0 2ms/div CL = 1µF, RESISTIVE OVERLOAD, RL = 1Ω 1ms/div _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 5 MAX1600/MAX1603 _____________________________Typical Operating Characteristics (continued) _____________________________Typical Operating Characteristics (continued) (VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.) VPP_ CURRENT LIMITING 10 VPP_ (V) MAX1600/3 TOC-11 INPUT CURRENT (VPP OUTPUT SHORTED) MAX1600/3 TOC-10 MAX1600/MAX1603 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks 10 5 VPP_ (V) 5 0 0 300 I12IN_ (mA) 200 100 0 2ms/div 100µs/div CL = 1µF, RL = 50Ω RL = 0.1Ω MAX1600/3 TOC-12 VCC_ SHUTDOWN RESPONSE 4 VL (V) 2 0 4 VCC_ (V) 2 0 100µs/div CIRCUIT OF FIGURE 2 12IN SUPPLY CURRENT vs. INPUT VOLTAGE 5 4 3 2 1 VX = VY = 0V 12IN 60 50 NORMAL OPERATION 40 30 20 10 0 SHUTDOWN 0 0 2 4 6 8 10 12 INPUT VOLTAGE (V) 6 MAX1600/3 TOC-19 12IN SUPPLY CURRENT (µA) 6 70 VL SUPPLY CURRENT (µA) MAX1600/3 TOC-18 7 VL SUPPLY CURRENT vs. VL INPUT VOLTAGE 0 1 2 3 4 5 INPUT VOLTAGE (V) _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 6 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks (VL = VY = 3.3V, VX = 5V = 12IN, TA = +25°C, unless otherwise noted.) 850 710 705 VPPB 700 750 700 695 650 690 600 685 20 40 60 80 100 0.5 0.4 0.3 0.2 -20 0 20 60 40 80 100 0 1 2 3 5 4 CURRENT (mA) TEMPERATURE (°C) INPUT VOLTAGE (V) VX ON-RESISTANCE vs. VCC_ LOAD CURRENT MAX1600 VY ON-RESISTANCE vs. CURRENT MAX1603 VY ON-RESISTANCE vs. CURRENT 75 70 TA = +85°C 160 85 TA = +25°C 80 150 VY RON (mΩ) VY RON (mΩ) 90 60 55 TA = +25°C 50 145 140 45 70 40 65 35 120 30 115 TA = -40°C 200 400 600 800 1000 TA = +25°C 135 75 60 TA = +85°C 155 65 95 6 165 MAX1600/3 TOC-14 TA = +85°C 100 80 MAX1600/3 TOC-13 110 105 0 VY 0.6 0 -40 120 140 VX 0.7 0.1 550 0 VX RON (mΩ) 800 0.8 MAX1600/3 TOC-20 12IN RON (mΩ) 12IN RON (mΩ) 715 0.9 MAX1600/3 TOC-17 900 VX, VY SUPPLY CURRENT (µA) VPPA MAX1600/3 TOC-16 720 950 MAX1600/3 TOC-15 725 VX, VY SUPPLY CURRENT vs. INPUT VOLTAGE 12IN_ ON-RESISTANCE vs. TEMPERATURE 12IN_ ON-RESISTANCE vs. CURRENT 130 TA = -40°C 0 200 400 600 800 125 1000 CURRENT (mA) VCC_ LOAD CURRENT (mA) TA = -40°C 0 200 400 600 800 1000 CURRENT (mA) Pin Description PIN NAME 1 GND FUNCTION 2 A1VPP Channel A VPP Control Input. See Logic Truth Tables. 3 A0VPP Channel A VPP Control Input. See Logic Truth Tables. 4 12INA +12V Supply Voltage Input, internally connects to channel A VPP switch. Tie to VPPA if not used. 5 VPPA Channel A VPP Output 6, 8, 10 VX 7, 22, 24 VCCA Channel A VCC Outputs 9, 18, 20 VCCB Channel B VCC Outputs 11 VPPB Channel B VPP Output 12 12INB +12V Supply Voltage Input, internally connects to channel B VPP switch. Tie to VPPB if not used. Ground VX Supply Voltage Inputs. VX pins must be connected to one another. Input range is +3V to +5.5V. VX is normally connected to 5V. _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 7 MAX1600/MAX1603 _____________________________Typical Operating Characteristics (continued) Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks MAX1600/MAX1603 Pin Description (continued) PIN NAME FUNCTION 13 B0VPP Channel B VPP Control Input. See Logic Truth Tables. 14 B1VPP Channel B VPP Control Input. See Logic Truth Tables. 15 B0VCC Channel B VCC Control Input. See Logic Truth Tables. 16 B1VCC Channel B VCC Control Input. See Logic Truth Tables. 