HA12228F/HA12229F Audio Signal Processor for Car Deck (Decode only Dolby B-type NR* with PB Amp.) ADE-207-325A 2nd Edition Dec. 2000 Description HA12228F /HA12229F ar e silic on monolithic bipolar IC providing Dolby noise re duction system*, music sensor, PB equalizer system in one chip. Notes: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. 2. HA12229F is not built-in Dolby B-NR. Functions • • • • PB equalizer Music sensor Dolby B-NR (Only HA12228F) Line mute SW ×2 ×1 ×2 ×2 channel channel channel channel Features • Different type of PB equalizer characteristics selection (120 µs/70 µs) is available with fully electronic control switching built-in. • Easy interface with the PB head. (The PB-EQ resistance self-containing) • Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in. • Available to change music sensing level by external resistor. • Available to change response of music sensor by external capacitor. • Music sensing level, built-in switch to change a band (MSGV). • NR ON/OFF fully electronic control switching built-in. (Only HA12228F) • Line mute control switching built-in. • Available to connect direct with MPU. • These ICs are strong for a cellular phone noise. HA12228F/HA12229F Ordering Information Operating Voltage Product Min Max Unit HA12228F 6.5 12 V HA12229F Note: 1. These ICs are designed to operate on single supply. Standard Level Product Package PB-OUT Level HA12228F FP-40B 300 mVrms HA12229F Function Product PB-EQ Music Sensor Mute Dolby B-NR HA12228F ❍ ❍ ❍ ❍ HA12229F ❍ ❍ ❍ × HA12228F/HA12229F Pi n Descri pti on, Equi valent Circ ui t (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) Pin No. Terminal Name Note 13 MSI V = VCC/2 Equivalent Circuit Description MS input * 1 V 100 k VCC/2 4 TAI(L) 27 Tape input TAI(R) 23 * 2 DET(R) V = 2.5 V VCC Time constant pin for NR rectifier V GND 8 *2 DET(L) 26 RIP V = VCC/2 Ripple filter Bias V = 0.28 V Dolby bias current input 5* 3 V GND 14 MSDET — Time constant pin for MS rectifier * 1 GND Notes: 1. MS: Music Sensor 2. Non connection regarding HA12229F. 3. Test pin regarding HA12229F. Usually open or pull down to GND with 18 kΩ. HA12228F/HA12229F Pi n Descri pti on, Equi valent Circ ui t (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) (cont.) Pin No. Terminal Name Note 25 PBOUT(R) V = VCC/2 Equivalent Circuit Description VCC PB output V GND 6 PBOUT(L) 12 MAOUT 29 EQOUT(R) MS amp. output * 1 V = VCC/2 VCC Equalizer output V GND 2 EQOUT(L) 30 M-OUT(R) V = VCC/2 VCC Equalizer output for time constant V GND 1 M-OUT(L) 37 FIN(R) 39 FIN(L) 35 RIN(R) 33 RIN(L) Note: 1. MS: Music Sensor — Equalizer input (FORWARD) — Equalizer input (REVERSE) HA12228F/HA12229F Pi n Descri pti on, Equi valent Circ ui t (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) (cont.) Pin No. Terminal Name Note 20 MUTE ON/OFF — Equivalent Circuit Description Mode control input 22 k 100 k GND 21 * 1 NR ON/OFF 19 120/70 17 F/R 18 S/R(MS GV) 16 MSOUT — I 200 VCC MS output (to MPU) * 2 100 k GND 10 MS Gv(S) MS gain terminal * 2 V = VCC/2 V 90 k 11 MS Gv(R) 31 NFI(R) V = VCC/2 VCC V to Vref 40 NFI(L) Notes: 1. Non connection regarding HA12229F. 2. MS: Music Sensor Equalizer output for time constant HA12228F/HA12229F Pi n Descri pti on, Equi valent Circ ui t (VCC = 9 V single supply, Ta = 25°C, No Signal, The value in the table shows typical value.) (cont.) Pin No. Terminal Name Note 32 VREF1 V = VCC/2 Equivalent Circuit HA12228F 28 Description VCC Reference output RAL*1 V 32 38 3 38 VREF2 28 VREF3 3 VREF4 RAL RAL GND HA12229F VCC V 32 38 28 RAL*1 RAL GND V 3 RAL The same as the above. 