RENESAS HA12228F

HA12228F/HA12229F
Audio Signal Processor for Car Deck
(Decode only Dolby B-type NR* with PB Amp.)
REJ03F0134-0200
(Previous: ADE-207-325A)
Rev.2.00
Jun 15, 2005
Description
HA12228F/HA12229F are silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor, PB
equalizer system in one chip.
Notes: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
2. HA12229F is not built-in Dolby B-NR.
Functions
•
•
•
•
PB equalizer
Music sensor
Dolby B-NR (Only HA12228F)
Line mute SW
× 2 channel
× 1 channel
× 2 channel
× 2 channel
Features
• Different type of PB equalizer characteristics selection (120 µs/70 µs) is available with fully electronic control
switching built-in.
• Easy interface with the PB head. (The PB-EQ resistance self-containing)
• Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in.
• Available to change music sensing level by external resistor.
• Available to change response of music sensor by external capacitor.
• Music sensing level, built-in switch to change a band (MSGV).
• NR ON/OFF fully electronic control switching built-in. (Only HA12228F)
• Line mute control switching built-in.
• Available to connect direct with MPU.
• These ICs are strong for a cellular phone noise.
Rev.2.00 Jun 15, 2005 page 1 of 48
HA12228F/HA12229F
Ordering Information
Operating Voltage
Product
HA12228F
HA12229F
Note:
Min
Max
6.5
Unit
12
V
1. These ICs are designed to operate on single supply.
Standard Level
Product
Package Code (Previous Code)
PLQP0040JB-A (FP-40B)
HA12228F
HA12229F
PB-OUT Level
300 mVrms
Function
Product
HA12228F
HA12229F
PB-EQ
❍
❍
Rev.2.00 Jun 15, 2005 page 2 of 48
Music Sensor
❍
❍
Mute
❍
❍
Dolby B-NR
❍
×
HA12228F/HA12229F
Pin Description, Equivalent Circuit
(VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.)
Pin No.
13
4
27
Terminal Name
MSI
TAI(L)
TAI(R)
Note
V = VCC/2
Equivalent Circuit
Description
MS input *1
Tape input
V
100 k
VCC/2
2
23 *
8 *2
26
DET(R)
DET(L)
RIP
V = 2.5 V
VCC
V = VCC/2
Time constant pin for
NR rectifier
Ripple filter
V
GND
3
5*
Bias
V = 0.28 V
Dolby bias current
input
V
GND
14
MSDET
—
Time constant pin for
1
MS rectifier *
GND
25
6
12
PBOUT(R)
PBOUT(L)
MAOUT
V = VCC/2
VCC
PB output
MS amp. output *1
V
GND
29
EQOUT(R)
2
EQOUT(L)
V = VCC/2
VCC
V
GND
Notes: 1. MS: Music Sensor
2. Non connection regarding HA12229F.
3. Test pin regarding HA12229F. Usually open or pull down to GND with 18 kΩ.
Rev.2.00 Jun 15, 2005 page 3 of 48
Equalizer output
HA12228F/HA12229F
Pin Description, Equivalent Circuit (cont.)
(VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.)
Pin No.
30
1
Terminal Name
M-OUT(R)
M-OUT(L)
Note
V = VCC/2
Equivalent Circuit
Description
VCC
Equalizer output for
time constant
V
GND
37
39
35
FIN(R)
FIN(L)
RIN(R)
33
RIN(L)
20
MUTE ON/OFF
1
21 *
19
NR ON/OFF
120/70
17
18
F/R
S/R(MS GV)
—
Equalizer input
(FORWARD)
—
Equalizer input
(REVERSE)
—
Mode control input
22 k
100 k
GND
16
MSOUT
—
I
200
VCC
2
MS output (to MPU) *
100 k
GND
10
11
MS Gv(S)
MS Gv(R)
MS gain terminal *2
V = VCC/2
V
90 k
31
40
NFI(R)
NFI(L)
V = VCC/2
VCC
V
to Vref
Notes: 1. Non connection regarding HA12229F.
2. MS: Music Sensor
Rev.2.00 Jun 15, 2005 page 4 of 48
Equalizer output for
time constant
HA12228F/HA12229F
Pin Description, Equivalent Circuit (cont.)
(VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.)
Pin No.
32
38
28
3
Terminal Name
VREF1
VREF2
VREF3
VREF4
Note
V = VCC/2
Equivalent Circuit
HA12228F
28
Description
VCC
Reference output
RAL*1
V 32
38
3
RAL
RAL
GND
HA12229F
VCC
V 32
38
28
RAL*1
RAL
GND
V
3
15
36
VCC
GND
—
—
7
9
22
24
NC
—
34
Note:
1. RAL: Parasitic metal resistance
Rev.2.00 Jun 15, 2005 page 5 of 48
RAL
The same as
the above.
VCC pin
GND pin
HA12228F/HA12229F
Block Diagram
HA12228F
NC
18
SER/REP(MS Gv)
34 NC
17
FOR/REV
16
MSOUT
RIP
MUTE-ON/OFF
F/R
35
+
−
+
−
LPF
15
VCC
MSDET
DET
14
S/R
37
MSI
13
38
Vref2
Dolby B-NR
4
5
DET(L)
3
MSGv(R)
11
6
7
8
9
10
NC
2
EQOUT(L)
13k
M-OUT(L)
1
NC
18k 120/70
BIAS
270k
TAI(L)
40
Vref4
+
−
MSGv(S)
F/R
+
MAOUT
12
MUTE-ON/OFF
39
180
NFI(L)
NC
33
TAI(R)
120/70
Vref3
19
32
Vref1
+
FIN(L)