17 FAULT Fault-Detection Output. FAULT goes low during current limit, undervoltage lockout, or thermal limit. FAULT is an open-drain output that requires an external pull-up resistor. 19, 21, 23 VY VY Supply Voltage Inputs. VY pins must be connected to one another. Input range is +3V to +5.5V. VY is normally connected to 3.3V. 25 CODE Three-Level Code-Select Input. See Logic Truth Tables. Low = Standard “Intel” code High = “Cirrus” code Mid-supply = “Databook” code (Figure 6) 26 A1VCC Channel A VCC Control Input. See Logic Truth Tables. 27 A0VCC Channel A VCC Control Input. See Logic Truth Tables. 28 VL Logic Supply-Voltage Input. Connect to the +3.3V or +5V host system supply. VL can be supplied via the output of a CMOS-logic gate to produce an overriding shutdown. When used as a shutdown input, VL should have a 1kΩ series resistor with a 0.1µF capacitor to ground (Figure 2). Note that VL must be greater than undervoltage lockout for any switches to be turned on. Logic Truth Tables Table 1. Standard “Intel” Code (82365SL), CODE = GND _0VPP VCC_ VPP_ MODE _0VPP VCC_ VPP_ MODE 0 0 0 0 GND GND STBY 0 0 0 0 High-Z High-Z STBY 0 0 0 1 GND GND STBY 0 0 0 1 High-Z High-Z STBY 0 0 1 0 GND GND STBY 0 0 1 0 High-Z High-Z STBY 0 0 1 1 GND GND STBY 0 0 1 1 High-Z High-Z STBY 0 1 0 0 VY GND ACTIVE 0 1 0 0 VX GND ACTIVE 0 1 0 1 VY VCC_ ACTIVE 0 1 0 1 VX VCC_ ACTIVE 0 1 1 0 VY 12IN ACTIVE 0 1 1 0 VX 12IN ACTIVE 0 1 1 1 VY High-Z ACTIVE 0 1 1 1 VX 1 0 0 0 VX GND ACTIVE 1 0 0 0 VY GND ACTIVE 1 0 0 1 VX VCC_ ACTIVE 1 0 0 1 VY VCC_ ACTIVE 1 0 1 0 VX 12IN ACTIVE 1 0 1 0 VY 12IN ACTIVE 1 0 1 1 VX High-Z ACTIVE 1 0 1 1 VY 1 1 0 0 VY GND ACTIVE 1 1 0 0 GND GND STBY 1 1 0 1 VY VCC_ ACTIVE 1 1 0 1 GND GND STBY 1 1 1 0 VY 12IN ACTIVE 1 1 1 0 GND GND STBY 1 1 1 1 VY High-Z ACTIVE 1 1 1 1 GND GND STBY _1VCC _0VCC _1VPP STBY = Standby Mode 8 Table 2. “Cirrus” Code, CODE = High (VL) _1VCC _0VCC _1VPP STBY = Standby Mode _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 High-Z ACTIVE High-Z ACTIVE Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks Detailed Description The MAX1600/MAX1603 power-switching ICs contain a network of low-resistance MOSFET switches that deliver selectable VCC and VPP voltages to two CardBus or PC Card host sockets. The MAX1600/MAX1603 differ only in the VY switch on-resistance. Figure 1 is the detailed block diagram. Table 3. “Databook” Code, CODE = Mid-Supply (VL/2) _1VCC _0VCC _1VPP _0VPP VCC_ VPP_ MODE 0 0 0 X GND High-Z STBY 0 0 1 X VY 12IN ACTIVE 0 1 0 X GND GND STBY 0 1 1 X VX 12IN ACTIVE 1 0 0 X VY VCC_ ACTIVE 1 0 1 X VY GND ACTIVE 1 1 0 X VX VCC_ ACTIVE 1 1 1 X VX GND ACTIVE STBY = Standby Mode The power-input pins (VY, VX, 12IN_) are completely independent. Low inrush current is guaranteed by controlled switch rise times. VCC’s 100µs minimum output rise time is 100% tested with a 1µF capacitive load, and VPP’s 1ms minimum rise time is guaranteed with a 0.1µF load. These respective capacitive loads are chosen as worst-case card-insertion parameters. The internal switching control allows VCC and VPP rise times to be X = Don’t Care VB12 12IN VPPA 1/2 MAX1600 1/2 MAX1603 CHARGE PUMP CURRENT LIMIT 3Ω 40Ω VB3 0.08Ω* VY VY CHARGE PUMP VCCA CURRENT LIMIT VCCA VCCA VX VB5 0.14Ω 20Ω VX CHARGE PUMP CURRENT LIMIT FAULT CONTROL INPUTS DECODE LOGIC AND UVLO SHDN VDD VL THERMAL SHUTDOWN GND * 0.24Ω FOR THE MAX1603 Figure 1. Detailed Block Diagram (one channel