15 VCC — VCC pin 36 GND — GND pin 7 NC — 9 22 24 34 Note: 1. RAL: Parasitic metal resistance HA12228F/HA12229F Block Diagram HA12228F NC NC 22 NR ON/OFF 21 DET(R) RIP TAI(R) 23 Dolby B-NR 19 120/70 33 18 SER/REP(MS Gv) 34 NC 17 FOR/REV 16 MSOUT F/R MUTE-ON/OFF 35 + − + − LPF 15 MSDET DET 14 S/R 37 VCC MSI 13 38 Vref2 MAOUT 12 MUTE-ON/OFF Dolby B-NR 3 4 5 6 7 8 9 10 NC 2 EQOUT(L) 13k M-OUT(L) 1 MSGv(R) 11 DET(L) 18k 120/70 BIAS 270k TAI(L) 40 Vref4 + − MSGv(S) F/R NC 39 + 32 Vref1 180 NFI(L) 24 + FIN(L) 25 − 180 + 36 GND FIN(R) 26 MUTE ON/OFF 270k 31 NFI(R) RIN(R) 27 20 18k 120/70 RIN(L) 28 Vref3 30 13k 29 + M-OUT(R) EQOUT(R) PBOUT(R) PBOUT(L) Unit R: Ω C: F HA12228F/HA12229F HA12229F 270k NC NC NC NC 21 RIP 22 20 MUTE ON/OFF 19 120/70 33 18 SER/REP(MS Gv) 34 NC 17 FOR/REV 16 MSOUT F/R MUTE-ON/OFF 35 + − + − LPF 15 S/R 37 VCC MSDET DET 14 MSI 13 38 Vref2 MAOUT 12 MUTE-ON/OFF F/R + − 3 4 5 6 7 8 9 NC BIAS 2 EQOUT(L) 13k M-OUT(L) 1 TAI(L) 270k 18k 120/70 MSGv(R) 11 Vref4 40 10 MSGv(S) 39 + 32 Vref1 180 NFI(L) 23 + FIN(L) 24 − 180 + 36 GND FIN(R) 25 NC RIN(R) 26 NC RIN(L) 27 TAI(R) 18k 120/70 31 NFI(R) 28 Vref3 30 13k 29 + M-OUT(R) EQOUT(R) PBOUT(R) PBOUT(L) Unit R: Ω C: F HA12228F/HA12229F Functional Description Power Supply Range HA12228F/HA12229F are provided with three line output level, which will permit on optimum overload margin for power supply conditions. And these are designed to operate on single supply only. Table 1 Supply Voltage Range Product Single Supply HA12228F 6.5 V to 12.0 V HA12229F Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories. Reference Voltage These devices provide the reference voltage of half the supply voltage that is the signal grounds. As the pec ulia rity of these devic es, the ca pac itor for the ripple filter is ver y small about 1/100 compa red with their usual value. The block diagram is shown as figure 1. VCC 15 + − Rch Dolby NR circuit + − Lch Dolby NR circuit 3 Vref4 28 Vref3 38 Vref2 36 26 + + − 32 Vref1 Lch equalizer GND Rch equalizer + − MS block : Internal reference voltage Figure 1a The HA12228F Block Diagram of Reference Supply Voltage HA12228F/HA12229F VCC 3 Vref4 + − 15 Line Amp. circuit 28 Vref3 38 Vref2 36 + − 26 32 Vref1 Lch equalizer + GND Rch equalizer + − MS block : Internal reference voltage Figure 1b The HA12229F Block Diagram of Reference Supply Voltage Operating Mode Control HA12228F/HA12229F provides fully electronic switching circuits. And each operating mode control are controlled by parallel data (DC voltage). Whe n a powe r supply of this IC is cut off , for a voltage, in addition to a mode contr ol ter mina l eve n though as do not destruct it, in series for resistance. Table 2 Threshold Voltage (V TH ) Pin No. Lo Hi Unit Test Condition 17, 18, 19, 20, 21* –0.2 to 1.0 3.5 to VCC V Input Pin Measure V Note: * Non connection regarding HA12229F. HA12228F/HA12229F Table 3 Switching Truth Table Pin No. Pin Name Lo Hi 17 Forward/Reverse Forward Reverse 18 Search/Repeat Search (FF or REV) Repeat (Normal speed) 19 120 µ/70 µ 70 µ (Metal or Chrome) 120 µ (Normal) 20 MUTE ON/OFF MUTE-OFF MUTE-ON 21* NR ON/OFF NR-OFF NR-ON Notes: * Non connection regarding HA12229F. 