NR ON/OFF
21
Dolby B-NR
−
180 +
36 GND
FIN(R)
22
23
MUTE ON/OFF
270k
31
NFI(R)
RIN(R)
24
25
26
27
20
18k 120/70
RIN(L)
28
DET(R)
30 13k 29
+
M-OUT(R)
EQOUT(R)
PBOUT(R)
PBOUT(L)
Unit R: Ω
C: F
Rev.2.00 Jun 15, 2005 page 6 of 48
HA12228F/HA12229F
HA12229F
270k
NC
NC
NC
NC
RIP
21
MUTE ON/OFF
19
120/70
33
18
SER/REP(MS Gv)
34 NC
17
FOR/REV
16
MSOUT
MUTE-ON/OFF
F/R
35
+
−
+
−
LPF
15
MSDET
DET
14
S/R
37
VCC
MSI
13
38
Vref2
MAOUT
12
MUTE-ON/OFF
F/R
+
−
5
6
7
8
9
NC
4
NC
3
NC
2
EQOUT(L)
13k
M-OUT(L)
1
BIAS
18k 120/70
MSGv(R)
11
TAI(L)
270k
Vref4
40
10
MSGv(S)
39
+
32
Vref1
180
NFI(L)
22
+
FIN(L)
23
−
180 +
36 GND
FIN(R)
24
20
31
NFI(R)
RIN(R)
25
26
27
TAI(R)
18k 120/70
RIN(L)
28
Vref3
30 13k 29
+
M-OUT(R)
EQOUT(R)
PBOUT(R)
PBOUT(L)
Unit R: Ω
C: F
Rev.2.00 Jun 15, 2005 page 7 of 48
HA12228F/HA12229F
Functional Description
Power Supply Range
HA12228F/HA12229F are provided with three line output level, which will permit on optimum overload margin for
power supply conditions. And these are designed to operate on single supply only.
Table 1
Supply Voltage Range
Product
Single Supply
HA12228F
HA12229F
6.5 V to 12.0 V
Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories.
Reference Voltage
These devices provide the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of
these devices, the capacitor for the ripple filter is very small about 1/100 compared with their usual value. The block
diagram is shown as figure 1.
VCC
15
+
−
Rch
Dolby NR circuit
+
−
Lch
Dolby NR circuit
3 Vref4
28 Vref3
38 Vref2
36
26
+
+
−
32 Vref1
Lch equalizer
GND
Rch equalizer
+
−
MS block
: Internal reference voltage
Figure 1a The HA12228F Block Diagram of Reference Supply Voltage
VCC
3 Vref4
+
−
15
Line Amp. circuit
28 Vref3
38 Vref2
36
26
+
−
32 Vref1
Lch equalizer
+
GND
Rch equalizer
+
−
MS block
: Internal reference voltage
Figure 1b The HA12229F Block Diagram of Reference Supply Voltage
Rev.2.00 Jun 15, 2005 page 8 of 48
HA12228F/HA12229F
Operating Mode Control
HA12228F/HA12229F provides fully electronic switching circuits. And each operating mode control are controlled by
parallel data (DC voltage).
When a power supply of this IC is cut off, for a voltage, in addition to a mode control terminal even though as do not
destruct it, in series for resistance.
Table 2
Threshold Voltage (VTH)
Pin No.
17, 18, 19, 20, 21*
Lo
–0.2 to 1.0
Hi
3.5 to VCC
Unit
V
Test Condition
Input Pin
Measure
V
Note:
*
Table 3
Non connection regarding HA12229F.
Switching Truth Table
Pin No.
Pin Name
Lo
Hi
17
18
Forward/Reverse
Search/Repeat
Forward
Search (FF or REV)
Reverse
Repeat (Normal speed)
19
120 µ/70 µ
70 µ (Metal or Chrome)
120 µ (Normal)
20
21*
MUTE ON/OFF
NR ON/OFF
MUTE-OFF
NR-OFF
MUTE-ON
NR-ON
Notes: * Non connection regarding HA12229F.
1. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
2. Over shoot level and under shoot level of input signal must be the standardized.
(High: VCC, Low: –0.2 V)
3. Reducing pop noise is so much better for 10 kΩ to 22 kΩ resisitor and 1 µF to 22 µF capacitor shown figure 2.
Input Pin
10 to 22kΩ
+
MPU
1 to 22µF
Figure 2 Interface for Reduction of Pop Noise
Rev.2.00 Jun 15, 2005 page 9 of 48
HA12228F/HA12229F
Input Block Diagram and Level Diagram
R1
5.1kΩ
EQOUT
270kΩ
R2
5.1kΩ
C2
0.1µF
Vref3
TAI
30mVrms
(−28.2dBs)
13kΩ
M-OUT
C1
0.01µF
18kΩ
NFI
− +
180Ω
+
−
Dolby B-NR
circuit *
Vref1
RIN
FIN
0.55mVrms
(−63dBs)
The each level shown above is typical value when offering PBOUT level
to PBOUT pin. (EQ Amp. GV = 40.8dB at f = 1kHz)
Note: HA12229F is not built-in Dolby B-NR.
Figure 3 Input Block Diagram
Adjustment of Playback Dolby Level
After replace R5 and R6 with a half-fix volume of 10 kΩ, adjust playback Dolby level.
Rev.2.00 Jun 15, 2005 page 10 of 48
PBOUT
300mVrms
(−8.2dBs)
HA12228F/HA12229F
The Sensitivity Adjustment of Music Sensor
Adjusting MS Amp. gain by external resistor, the sensitivity of music sensor can set up. The music sensor block
diagram is shown in figure 4, and frequency response is shown in figure 5.
VCC
CEX2
C8
+CEX1
R11
0.01µF
330kΩ
REX1
REX2
TAI(R)
MS
SER
×1
MS
REP
