Power DomiLED AlInGaP DWx-HKG - Catalogue-v3

DOMINANT
Opto Technologies
Innovating Illumination
Power DomiLED
TM
DATA SHEET:
Power DomiLEDTM
AlInGaP : DWx-HKG
TM
With its significant power in terms brightness, viewing angle and variety of
application possibilities, Power DomiLED™ truly is a standout performer!
Ideal for automotive interior lighting as well as home, office and industrial
applications, it is also a proven performer in electronic signs and signals.
Features:
>
>
>
>
>
>
>
>
High brightness surface mount LED using thin film technology.
120° viewing angle.
Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm.
Qualified according to JEDEC moisture sensitivity Level 2.
Compatible to IR reflow soldering.
Environmental friendly; RoHS compliance.
Superior corrosion resistance
Compliance to automotive standard; AEC-Q101.
Applications:
> Automotive:
Interior applications, eg: switches, telematics, climate control system,
dashboard, etc.
Exterior applications, eg: signal lighting, Center High Mounted Stop Light
(CHMSL), Rear Combination Lamp (RCL).
> Signage: full colour display video notice board, signage, special effect
lighting.
> Lighting: architecture lighting, general lighting, garden light, channel light.
© 2005 DomiLED is a trademark of DOMINANT Opto Technologies.
All rights reserved. Product specifications are subject to change without notice.
1
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Optical Characteristics at Tj=25˚C
Part Ordering
Number
Color
DWA-HKG-JL3-1
Amber, 617nm
Viewing
Angle˚
Luminous Flux @ IF = 50mA (lm)
Min.
Typ.
Max.
6.30
120
13.90
9.35
NOTE
1. All part number above comes in a quantity of 2000 units per reel.
2. Luminous intensity is measured with an accuracy of ± 11%.
3. Wavelength binning is carried for all units as per the wavelength-binning table. Only one wavelength group is allowed for each reel.
4. An optional Vf bining is also available upon request. Bining scheme is as per following table.
Electrical Characteristics at Tj=25˚C
Vf @ If = 50mA
Part Number
Min. (V)
Typ. (V)
Max. (V)
Vr @ Ir = 10uA
Min. (V)
DWx-HKG
2.05
2.20
2.50
12
Forward voltages are measure using a current pulse of 1 ms and with an accuracy of ± 0.1V.
Absolute Maximum Ratings
Maximum Value
Unit
DC forward current
70
mA
Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1)
100
mA
Reverse voltage
12
V
ESD threshold (HBM)
2
kV
125
˚C
Operating temperature
-40 … +115
˚C
Storage temperature
-40 … +125
˚C
200
mW
LED junction temperature
Power dissipation (at room temperature)
Thermal resistance
- Real Thermal Resistance
Junction / ambient, Rth JA real
300
K/W
Junction / solder point, Rth JS real
- Electrical Thermal Resistance
130
K/W
Junction / ambient, Rth JA el
Junction / solder point, Rth JS el
240
K/W
100
K/W
(Mounting on FR4 PCB, pad size >= 16 mm2 per pad)
2
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Wavelength Grouping at Tj= 25˚C
Color
DWA; Amber
Group
Wavelength distribution (nm)
Full
612 - 624
W
612 - 616
X
616 - 620
Y
620 - 624
Dominant wavelength is measured with an accuracy of ± 1 nm at a drive current of 50mA
Luminous Flux Group at Tj=25˚C
Luminous Flux
(lm)
Brightness Group
J2
6.30 ... 7.15
J3
7.15 ... 8.20
K2
8.20 ... 9.35
K3
9.35 ... 10.70
L2
10.70 ... 12.20
L3
12.20 ... 13.90
Luminous intensity is measured with an accuracy of ± 11%.
Vf Bining (Optional)
Vf @ If = 50mA
Forward Voltage (V)
V51
2.05 ... 2.20
V52
2.20 ... 2.35
V53
2.35 ... 2.50
Forward voltage, Vf is measured with an accuracy of ± 0.1V.
