HA12228F/HA12229F Audio Signal Processor for Car Deck (Decode only Dolby B-type NR* with PB Amp.) REJ03F0134-0200 (Previous: ADE-207-325A) Rev.2.00 Jun 15, 2005 Description HA12228F/HA12229F are silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor, PB equalizer system in one chip. Notes: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. 2. HA12229F is not built-in Dolby B-NR. Functions • • • • PB equalizer Music sensor Dolby B-NR (Only HA12228F) Line mute SW × 2 channel × 1 channel × 2 channel × 2 channel Features • Different type of PB equalizer characteristics selection (120 µs/70 µs) is available with fully electronic control switching built-in. • Easy interface with the PB head. (The PB-EQ resistance self-containing) • Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in. • Available to change music sensing level by external resistor. • Available to change response of music sensor by external capacitor. • Music sensing level, built-in switch to change a band (MSGV). • NR ON/OFF fully electronic control switching built-in. (Only HA12228F) • Line mute control switching built-in. • Available to connect direct with MPU. • These ICs are strong for a cellular phone noise. Rev.2.00 Jun 15, 2005 page 1 of 48 HA12228F/HA12229F Ordering Information Operating Voltage Product HA12228F HA12229F Note: Min Max 6.5 Unit 12 V 1. These ICs are designed to operate on single supply. Standard Level Product Package Code (Previous Code) PLQP0040JB-A (FP-40B) HA12228F HA12229F PB-OUT Level 300 mVrms Function Product HA12228F HA12229F PB-EQ ❍ ❍ Rev.2.00 Jun 15, 2005 page 2 of 48 Music Sensor ❍ ❍ Mute ❍ ❍ Dolby B-NR ❍ × HA12228F/HA12229F Pin Description, Equivalent Circuit (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) Pin No. 13 4 27 Terminal Name MSI TAI(L) TAI(R) Note V = VCC/2 Equivalent Circuit Description MS input *1 Tape input V 100 k VCC/2 2 23 * 8 *2 26 DET(R) DET(L) RIP V = 2.5 V VCC V = VCC/2 Time constant pin for NR rectifier Ripple filter V GND 3 5* Bias V = 0.28 V Dolby bias current input V GND 14 MSDET — Time constant pin for 1 MS rectifier * GND 25 6 12 PBOUT(R) PBOUT(L) MAOUT V = VCC/2 VCC PB output MS amp. output *1 V GND 29 EQOUT(R) 2 EQOUT(L) V = VCC/2 VCC V GND Notes: 1. MS: Music Sensor 2. Non connection regarding HA12229F. 3. Test pin regarding HA12229F. Usually open or pull down to GND with 18 kΩ. Rev.2.00 Jun 15, 2005 page 3 of 48 Equalizer output HA12228F/HA12229F Pin Description, Equivalent Circuit (cont.) (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) Pin No. 30 1 Terminal Name M-OUT(R) M-OUT(L) Note V = VCC/2 Equivalent Circuit Description VCC Equalizer output for time constant V GND 37 39 35 FIN(R) FIN(L) RIN(R) 33 RIN(L) 20 MUTE ON/OFF 1 21 * 19 NR ON/OFF 120/70 17 18 F/R S/R(MS GV) — Equalizer input (FORWARD) — Equalizer input (REVERSE) — Mode control input 22 k 100 k GND 16 MSOUT — I 200 VCC 2 MS output (to MPU) * 100 k GND 10 11 MS Gv(S) MS Gv(R) MS gain terminal *2 V = VCC/2 V 90 k 31 40 NFI(R) NFI(L) V = VCC/2 VCC V to Vref Notes: 1. Non connection regarding HA12229F. 2. MS: Music Sensor Rev.2.00 Jun 15, 2005 page 4 of 48 Equalizer output for time constant HA12228F/HA12229F Pin Description, Equivalent Circuit (cont.) (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) Pin No. 32 38 28 3 Terminal Name VREF1 VREF2 VREF3 VREF4 Note V = VCC/2 Equivalent Circuit HA12228F 28 Description VCC Reference output RAL*1 V 32 38 3 RAL RAL GND HA12229F VCC V 32 38 28 RAL*1 RAL GND V 3 15 36 VCC GND — — 7 9 22 24 NC — 34 Note: 1. RAL: Parasitic metal resistance Rev.2.00 Jun 15, 2005 page 5 of 48 RAL The same as the above. VCC pin GND pin HA12228F/HA12229F