of two) _______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 9 MAX1600/MAX1603 Logic Truth Tables (cont.) MAX1600/MAX1603 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks controlled, and makes them nearly independent of resistive and capacitive loads (see rise-time photos in the Typical Operating Characteristics ). Fall times are a function of loading, and are compensated by internal circuitry. Power savings is automatic: internal charge pumps draw very low current when the VCC switches are static. Standby mode reduces switch supply current to 1µA. Driving the VL pin low with an external logic gate (master shutdown) reduces total supply current to1µA (Figure 2). Operating Modes The MAX1600/MAX1603 are compatible with the Cirrus CL-PD67XX, Databook DB86184, and Intel 82365SL PC Card Interface Controllers (PCIC). Eight control inputs select the internal switches’ positions and the operating modes according to the input code. Select the proper code format for the chosen controller with the CODE input pin (see Pin Description and Tables 1, 2, and 3). CODE reconfigures the logic decoder to one of three interface controllers: Low = Standard “Intel” code (Figure 5) High = “Cirrus” code (Figure 4) Midsupply = “Databook” code (Figure 6) An additional 1µA (3µA max) of VL supply current will flow if CODE = midsupply (VL / 2). The MAX1600/MAX1603 have three operating modes: normal, standby, and shutdown. Normal mode supplies the selected outputs with their appropriate supply voltages. Standby mode places all switches at ground, high impedance, or a combination of the two. Shutdown mode turns all switches off, and puts the VCC and VPP outputs into a high-impedance state. Pull VL low to enter shutdown mode. To ensure a 0.05V/µs fall rate on VL, use a 1kΩ series resistor and a 0.1µF capacitor to ground (Figure 2). Overcurrent Protection Peak detecting circuitry protects both the VCC and VPP switches against overcurrent conditions. When current through any switch exceeds the internal current limit (4A for VCC switches and 200mA for VPP switches) the switch turns off briefly, then turns on again at the controlled rise rate. If the overcurrent condition lasts more than 2µs, the FAULT output goes low. FAULT is not latched. A continuous short-circuit condition results in a pulsed output current and a pulsed FAULT output until thermal shutdown is reached. FAULT is open-drain and requires an external pull-up resistor. Thermal Shutdown If the IC junction temperature rises above +150°C, the thermal shutdown circuitry opens all switches, including the GND switches, and FAULT is pulled low. When the temperature falls below +130°C, the switches turn on again at the controlled rise rate. If the overcurrent condition remains, the part cycles between thermal shutdown and overcurrent. Undervoltage Lockout If the VX or VY switch input voltage drops below 1.5V, the associated switch turns off and FAULT goes low. For example, if VY is 3.3V and VX is 0V, and if the interface controller selects VY, the VCCA output will be 3.3V. If VX is selected, VCCA changes to a high-impedance output and FAULT goes low. When a voltage is initially applied to 12IN_, it must be greater than 8V to allow the switch to operate. Operation continues until the voltage falls below 2V (the VPP output is high impedance). When VL drops to less than 2.3V, all switches are turned off and the VCC and VPP outputs are high impedance. 