Please consult sales and marketing for special part number to incorporate Vf binning.
3
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Relative Luminous Flux Vs Forward Current
Relative
Lumionous
Flux
Vs Forward Current
Relative Lumionous
Flux
Vs Forward
Current
ФV/ФVɎ(50mA)
= f(I
);(50mA)
T = 25°C
= f(IF); Tj = 25°C
f(IV/Ɏ
V/ɎV(50mA) =Ɏ
FF);VT
j =j 25°C
0.8
1.0
0.6
0.6
0.8
0.4
0.4
0.6
0.2
0.6
0.4
0.4
0.2
0.2
0.0
0
0
0.0
0
120
120
100
10
0.0
10
020
10
30
20
40
30
50
40
60
50
70
60
80
Forward
Current50
IF (mA) 60
Forward
Current
I (mA)
020
10
20
30
Forward
Current
I50
F F(mA)40
30
40
60
70
80
70
80
100
80
60
80
60
40
60
40
20
100
80
80
60
TA
TA
60
40
TS
TA
70
Allowable
ForwardForward
CurrentCurrent
IF( mA )IF( mA )
Allowable
F
F
Allowable
Forward Current
IF( mA
( )mA )I () mA )
ICurrent
Current
Forward
Allowable
F I ( mA
Allowable
Forward
Allowable
Forward
Current
100
100
10
10
10
0.1
30
40
20
20
30
10
10
20
0
80
1.6
80
1.6
1.6
1.0
0.9
1.0
0.8
0.9
1.0
0.7
0.8
0.9
0.6
0.7
0.8
0.5
TS0.6
0.7
0.3
0.4
0.5
0.2
0.3
0.4
0.2
0.1
0.3
0.0
350
10
50
40
40
30
30
20
20
10
100
1.7
0
1
1
0.1
1
1
Duty Ratio, %
1
10
Duty Ratio, %
10
Duty Ratio, % Duty Ratio, %
10
10
10
1.6
1.8
1.7
1.9
1.8
2.0
1.9
2.1
2.0
2.2
2.1
2.3
2.2
2.4
Forward
(V)
ForwardForward
Voltage
VF Voltage
(V) VoltageVVFF(V)
1.7
1.9
1.8
2.0
2.3
1.9
2.0
2.1
2.2
2.3
2.1
2.2
2.3
2.4
Relative
Spectral
Emission
Forward
Voltage V (V)
Relative
Spectral
Emission
Forward
Voltage
VF (V)
Ɏrel = If(Ȝ);
Tj = 25°C; IF F= 50mA
= f(Ȝ);
Tj = 25°C;
Relative
Emission
F = 50mA
1.7 1.01.8 Ɏrel1.9
2.0
2.1Spectral
2.2
2.3
2.4
Relative
Spectral Emission
Relative Spectral
Emission
Ф
=
f(λ);
T
=
25°C;
I
=
50mA
Ɏrel = If(Ȝ);
Tj = 25°C; IFF= 50mA
VFj (V)
Ɏrel Forward
= f(Ȝ);relTj =Voltage
25°C;
50mA
F =
0.9
1.0
Relative Spectral Emission
0.8 Ɏrel = f(Ȝ); Tj = 25°C; IF = 50mA
0.9
1.7
2.4
2.4
0.7
0.8
0.6
0.7
0.5
0.6
0.4
0.5
0.3
0.4
0.2
0.3
0.1
0.2
400
450
500
Wavelength Ȝλ(nm)
Wavelength
Ȝ (nm)
Wavelength
(nm)
550 600 650 700 750 800 850
Radiation Pattern
30°
20°
10°
0°
1.0
40°
0.1
1.6
1.8
Wavelength Ȝ (nm)
100
10
60
50
0.0
0.1 350 400 450 500 550 600 650 700 750 800 850
0.0
0.1
0.2 120
350 400 450 500 550 600 650 700 750 800 850
Wavelength Ȝ (nm)
0.0
0.0
Wavelength Ȝ (nm)
0.1120
350500
400550450600500650550700600750650800700850750 800 850
350 400 450
100
0.1
0.1
40
50
30
0
TA = Ambient Temperature
TA = Ambient Temperature