+
−
+ C6
0.33µF
IL
MS
DET
MA MSI
OUT
RL
90kΩ
L/R signal
addition
−6dB
DVCC
−
+
LPF
25kHz
MSOUT
DET
MS
Amp.
20dB
GND
Micro
computer
100kΩ
×1
TAI(L)
Note: The impedance of MSI is 100kΩ.
Figure 4 Music Sensor Block Diagram
GV (dB)
GV2
Repeat mode
f1
GV1
10
f4
f3
f2
Search mode
100
1k
f (Hz)
10k
Figure 5 Frequency Response
Rev.2.00 Jun 15, 2005 page 11 of 48
25k
100k
HA12228F/HA12229F
1. Search mode
GV1 = 20dB + 20 log 1 + 90k
[dB]
REX2
1
f1 =
[Hz], f2 = 25k [Hz]
2π ⋅ CEX2 ⋅ REX2
2. Repeat mode
GV2 = 20dB + 20 log 1 + 90k
[dB]
REX1
1
f3 =
[Hz], f4 = 25k [Hz]
2π ⋅ CEX1 ⋅ REX1
GVIA: L·R signal addition circuit gain.
The sensitivity of music sensor (S) is computed by the formula mentioned below.
3
S = − GV*1 − 20 log 130* = 12.7 − GV
30*2
[dB]
Notes: 1. Search mode: GV1, Repeat mode: G V2
2. Standard level of TAI pin (Dolby level correspondence) = 30 mVrms
3. Standard sensing level of music sensor = 130 mVrms
Item
Search mode
REX1, 2
24 kΩ
CEX1, 2
0.01 µF
GV1, 2
33.5 dB
f1, 3
663 Hz
f2, 4
25 kHz
S (one side
channel)
–14.8 dB
S (both
channel)
–20.8 dB
Repeat mode
2.4 kΩ
1 µF
51.7 dB
66.3 Hz
25 kHz
–33.0 dB
–39.0 dB
Note: S is 6 dB down in case of one-side channel. And this MS presented hysteresis lest MSOUT terminal should turn
over again High level or Low level, in case of thresh S level constantly.
Music Sensor Time Constant
1. Sensing no signal to signal (Attack) is determined by C6, 0.01 µF to 1 µF capacitor C6 can be applicable.
2. Sensing signal to no signal (Recovery) is determined by C6 and R11, however preceding (1), 100 kΩ to 1 MΩ can
be applicable.
Music Sensor Output (MSOUT)
As for the internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type
directly, therefore, output level will be “high” when sensing no signal. And output level will be “low” when sensing
signal.
IL =
DVCC − MSOUTLO*
RL
* MSOUTLO : Sensing signal (about 1V)
Note: 1. Supply voltage of MSOUT pin must be less than VCC voltage.
Rev.2.00 Jun 15, 2005 page 12 of 48
HA12228F/HA12229F
The Tolerances of External Components for Dolby NR (Only HA12228F)
For adequate Dolby NR tracking response, take external components shown below.
Also, leak is small capacity, and please employ a good quality object.
C14
0.1µF
±10%
23
DET(R)
HA12228F
BIAS
5
R10
18kΩ
±2%
DET(L)
8
C7
0.1µF
±10%
Figure 6 Tolerance of External Components
Countermeasure of a Cellular Phone Noise
This IC have reinforced a cellular phone noise countermeasure, to show it hereinafter.
However, it is presumed that this effect change it greatly, by a mount set.
Please sufficiently examine an arrangement of positions, shield method, wiring pattern, in order to oftain a maximum
effect.
A high terminal of a noise sensitivity of this IC is FIN, RIN, NFI and RIP.
ref
HA12228F
1000 p
SG
FIN
180
NFI
M-OUT
0.01µ
+
−
270 k
13 k
EQOUT
AC VM
wait DIN/AUDIO
Note: Test condition
• Use for SG by cellular radio for an evaluation use.
• SG output mode
PDC system, burst
UP Tch (Transmission mode on the side of a movement machine)
• To evaluate a capacitor of 1000 pF as connecting with it directly.
• About EQOUT output, what you measure through DIN/AUDIO filter.
Figure 7 Test Circuit
Rev.2.00 Jun 15, 2005 page 13 of 48
HA12228F/HA12229F
0
EQOUT Noise Output (dBs)
−10
FIN → EQOUT,
VCC = 9 V,
Vin = 0 dBm
HA12228F
HA12229F
−20
−30
−40
−50
−60
100
10000
1000
Frequency (MHz)
Figure 8 EQOUT Noise Output vs. Transmission Frequency Characteristic
10
0
EQOUT Noise Output (dBs)
−10
FIN → EQOUT,
VCC = 9 V,
f = 900 MHz
HA12228F
HA12229F
−20
−30
−40
−50
−60
−70
−80
−50
−40
−30
−20
−10
0
Higher Harmonic Input Vin (dBm)
10
20
Figure 9 EQOUT Noise Output vs. Transmission Signal Input Level Characteristic
Rev.2.00 Jun 15, 2005 page 14 of 48
HA12228F/HA12229F
Absolute Maximum Ratings
(Ta = 25°C)
Item
Maximum supply voltage
Power dissipation
Operating temperature
Storage temperature
Rev.2.00 Jun 15, 2005 page 15 of 48
Symbol
VCC Max
Pd
Topr
Tstg
Rating
16
400
–40 to +85
–55 to +125
Unit
V
mW
°C
°C
Note
Ta ≤ 85°C
Rev.2.00 Jun 15, 2005 page 16 of 48
120µ
70µ
120µ
120µ
120µ