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: VCC, Low: –0.2 V) 3. Reducing pop noise is so much better for 10 kΩ to 22 kΩ resisitor and 1 µF to 22 µF capacitor shown figure 2. Input Pin 10 to 22kΩ + MPU 1 to 22µF Figure 2 Interface for Reduction of Pop Noise HA12228F/HA12229F Input Block Diagram and Level Diagram R1 5.1kΩ R2 5.1kΩ Vref3 EQOUT 270kΩ C2 0.1µF TAI 30mVrms (−28.2dBs) 13kΩ M-OUT C1 0.01µF 18kΩ NFI − + 180Ω + − Dolby B-NR circuit * Vref1 RIN FIN 0.55mVrms (−63dBs) The each level shown above is typical value when offering PBOUT level to PBOUT pin. (EQ Amp. GV = 40.8dB at f = 1kHz) Note: HA12229F is not built-in Dolby B-NR. Figure 3 Input Block Diagram Adjustment of Playback Dolby Level After replace R5 and R6 with a half-fix volume of 10 kΩ, adjust playback Dolby level. PBOUT 300mVrms (−8.2dBs) HA12228F/HA12229F The Sensitivity Adjustment of Music Sensor Adjusting MS Amp. gain by external resistor, the sensitivity of music sensor can set up. The music sensor block diagram is shown in figure 4, and frequency response is shown in figure 5. DVCC VCC CEX2 C8 +CEX1 R11 0.01µF 330kΩ REX1 REX2 TAI(R) MS SER ×1 MS REP + − IL MS DET RL 90kΩ L/R signal addition −6dB MA MSI OUT + C6 0.33µF − + LPF 25kHz MSOUT DET MS Amp. 20dB GND Micro computer 100kΩ ×1 TAI(L) Note: The impedance of MSI is 100kΩ. Figure 4 Music Sensor Block Diagram GV (dB) GV2 Repeat mode f1 GV1 10 f4 f3 f2 Search mode 100 1k f (Hz) 10k Figure 5 Frequency Response 25k 100k HA12228F/HA12229F 1. Search mode GV1 = 20dB + 20 log 1 + 90k [dB] REX2 1 f1 = [Hz], f2 = 25k [Hz] 2π ⋅ CEX2 ⋅ REX2 2. Repeat mode GV2 = 20dB + 20 log 1 + 90k [dB] REX1 1 f3 = [Hz], f4 = 25k [Hz] 2π ⋅ CEX1 ⋅ REX1 GVIA: L·R signal addition circuit gain. The sensitivity of music sensor (S) is computed by the formula mentioned below. 3 S = − GV*1 − 20 log 130*2 = 12.7 − GV 30* [dB] Note: 1. Search mode: GV1, Repeat mode: G V2 2. Standard level of TAI pin (Dolby level correspondence) = 30 mVrms 3. Standard sensing level of music sensor = 130 mVrms Item REX1, 2 CEX1, 2 GV1, 2 f1, 3 f2, 4 S (one side channel) S (both channel) Search mode 24 kΩ 0.01 µF 33.5 dB 663 Hz 25 kHz –14.8 dB –20.8 dB Repeat mode 2.4 kΩ 1 µF 51.7 dB 66.3 Hz 25 kHz –33.0 dB –39.0 dB Note: S is 6 dB down in case of one-side channel. And this MS presented hysteresis lest MSOUT terminal should turn over again High level or Low level, in case of thresh S level constantly. Music Sensor Time Constant 1. Sensing no signal to signal (Attack) is determined by C6, 0.01 µF to 1 µF capacitor C6 can be applicable. 2. Sensing signal to no signal (Recovery) is determined by C6 and R11, however preceding (1), 100 kΩ to 1 MΩ can be applicable. Music Sensor Output (MSOUT) As for the internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, therefore, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. IL = DVCC − MSOUTLO* RL * MSOUTLO : Sensing signal (about 1V) Note: 1. Supply voltage of MSOUT pin must be less than VCC voltage. HA12228F/HA12229F The Tolerances of External Components for Dolby NR (Only HA12228F) For adequate Dolby NR tracking response, take external components shown below. Also, leak is small capacity, and please employ a good quality object. C14 0.1µF ±10% 23 DET(R) HA12228F BIAS 5 R10 18kΩ ±2% DET(L) 8 C7 0.1µF ±10% Figure 6 Tolerance of External Components