PHILIPS TDA8751T

INTEGRATED CIRCUITS
DATA SHEET
TDA8051
QPSK receiver
Product specification
Supersedes data of 1998 Jan 08
File under Integrated Circuits, IC02
1999 Aug 20
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
FEATURES
GENERAL DESCRIPTION
• High operating input sensitivity
This TDA8051 is a monolithic bipolar IC intended for
Quadrature Phase Shift Key (QPSK) demodulation. It
includes:
• Gain controlled amplifier
• PLL controlled carrier frequency
• Low noise RF and gain controlled amplifier
• Low crosstalk between I and Q channel outputs
• Two matched mixers
• 3-wire transmission bus
• Symmetrical Voltage Controlled Oscillator (VCO) with
0 to 90° signal generator whose frequency is controlled
by an integrated Phase Lock Loop (PLL) circuit.
• 5 V supply voltage.
• Two matched amplifiers for output base-band active
filtering and output buffers
APPLICATIONS
• BPSK/QPSK demodulation.
The gain control is produced by output level detection
compared with an external pre-fixed reference. The PLL
consists of:
• Divide by four preamplifier
• 12-bit programmable main divider
• Crystal oscillator with 8-bit programmable reference
divider
• Phase/frequency detector combined with charge pump
to drive tuning amplifier
• 30 V output
QUICK REFERENCE DATA
All AC units are RMS values unless otherwise specified.
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage range
4.75
5.00
5.25
V
fI(LNA)
input carrier frequency at LNA input
44
−
130
MHz
VI(LNA)
input level at LNA input
−30
−
0
dBmV
∆ΦI-Q
phase error between I and Q channels
−
±3
−
deg
∆GI-Q
gain error between I and Q channels
−
±1
−
dB
αCT(I-Q)
crosstalk between I and Q channels
−
−30
−
dBc
IM3
3rd-order intermodulation distortion in
I and Q channels (0 dBmV at LNA_IN)
−
−
−45
dBc
Vo
voltage output on pin I_OUT and Q_OUT
−
48
−
dBmV
fstep
step at output
50
−
250
kHz
fxtal
crystal frequency
1
−
4
MHz
Tamb
operating ambient temperature
0
−
70
°C
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
TDA8751T
1999 Aug 20
SO32
DESCRIPTION
plastic small outline package; 32 leads; body width 7.5 mm
2
VERSION
SOT287-1
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
Philips Semiconductors
QPSK receiver
BLOCK DIAGRAM
1999 Aug 20
Q_OUT1 I_IN1
A1VCC
6
A2VCC
A3VCC
DVCC
23
25
13
OUTVCC
AGC_IN
27
I_OUT1
11
5
Q_IN1
28
29 4
9
3
8
1
2
I_OUT
32
31
Q_OUT
LNA_IN
×
LNA_OUT
DEMOD_IN
CLK
DATA
EN
×
14
15
3-WIRE BUS TRANSCEIVER
16
90¡
TDA8051
30
0¡
I_OUTC
Q_OUTC
Q_OUT2
1/2
19
18
CP
CHARGE
DIGITAL
PHASE
COMPARATOR
21
PROGRAMMABLE
MAIN DIVIDER
1/4
PROGRAMMABLE
REF DIVIDER
22
12
1/2
17
10
TEST
n.c.
A1GND
24
26
TKB
TKA
OSC_IN
20
FCE112
DGND
Product specification
Fig.1 Block diagram.