GV EQ 10k(1)
GV EQ 10k(2)
PB-EQ Maximum output level VOM
PB-EQ T.H.D.
THD-EQ
PB-EQ input conversion noise VN
OFF
OFF
OFF



OFF
OFF
OFF



Notes: 1. VCC = 12V
2. VCC = 6.5V
3. For inputting signal to one side channel
VON (1)
VON (2)
VOL
MS output low level
MS output leakage current IOH
Control voltage
VIL
VIH
MS sensing level






120µ


GV EQ 1k
FOR/
REV
FOR
FOR
FOR
FOR/
REV
 FOR/
REV

SER
REP


SER











5k
5k
5k



(1k)
1k
1k
10k
10k
1k
1k
1k
1k
1k
1k
1k



FOR














PB-EQ gain
MUTE attenuation
ON OFF
ON OFF
ON OFF


OFF OFF
OFF OFF→
ON
Vo max
S/N
THD
CTRL (1)
CTRL (2)
CT MUTE
Signal handling
Signal to noise ratio
Total Harmonic Distortion
Channel separation













0



No signal
−36.0
−18.0


−0.2
3.5
−32.0
−14.0
1.0
0.0


0.7
300 600
 0.1
27
27
27
37
27
27

25
dB
dB
37
37
39
39
29
29
27
27
27



4
4
4



25
25




1.5 µVrms 37/35 39/33 29
−28.0 dB
−10.0 dB
V
1.5
2.0 µA
V
1.0
VCC V
6
6
6




2
2
2
2
2
2
16
16
16
16
17 to
21
3
3
2
1
L COM Remark
15

6
6
6
6
6
6
25
4
6
25
4
6
25
4
39 29→2 2→29
4 25→6 6→25
4
6
25

4
4
4
4
4
27
27
27
27
27
R

25
25
25
25
25
dB 37/35 39/33 29
dB
dB
%
dB
dB
dB
mV
L

R

Application Terminal
Input
Output
 mVrms 37 39 29
0.3 % 37/35 39/33 29
33.9 36.9 39.9
29.6 32.6 35.6
Rg=680Ω, DIN-AUDIO 

THD=1%
+14dB
0
0
150
13.0 
80.0 
0.05 0.3
60.0 
80.0 
80.0 
0
37.8 40.8 43.8
12.0
70.0

50.0
70.0
70.0

THD=1%

Rg=10kΩ, CCIR/ARM

(+20)


0
−150
Min Typ Max Unit
4.0 9.5 15.0 mA
19.0 20.0 21.0 dB
−5.8 −4.3 −2.8 dB
−10.0 −8.5 −7.0 dB
−4.7 −3.2 −1.7 dB
−9.7 −8.2 −6.7 dB
Specification
No signal








(0)
0

(+12)
(+12)

PBOUT EQOUT
fin
(Hz) level (dB) level (dB)
Other



No signal

0
1k

−20
2k

−30
2k

−20
5k
−30

5k
Test Condition
MUTE 120µ/ SER/ FOR/
ON/OFF 70µ REP REV
OFF 70µ SER FOR


OFF



OFF

OFF



OFF



OFF



OFF OFF→
ON
NR
ON/OFF
OFF
OFF
ON
ON
ON
ON
Vofs
IQ
GVIA
DEC 2k (1)
DEC 2k (2)
DEC 5k (1)
DEC 5k (2)
Symbol
PBOUT offset
Item
Quiescent current
Input Amp. gain
B-type decode cut
IC Condition
(Ta = 25°C, VCC = 9 V, Dolby level 0 dB = PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms)
HA12228F/HA12229F
Electrical Characteristics
HA12228F
Rev.2.00 Jun 15, 2005 page 17 of 48
120µ
70µ
120µ
120µ
120µ











OFF
OFF
OFF



GV EQ 10k(1)
GV EQ 10k(2)
PB-EQ Maximum output level VOM
PB-EQ T.H.D.
THD-EQ
PB-EQ input conversion noise VN
MS sensing level
Notes: 1. VCC = 12V
2. VCC = 6.5V
3. For inputting signal to one side channel
VON (1)
VON (2)
VOL
MS output low level
MS output leakage current IOH
Control voltage
VIL
VIH
FOR
FOR/
REV
 FOR/
REV
SER

REP

SER











FOR/
REV
FOR
FOR

120µ

GV EQ 1k
PB-EQ gain
MUTE attenuation



FOR














OFF
OFF
OFF

OFF
OFF→
ON
Vo max
S/N
THD
CTRL (1)
CTRL (2)
CT MUTE
Signal handling
Signal to noise ratio
Total Harmonic Distortion
Channel separation



Vofs
PBOUT offset
MUTE 120µ/ SER/ FOR/
ON/OFF 70µ REP REV
OFF 70µ SER FOR
OFF



OFF→
ON
IQ
GVIA
Symbol
Item
Quiescent current
Input Amp. gain
IC Condition
5k
5k
5k



