DOMINANT Opto Technologies Innovating Illumination Power DomiLED TM DATA SHEET: Power DomiLEDTM AlInGaP : DWx-HKG TM With its significant power in terms brightness, viewing angle and variety of application possibilities, Power DomiLED™ truly is a standout performer! Ideal for automotive interior lighting as well as home, office and industrial applications, it is also a proven performer in electronic signs and signals. Features: > > > > > > > > High brightness surface mount LED using thin film technology. 120° viewing angle. Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm. Qualified according to JEDEC moisture sensitivity Level 2. Compatible to IR reflow soldering. Environmental friendly; RoHS compliance. Superior corrosion resistance Compliance to automotive standard; AEC-Q101. Applications: > Automotive: Interior applications, eg: switches, telematics, climate control system, dashboard, etc. Exterior applications, eg: signal lighting, Center High Mounted Stop Light (CHMSL), Rear Combination Lamp (RCL). > Signage: full colour display video notice board, signage, special effect lighting. > Lighting: architecture lighting, general lighting, garden light, channel light. © 2005 DomiLED is a trademark of DOMINANT Opto Technologies. All rights reserved. Product specifications are subject to change without notice. 1 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Optical Characteristics at Tj=25˚C Part Ordering Number Color DWA-HKG-JL3-1 Amber, 617nm Viewing Angle˚ Luminous Flux @ IF = 50mA (lm) Min. Typ. Max. 6.30 120 13.90 9.35 NOTE 1. All part number above comes in a quantity of 2000 units per reel. 2. Luminous intensity is measured with an accuracy of ± 11%. 3. Wavelength binning is carried for all units as per the wavelength-binning table. Only one wavelength group is allowed for each reel. 4. An optional Vf bining is also available upon request. Bining scheme is as per following table. Electrical Characteristics at Tj=25˚C Vf @ If = 50mA Part Number Min. (V) Typ. (V) Max. (V) Vr @ Ir = 10uA Min. (V) DWx-HKG 2.05 2.20 2.50 12 Forward voltages are measure using a current pulse of 1 ms and with an accuracy of ± 0.1V. Absolute Maximum Ratings Maximum Value Unit DC forward current 70 mA Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1) 100 mA Reverse voltage 12 V ESD threshold (HBM) 2 kV 125 ˚C Operating temperature -40 … +115 ˚C Storage temperature -40 … +125 ˚C 200 mW LED junction temperature Power dissipation (at room temperature) Thermal resistance - Real Thermal Resistance Junction / ambient, Rth JA real 300 K/W Junction / solder point, Rth JS real - Electrical Thermal Resistance 130 K/W Junction / ambient, Rth JA el Junction / solder point, Rth JS el 240 K/W 100 K/W (Mounting on FR4 PCB, pad size >= 16 mm2 per pad) 2 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Wavelength Grouping at Tj= 25˚C Color DWA; Amber Group Wavelength distribution (nm) Full 612 - 624 W 612 - 616 X 616 - 620 Y 620 - 624 Dominant wavelength is measured with an accuracy of ± 1 nm at a drive current of 50mA Luminous Flux Group at Tj=25˚C Luminous Flux (lm) Brightness Group J2 6.30 ... 7.15 J3 7.15 ... 8.20 K2 8.20 ... 9.35 K3 9.35 ... 10.70 L2 10.70 ... 12.20 L3 12.20 ... 13.90 Luminous intensity is measured with an accuracy of ± 11%. Vf Bining (Optional) Vf @ If = 50mA Forward Voltage (V) V51 2.05 ... 2.20 V52 2.20 ... 2.35 V53 2.35 ... 2.50 Forward voltage, Vf is measured with an accuracy of ± 0.1V. Please consult sales and marketing for special part number to incorporate Vf binning. 