A2GND OUTGND
TDA8051
handbook, full pagewidth
3
TUNE
7
I_OUT2
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
PINNING
SYMBOL
PIN
DESCRIPTION
I_OUT
1
I data buffered balanced output
I_OUTC
2
I data buffered balanced output
I_OUT2
3
I data filtered output
I_IN1
4
input to active filter amplifier for
I data
I_OUT1
5
I data raw output
A1VCC
6
analog supply voltage 1
DEMOD_IN
7
demodulator RF input
LNA_OUT
8
low noise amplifier RF output
LNA_IN
9
low noise amplifier RF input
I_OUTC 2
31 Q_OUTC
A1GND
10
analog ground 1
I_OUT2 3
30 Q_OUT2
AGC_IN
11
AGC control voltage input
OSC_IN
12
oscillator input
DVCC
13
digital supply voltage
CLK
14
3-wire bus serial control clock
DATA
15
3-wire bus serial control data
EN
16
3-wire bus serial control enable
(active LOW)
LNA_IN 9
24 A2GND
TEST
17
not connected
A1GND 10
23 A2VCC
CP
18
charge pump output for PLL loop
filter
AGC_IN 11
22 TKA
TUNE
19
tuning voltage output
OSC_IN 12
21 TKB
DGND
20
digital ground
TKB
21
TKA
handbook, halfpage
I_OUT 1
32 Q_OUT
I_IN1 4
29 Q_IN1
I_OUT1 5
28 Q_OUT1
A1VCC 6
27 OUTVCC
DEMOD_IN 7
26 OUTGND
LNA_OUT 8
25 A3VCC
TDA8051
DVCC 13
20 DGND
VCO tank circuit input
CLK 14
19 TUNE
22
VCO tank circuit input
DATA 15
A2VCC
23
analog supply voltage 2
A2GND
24
analog ground 2
A3VCC
25
analog supply voltage 3
OUTGND
26
output amplifiers ground
OUTVCC
27
output amplifiers supply voltage
Q_OUT1
28
Q data raw output
Q_IN1
29
input to active filter amplifier for
Q data
Q_OUT2
30
Q data filtered output
Q_OUTC
31
Q data buffered balanced output
Q_OUT
32
Q data buffered balanced output
1999 Aug 20
18 CP
EN 16
17 TEST
FCE171
Fig.2 Pin configuration.
4
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
FUNCTIONAL DESCRIPTION
The raw I and Q generated signals contain spurious
spikes, therefore each signal is passed through a third
order active low-pass filter (RC cell + Sallen-Key
structure), whose cut-off frequency is set by external
components. The filtered I and Q data signals are then
amplified to provide balanced buffer outputs.
The QPSK modulated signal is applied to the input as an
asymmetrical RF signal in the bandwidth 44 to 130 MHz.
The spectrum extension to this waveform must be limited
by a band-pass filter superseding the IC.
The RF input is either the LNA input, if the level is
−30 to 0 dBmVrms, or the DEMOD input if the level is
−20 to +10 dBmVrms. The amplified RF signal is then
mixed with two clocks in quadrature to provide the
base-band demodulated In-phase (I) and Quad-phase (Q)
signals.
The data sent to the PLL is loaded in bursts, framed by
signal EN. Programming clock edges, together with their
relevant data bits, are ignored until EN becomes active
(LOW). The internal latches are updated with the latest
programming data when EN returns to inactive (HIGH).
The last 14 bits only are retained within the programming
register. No check is made on the number of clock pulses
received while programming is enabled. An active clock
edge causing a shift of the data bits is generated when
EN goes HIGH while CLOCK is still LOW. The main divider
ratio and the reference divider ratio are provided via the
serial bus (see Table 1).
The VCO operates at twice the RF carrier frequency in the
bandwidth 88 - 260 MHz (one octave), therefore the
0 to 90° clocks are generated by a divider by 2.
The VCO frequency can be programmed by an integrated
PLL that tunes the external LC tank circuit.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
VCC
supply voltage
−0.3
6.0
V
V(max)
maximum voltage on all pins except pin 9 (5 V)
−0.3
VCC
V
tsc
maximum short circuit duration on outputs
−
10
s
Tstg
storage temperature
−40
+150
°C
Tj(max)
maximum junction temperature
−
150
°C
Tamb
operating ambient temperature
0
70
°C
VCC(tune)
tuning voltage supply
−0.3
30
V
HANDLING
HBM ESD: The IC pins withstand 2 kV except pin 26 (1750 V).
MM ESD: The IC pins withstand 100 V except pins 2 and 31 (75 V).