(1k)
1k
1k
10k
10k
1k
1k
1k
1k
1k
1k
1k

No signal









0



No signal
Rg=680Ω, DIN-AUDIO

THD=1%
+14dB
0
0
0

THD=1%
Rg=10kΩ, CCIR/ARM


(+20)










(0)
0

(+12)
(+12)

fin
PBOUT EQOUT
(Hz) level (dB) level (dB)
Other


No signal

0

1k
150
13.0 
80.0 
0.05 0.3
60.0 
80.0 
80.0 
0
−36.0
−18.0


−0.2
3.5

−32.0
−14.0
1.0
0.0


0.7
300 600
 0.1
27
27
27
37
27
27

dB
dB
37
37
39
39
29
29
27
27
27



4
4
4



25
25




1.5 µVrms 37/35 39/33 29
−28.0 dB
−10.0 dB
V
1.5
2.0 µA
V
1.0
VCC V
6
6
6




2
2
2
2
2
2
16
16
16
16
17 to
20
3
3
2
1
6
25
25
L COM Remark

15
R

4
25
6
4
25
6
4
25
6
39 29→2 2→29
4 25→6 6→25
25
6
4

L

4
dB 37/35 39/33 29
dB
dB
%
dB
dB
dB
mV
R

27
Application Terminal
Input
Output
 mVrms 37 39 29
0.3 % 37/35 39/33 29
33.9 36.9 39.9
29.6 32.6 35.6
37.8 40.8 43.8
12.0
70.0