Block Diagram HA12228F NC 18 SER/REP(MS Gv) 34 NC 17 FOR/REV 16 MSOUT RIP MUTE-ON/OFF F/R 35 + − + − LPF 15 VCC MSDET DET 14 S/R 37 MSI 13 38 Vref2 Dolby B-NR 4 5 DET(L) 3 MSGv(R) 11 6 7 8 9 10 NC 2 EQOUT(L) 13k M-OUT(L) 1 NC 18k 120/70 BIAS 270k TAI(L) 40 Vref4 + − MSGv(S) F/R + MAOUT 12 MUTE-ON/OFF 39 180 NFI(L) NC 33 TAI(R) 120/70 Vref3 19 32 Vref1 + FIN(L) NR ON/OFF 21 Dolby B-NR − 180 + 36 GND FIN(R) 22 23 MUTE ON/OFF 270k 31 NFI(R) RIN(R) 24 25 26 27 20 18k 120/70 RIN(L) 28 DET(R) 30 13k 29 + M-OUT(R) EQOUT(R) PBOUT(R) PBOUT(L) Unit R: Ω C: F Rev.2.00 Jun 15, 2005 page 6 of 48 HA12228F/HA12229F HA12229F 270k NC NC NC NC RIP 21 MUTE ON/OFF 19 120/70 33 18 SER/REP(MS Gv) 34 NC 17 FOR/REV 16 MSOUT MUTE-ON/OFF F/R 35 + − + − LPF 15 MSDET DET 14 S/R 37 VCC MSI 13 38 Vref2 MAOUT 12 MUTE-ON/OFF F/R + − 5 6 7 8 9 NC 4 NC 3 NC 2 EQOUT(L) 13k M-OUT(L) 1 BIAS 18k 120/70 MSGv(R) 11 TAI(L) 270k Vref4 40 10 MSGv(S) 39 + 32 Vref1 180 NFI(L) 22 + FIN(L) 23 − 180 + 36 GND FIN(R) 24 20 31 NFI(R) RIN(R) 25 26 27 TAI(R) 18k 120/70 RIN(L) 28 Vref3 30 13k 29 + M-OUT(R) EQOUT(R) PBOUT(R) PBOUT(L) Unit R: Ω C: F Rev.2.00 Jun 15, 2005 page 7 of 48 HA12228F/HA12229F Functional Description Power Supply Range HA12228F/HA12229F are provided with three line output level, which will permit on optimum overload margin for power supply conditions. And these are designed to operate on single supply only. Table 1 Supply Voltage Range Product Single Supply HA12228F HA12229F 6.5 V to 12.0 V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories. Reference Voltage These devices provide the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their usual value. The block diagram is shown as figure 1. VCC 15 + − Rch Dolby NR circuit + − Lch Dolby NR circuit 3 Vref4 28 Vref3 38 Vref2 36 26 + + − 32 Vref1 Lch equalizer GND Rch equalizer + − MS block : Internal reference voltage Figure 1a The HA12228F Block Diagram of Reference Supply Voltage VCC 3 Vref4 + − 15 Line Amp. circuit 28 Vref3 38 Vref2 36 26 + − 32 Vref1 Lch equalizer + GND Rch equalizer + − MS block : Internal reference voltage Figure 1b The HA12229F Block Diagram of Reference Supply Voltage Rev.2.00 Jun 15, 2005 page 8 of 48 HA12228F/HA12229F Operating Mode Control HA12228F/HA12229F provides fully electronic switching circuits. And each operating mode control are controlled by parallel data (DC voltage). When a power supply of this IC is cut off, for a voltage, in addition to a mode control terminal even though as do not destruct it, in series for resistance. Table 2 Threshold Voltage (VTH) Pin No. 17, 18, 19, 20, 21* Lo –0.2 to 1.0 Hi 3.5 to VCC Unit V Test Condition Input Pin Measure V Note: * Table 3 Non connection regarding HA12229F. Switching Truth Table Pin No. Pin Name Lo Hi 17 18 Forward/Reverse Search/Repeat Forward Search (FF or REV) Reverse Repeat (Normal speed) 19 120 µ/70 µ 70 µ (Metal or Chrome) 120 µ (Normal) 20 21* MUTE ON/OFF NR ON/OFF MUTE-OFF NR-OFF MUTE-ON NR-ON Notes: * Non connection regarding HA12229F. 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: VCC, Low: –0.2 V) 3. Reducing pop noise is so much better for 10 kΩ to 22 kΩ resisitor and 1 µF to 22 µF capacitor shown figure 2. Input Pin 10 to 22kΩ + MPU 1 to 22µF Figure 2 Interface for Reduction of Pop Noise Rev.2.00 Jun 15, 2005 page 9 of 48 HA12228F/HA12229F Input Block Diagram and Level Diagram R1 5.1kΩ EQOUT 270kΩ R2 5.1kΩ C2 0.1µF Vref3 TAI 30mVrms (−28.2dBs) 13kΩ M-OUT C1 0.01µF 18kΩ NFI − + 180Ω + − Dolby B-NR circuit * Vref1 RIN FIN 0.55mVrms (−63dBs) The each level shown above is typical value when offering PBOUT level to PBOUT pin. (EQ Amp. GV = 40.8dB at