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
1999 Aug 20
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
in free air
5
VALUE
UNIT
65
K/W
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
CHARACTERISTICS
Measured in application circuit with the following conditions: VCC = 5 V; Tamb = 25°C. All AC units are RMS values,
unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCCA1
analog supply voltage
4.75
5
5.25
V
ICCA1
analog supply current
−
23
−
mA
VCCA2
analog supply voltage
4.75
5
5.25
V
ICCA2
analog supply current
−
18
−
mA
VCCA3
analog supply voltage
4.75
5
5.25
V
ICCA3
analog supply current
−
29
−
mA
Vcc(o)
output supply voltage
4.75
5
5.25
V
Icc(o)
output supply current
−
17
−
mA
VCCD
digital supply voltage
4.75
5
5.25
V
ICCD
digital supply current
−
13
−
mA
VCC(tune)
tuning supply voltage
−
−
30
V
−
0.85 −
V
−30
−
0
dBmV
Low noise amplifier: Rs = 75 Ω/Ri = 75 Ω unless otherwise specified
VI(DC)
DC input level
Vi
input level
internally set
fi
input carrier frequency
44
−
130
MHz
Ri
input resistance
−
75
−
Ω
Ci
input capacitance
−
2.5
−
pF
RLLNA
input return loss
−
−15
−
dB
NFLNA
noise figure
−
7
11
dB
Vleak(LO)
LO leakage on pin at LNA_IN
fN × LO = 140 − 860 MHz;
pin LNA_OUT connected to
DEMOD_IN
−
−
−15
dBmV
fLO/2 = 70 − 130 MHz;
pin LNA_OUT connected to
DEMOD_IN
−
−35
−30
dBmV
GLNA
LNA gain
f = 100 MHz;
VI(LNA) = 0 dBmV
8
10
−
dB
Vo
output level
−
−20
−
+10
dBmV
∆Vo
output flatness
in 1 MHz bandwidth;
VI(LNA) = 0 dBmV
−
0.25 0.5
dB
44 to 70 MHz;
VI(LNA) = 0 dBmV
−
0.50 −
dB
70 to 130 MHz;
VI(LNA) = 0 dBmV
−
1.3
1.5
dB
−
−60
dBc
IM3
3rd-order intermodulation
2 carriers at +10 dBmV each −
at pin LNA_IN
at 103 to 105 MHz
1999 Aug 20
6
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
PARAMETER
TDA8051
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Vo(DC)
DC output level
−
1.3
−
V
Ro
output resistance
−
75
−
Ω
−
1
−
V
−20
−
+10
dBmV
Quadrature demodulator: Rs = 75 Ω/Ri = 20 kΩ unless otherwise specified
VI(DC)
DC input level
Vi
input level
internally set
fi
input carrier frequency
44
−
130
MHz
Ri
input resistance
−
75
−
Ω
Ci
input capacitance
−
2.5
−
pF
RLI
input Return Loss
−
−12
−
dB
Vo(I-Q)
output level on pin I_OUT1 or
Q_OUT1
−
22
−
dBmV
Bo(I-Q)
output 3 dB bandwidth
LO = 200 MHz;
RF = 100 to 130 MHz
−
35
38
MHz
C/N
carrier to noise ratio at
500 kHz on pin at I_OUT1 or
Q_OUT1
VI = −20 dBmV;
Vo(I and Q) = 22 dBmV
−
88
−
dBc/Hz
VI = 10 dBmV;
Vo(I and Q) = 22 dBmV
−
93
−
dBc/Hz
Vleak(LO)
LO leakage on pin
DEMOD_IN
fLO = 140 to 260 MHz;
fLO/2 = 70 to 130 MHz
−
−
−15
dBmV
VAGC(r)
AGC range
fLO = 200 MHz;
fRF = 100.25 MHz at
−20 to +10 dBmV;
fBF = 250 kHz at 22 dBmV
30
−
−
dB
VAGC(s)
AGC slope maximum
fLO = 200 MHz;
fRF = 100.25 MHz at
−20 to +10 dBmV;
fBF = 250 kHz at 22 dBmV
−
30