50.0
70.0
70.0
−150
Min Typ Max Unit
3.0 5.0 8.0 mA
19.0 20.0 21.0 dB
Specification
(Ta = 25°C, VCC = 9 V, PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms)
Test Condition
HA12228F/HA12229F
HA12229F
AUDIO SG
SW1
OFF
SW2
Lch
TAI
FIN
RIN
FIN
TAI
RIN
C21
22µ
C19
22µ
C1
22µ
C2
22µ
+
C3
0.01µ
NFI(L)
R2
680
R1
680
R27
680
R26
680
40
39
270k
+
−
F/R
F/R
1
13k
18k 120/70
180
38
Vref2
37
36 GND
35
34 NC
33
270k
−
180 +
2
R8
5.1k
R7
5.1k
EQOUT(L)
30 13k 29
18k 120/70
32
Vref1
31
NFI(R)
Notes: 1. Resistor tolerance ±1%
2. Capacitor tolerance ±1%
3. Unit R: Ω, C: F
AC VM1
ON
Rch
SW4
SW3
C18
0.01µ
EQOUT(R)
R21
5.1k
EQ
C20
1µ
EQ
SW6
4
3
R9
10k
EX
C4
0.1µ
5
R10
18k
MUTE-ON/OFF
+
−
MUTE-ON/OFF
26
27
C17
0.1µ
EX
28
SW5
Vref3
Vref4
MUTE ON/OFF 20
EQ
PB
R11
10k
2.2µ
7
21
22
+
−
C14
0.1µ
23
Dolby B-NR
LPF
+C6
6
24
Dolby B-NR
25
C15
2.2µ
R18
10k
PB SW7
EQ
NC
R20
5.1k
TAI(R)
TAI(L)
SW8
8
C7
0.1µ
S/R
9
10
R17
24k
C13
0.01µ
MSGv(R)
11
MAOUT
12
MSI
13
MSDET
DET
14
VCC
15
MSOUT
16
FOR/REV 17
SER/REP(MS Gv) 18
120/70 19
NR
ON/
OFF
M-OUT(R)
M-OUT(L)
RIP
BIAS
NC
DET(R)
DET(L)
+
NC
+
NC
+
MSGv(S)
+
Rev.2.00 Jun 15, 2005 page 18 of 48
SW12
OFF
ON
EXT
R16 C12
2.4k 1µ
OFF
ON
EXT
SW13
C11
0.01µ
R15
330k
C10
0.33µ
R14
3.9k
SW11
+
+
+
R19
10k
SW14
70
120
EXT
SW15
SER
REP
EXT
100µ
+C22
FOR
REV
EXT
DC SOURCE1
DC SOURCE3
DC SOURCE2 (5V)
Lch
Rch
SW10
PBL
PBR
MS
DC VM
NOISE METER
WITH CCIR/ARM FILTER
AND DIN/AUDIO FILTER
NOISE
METER
OSCILLO
SCOPE
DISTORTION
ANALYZER
AC VM2
SW9
HA12228F/HA12229F
Test Circuit
HA12228F/HA12229F
Characteristic Curves
Decode Cut vs. Frequency (HA12228F)
0
0dB
−10dB
Decode Cut (dB)
−2
−20dB
−4
−6
−30dB
−8
−10
−12
100
−40dB
VCC = 9 V
TAI→PBOUT
NR-ON
1k
Frequency (Hz)
10k
Quiescent Current vs. Supply Voltage (HA12228F)
13
all "L"
120µ
NR-ON
No signal
Quiescent Current (mA)
12
11
10
9
8
7
6
6
Rev.2.00 Jun 15, 2005 page 19 of 48
7
8
9
10
11
Supply Voltage (V)
12
13
20k
HA12228F/HA12229F
Input Amp. Gain vs. Frequency (HA12228F)
30
VCC = 9 V
TAI→PBOUT
NR-OFF
Gain (dB)
20
10
0
−10
−20
10
100
1k
10k
Frequency (Hz)
1M
100k
Total Harmonic Distortion vs. Frequency (HA12228F) (1)
1
−10 dB
0 dB
10 dB
VCC = 9 V
TAI→PBOUT
NR-OFF
T.H.D. (%)
0.1
0.01
0.001
100
Rev.2.00 Jun 15, 2005 page 20 of 48
1k
Frequency (Hz)
10k
20k
HA12228F/HA12229F
Total Harmonic Distortion vs. Frequency (HA12228F) (2)
1
−10 dB
0 dB
10 dB
VCC = 9 V
TAI→PBOUT
NR-ON
T.H.D. (%)
0.1
0.01
0.001
100
1k
Frequency (Hz)
10k
T.H.D. (%)
Total Harmonic Distortion vs. Output Level (HA12228F) (1)
10
100 Hz
1 kHz
10 kHz
VCC = 9 V
TAI→PBOUT
0 dB = 300 mVrms
1 NR-OFF
0.1
0.01
−15
Rev.2.00 Jun 15, 2005 page 21 of 48
−10
−5
0
5
10
Output Level Vout (dB)
15
20
20k
HA12228F/HA12229F
T.H.D. (%)
Total Harmonic Distortion vs. Output Level (HA12228F) (2)
10
100 Hz
1 kHz
10 kHz
VCC = 9 V
TAI→PBOUT
0 dB = 300 mVrms
1 NR-ON
0.1
0.01
−15
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1)
1
100 Hz
1 kHz
10 kHz
TAI→PBOUT = 300 mVrms
NR-OFF
T.H.D. (%)
0.1
0.01
0.001
5
Rev.2.00 Jun 15, 2005 page 22 of 48
6
7
8
9
10
Supply Voltage (V)
11
12
13
HA12228F/HA12229F
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2)
1
100 Hz
1 kHz
10 kHz
TAI→PBOUT = 300 mVrms
NR-ON
T.H.D. (%)
0.1
0.01
0.001
5
6
7
8
9
10
Supply Voltage (V)
11
12
13
Signal Handling (HA12228F)
40
35
NR-OFF
NR-ON
TAI→PBOUT = 300 mVrms
f = 1 kHz, T.H.D. = 1%
Vomax (dB)
30
25
20
15
10
5
0
6
Rev.2.00 Jun 15, 2005 page 23 of 48
7
8
9
10 11 12 13
Supply Voltage (V)
14
15
16
HA12228F/HA12229F
Signal to Noise Ratio vs. Supply Voltage (HA12228F)
90
Signal to Noise Ratio (dB)
85
80
75
70
NR-OFF
NR-ON
TAI→PBOUT = 300 mVrms
f = 1 kHz
CCIR/ARM filter
65
6
7
8
9
10
11
Supply Voltage (V)
12
13
EQ Amp. Gain vs. Frequency (HA12228F)
70
60
50
EQ Gain (dB)
120µ
40
30
70µ
20
10
0
−10
10
VCC = 9 V
Fin→EQOUT
100
Rev.2.00 Jun 15, 2005 page 24 of 48
1k
10k
Frequency (Hz)
100k
1M
HA12228F/HA12229F
Total Harmonic Distortion vs. Frequency (HA12228F)
1
120µ
70µ
VCC = 9 V
Fin→EQOUT
Vout = +20 dB
0 dB = 60 mVrms
T.H.D. (%)
0.1
0.01
0.001
100
1k
Frequency (Hz)
10k
Total Harmonic Distortion vs. Output Level (HA12228F) (1)
10
T.H.D. (%)
1
0.1
0.01
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
120µ
0 dB = 60 mVrms
0.001
−5
Rev.2.00 Jun 15, 2005 page 25 of 48
0
5
10
15
20
25
Output Level Vout (dB)
30
35
20k
HA12228F/HA12229F
Total Harmonic Distortion vs. Output Level (HA12228F) (2)
10
T.H.D. (%)
1
0.1
0.01
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
70µ
0 dB = 60 mVrms
0.001
−5
0
5
10
15
20
25
Output Level Vout (dB)
30
35
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
120µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