3 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Relative Luminous Flux Vs Forward Current Relative Lumionous Flux Vs Forward Current Relative Lumionous Flux Vs Forward Current ФV/ФVɎ(50mA) = f(I );(50mA) T = 25°C = f(IF); Tj = 25°C f(IV/Ɏ V/ɎV(50mA) =Ɏ FF);VT j =j 25°C 0.8 1.0 0.6 0.6 0.8 0.4 0.4 0.6 0.2 0.6 0.4 0.4 0.2 0.2 0.0 0 0 0.0 0 120 120 100 10 0.0 10 020 10 30 20 40 30 50 40 60 50 70 60 80 Forward Current50 IF (mA) 60 Forward Current I (mA) 020 10 20 30 Forward Current I50 F F(mA)40 30 40 60 70 80 70 80 100 80 60 80 60 40 60 40 20 100 80 80 60 TA TA 60 40 TS TA 70 Allowable ForwardForward CurrentCurrent IF( mA )IF( mA ) Allowable F F Allowable Forward Current IF( mA ( )mA )I () mA ) ICurrent Current Forward Allowable F I ( mA Allowable Forward Allowable Forward Current 100 100 10 10 10 0.1 30 40 20 20 30 10 10 20 0 80 1.6 80 1.6 1.6 1.0 0.9 1.0 0.8 0.9 1.0 0.7 0.8 0.9 0.6 0.7 0.8 0.5 TS0.6 0.7 0.3 0.4 0.5 0.2 0.3 0.4 0.2 0.1 0.3 0.0 350 10 50 40 40 30 30 20 20 10 100 1.7 0 1 1 0.1 1 1 Duty Ratio, % 1 10 Duty Ratio, % 10 Duty Ratio, % Duty Ratio, % 10 10 10 1.6 1.8 1.7 1.9 1.8 2.0 1.9 2.1 2.0 2.2 2.1 2.3 2.2 2.4 Forward (V) ForwardForward Voltage VF Voltage (V) VoltageVVFF(V) 1.7 1.9 1.8 2.0 2.3 1.9 2.0 2.1 2.2 2.3 2.1 2.2 2.3 2.4 Relative Spectral Emission Forward Voltage V (V) Relative Spectral Emission Forward Voltage VF (V) Ɏrel = If(Ȝ); Tj = 25°C; IF F= 50mA = f(Ȝ); Tj = 25°C; Relative Emission F = 50mA 1.7 1.01.8 Ɏrel1.9 2.0 2.1Spectral 2.2 2.3 2.4 Relative Spectral Emission Relative Spectral Emission Ф = f(λ); T = 25°C; I = 50mA Ɏrel = If(Ȝ); Tj = 25°C; IFF= 50mA VFj (V) Ɏrel Forward = f(Ȝ);relTj =Voltage 25°C; 50mA F = 0.9 1.0 Relative Spectral Emission 0.8 Ɏrel = f(Ȝ); Tj = 25°C; IF = 50mA 0.9 1.7 2.4 2.4 0.7 0.8 0.6 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 400 450 500 Wavelength Ȝλ(nm) Wavelength Ȝ (nm) Wavelength (nm) 550 600 650 700 750 800 850 Radiation Pattern 30° 20° 10° 0° 1.0 40° 0.1 1.6 1.8 Wavelength Ȝ (nm) 100 10 60 50 0.0 0.1 350 400 450 500 550 600 650 700 750 800 850 0.0 0.1 0.2 120 350 400 450 500 550 600 650 700 750 800 850 Wavelength Ȝ (nm) 0.0 0.0 Wavelength Ȝ (nm) 0.1120 350500 400550450600500650550700600750650800700850750 800 850 350 400 450 100 0.1 0.1 40 50 30 0 TA = Ambient Temperature TA = Ambient Temperature TS = Solder Point Temperature 40 T = Solder Point Temperature 20 S 20 0 Temperature TA = Ambient Temperature TA = Ambient 0 20 Point Temperature 40 60 80 100 TS = Solder TS = Solder 0 Point Temperature 20 40 60 80 100 120 20 0 Temperature T(°C) 0 Temperature 0 T = Ambient Temperature T(°C) A 0 0 TS = Solder 20 Point 40 20 60 40 80 60 100 80 120 100 Temperature Allowable Forward Current Vs Duty Ratio Temperature T(°C) Temperature T(°C) Allowable Forward Current Vs Duty Ratio ( T = 25°C; 0 j T(°C) tp 10ȝs ) Temperature ) 0 20 40( Tj = 25°C; 60tp 10ȝs80 100 120 1000 Allowable Forward Current Vs Duty Ratio Vs Duty Ratio Allowable Forward Current 1000 ( Temperature Tj = 25°C; tp (T(°C) 10ȝs ) Tj = 25°C; tp 10ȝs ) Allowable Forward Current Vs Duty Ratio 1000 1000 Allowable Current Duty Ratio ( TForward = 25°C; t ≤Vs10μs ) (jTj = 25°C; tp p10ȝs ) 1000 100 50 60 40 0.4 0.5 T0.6 S TA TS TA 40 20 TS 60 70 50 100 Maximum Current Vs Temperature Maximum Current Vs Temperature Forward IF (mA) Forward Current IF (mA) IF =Current f (T) f (T) Maximum Vs Temperature 10 20 Current 30 IF =40 50 60 70 80 120 Maximum Current Vs Temperature Maximum Current Vs Temperature I =f(T) I = f (T) F f (T) IF (mA) FIF =Current Forward 120 Maximum Current Vs Temperature 