−
dB/V
VAGC
gain control voltage at
AGC_IN
Gmax
max. conversion gain
fLO = 260 MHz;
fRF = 130.25 MHz at
−20 dBmV; VAGC = 4.5 V
42
−
−
dB
Gmin
min. conversion gain
fLO = 140 MHz;
fRF = 70.25 MHz at
10 dBmV VAGC = 0.5 V
−
−
12
dB
∆ΦI-Q
phase error between I and Q
channels
fLO = 140 to 260 MHz;
fRF = 70.25 to 130.25 MHz;
fBF = 250 kHz at 22 dBmV
over specified input range
−
±3
−
deg
∆GI-Q
gain error between I and Q
channels
fLO = 140 to 260 MHz;
fRF = 70.25 to 130.25 MHz;
fBF = 250 kHz at 22 dBmV
over specified input range
−
±1
−
dB
1999 Aug 20
10% VCCA −
7
90% VCCA V
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
TDA8051
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
∆ΦI-Q
phase error between I and Q
channels
fLO = 88 to 140 MHz;
fRF = 44.25 to 70.25 MHz;
fBF = 250 kHz at 22 dBmV
over specified input range
−
±3
−
deg
∆GI-Q
gain error between I and Q
channels
fLO = 88 to 140 MHz;
fRF = 44.25 to 70.25 MHz;
fBF = 250 kHz at 22 dBmV
over specified input range
−
±1
−
dB
IM3
3rd-order intermodulation in
I and Q channels
see Fig.3
−
−
−45
dBc
IM2
2nd-order intermodulation in
I and Q channels
see Fig.3
−
−
−40
dBc
AMREJ
AM rejection at I and Q
channels
guaranteed by design;
see Fig.4
−
−
−38
dBc
∆Vo(I/Q)
output flatness at I and Q
outputs
in 1 MHz bandwidth
−
0.25 −
dB
f = 40 to 70 MHz
−
3
−
dB
f = 70 to 130 MHz
−
3
−
dB
Vo(DC)
DC output level
−
2.5
−
V
Ro
output resistance
−
400
−
Ω
Output section: Rs = 400 Ω/Ri = 4 kΩ/R on pin I_OUT2 or Q_OUT2 = 20 kΩ unless otherwise specified
VI(DC)
DC input voltage
−
3.6
−
V
Vi
input level
−
22
−
dBmV
Ri
input resistance
−
17.5 −
kΩ
Ci
input capacitance
−
0.4
−
pF
GO
gain from
I-Q_IN1 to I-Q_OUT2
fBF = 1 MHz at 22 dBmV
−
3.8
−
dB
fBF = 0 to 1.5 MHz
−
0.25 −
dB
1
−
dB
−
2.6
−
V
∆Vo(I-Q_out2) output flatness on
pins I_OUT2 and Q_OUT2
fBF = 0 to 6 MHz at 22 dBmV −
input
Vo(flt)
DC output level at filter output
Ro
output resistance
f < 20 MHz
−
250
−
Ω
H2
2nd harmonic
fBF = 1 MHz at 48 dBmV
output
−
−40
−35
dBc
H3
3rd harmonic
fBF = 1 MHz at 48 dBmV
−
−45
−40
dBc
output
IM3
3rd-order intermodulation at
pins I_OUT and Q_OUT
see Fig.5
−
−50
−45
dBc
αCT(I-Q)
crosstalk between I and Q
channels
f = 5 MHz; see Fig.6
−
−40
−30
dBc
No
output noise power at
500 kHz from carrier
see Fig.7
−
−56
−
dBmv/Hz
GI-Q
gain from
I-Q_IN1 to I-Q_OUT
fBF = 1 MHz at 22 dBmV
input
−
27
−
dB
1999 Aug 20
8
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
TDA8051
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V1(I-Q)
DC output level on
pin I-Q_OUT
−
3.1
−
V
Ro(dif)
output differential resistance
−
460
−
Ω
Overall: Rs = 75 Ω/Ri = 4 kΩ unless otherwise specified
Vo
voltage output on
pins I_OUT and Q_OUT
see Fig.8
−
48
−
dBmV
LOlev
LO level on
pins I_OUT and Q_OUT
see Fig.8
−
−
−45
dBc
So