TS = Solder Point Temperature
40
T
=
Solder
Point
Temperature
20
S
20
0 Temperature
TA = Ambient Temperature
TA = Ambient
0
20 Point Temperature
40
60
80
100
TS =
Solder
TS = Solder 0
Point
Temperature
20
40
60
80
100
120
20 0
Temperature
T(°C)
0 Temperature
0 T = Ambient
Temperature T(°C)
A
0
0 TS = Solder
20 Point
40 20
60 40
80 60 100 80 120 100
Temperature
Allowable Forward Current Vs Duty Ratio
Temperature
T(°C)
Temperature
T(°C)
Allowable
Forward
Current
Vs
Duty Ratio
(
T
=
25°C;
0
j T(°C) tp ” 10ȝs )
Temperature
)
0
20
40( Tj = 25°C;
60tp ” 10ȝs80
100
120
1000
Allowable Forward
Current
Vs Duty
Ratio Vs Duty Ratio
Allowable
Forward
Current
1000
( Temperature
Tj = 25°C; tp ” (T(°C)
10ȝs
)
Tj = 25°C;
tp ” 10ȝs )
Allowable
Forward Current Vs Duty Ratio
1000
1000
Allowable
Current
Duty Ratio
( TForward
= 25°C;
t ≤Vs10μs
)
(jTj = 25°C; tp ” p10ȝs )
1000
100
50
60
40
0.4
0.5
T0.6
S
TA TS
TA
40
20
TS
60
70
50
100
Maximum
Current Vs Temperature
Maximum Current
Vs Temperature
Forward
IF (mA)
Forward Current
IF (mA)
IF =Current
f (T)
f (T)
Maximum
Vs
Temperature
10
20 Current
30 IF =40
50
60
70
80
120
Maximum
Current
Vs
Temperature
Maximum Current Vs Temperature
I
=f(T)
I
=
f
(T)
F
f (T) IF (mA)
FIF =Current
Forward
120
Maximum
Current
Vs
Temperature
100
IF = f (T)
Forward
Current
IF (mA)IF (mA)
Forward
Current
120
100
Forward
Current IFCurrent
(mA)
IIFF (mA)
Forward
Forward
Current
(mA)
Forward
Current
IF (mA)
0.8
0.6
Relative
Luminous
Flux Ɏrel
Relative
Luminous
Flux Ɏrel
Relative
Luminous
Flux Ɏrel
0.0
0.2
1.0
0.8
Forward Current I (mA)
1.0
1.2
0.8
1.2
1.0
F
Forward
Current
IF (mA)
Forward
Current
IF (mA)
1.2
1.4
1.0
Фrel
Luminous
Relative
Relative
Luminous
Flux Flux
Ɏrel
Relative
Luminous
Flux Ɏrel
1.4
1.6
1.2
Relative
Luminous
Flux Ɏ
Relative
Luminous
Flux
rel Ɏrel
Flux
Luminous
Relative
Relative Luminous
Flux
Ɏrel
Relative
Luminous
Flux
Relative
Luminous
Flux Ɏ
rel Ɏrel
Фrel
1.6
1.4
Forward
Current
IF (mA)I (mA)
Forward
Current
F
Forward
Current
IF (mA)
Relative Lumionous Flux Vs Forward Current
Relative
Lumionous Flux Vs Forward Current
1.6
80
ɎV/ɎV(50mA) = f(IF); Tj = 25°C
ɎV/ɎV(50mA) = f(I
F); Tj = 25°C
1.6
80
1.4 Lumionous Flux Vs Forward Current
Relative
70
ɎV/ɎV(50mA) = f(IF); Tj = 25°C
1.4
70
80
1.2
60
1.6
0.2
0.4
0.0
Forward Current Vs Forward Voltage
Forward
Current
Vs Forward Voltage
Forward Current
Vs Forward
Voltage
f(V
= 25°C