Rev.2.00 Jun 15, 2005 page 26 of 48
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
70µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
7
8
9
10
11
Supply Voltage (V)
12
13
12
13
Signal Handling (HA12228F) (1)
40
Vomax (dB)
35
Fin→EQOUT
120µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
Rev.2.00 Jun 15, 2005 page 27 of 48
7
8
9
10
11
Supply Voltage (V)
HA12228F/HA12229F
Signal Handling (HA12228F) (2)
40
Vomax (dB)
35
Fin→EQOUT
70µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
7
8
9
10
11
Supply Voltage (V)
12
13
Signal to Noise Ratio vs. Supply Voltage (HA12228F)
80
Signal to Noise Ratio (dB)
75
70
120µ
70µ
Fin→EQOUT
0 dB = 60 mVrms
f = 1 kHz
Din-Audio filter
65
60
55
50
45
40
6
Rev.2.00 Jun 15, 2005 page 28 of 48
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Ripple Rejection Ratio vs. Frequency (HA12228F) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
10
0
NR-on
NR-off
VCC = 9 V
Vin = 100 mVrms
PBOUT
−10
−20
−30
−40
−50
−60
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (HA12228F) (2)
20
Ripple Rejection Ratio R.R.R. (dB)
10
0
70µs
120µs
VCC = 9 V
Vin = 100 mVrms
EQOUT
FOR mode
−10
−20
−30
−40
−50
−60
10
Rev.2.00 Jun 15, 2005 page 29 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
−40
Channel Separation vs. Frequency (HA12228F) (1)
VCC = 9 V
Fin(L)→EQOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−50
−60
−70
−80
−90
10
−50
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (HA12228F) (2)
VCC = 9 V
TAI(L)→PBOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−60
−70
−80
−90
−100
10
Rev.2.00 Jun 15, 2005 page 30 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
Crosstalk vs. Frequency (HA12228F)
−40
Crosstalk (dB)
−50
VCC = 9 V
Fin(L)→Rin(L)
EQOUT(L)
Vout = +12 dB
−60
−70
−80
−90
10
100
1k
Frequency (Hz)
10k
100k
Mute Attenuation vs. Frequency (HA12228F)
−40
VCC = 9 V
TAI→PBOUT
Vout = +12 dB
Mute Attenuation (dB)
−60
−80
−100
−120
−140
10
Rev.2.00 Jun 15, 2005 page 31 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
MS Amp. Gain vs. Frequency (HA12228F) (1)
50
VCC = 9 V
TAI (SER mode)
40
Gain (dB)
30
20
MAOUT
10
0
−10
MSI
−20
10
100
1k
Frequency (Hz)
10k
100k
MS Amp. Gain vs. Frequency (HA12228F) (2)
50
40
MAOUT
Gain (dB)
30
20
MSI
10
0
−10
VCC = 9 V
TAI (REP mode)
−20
10
Rev.2.00 Jun 15, 2005 page 32 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
MS Sensing Level vs. Frequency (HA12228F)
10
MS Sensing Level (dB)
0
−10
SER L→H
SER H→L
REP L→H
REP H→L
VCC = 9 V
TAI→PBOUT
f = 5 kHz
0 dB = 300 mVrms
−20
−30
−40
10
100
10k
1k
Frequency (Hz)
100k
No-Signal Sensing Time vs. Resistance (HA12228F)
No-Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
NR off
f = 5 kHz
PBOUT
10
MSOUT
C10
0.33µ
14
VCC
R15
1
10k
100k
1M
Resistance R15 (Ω)
Rev.2.00 Jun 15, 2005 page 33 of 48
10M
HA12228F/HA12229F
Signal Sensing Time vs. Capacitance (HA12228F)
Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
NR off
f = 5 kHz
PBOUT
10
MSOUT
C10
14
VCC
R15
330k
1
0.001
0.01
0.1
Capacitance C10 (µF)
1
10
Quiescent Current vs. Supply Voltage (HA12229F)
7
all "L"
120µ
No signal
Quiescent Current (mA)
6.5
6
5.5
5
4.5
4
6
Rev.2.00 Jun 15, 2005 page 34 of 48
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Input Amp. Gain vs. Frequency (HA12229F)
30
VCC = 9 V
TAI→PBOUT
Gain (dB)
20
10
0
−10
−20
10
100
1k
10k
Frequency (Hz)
1M
100k
Total Harmonic Distortion vs. Frequency (HA12229F)
1
−10 dB
0 dB
10 dB
VCC = 9 V
TAI→PBOUT
T.H.D. (%)
0.1
0.01
0.001
100
Rev.2.00 Jun 15, 2005 page 35 of 48
1k
Frequency (Hz)
10k
20k
HA12228F/HA12229F
Total Harmonic Distortion vs. Output Level (HA12229F)
10
100 Hz
1 kHz
10 kHz
VCC = 9 V
TAI→PBOUT
0 dB = 300 mVrms
T.H.D. (%)
1
0.1
0.01
−15
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Supply Voltage (HA12229F)
1
100 Hz
1 kHz
10 kHz
TAI→PBOUT = 300 mVrms
T.H.D. (%)
0.1
0.01
0.001
5
Rev.2.00 Jun 15, 2005 page 36 of 48
6
7
8
9
10
Supply Voltage (V)
11
12
13
HA12228F/HA12229F
Signal Handling (HA12229F)
40
35
TAI→PBOUT = 300 mVrms
f = 1 kHz, T.H.D. = 1%
Vomax (dB)
30
25
20
15
10
5
0
6
7
8
9
10 11 12 13
Supply Voltage (V)
14
15
16
Signal to Noise Ratio vs. Supply Voltage (HA12229F)
90
TAI→PBOUT = 300 mVrms
f = 1 kHz
CCIR/ARM filter
Signal to Noise Ratio (dB)
85
80
75
70
65
6
Rev.2.00 Jun 15, 2005 page 37 of 48
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
EQ Amp. Gain vs. Frequency (HA12229F)
70
60
50
EQ Gain (dB)
120µ
40
30
70µ
20
10
0
−10
10
VCC = 9 V
Fin→EQOUT
100
1k
10k
Frequency (Hz)
100k
1M
Total Harmonic Distortion vs. Frequency (HA12229F)
1
120µ
70µ
VCC = 9 V
Fin→EQOUT
Vout = +20 dB
0 dB = 60 mVrms
T.H.D. (%)
0.1
0.01
0.001
100