spurious emission on
pins I_OUT and Q_OUT
f = 0 to 5 MHz; see Fig.8
−
−40
−
dBc
∆GI-Q
gain error on
pins I_OUT and Q_OUT
see Fig.8
−
±1
−
dB
AMR
AM rejection in I and Q
channels
guaranteed by design; see
Fig.9
−
−
−40
dBc
IM3
3rd-order intermodulation
guaranteed by design; see
Fig.10
−
−
−45
dBc
Voltage Controlled Oscillator (VCO)
fvco(min)
min. oscillation frequency
note 1
−
88
−
MHz
fvco(max)
max. oscillation frequency
note 1
−
260
−
MHz
αN(osc)
oscillator phase noise
at 10 kHz
−
−75
−
dBc/Hz
at 100 kHz
−
−95
−
dBc/Hz
Phase Locked Loop (PLL)
Step
frequency step size
100
−
500
kHz
RD
fixed reference divider ratio
−
2
−
−
RDR
programmable reference
divider ratio
2
−
80
−
ND
programmable fix main divider
ratio
−
4
−
−
NDR
main divider ratio
128
−
2600
−
I(CP)
charge pump current
−
300
−
µA
at pin VCO output
Crystal oscillator
fxtal
crystal frequency
rxtal = 25 to 200 Ω
1
−
4
MHz
Zi
crystal oscillator input
impedance (absolute value)
fxtal = 4 MHz
600
120
0
−
Ω
VI(DC)
DC input level
−
2.9
−
V
Vi
input level
−
30
−
mVrms
1999 Aug 20
9
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
TDA8051
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
3-wire bus
VIL
input Low level
guaranteed by design
−
−
0.8
V
VIH
input High level
guaranteed by design
2.4
−
−
V
fclk
clock frequency
guaranteed by design
−
330
−
kHz
tsu
input data to CLK set-up time
guaranteed by design
−
2
−
µs
th
input data to CLK hold time
guaranteed by design
−
1
−
µs
td(strt)
delay to rising clock edge
guaranteed by design
−
3
−
µs
td(stp)
delay from last clock edge
guaranteed by design
−
3
−
µs
Notes
1. The frequency range of the receiver is 44 to 130 MHz. The local oscillator (LO) operates at twice the output
frequency (88 to 260 MHz). Frequency control by varicap diodes allows a variation over one octave.
2. Crystal oscillator. The crystal oscillator uses a 4, 2 or 1 MHz crystal in series with a capacitor. The crystal is parallel
resonant with load capacitance of 18 to 20 pF. Connection to VCC is preferred but can also be to GND.
Note to characteristics
×
handbook, full pagewidth
DEMOD_IN
I_OUT1
VCO 200 MHz
0¡ 90¡
+5 V
105 MHz
×
103 MHz
10 dB above max. input level
= 20 dBmVrms each tone
+10 dB = 32 dBmVrms each tone
nominal
output level
= 22 dBmVrms
each tone
maximum
input
level
103
105
Q_OUT1
IM3 IM2
1
f (MHz)
2
3
5
7
f (MHz)
FCE172
Fig.3 IM2 and IM3 measurement of the demodulator.
1999 Aug 20
10
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
×
handbook, full pagewidth
DEMOD_IN
I_OUT1
VCO 200 MHz
0¡ 90¡
+5 V
105 MHz
×
103 MHz
10 dB above max. input level
= 20 dBmVrms
Q_OUT1
+ 22 dBmVrms
maximum
input
level
AM_REJ
103
105
f (MHz)
3
baseband
demodulated AM
(15 KHz spacing)
f (MHz)
AM sidebands
(15 KHz offset)
FCE173
Fig.4 AM rejection test.