IF =F);
f(VT
IF = f(VFI);FT=
F);j Tj = 25°C
j = 25°C
Forward Current Vs Forward Voltage
80Forward Current Vs Forward Voltage
IF = f(VF); Tj = 25°C
IF = f(VF); Tj = 25°C
80
70Forward Current Vs Forward Voltage
IF = f(VF); Tj = 25°C
70
60
100
100
100
100
0.8
50°
0.6
60°
0.4
70°
0.2
80°
90°
0
100
Duty
Ratio,
Duty Ratio,
% %
4
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
RelativeRelative
Forward
Voltage
VsJunction
Junction
Temperature
Forward
Voltage
VsVs
Temperature
Relative
Forward
Voltage
Junction
Temperature
∆VF =¨VV
V
(25°C)
=
f(T
);
I
=50mA
=
V
V
(25°C)
=
f(T
);
I
=
50mA
F F = FV F- FV (25°C) = f(T
j );F jI = F
¨V
50mA
F
F
F
j
F
Relative
Luminous
Flux
Vs
Junction
Temperature
Relative
Luminious
Flux
Vs
Junction
Temperature
Relative
Luminious
Flux
Vs
Junction
Temperature
ɎV/ɎV(25°C)
===
f(Tf(T
IF I= =50mA
j); );
ɎV/ɎV(25°C)
ФV/ФV(25°C)
f(T
=
50mA
j );
F I 50mA
j
F
0.50.5
1.8
1.8
0.30.3
1.6
1.6
0.20.2
Relative Luminious Flux Ɏrel
Relative Luminious
Flux Flux
Ɏrel Ф
Luminious
Relative
rel
∆VF (V)
0.40.4
Voltage
Forward
Relative
Relative
Forward
Voltage
¨VF (V)
Relative Forward Voltage ¨VF (V)
2.0
2.0
0.10.1
0.00.0
-0.1
-0.1
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
1.4
1.4
1.2
1.2
1.0
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0.0
0.0
-50 -30
-30 -10
-10 1010 3030 5050 7070 9090 110
110 130
130 150
150
-50
-0.5
-0.5
-50 -30
-30 -10
-10 1010 3030 5050 7070 9090 110
110 130
130 150
150
-50
Junction Temperature T (°C)
Junction
Temperature
TT
Junction
Temperature
T j(°C)
j(°C)
Junction
Temperature
(°C)
j
Junction Temperature T j(°C)
Junction
Temperaturej Tj(°C)
Chromaticity Coordinate Shift Vs Junction Temperature
¨Cx, ¨Cy = f(Tj); IF = 50mA
10.0
0.05
8.0
0.04
6.0
0.03
4.0
0.02
2.0
0.01
¨Cx, ¨Cy
Relative
Wavelength ¨Ȝ∆λdom(nm)
Wavelength
Relative
dom (nm)
Relative
Wavelength Vs Junction Temperature
Relative Wavelength Vs Junction Temperature
- Ȝdom (25°C)
= f(Tj);=
IF f(Tj);
= 50mAIF = 50mA
∆λdom =¨Ȝλdom
- λdom
(25°C)
dom = Ȝdom
0.0
-2.0
0.00
-0.01
-4.0
-0.02
-6.0
-0.03
-8.0
-0.04
-10.0
-50
-30
-10
10
30
50
70
90
110
130
150
-0.05
-50
-30
-10
10
30
50
70
90
110
130
150
Junction Temperature T j(°C)
Junction
Temperature T j(°C)
Junction
Temperature
T (°C)
j
5
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
DomiLED • AlInGaP : DWx-HKG Package Outlines
TM
Note : Primary thermal path is through Anode lead of LED package.