f = 1kHz) Note: HA12229F is not built-in Dolby B-NR. Figure 3 Input Block Diagram Adjustment of Playback Dolby Level After replace R5 and R6 with a half-fix volume of 10 kΩ, adjust playback Dolby level. Rev.2.00 Jun 15, 2005 page 10 of 48 PBOUT 300mVrms (−8.2dBs) HA12228F/HA12229F The Sensitivity Adjustment of Music Sensor Adjusting MS Amp. gain by external resistor, the sensitivity of music sensor can set up. The music sensor block diagram is shown in figure 4, and frequency response is shown in figure 5. VCC CEX2 C8 +CEX1 R11 0.01µF 330kΩ REX1 REX2 TAI(R) MS SER ×1 MS REP + − + C6 0.33µF IL MS DET MA MSI OUT RL 90kΩ L/R signal addition −6dB DVCC − + LPF 25kHz MSOUT DET MS Amp. 20dB GND Micro computer 100kΩ ×1 TAI(L) Note: The impedance of MSI is 100kΩ. Figure 4 Music Sensor Block Diagram GV (dB) GV2 Repeat mode f1 GV1 10 f4 f3 f2 Search mode 100 1k f (Hz) 10k Figure 5 Frequency Response Rev.2.00 Jun 15, 2005 page 11 of 48 25k 100k HA12228F/HA12229F 1. Search mode GV1 = 20dB + 20 log 1 + 90k [dB] REX2 1 f1 = [Hz], f2 = 25k [Hz] 2π ⋅ CEX2 ⋅ REX2 2. Repeat mode GV2 = 20dB + 20 log 1 + 90k [dB] REX1 1 f3 = [Hz], f4 = 25k [Hz] 2π ⋅ CEX1 ⋅ REX1 GVIA: L·R signal addition circuit gain. The sensitivity of music sensor (S) is computed by the formula mentioned below. 3 S = − GV*1 − 20 log 130* = 12.7 − GV 30*2 [dB] Notes: 1. Search mode: GV1, Repeat mode: G V2 2. Standard level of TAI pin (Dolby level correspondence) = 30 mVrms 3. Standard sensing level of music sensor = 130 mVrms Item Search mode REX1, 2 24 kΩ CEX1, 2 0.01 µF GV1, 2 33.5 dB f1, 3 663 Hz f2, 4 25 kHz S (one side channel) –14.8 dB S (both channel) –20.8 dB Repeat mode 2.4 kΩ 1 µF 51.7 dB 66.3 Hz 25 kHz –33.0 dB –39.0 dB Note: S is 6 dB down in case of one-side channel. And this MS presented hysteresis lest MSOUT terminal should turn over again High level or Low level, in case of thresh S level constantly. Music Sensor Time Constant 1. Sensing no signal to signal (Attack) is determined by C6, 0.01 µF to 1 µF capacitor C6 can be applicable. 2. Sensing signal to no signal (Recovery) is determined by C6 and R11, however preceding (1), 100 kΩ to 1 MΩ can be applicable. Music Sensor Output (MSOUT) As for the internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, therefore, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. IL = DVCC − MSOUTLO* RL * MSOUTLO : Sensing signal (about 1V) Note: 1. Supply voltage of MSOUT pin must be less than VCC voltage. Rev.2.00 Jun 15, 2005 page 12 of 48 HA12228F/HA12229F The Tolerances of External Components for Dolby NR (Only HA12228F) For adequate Dolby NR tracking response, take external components shown below. Also, leak is small capacity, and please employ a good quality object. C14 0.1µF ±10% 23 DET(R) HA12228F BIAS 5 R10 18kΩ ±2% DET(L) 8 C7 0.1µF ±10% Figure 6 Tolerance of External Components Countermeasure of a Cellular Phone Noise This IC have reinforced a cellular phone noise countermeasure, to show it hereinafter. However, it is presumed that this effect change it greatly, by a mount set. Please sufficiently examine an arrangement of positions, shield method, wiring pattern, in order to oftain a maximum effect. A high terminal of a noise sensitivity of this IC is FIN, RIN, NFI and RIP. ref HA12228F 1000 p SG FIN 180 NFI M-OUT 0.01µ + − 270 k 13 k EQOUT AC VM wait DIN/AUDIO Note: Test condition • Use for SG by cellular radio for an evaluation use. • SG output mode PDC system, burst UP Tch (Transmission mode on the side of a movement machine) • To evaluate a capacitor of 1000 pF as connecting with it directly. • About EQOUT output, what you measure through DIN/AUDIO filter. Figure 