I_OUT2
handbook, full pagewidth
I_OUT
I_OUTC
Q_OUT
22 dBmV
300 kHz
22 dBmV
500 kHz
Q_OUTC
Q_OUT2
Fig.5 IM3 measurement of the output section.
1999 Aug 20
11
FCE174
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
I_OUT2
handbook, halfpage
I_OUT
I_OUTC
Q_OUT
Q_OUTC
22 dBmV
5 MHz
Q_OUT2
FCE175
(1) Measure I and Q, α is the difference between the two carriers.
Fig.6 Crosstalk measurement.
Q_OUT
handbook, halfpage
RS
2 kΩ
Q_OUTC
Q_OUT2
FCE176
Fig.7 Noise measurement.
Q_OUT
handbook, full pagewidth
10 nF
1.2 kΩ
Q_OUT1
100 pF
Q_OUTC
Q_OUT2
FCE177
LNA input: −15 dBmV; AGC set in order to have a 250 kHz output sine wave at 48 dBmV; fref = 70 to 130 MHz; flo = 140 to 260 MHz.
Fig.8 LO level, spurious, I/Q gain error and Vo measurements.
1999 Aug 20
12
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
×
handbook, full pagewidth
LNA_IN
I_OUT1
VCO 200 MHz
0¡ 90¡
+5 V
100.3 MHz
102 MHz
×
Q_OUT1
100 % AM modulation
square wave 15 kHz
input signals at LNA_IN
I_OUT or Q_OUT
+42 dBm(Vrms)
+10 dBmV
AM_REJ
0 dBmV
100.3
102
f (MHz)
baseband
demodulated AM
(15 KHz spacing)
300
f (MHz)
AM sidebands
(15 KHz offset)
FCE178
Fig.9 Overall AM rejection measurement.
×
handbook, full pagewidth
LNA_IN
0° 90°
+5 V
100.5 MHz
100.3 MHz
×
I_OUT1
VCO 200 MHz
Q_OUT1
+42 dB dBm(Vrms) each tone
0 dB dBm(Vrms) each tone
IM3 IM2
100.3
100.5
100 200 300
f (MHz)
500
700
f (kHz)
FCE179
Fig.10 Overall IM3 measurement.
1999 Aug 20
13
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
TIMING CHARACTERISTICS
tH
t sup
handbook, full pagewidth
t xtal
CLK
DATA
EN
t strt
t stp
FCE180
Fig.11 Logic interface signals.
DATA FORMAT
Table 1
FIRST
LAST
Data
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
AD1
AD0
X
X
R7
R6
R5
R4
R3
R2
R1
R0
0
1
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0
1
1
Reference ratio
X
X
Principal ratio
P11
P10
1999 Aug 20
14
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
32 Q_OUT
31 Q_OUTC
TDA8051
I_OUT2 3
30 Q_OUT2
29 Q_IN1
I_IN1 4
Q CHANNEL
FILTERING
28 Q_OUT1
I_OUT1 5
A1VCC
Philips Semiconductors
I_OUT 1
QPSK receiver
Q DATA BUFFERED
BALANCED OUTPUT
I_OUTC 2
I CHANNEL
FILTERING
APPLICATION INFORMATION
1999 Aug 20
I DATA BUFFERED
BALANCED OUTPUT
27
×
6
DEMOD_IN 7
0¡
15
LNA_OUT 8
OUTVCC
26
×
25
90¡
23
OUTGND
A3VCC
24
A2GND
A2VCC
1/2
22
LNA_IN 9
RF INPUT
A1GND
10
1/4
AGC_IN 11
CLK
DATA
EN
1/2
1/RDR
CMP
20
14
16
Voltage
Controlled
Oscillator
1/NDR
13
15
21
TKB
OSC_IN 12
DVCC
TKA
DGND
19 TUNE
BUS
CHARGE
PUMP
18 CP
handbook, full pagewidth
+30 V
TDA8051
Fig.12 Application diagram.