100 IF = f (T) Forward Current IF (mA)IF (mA) Forward Current 120 100 Forward Current IFCurrent (mA) IIFF (mA) Forward Forward Current (mA) Forward Current IF (mA) 0.8 0.6 Relative Luminous Flux Ɏrel Relative Luminous Flux Ɏrel Relative Luminous Flux Ɏrel 0.0 0.2 1.0 0.8 Forward Current I (mA) 1.0 1.2 0.8 1.2 1.0 F Forward Current IF (mA) Forward Current IF (mA) 1.2 1.4 1.0 Фrel Luminous Relative Relative Luminous Flux Flux Ɏrel Relative Luminous Flux Ɏrel 1.4 1.6 1.2 Relative Luminous Flux Ɏ Relative Luminous Flux rel Ɏrel Flux Luminous Relative Relative Luminous Flux Ɏrel Relative Luminous Flux Relative Luminous Flux Ɏ rel Ɏrel Фrel 1.6 1.4 Forward Current IF (mA)I (mA) Forward Current F Forward Current IF (mA) Relative Lumionous Flux Vs Forward Current Relative Lumionous Flux Vs Forward Current 1.6 80 ɎV/ɎV(50mA) = f(IF); Tj = 25°C ɎV/ɎV(50mA) = f(I F); Tj = 25°C 1.6 80 1.4 Lumionous Flux Vs Forward Current Relative 70 ɎV/ɎV(50mA) = f(IF); Tj = 25°C 1.4 70 80 1.2 60 1.6 0.2 0.4 0.0 Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage f(V = 25°C IF =F); f(VT IF = f(VFI);FT= F);j Tj = 25°C j = 25°C Forward Current Vs Forward Voltage 80Forward Current Vs Forward Voltage IF = f(VF); Tj = 25°C IF = f(VF); Tj = 25°C 80 70Forward Current Vs Forward Voltage IF = f(VF); Tj = 25°C 70 60 100 100 100 100 0.8 50° 0.6 60° 0.4 70° 0.2 80° 90° 0 100 Duty Ratio, Duty Ratio, % % 4 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination RelativeRelative Forward Voltage VsJunction Junction Temperature Forward Voltage VsVs Temperature Relative Forward Voltage Junction Temperature ∆VF =¨VV V (25°C) = f(T ); I =50mA = V V (25°C) = f(T ); I = 50mA F F = FV F- FV (25°C) = f(T j );F jI = F ¨V 50mA F F F j F Relative Luminous Flux Vs Junction Temperature Relative Luminious Flux Vs Junction Temperature Relative Luminious Flux Vs Junction Temperature ɎV/ɎV(25°C) === f(Tf(T IF I= =50mA j); ); ɎV/ɎV(25°C) ФV/ФV(25°C) f(T = 50mA j ); F I 50mA j F 0.50.5 1.8 1.8 0.30.3 1.6 1.6 0.20.2 Relative Luminious Flux Ɏrel Relative Luminious Flux Flux Ɏrel Ф Luminious Relative rel ∆VF (V) 0.40.4 Voltage Forward Relative Relative Forward Voltage ¨VF (V) Relative Forward Voltage ¨VF (V) 2.0 2.0 0.10.1 0.00.0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 1.4 1.4 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -50 -30 -30 -10 -10 1010 3030 5050 7070 9090 110 110 130 130 150 150 -50 -0.5 -0.5 -50 -30 -30 -10 -10 1010 3030 5050 7070 9090 110 110 130 130 150 150 -50 Junction Temperature T (°C) Junction Temperature TT Junction Temperature T j(°C) j(°C) Junction Temperature (°C) j Junction Temperature T j(°C) Junction Temperaturej Tj(°C) Chromaticity Coordinate Shift Vs Junction Temperature ¨Cx, ¨Cy = f(Tj); IF = 50mA 10.0 0.05 8.0 0.04 6.0 0.03 4.0 0.02 2.0 0.01 ¨Cx, ¨Cy Relative Wavelength ¨Ȝ∆λdom(nm) Wavelength Relative dom (nm) Relative Wavelength Vs Junction Temperature Relative Wavelength Vs Junction Temperature - Ȝdom (25°C) = f(Tj);= IF f(Tj); = 50mAIF = 50mA ∆λdom =¨Ȝλdom - λdom (25°C) dom = Ȝdom 0.0 -2.0 0.00 -0.01 -4.0 -0.02 -6.0 -0.03 -8.0 -0.04 -10.0 -50 -30 -10 10 30 50 70 90 110 130 150 -0.05 -50 -30 -10 10 30 50 70 90 110 130 150 Junction Temperature T j(°C) Junction Temperature T j(°C) Junction Temperature T (°C) j 5 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination DomiLED • AlInGaP : DWx-HKG Package Outlines TM Note : Primary thermal path is through Anode lead of LED package. Material Material Lead-frame Cu Alloy With Au Plating Package High Temperature Resistant Plastic, PPA Encapsulant