7 Test Circuit Rev.2.00 Jun 15, 2005 page 13 of 48 HA12228F/HA12229F 0 EQOUT Noise Output (dBs) −10 FIN → EQOUT, VCC = 9 V, Vin = 0 dBm HA12228F HA12229F −20 −30 −40 −50 −60 100 10000 1000 Frequency (MHz) Figure 8 EQOUT Noise Output vs. Transmission Frequency Characteristic 10 0 EQOUT Noise Output (dBs) −10 FIN → EQOUT, VCC = 9 V, f = 900 MHz HA12228F HA12229F −20 −30 −40 −50 −60 −70 −80 −50 −40 −30 −20 −10 0 Higher Harmonic Input Vin (dBm) 10 20 Figure 9 EQOUT Noise Output vs. Transmission Signal Input Level Characteristic Rev.2.00 Jun 15, 2005 page 14 of 48 HA12228F/HA12229F Absolute Maximum Ratings (Ta = 25°C) Item Maximum supply voltage Power dissipation Operating temperature Storage temperature Rev.2.00 Jun 15, 2005 page 15 of 48 Symbol VCC Max Pd Topr Tstg Rating 16 400 –40 to +85 –55 to +125 Unit V mW °C °C Note Ta ≤ 85°C Rev.2.00 Jun 15, 2005 page 16 of 48 120µ 70µ 120µ 120µ 120µ GV EQ 10k(1) GV EQ 10k(2) PB-EQ Maximum output level VOM PB-EQ T.H.D. THD-EQ PB-EQ input conversion noise VN OFF OFF OFF OFF OFF OFF Notes: 1. VCC = 12V 2. VCC = 6.5V 3. For inputting signal to one side channel VON (1) VON (2) VOL MS output low level MS output leakage current IOH Control voltage VIL VIH MS sensing level 120µ GV EQ 1k FOR/ REV FOR FOR FOR FOR/ REV FOR/ REV SER REP SER 5k 5k 5k (1k) 1k 1k 10k 10k 1k 1k 1k 1k 1k 1k 1k FOR PB-EQ gain MUTE attenuation ON OFF ON OFF ON OFF OFF OFF OFF OFF→ ON Vo max S/N THD CTRL (1) CTRL (2) CT MUTE Signal handling Signal to noise ratio Total Harmonic Distortion Channel separation 0 No signal −36.0 −18.0 −0.2 3.5 −32.0 −14.0 1.0 0.0 0.7 300 600 0.1 27 27 27 37 27 27 25 dB dB 37 37 39 39 29 29 27 27 27 4 4 4 25 25 1.5 µVrms 37/35 39/33 29 −28.0 dB −10.0 dB V 1.5 2.0 µA V 1.0 VCC V 6 6 6 2 2 2 2 2 2 16 16 16 16 17 to 21 3 3 2 1 L COM Remark 15 6 6 6 6 6 6 25 4 6 25 4 6 25 4 39 29→2 2→29 4 25→6 6→25 4 6 25 4 4 4 4 4 27 27 27 27 27 R 25 25 25 25 25 dB 37/35 39/33 29 dB dB % dB dB dB mV L R Application Terminal Input Output mVrms 37 39 29 0.3 % 37/35 39/33 29 33.9 36.9 39.9 29.6 32.6 35.6 Rg=680Ω, DIN-AUDIO THD=1% +14dB 0 0 150 13.0 80.0 0.05 0.3 60.0 80.0 80.0 0 37.8 40.8 43.8 12.0 70.0 50.0 70.0 70.0 THD=1% Rg=10kΩ, CCIR/ARM (+20) 0 −150 Min Typ Max Unit 4.0 9.5 15.0 mA 19.0 20.0 21.0 dB −5.8 −4.3 −2.8 dB −10.0 −8.5 −7.0 dB −4.7 −3.2 −1.7 dB −9.7 −8.2 −6.7 dB Specification No signal (0) 0 (+12) (+12) PBOUT EQOUT fin (Hz) level (dB) level (dB) Other No signal 0 1k −20 2k −30 2k −20 5k −30 5k Test Condition MUTE 120µ/ SER/ FOR/ ON/OFF 70µ REP REV OFF 70µ SER FOR OFF OFF OFF OFF OFF OFF OFF→ ON NR ON/OFF OFF OFF ON ON ON ON Vofs IQ GVIA DEC 2k (1) DEC 2k (2) DEC 5k (1) DEC 5k (2) Symbol PBOUT offset Item Quiescent current Input Amp. gain B-type decode cut IC Condition (Ta = 25°C, VCC = 9 V, Dolby level 0 dB = PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms) HA12228F/HA12229F Electrical Characteristics HA12228F Rev.2.00 Jun 15, 2005 page 17 of 48 120µ 70µ 120µ 120µ 120µ OFF OFF OFF GV EQ 10k(1) GV EQ 10k(2) PB-EQ Maximum output level VOM PB-EQ T.H.D. THD-EQ PB-EQ input conversion noise VN MS sensing level Notes: 1. VCC = 12V 2. VCC = 6.5V 3. For inputting signal to one side channel VON (1) VON (2) VOL MS output low level MS output leakage current IOH Control voltage VIL VIH FOR FOR/ REV FOR/ REV SER REP SER FOR/ REV FOR FOR 120µ GV EQ 1k PB-EQ gain MUTE attenuation FOR OFF OFF OFF OFF OFF→ ON Vo max S/N THD CTRL (1) CTRL (2) CT MUTE Signal handling Signal to noise ratio Total Harmonic Distortion Channel separation Vofs PBOUT offset MUTE 120µ/ SER/ FOR/ ON/OFF 70µ REP REV OFF 70µ SER FOR OFF OFF→ ON IQ GVIA Symbol Item Quiescent current Input Amp. gain