Rev.2.00 Jun 15, 2005 page 38 of 48
1k
Frequency (Hz)
10k
20k
HA12228F/HA12229F
Total Harmonic Distortion vs. Output Level (HA12229F) (1)
10
T.H.D. (%)
1
0.1
0.01
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
120µ
0 dB = 60 mVrms
0.001
−5
0
5
10
15
20
25
Output Level Vout (dB)
30
35
Total Harmonic Distortion vs. Output Level (HA12229F) (2)
10
T.H.D. (%)
1
0.1
0.01
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
70µ
0 dB = 60 mVrms
0.001
−5
Rev.2.00 Jun 15, 2005 page 39 of 48
0
5
10
15
20
25
Output Level Vout (dB)
30
35
HA12228F/HA12229F
Total Harmonic Distortion vs. Supply Voltage (HA12229F) (1)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
120µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
7
8
9
10
11
Supply Voltage (V)
12
13
Total Harmonic Distortion vs. Supply Voltage (HA12229F) (2)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
70µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
Rev.2.00 Jun 15, 2005 page 40 of 48
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Signal Handling (HA12229F) (1)
40
Vomax (dB)
35
Fin→EQOUT
120µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
7
8
9
10
11
Supply Voltage (V)
12
13
12
13
Signal Handling (HA12229F) (2)
40
Vomax (dB)
35
Fin→EQOUT
70µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
Rev.2.00 Jun 15, 2005 page 41 of 48
7
8
9
10
11
Supply Voltage (V)
HA12228F/HA12229F
Signal to Noise Ratio vs. Supply Voltage (HA12229F)
80
Signal to Noise Ratio (dB)
75
70
120µ
70µ
Fin→EQOUT
0 dB = 60 mVrms
f = 1 kHz
Din-Audio filter
65
60
55
50
45
40
6
7
8
9
10
11
Supply Voltage (V)
12
13
Ripple Rejection Ratio vs. Frequency (HA12229F) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
10
VCC = 9 V
Vin = 100 mVrms
PBOUT
0
−10
−20
−30
−40
−50
−60
10
Rev.2.00 Jun 15, 2005 page 42 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
Ripple Rejection Ratio vs. Frequency (HA12229F) (2)
20
Ripple Rejection Ratio R.R.R. (dB)
10
0
120µs
70µs
VCC = 9 V
Vin = 100 mVrms
EQOUT
FOR mode
−10
−20
−30
−40
−50
−60
10
−40
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (HA12229F) (1)
VCC = 9 V
Fin(L)→EQOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−50
−60
−70
−80
−90
10
Rev.2.00 Jun 15, 2005 page 43 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
−50
Channel Separation vs. Frequency (HA12229F) (2)
VCC = 9 V
TAI(L)→PBOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−60
−70
−80
−90
−100
10
100
Crosstalk (dB)
10k
100k
Crosstalk vs. Frequency (HA12229F)
−40
−50
1k
Frequency (Hz)
VCC = 9 V
Fin(L)→Rin(L)
EQOUT(L)
Vout = +12 dB
−60
−70
−80
−90
10
Rev.2.00 Jun 15, 2005 page 44 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
Mute Attenuation vs. Frequency (HA12229F)
−40
VCC = 9 V
TAI→PBOUT
Vout = +12 dB
Mute Attenuation (dB)
−60
−80
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
MS Amp. Gain vs. Frequency (HA12229F) (1)
50
VCC = 9 V
TAI (SER mode)
40
Gain (dB)
30
20
MAOUT
10
0
−10
MSI
−20
10
Rev.2.00 Jun 15, 2005 page 45 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
MS Amp. Gain vs. Frequency (HA12229F) (2)
50
40
MAOUT
Gain (dB)
30
20
10
MSI
0
−10
VCC = 9 V
TAI (REP mode)
−20
10
100
1k
Frequency (Hz)
10k
100k
MS Sensing Level vs. Frequency (HA12229F)
10
MS Sensing Level (dB)
0
−10
SER L→H
SER H→L
REP L→H
REP H→L
VCC = 9 V
TAI→PBOUT
f = 5 kHz
0 dB = 300 mVrms
−20
−30
−40
10
Rev.2.00 Jun 15, 2005 page 46 of 48
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
No-Signal Sensing Time vs. Resistance (HA12229F)
No-Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
f = 5 kHz
PBOUT
10
MSOUT
C10
0.33µ
14
VCC
R15
1
10k
100k
1M
10M
Resistance R15 (Ω)
Signal Sensing Time vs. Capacitance (HA12229F)
Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
f = 5 kHz
PBOUT
10
MSOUT
C10
14
VCC
R15
330k
1
0.001
Rev.2.00 Jun 15, 2005 page 47 of 48
0.01
0.1
Capacitance C10 (µF)
1
10
HA12228F/HA12229F
Package Dimensions
JEITA Package Code
P-LQFP40-7x7-0.65
RENESAS Code
PLQP0040JB-A
Previous Code
FP-40B
MASS[Typ.]
0.2g
NOTE)
1. DIMENSIONS"*1"AND"*2"
DO NOT INCLUDE MOLD FLASH
2. DIMENSION"*3"DOES NOT
INCLUDE TRIM OFFSET.
HD
*1
D
30
21
31
20
bp
Reference
Symbol
D
c
c1
HE
Dimension in Millimeters
Min
Nom
Max
7.0
E
7.0
A2
1.40
*2
E
b1
ZE
Terminal cross section
11
40
1
A2
Detail F
y
x
M
9.2
A1
0.08
0.13
0.22
bp
0.20
0.25
0.30
θ
0.22
0.12
0.17
0.22
0.15
0°
e
8°
0.65
x
0.13
y
0.10
ZD
0.575
ZE
L
L1
Rev.2.00 Jun 15, 2005 page 48 of 48
9.2
1.70
c1
c
A
A1
L
L1
bp
9.0
c
θ
*3
9.0
8.8
b1
Index mark
F
e
8.8
A
10
ZD
HD
HE
0.575
0.40
0.50
1.0
0.60
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits,
(ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon 2.0