3.3V VY 1k VL 74HC04 0.1µF VPPA VL VCCA TO SOCKETS A AND B MAX1600 MAX1603 +5V VX MAX1600 MAX1603 VPPB VCCB Figure 2. Master Shutdown Circuit 10 VY Figure 3. Applying Power to the VL Input ______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks MAX1600/MAX1603 N.C. VL CODE FAULT 3IN 5IN 12IN MAIN +3.3V +5V POWER SUPPLY +12V VPPA 17 51 VCCA 0.1µF 0.1µF VPP1 VPP2 VCC1 VCC2 MAX1600 MAX1603 SOCKET A VPPB 0.1µF 0.1µF 0.1µF VCCB 0.1µF B0VPP B1VPP B1VCC B0VCC A0VPP A1VPP A1VCC A0VCC INTERFACE CARD DETECT 0.1µF GND 43 HOST I/O CONTROLLER B_VPP_VCC B_VPP_PGM B_-VCC_5 B_-VCC_3 A_VPP_VCC A_VPP_PGM A_-VCC_5 A_-VCC_3 ISA_VCC +5V VDD VDD CIRRUS LOGIC CL-PD6720 CL-PD6722 CL-PD6729 ISA/PCI INTERFACE ISA/PCI IBUS VIDEO CONTROLLER A_SLOT_VCC PCMCIA A INTERFACE (~ 60) (2) A_-CD [2:1] A_5V_DET B_SLOT_VCC PCMCIA B INTERFACE B_VPP_VALID N.C. N.C. VPP1 VPP2 VCC1 VCC2 SOCKET B (~ 60) INTERFACE CARD DETECT 43 3V CARD DETECT (2) B_-CD [2:1] B_5V_DET A_VPP_VALID 17 51 3V CARD DETECT GND Figure 4. Application with Cirrus Logic Interface Applications Information TO SOCKETS A AND B VCC Supply Bypassing Bypass the VY, VX, and 12IN_ inputs with ceramic 0.1µF capacitors. Bypass the VCC_ and VPP_ outputs with a 0.1µF capacitor for noise reduction and ESD protection. Power-Up Apply power to the VL input before any of the switch inputs. If VX, VY, or 12IN receive power before VL rises above 2.8V, the supply current may be artificially high (about 5mA). When the voltage on VL is greater than 2.8V, the part consumes its specified 24µA. To avoid power sequencing, diode-OR VX and VY to VL through a 1kΩ resistor (Figure 3). Take care not to allow VL to drop below the 2.8V maximum undervoltage lockout threshold. VPPA VCCA VPPB VCCB +3.3V VL VY +5V VX +12V 12IN CODE MAX1600 MAX1603 B0VPP GND B1VPP B0VCC B1VCC A0VPP A1VPP A0VCC A1VCC SOCKET INTERFACE 82365SL DF B: VPP_ENO B: VPP_EN1 B: VCC_ENO B: VCC_EN1 A: VPP_ENO A: VPP_EN1 A: VCC_ENO A: VCC_EN1 TO SOCKETS A AND B ISA BUS SOCKET B Figure 5. Application with Intel Interface ______________________________________________________________________________________ Powered by ICminer.com Electronic-Library Service CopyRight 2003 11 MAX1600/MAX1603 Dual-Channel CardBus and PCMCIA VCC/VPP Power-Switching Networks __________________Pin Configuration TO SOCKETS A AND B VPPA VCCA VPPB VCCB +3.3V +5V VL VY MAX1600 MAX1603 B0VPP VX 1M +12V 12IN CODE GND B1VPP B0VCC B1VCC A0VPP A1VPP A0VCC A1VCC VCC TOP VIEW SOCKET INTERFACE GND 1 DB87144 B:_VCTL1 B:_VCTL2 B:_VCTL0 TO SOCKETS A AND B A:_VCTL1 A:_VCTL2 A:_VCTL0 28 VL A1VPP 2 27 A0VCC A0VPP 3 26 A1VCC 12INA 4 25 CODE VPPA 5 VX 6 MAX1600 MAX1603 VCCA 7 NOTE: A0VPP AND B0VPP, PINS 3 AND 13 ON THE MAX1600, ARE TIED TO GND. Figure 6. Block Diagram of the Databook DB87144 PCI to CardBus Controller Interface to the MAX1600. ___________________Chip Information TRANSISTOR COUNT: 4372 23 VY 22 VCCA 21 VY VX 8 1M 24 VCCA VCCB 9 20 VCCB VX 10 19 VY VPPB 11 18 VCCB 12INB 12 17 FAULT B0VPP 13 16 B1VCC B1VPP 14 15 B0VCC SSOP SSOP.EPS ________________________________________________________Package Information Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1998 Maxim Integrated Products Printed USA Powered by ICminer.com Electronic-Library Service CopyRight 2003 is a registered trademark of Maxim Integrated Products.