IC Condition 5k 5k 5k (1k) 1k 1k 10k 10k 1k 1k 1k 1k 1k 1k 1k No signal 0 No signal Rg=680Ω, DIN-AUDIO THD=1% +14dB 0 0 0 THD=1% Rg=10kΩ, CCIR/ARM (+20) (0) 0 (+12) (+12) fin PBOUT EQOUT (Hz) level (dB) level (dB) Other No signal 0 1k 150 13.0 80.0 0.05 0.3 60.0 80.0 80.0 0 −36.0 −18.0 −0.2 3.5 −32.0 −14.0 1.0 0.0 0.7 300 600 0.1 27 27 27 37 27 27 dB dB 37 37 39 39 29 29 27 27 27 4 4 4 25 25 1.5 µVrms 37/35 39/33 29 −28.0 dB −10.0 dB V 1.5 2.0 µA V 1.0 VCC V 6 6 6 2 2 2 2 2 2 16 16 16 16 17 to 20 3 3 2 1 6 25 25 L COM Remark 15 R 4 25 6 4 25 6 4 25 6 39 29→2 2→29 4 25→6 6→25 25 6 4 L 4 dB 37/35 39/33 29 dB dB % dB dB dB mV R 27 Application Terminal Input Output mVrms 37 39 29 0.3 % 37/35 39/33 29 33.9 36.9 39.9 29.6 32.6 35.6 37.8 40.8 43.8 12.0 70.0 50.0 70.0 70.0 −150 Min Typ Max Unit 3.0 5.0 8.0 mA 19.0 20.0 21.0 dB Specification (Ta = 25°C, VCC = 9 V, PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms) Test Condition HA12228F/HA12229F HA12229F AUDIO SG SW1 OFF SW2 Lch TAI FIN RIN FIN TAI RIN C21 22µ C19 22µ C1 22µ C2 22µ + C3 0.01µ NFI(L) R2 680 R1 680 R27 680 R26 680 40 39 270k + − F/R F/R 1 13k 18k 120/70 180 38 Vref2 37 36 GND 35 34 NC 33 270k − 180 + 2 R8 5.1k R7 5.1k EQOUT(L) 30 13k 29 18k 120/70 32 Vref1 31 NFI(R) Notes: 1. Resistor tolerance ±1% 2. Capacitor tolerance ±1% 3. Unit R: Ω, C: F AC VM1 ON Rch SW4 SW3 C18 0.01µ EQOUT(R) R21 5.1k EQ C20 1µ EQ SW6 4 3 R9 10k EX C4 0.1µ 5 R10 18k MUTE-ON/OFF + − MUTE-ON/OFF 26 27 C17 0.1µ EX 28 SW5 Vref3 Vref4 MUTE ON/OFF 20 EQ PB R11 10k 2.2µ 7 21 22 + − C14 0.1µ 23 Dolby B-NR LPF +C6 6 24 Dolby B-NR 25 C15 2.2µ R18 10k PB SW7 EQ NC R20 5.1k TAI(R) TAI(L) SW8 8 C7 0.1µ S/R 9 10 R17 24k C13 0.01µ MSGv(R) 11 MAOUT 12 MSI 13 MSDET DET 14 VCC 15 MSOUT 16 FOR/REV 17 SER/REP(MS Gv) 18 120/70 19 NR ON/ OFF M-OUT(R) M-OUT(L) RIP BIAS NC DET(R) DET(L) + NC + NC + MSGv(S) + Rev.2.00 Jun 15, 2005 page 18 of 48 SW12 OFF ON EXT R16 C12 2.4k 1µ OFF ON EXT SW13 C11 0.01µ R15 330k C10 0.33µ R14 3.9k SW11 + + + R19 10k SW14 70 120 EXT SW15 SER REP EXT 100µ +C22 FOR REV EXT DC SOURCE1 DC SOURCE3 DC SOURCE2 (5V) Lch Rch SW10 PBL PBR MS DC VM NOISE METER WITH CCIR/ARM FILTER AND DIN/AUDIO FILTER NOISE METER OSCILLO SCOPE DISTORTION ANALYZER AC VM2 SW9 HA12228F/HA12229F Test Circuit HA12228F/HA12229F Characteristic Curves Decode Cut vs. Frequency (HA12228F) 0 0dB −10dB Decode Cut (dB) −2 −20dB −4 −6 −30dB −8 −10 −12 100 −40dB VCC = 9 V TAI→PBOUT NR-ON 1k Frequency (Hz) 10k Quiescent Current vs. Supply Voltage (HA12228F) 13 all "L" 120µ NR-ON No signal Quiescent Current (mA) 12 11 10 9 8 7 6 6 Rev.2.00 Jun 15, 2005 page 19 of 48 7 8 9 10 11 Supply Voltage (V) 12 13 20k HA12228F/HA12229F Input Amp. Gain vs. Frequency (HA12228F) 30 VCC = 9 V TAI→PBOUT NR-OFF Gain (dB) 20 10 0 −10 −20 10 100 1k 10k Frequency (Hz) 1M 100k Total Harmonic Distortion vs. Frequency (HA12228F) (1) 1 −10 dB 0 dB 10 dB VCC = 9 V TAI→PBOUT NR-OFF T.H.D. (%) 0.1 0.01 0.001 100 Rev.2.00 Jun 15, 2005 page 20 of 48 1k Frequency (Hz) 10k 20k HA12228F/HA12229F Total Harmonic Distortion vs. Frequency (HA12228F) (2) 1 −10 dB 0 dB 10 dB VCC = 9 V TAI→PBOUT NR-ON T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k T.H.D. (%) Total Harmonic Distortion vs. Output Level (HA12228F) (1) 10 100 Hz 1 kHz 10 kHz VCC = 9 V TAI→PBOUT 0 dB = 300 mVrms 1 NR-OFF 0.1 0.01 −15 Rev.2.00 Jun 15, 2005 page 21 of 48 −10 −5 0 5 10 Output Level Vout (dB) 15 20 20k HA12228F/HA12229F T.H.D. (%) Total Harmonic Distortion vs. Output Level (HA12228F) (2) 10 100 Hz 1 kHz 10 kHz VCC = 9 V TAI→PBOUT 0 dB = 300 mVrms 1 NR-ON 0.1 0.01 −15 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1) 1 100 Hz 1 