Silicone resin Soldering Leads Au Plating 6 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Recommended Solder Pad 7 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Taping and orientation • Reels come in quantity of 2000 units. • Reel diameter is 180 mm. 8 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Packaging Specification 9 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Packaging Specification Existing BPL Moisture sensitivity level size - 87mm x 45mm. As part of improvement and also in response to customers’ request; BPL f Barcode label changed to the following. DOMINANT Opto Technologies (L) Lot No : lotno ML TEMP 2 260˚C RoHS Compliant (P) Part No : partno (C) Cust No : partno (Q) Quantity : quantity (G) Grouping : group (D) D/C : date code Made in Malaysia (S) S/N : serial no New BPL size - 110mm x 55mm. Additional information are now included in the label. 2D and 3D barc Reel implemented now for every data field. Label Moisture absorbent material + Moisture indicator Issue No : 1 The reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag Weight Weight(gram) (gram) Average 1pc Power DomiLED 1 completed bag (2000pcs) 0.034 0.034 240 ± 10 190 10 Cardboard Box DOMINANT TM For Power DomiLED Cardboard Box Size TTM Dimensions (mm) Empty Box Weight (kg) Reel / Box Super Small 325 x 225 x 190 0.38 9 reels MAX Small 325 x 225 x 280 0.54 15 reels MAX Medium 570 x 440 x 230 1.46 60 reels MAX Large 570 x 440 x 460 1.92 120 reels MAX 10 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Recommended Pb-free Soldering Profile Classification Reflow Profile (JEDEC J-STD-020C) 300 255-260˚C 10-30s 275 250 225 Temperature (˚C) Ramp-up 3˚C/sec max. 217˚C 200 60-150s 175 150 125 Rampdown 6˚C/sec max. 100 75 Preheat 60-180s 50 25 480s max 0 50 100 150 200 Time (sec) 11 09/05/2016 V3.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Revision History Page Subjects Date of Modification - Initial release 13 Nov 2015 2, 4, 5 3 Update Thermal Resistance Update Graph: Relative Luminous Flux Vs Forward Current Forward Current Vs Forward Voltage Relative Intensity Vs Wavelength Add Graph: Temperature Coefficient Update Vf Binning Naming 24 Mar 2016 09 May 2016 NOTE All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT Opto Technologies does not assume any liability arising out of the application or use of any product described herein. DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function or design. DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies. 12 09/05/2016 V3.0 DOMINANT TM Opto Technologies Innovating Illumination AlInGaP : DWx-HKG About Us DOMINANT Opto Technologies is a dynamic Malaysian Corporation that is among the world’s leading SMT LED Manufacturers. An excellence – driven organization, it offers a comprehensive product range for diverse industries and applications. Featuring an internationally certified quality assurance acclaim, DOMINANT’s extra bright LEDs are perfectly suited for various lighting applications in the automotive, consumer and communications as well as industrial sectors. With extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art manufacturing, research and testing capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies can be found on the Internet at http://www.dominant-semi.com. Please contact us for more information: DOMINANT Opto Technologies Sdn. Bhd Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia. Tel: +606 283 3566 Fax: +606 283 0566 E-mail: [email protected] DOMINANT Opto Technologies Innovating Illumination TM