Material
Material
Lead-frame
Cu Alloy With Au Plating
Package
High Temperature Resistant Plastic, PPA
Encapsulant
Silicone resin
Soldering Leads
Au Plating
6
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Recommended Solder Pad
7
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Taping and orientation
• Reels come in quantity of 2000 units.
• Reel diameter is 180 mm.
8
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Packaging Specification
9
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Packaging Specification
Existing BPL
Moisture sensitivity
level size - 87mm x 45mm.
As part of improvement and also in response to customers’ request; BPL f
Barcode label
changed to the following.
DOMINANT Opto Technologies
(L) Lot No : lotno
ML TEMP
2 260˚C
RoHS Compliant
(P) Part No : partno
(C) Cust No : partno
(Q) Quantity : quantity
(G) Grouping : group
(D) D/C : date code
Made in Malaysia
(S) S/N : serial no
New BPL size - 110mm x 55mm.
Additional information are now included in the label. 2D and 3D barc
Reel
implemented now
for every data field.
Label
Moisture absorbent material +
Moisture indicator
Issue No : 1
The reel, moisture absorbent material and moisture indicator are
sealed inside the moisture proof foil bag
Weight
Weight(gram)
(gram)
Average 1pc Power DomiLED
1 completed bag (2000pcs)
0.034
0.034
240 ± 10
190
10
Cardboard
Box
DOMINANT TM
For Power DomiLED
Cardboard Box
Size
TTM
Dimensions (mm)
Empty Box
Weight (kg)
Reel / Box
Super Small
325 x 225 x 190
0.38
9 reels MAX
Small
325 x 225 x 280
0.54
15 reels MAX
Medium
570 x 440 x 230
1.46
60 reels MAX
Large
570 x 440 x 460
1.92
120 reels MAX
10
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Recommended Pb-free Soldering Profile
Classification Reflow Profile (JEDEC J-STD-020C)
300
255-260˚C
10-30s
275
250
225
Temperature (˚C)
Ramp-up
3˚C/sec max.
217˚C
200
60-150s
175
150
125
Rampdown
6˚C/sec
max.
100
75
Preheat 60-180s
50
25
480s max
0
50
100
150
200
Time (sec)
11
09/05/2016 V3.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Revision History
Page
Subjects
Date of Modification
-
Initial release
13 Nov 2015
2, 4, 5
3
Update Thermal Resistance
Update Graph: Relative Luminous Flux Vs Forward Current
Forward Current Vs Forward Voltage
Relative Intensity Vs Wavelength
Add Graph: Temperature Coefficient
Update Vf Binning Naming
24 Mar 2016
09 May 2016
NOTE
All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT
Opto Technologies does not assume any liability arising out of the application or use of any product described herein.
DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function
or design.
DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems
without the express written approval from the Managing Director of DOMINANT Opto Technologies.
12
09/05/2016 V3.0
DOMINANT
TM
Opto Technologies
Innovating Illumination
AlInGaP : DWx-HKG
About Us
DOMINANT Opto Technologies is a dynamic Malaysian Corporation that is among the world’s leading SMT LED
Manufacturers. An excellence – driven organization, it offers a comprehensive product range for diverse industries
and applications. Featuring an internationally certified quality assurance acclaim, DOMINANT’s extra bright LEDs
are perfectly suited for various lighting applications in the automotive, consumer and communications as well as industrial sectors. With extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art
manufacturing, research and testing capabilities have become a trusted and reliable brand across the globe. More
information about DOMINANT Opto Technologies can be found on the Internet at http://www.dominant-semi.com.
Please contact us for more information:
DOMINANT Opto Technologies Sdn. Bhd
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia.
Tel: +606 283 3566 Fax: +606 283 0566
E-mail: [email protected]
DOMINANT
Opto Technologies
Innovating Illumination
TM