kHz 10 kHz TAI→PBOUT = 300 mVrms NR-OFF T.H.D. (%) 0.1 0.01 0.001 5 Rev.2.00 Jun 15, 2005 page 22 of 48 6 7 8 9 10 Supply Voltage (V) 11 12 13 HA12228F/HA12229F Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2) 1 100 Hz 1 kHz 10 kHz TAI→PBOUT = 300 mVrms NR-ON T.H.D. (%) 0.1 0.01 0.001 5 6 7 8 9 10 Supply Voltage (V) 11 12 13 Signal Handling (HA12228F) 40 35 NR-OFF NR-ON TAI→PBOUT = 300 mVrms f = 1 kHz, T.H.D. = 1% Vomax (dB) 30 25 20 15 10 5 0 6 Rev.2.00 Jun 15, 2005 page 23 of 48 7 8 9 10 11 12 13 Supply Voltage (V) 14 15 16 HA12228F/HA12229F Signal to Noise Ratio vs. Supply Voltage (HA12228F) 90 Signal to Noise Ratio (dB) 85 80 75 70 NR-OFF NR-ON TAI→PBOUT = 300 mVrms f = 1 kHz CCIR/ARM filter 65 6 7 8 9 10 11 Supply Voltage (V) 12 13 EQ Amp. Gain vs. Frequency (HA12228F) 70 60 50 EQ Gain (dB) 120µ 40 30 70µ 20 10 0 −10 10 VCC = 9 V Fin→EQOUT 100 Rev.2.00 Jun 15, 2005 page 24 of 48 1k 10k Frequency (Hz) 100k 1M HA12228F/HA12229F Total Harmonic Distortion vs. Frequency (HA12228F) 1 120µ 70µ VCC = 9 V Fin→EQOUT Vout = +20 dB 0 dB = 60 mVrms T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k Total Harmonic Distortion vs. Output Level (HA12228F) (1) 10 T.H.D. (%) 1 0.1 0.01 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 120µ 0 dB = 60 mVrms 0.001 −5 Rev.2.00 Jun 15, 2005 page 25 of 48 0 5 10 15 20 25 Output Level Vout (dB) 30 35 20k HA12228F/HA12229F Total Harmonic Distortion vs. Output Level (HA12228F) (2) 10 T.H.D. (%) 1 0.1 0.01 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 70µ 0 dB = 60 mVrms 0.001 −5 0 5 10 15 20 25 Output Level Vout (dB) 30 35 Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1) 1 T.H.D. (%) 0.1 0.01 100 Hz 1 kHz 10 kHz Fin→EQOUT 120µ 0 dB = 60 mVrms Vout = +10 dB 0.001 6 Rev.2.00 Jun 15, 2005 page 26 of 48 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2) 1 T.H.D. (%) 0.1 0.01 100 Hz 1 kHz 10 kHz Fin→EQOUT 70µ 0 dB = 60 mVrms Vout = +10 dB 0.001 6 7 8 9 10 11 Supply Voltage (V) 12 13 12 13 Signal Handling (HA12228F) (1) 40 Vomax (dB) 35 Fin→EQOUT 120µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 Rev.2.00 Jun 15, 2005 page 27 of 48 7 8 9 10 11 Supply Voltage (V) HA12228F/HA12229F Signal Handling (HA12228F) (2) 40 Vomax (dB) 35 Fin→EQOUT 70µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 7 8 9 10 11 Supply Voltage (V) 12 13 Signal to Noise Ratio vs. Supply Voltage (HA12228F) 80 Signal to Noise Ratio (dB) 75 70 120µ 70µ Fin→EQOUT 0 dB = 60 mVrms f = 1 kHz Din-Audio filter 65 60 55 50 45 40 6 Rev.2.00 Jun 15, 2005 page 28 of 48 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Ripple Rejection Ratio vs. Frequency (HA12228F) (1) 20 Ripple Rejection Ratio R.R.R. (dB) 10 0 NR-on NR-off VCC = 9 V Vin = 100 mVrms PBOUT −10 −20 −30 −40 −50 −60 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (HA12228F) (2) 20 Ripple Rejection Ratio R.R.R. (dB) 10 0 70µs 120µs VCC = 9 V Vin = 100 mVrms EQOUT FOR mode −10 −20 −30 −40 −50 −60 10 Rev.2.00 Jun 15, 2005 page 29 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F −40 Channel Separation vs. Frequency (HA12228F) (1) VCC = 9 V Fin(L)→EQOUT(L→R) Vout = +12 dB Channel Separation (dB) −50 −60 −70 −80 −90 10 −50 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (HA12228F) (2) VCC = 9 V TAI(L)→PBOUT(L→R) Vout = +12 dB Channel Separation (dB) −60 −70 −80 −90 −100 10 Rev.2.00 Jun 15, 2005 page 30 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F Crosstalk vs. Frequency (HA12228F) −40 Crosstalk (dB) −50 VCC = 9 V Fin(L)→Rin(L) EQOUT(L) Vout = +12 dB −60 −70 −80 −90 10 100 1k Frequency (Hz) 10k 100k Mute Attenuation vs. Frequency (HA12228F) −40 VCC = 9 V TAI→PBOUT Vout = +12 dB Mute Attenuation (dB) −60 −80 −100 −120 −140 10 Rev.2.00 Jun 15, 2005 page 31 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F MS Amp. Gain vs. Frequency (HA12228F) (1) 50 VCC = 9 V TAI (SER mode) 40 Gain (dB) 30 20 MAOUT 10 0 −10 MSI −20 10 100 1k Frequency (Hz) 10k 100k MS Amp. Gain vs. Frequency (HA12228F) (2) 50 40 MAOUT Gain (dB) 30 20 MSI 10 0 −10 VCC = 9 V TAI (REP mode) −20 10 Rev.2.00 Jun 15, 2005 page 32 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F MS Sensing Level vs. Frequency (HA12228F) 10 MS Sensing Level (dB) 0 −10 SER L→H SER H→L REP L→H REP H→L VCC = 9 V TAI→PBOUT f = 5 kHz 0 dB = 300 mVrms −20 −30 −40 10 100 10k 1k Frequency (Hz) 100k No-Signal Sensing Time vs. Resistance (HA12228F) No-Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT NR off f = 5 kHz PBOUT 10 MSOUT C10 0.33µ 14 VCC R15 1 10k 100k 1M Resistance R15 (Ω) Rev.2.00 Jun 15, 2005 page 33 of 48 10M HA12228F/HA12229F Signal Sensing Time vs. Capacitance (HA12228F) Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT NR off f = 5 kHz PBOUT 10 MSOUT C10 14 VCC R15 330k 1 0.001 0.01 0.1 Capacitance C10 (µF) 1 10 Quiescent Current vs. Supply Voltage (HA12229F) 7 all "L" 120µ No signal Quiescent Current (mA) 6.5 6 5.5 5 4.5 4 6 Rev.2.00 Jun 15, 2005 page 34 of 48 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Input Amp. Gain vs. Frequency (HA12229F) 30 VCC = 9 V TAI→PBOUT Gain (dB) 20 10 0 −10 −20 10 100 1k 10k Frequency (Hz) 1M 100k Total Harmonic Distortion vs. Frequency (HA12229F) 1 −10 dB 0 dB 10 dB VCC = 9 V TAI→PBOUT T.H.D. (%) 0.1 0.01 0.001 100 Rev.2.00 Jun 15, 2005 page 35 of 48 1k Frequency (Hz) 10k 20k HA12228F/HA12229F Total Harmonic Distortion vs. Output Level (HA12229F) 10 100 Hz 1 kHz 10 kHz VCC = 9 V TAI→PBOUT 0 dB = 300 mVrms T.H.D. (%) 1 0.1 0.01 −15 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Supply Voltage (HA12229F) 1 100 Hz 1 kHz 10 kHz TAI→PBOUT = 300 mVrms T.H.D. (%) 0.1 0.01 0.001 5 Rev.2.00 Jun 15, 2005 page 36 of 48 6 7 8 9 10 Supply Voltage (V) 11 12 13 HA12228F/HA12229F Signal Handling (HA12229F) 40 35 TAI→PBOUT = 300 mVrms f = 1 kHz, T.H.D. = 1% Vomax (dB) 30 25 20 15 10 5 0 6 7 8 9 10 11 12 13 Supply Voltage (V) 14 15 16 Signal to Noise Ratio vs. Supply Voltage (HA12229F) 90 TAI→PBOUT = 300 mVrms f = 1 kHz CCIR/ARM filter Signal to Noise Ratio (dB) 85 80 75 70 65 6 Rev.2.00 Jun 15, 2005 page 37 of 48 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F EQ Amp. Gain vs. Frequency (HA12229F) 70 60 50 EQ Gain (dB) 120µ 40 30 70µ 20 10 0 −10 10 VCC = 9 V Fin→EQOUT 100 1k 10k Frequency (Hz) 100k 1M Total Harmonic Distortion vs. Frequency (HA12229F) 1 120µ 70µ VCC = 9 V Fin→EQOUT Vout = +20 dB 0 dB = 60 mVrms T.H.D. (%) 0.1 0.01 0.001 100 Rev.2.00 Jun 15, 2005 page 38 of 48 1k Frequency (Hz) 10k 20k HA12228F/HA12229F Total Harmonic Distortion vs. Output Level (HA12229F) (1) 10 T.H.D. (%) 1 0.1 0.01 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 120µ 0 dB = 60 mVrms 0.001 −5 0 5 10 15 20 25 Output Level Vout (dB) 30 35 Total Harmonic Distortion vs. Output Level (HA12229F) (2) 10 T.H.D. (%) 1 0.1 0.01 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 70µ 0 dB = 60 mVrms 0.001 −5 Rev.2.00 Jun 15, 2005 page 39 of 48 0 5 10 15 20 25 Output Level Vout (dB) 30 35 HA12228F/HA12229F Total Harmonic Distortion vs. Supply Voltage (HA12229F) (1) 1 T.H.D. (%) 0.1 0.01 100 Hz 1 kHz 10 kHz Fin→EQOUT 120µ 0 dB = 60 mVrms Vout = +10 dB 0.001 6 7 8 9 10 11 Supply Voltage (V) 12 13 Total Harmonic Distortion vs. Supply Voltage (HA12229F) (2) 1 T.H.D. (%) 0.1 0.01 100 Hz 1 kHz 10 kHz Fin→EQOUT 70µ 0 dB = 60 mVrms Vout = +10 dB 0.001 6 Rev.2.00 Jun 15, 