FCE113
TEST
n.c.
Product specification
17
3-WIRE BUS
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
INTERNAL PIN CONFIGURATIONS
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
I_OUT
1
3.1 V
I_OUTC
2
3.1 V
2
1
OUTGND
I_OUT2
FCE025
3
2.6 V
3
OUTGND
I_IN1
FCE026
4
3.6 V
4
OUTGND
I_OUT1
FCE027
2.5 V
5
OUTGND
A1VCC
1999 Aug 20
6
Analog supply voltage 1
16
FCE028
5V
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
DEMOD_IN
TDA8051
PIN
DESCRIPTION
DC VOLTAGE
7
1V
7
FCE127
LNA_OUT
A1GND
8
1.3 V
8
A1GND
LNA_IN
FCE128
9
0.9 V
9
A1GND
A1GND
10
AGC_IN
11
FCE129
analog ground 1
0. V
−
11
FCE030
A2GND
1999 Aug 20
17
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
OSC_IN
TDA8051
PIN
DESCRIPTION
DC VOLTAGE
12
3.0 V
DVCC
12
FCE031
DVCC
13
CLK
14
digital supply voltage
5V
n.a.
14
FCE032
DATA
15
n.a.
15
FCE033
EN
16
n.a.
16
FCE034
TEST
17
CP
18
not connected
n.a.
1.9 V
DVCC
DOWN
18
UP
FCE035
1999 Aug 20
18
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
TUNE
TDA8051
PIN
DESCRIPTION
DC VOLTAGE
19
VVT
19
FCE036
DGND
20
0V
20
SUB
FCE037
TKB
21
2.4 V
TKA
22
2.4 V
21
22
FCE038
A2GND
A2VCC
23
analog DC supply voltage 2
5V
A2GND
24
analog ground 2
0V
A3VCC
25
analog supply voltage 3
5V
OUTGND
26
0V
26
DGND
OUTVCC
27
Q_OUT1
28
FCE040
output amplifiers supply voltage
2.5 V
28
OUTGND
1999 Aug 20
5V
19
FCE041
Philips Semiconductors
Product specification
QPSK receiver
SYMBOL
Q_IN1
TDA8051
PIN
DESCRIPTION
DC VOLTAGE
29
3.6 V
29
OUTGND
Q_OUT2
FCE042
30
2.6 V
30
OUTGND
FCE043
Q_OUTC
31
3.1 V
Q_OUT
32
3.1 V
31
OUTGND
1999 Aug 20
32
OUTGND
20
FCE044
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
PACKAGE OUTLINE
SO32: plastic small outline package; 32 leads; body width 7.5 mm
SOT287-1
D
E
A
X
c
y
HE
v M A
Z
17
32
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
16
1
0
detail X
w M
bp
e
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
2.65
0.3
0.1
2.45
2.25
0.25
0.49
0.36
0.27
0.18
20.7
20.3
7.6
7.4
1.27
10.65
10.00
1.4
1.1
0.4
1.2
1.0
0.25
0.25
0.1
0.95
0.55
inches
0.10
0.012 0.096
0.004 0.086
0.01
0.02
0.01
0.011
0.007
0.81
0.80
0.30
0.29
0.050
0.419
0.394
0.055
0.043
0.016
0.047
0.039
0.01
0.01
0.004
0.037
0.022
θ
8o
0o
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-01-25
97-05-22
SOT287-1
1999 Aug 20
EUROPEAN
PROJECTION
21
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
SOLDERING
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
1999 Aug 20
22
Philips Semiconductors
Product specification
QPSK receiver
TDA8051
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
not suitable(2)
HLQFP, HSQFP, HSOP, SMS
PLCC(3),
SO
suitable
suitable
suitable
LQFP, QFP, TQFP
not recommended(3)(4)
suitable
SQFP
not suitable
suitable
SSOP, TSSOP, VSO
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1999 Aug 20
23
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 67
© Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545004/25/02/pp24
Date of release: 1999
Aug 20
Document order number:
9397 750 04691