2005 page 40 of 48 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Signal Handling (HA12229F) (1) 40 Vomax (dB) 35 Fin→EQOUT 120µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 7 8 9 10 11 Supply Voltage (V) 12 13 12 13 Signal Handling (HA12229F) (2) 40 Vomax (dB) 35 Fin→EQOUT 70µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 Rev.2.00 Jun 15, 2005 page 41 of 48 7 8 9 10 11 Supply Voltage (V) HA12228F/HA12229F Signal to Noise Ratio vs. Supply Voltage (HA12229F) 80 Signal to Noise Ratio (dB) 75 70 120µ 70µ Fin→EQOUT 0 dB = 60 mVrms f = 1 kHz Din-Audio filter 65 60 55 50 45 40 6 7 8 9 10 11 Supply Voltage (V) 12 13 Ripple Rejection Ratio vs. Frequency (HA12229F) (1) 20 Ripple Rejection Ratio R.R.R. (dB) 10 VCC = 9 V Vin = 100 mVrms PBOUT 0 −10 −20 −30 −40 −50 −60 10 Rev.2.00 Jun 15, 2005 page 42 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F Ripple Rejection Ratio vs. Frequency (HA12229F) (2) 20 Ripple Rejection Ratio R.R.R. (dB) 10 0 120µs 70µs VCC = 9 V Vin = 100 mVrms EQOUT FOR mode −10 −20 −30 −40 −50 −60 10 −40 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (HA12229F) (1) VCC = 9 V Fin(L)→EQOUT(L→R) Vout = +12 dB Channel Separation (dB) −50 −60 −70 −80 −90 10 Rev.2.00 Jun 15, 2005 page 43 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F −50 Channel Separation vs. Frequency (HA12229F) (2) VCC = 9 V TAI(L)→PBOUT(L→R) Vout = +12 dB Channel Separation (dB) −60 −70 −80 −90 −100 10 100 Crosstalk (dB) 10k 100k Crosstalk vs. Frequency (HA12229F) −40 −50 1k Frequency (Hz) VCC = 9 V Fin(L)→Rin(L) EQOUT(L) Vout = +12 dB −60 −70 −80 −90 10 Rev.2.00 Jun 15, 2005 page 44 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F Mute Attenuation vs. Frequency (HA12229F) −40 VCC = 9 V TAI→PBOUT Vout = +12 dB Mute Attenuation (dB) −60 −80 −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k MS Amp. Gain vs. Frequency (HA12229F) (1) 50 VCC = 9 V TAI (SER mode) 40 Gain (dB) 30 20 MAOUT 10 0 −10 MSI −20 10 Rev.2.00 Jun 15, 2005 page 45 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F MS Amp. Gain vs. Frequency (HA12229F) (2) 50 40 MAOUT Gain (dB) 30 20 10 MSI 0 −10 VCC = 9 V TAI (REP mode) −20 10 100 1k Frequency (Hz) 10k 100k MS Sensing Level vs. Frequency (HA12229F) 10 MS Sensing Level (dB) 0 −10 SER L→H SER H→L REP L→H REP H→L VCC = 9 V TAI→PBOUT f = 5 kHz 0 dB = 300 mVrms −20 −30 −40 10 Rev.2.00 Jun 15, 2005 page 46 of 48 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F No-Signal Sensing Time vs. Resistance (HA12229F) No-Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT f = 5 kHz PBOUT 10 MSOUT C10 0.33µ 14 VCC R15 1 10k 100k 1M 10M Resistance R15 (Ω) Signal Sensing Time vs. Capacitance (HA12229F) Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT f = 5 kHz PBOUT 10 MSOUT C10 14 VCC R15 330k 1 0.001 Rev.2.00 Jun 15, 2005 page 47 of 48 0.01 0.1 Capacitance C10 (µF) 1 10 HA12228F/HA12229F Package Dimensions JEITA Package Code P-LQFP40-7x7-0.65 RENESAS Code PLQP0040JB-A Previous Code FP-40B MASS[Typ.] 0.2g NOTE) 1. DIMENSIONS"*1"AND"*2" DO NOT INCLUDE MOLD FLASH 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. HD *1 D 30 21 31 20 bp Reference Symbol D c c1 HE Dimension in Millimeters Min Nom Max 7.0 E 7.0 A2 1.40 *2 E b1 ZE Terminal cross section 11 40 1 A2 Detail F y x M 9.2 A1 0.08 0.13 0.22 bp 0.20 0.25 0.30 θ 0.22 0.12 0.17 0.22 0.15 0° e 8° 0.65 x 0.13 y 0.10 ZD 0.575 ZE L L1 Rev.2.00 Jun 15, 2005 page 48 of 48 9.2 1.70 c1 c A A1 L L1 bp 9.0 c θ *3 9.0 8.8 b1 Index mark F e 8.8 A 10 ZD HD HE 0.575 0.40 0.50 1.0 0.60 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2005. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 2.0