Countermeasure of a Cellular Phone Noise This IC have reinforced a cellular phone noise countermeasure, to show it hereinafter. However, it is presumed that this effect change it greatly, by a mount set. Please sufficiently examine an arrangement of positions, shield method, wiring pattern, in order to oftain a maximum effect. A high terminal of a noise sensitivity of this IC is FIN, RIN, NFI and RIP. ref HA12228F 1000 p SG FIN 180 NFI M-OUT 0.01µ + − 270 k 13 k EQOUT AC VM wait DIN/AUDIO Note: Test condition • Use for SG by cellular radio for an evaluation use. • SG output mode PDC system, burst UP Tch (Transmission mode on the side of a movement machine) • To evaluate a capacitor of 1000 pF as connecting with it directly. • About EQOUT output, what you measure through DIN/AUDIO filter. Figure 7 Test Circuit HA12228F/HA12229F 0 EQOUT Noise Output (dBs) −10 FIN → EQOUT, VCC = 9 V, Vin = 0 dBm HA12228F HA12229F −20 −30 −40 −50 −60 100 1000 Frequency (MHz) 10000 Figure 8 EQOUT Noise Output vs. Transmission Frequency Characteristic 10 0 EQOUT Noise Output (dBs) −10 FIN → EQOUT, VCC = 9 V, f = 900 MHz HA12228F HA12229F −20 −30 −40 −50 −60 −70 −80 −50 −40 −30 −20 −10 0 Higher Harmonic Input Vin (dBm) 10 20 Figure 9 EQOUT Noise Output vs. Transmission Signal Input Level Characteristic HA12228F/HA12229F Absolute Maximum Ratings (Ta = 25°C) Item Symbol Rating Unit Maximum supply voltage VCC Max 16 V Power dissipation Pd 400 mW Operating temperature Topr –40 to +85 °C Storage temperature Tstg –55 to +125 °C Note Ta ≤ 85°C 120µ 70µ 120µ 120µ 120µ OFF OFF OFF OFF OFF OFF PB-EQ Maximum output level VOM PB-EQ T.H.D. THD-EQ PB-EQ input conversion noise VN MS sensing level Notes: 1. VCC = 12V 2. VCC = 6.5V 3. For inputting signal to one side channel VON (1) VON (2) VOL MS output low level MS output leakage current IOH Control voltage VIL VIH FOR FOR/ REV FOR/ REV SER REP SER 5k 5k 5k (1k) 1k 1k 10k 10k 1k GV EQ 10k(1) GV EQ 10k(2) FOR/ REV FOR FOR 120µ GV EQ 1k PB-EQ gain 1k 1k 1k 1k 1k 1k FOR ON OFF ON OFF ON OFF OFF OFF OFF OFF→ ON Vo max S/N THD CTRL (1) CTRL (2) CT MUTE Signal handling Signal to noise ratio Total Harmonic Distortion Channel separation MUTE attenuation OFF OFF→ ON 1k 2k 2k 5k 5k No signal 0 No signal 150 21.0 −2.8 −7.0 −1.7 −6.7 13.0 80.0 0.05 0.3 60.0 80.0 80.0 0 20.0 −4.3 −8.5 −3.2 −8.2 −36.0 −18.0 −0.2 3.5 −32.0 −14.0 1.0 0.0 0.7 300 600 0.1 25 dB dB 37 37 39 39 29 29 27 27 27 4 4 4 25 25 1.5 µVrms 37/35 39/33 29 −28.0 dB −10.0 dB 1.5 V 2.0 µA V 1.0 VCC V 6 6 6 2 2 2 2 2 2 16 16 16 16 17 to 21 3 3 2 1 L COM Remark 15 6 6 6 6 6 4 25 6 4 25 6 4 25 6 39 29→2 2→29 4 25→6 6→25 4 25 6 27 27 27 37 27 27 27 27 27 27 27 R 25 25 25 25 25 dB 37/35 39/33 29 dB dB % dB dB dB mV dB dB dB dB dB L 4 4 4 4 4 R Application Terminal Input Output mVrms 37 39 29 0.3 % 37/35 39/33 29 33.9 36.9 39.9 29.6 32.6 35.6 37.8 40.8 43.8 12.0 70.0 50.0 70.0 70.0 −150 19.0 −5.8 −10.0 −4.7 −9.7 Min Typ Max Unit 4.0 9.5 15.0 mA Specification Rg=680Ω, DIN-AUDIO THD=1% +14dB 0 0 0 THD=1% Rg=10kΩ, CCIR/ARM (+20) (0) 0 (+12) (+12) 0 −20 −30 −20 −30 fin PBOUT EQOUT (Hz) level (dB) level (dB) Other No signal NR MUTE 120µ/ SER/ FOR/ ON/OFF ON/OFF 70µ REP REV OFF OFF 70µ SER FOR OFF OFF ON OFF ON OFF ON OFF ON OFF Vofs IQ GVIA DEC 2k (1) DEC 2k (2) DEC 5k (1) DEC 5k (2) Symbol Test Condition PBOUT offset Item Quiescent current Input Amp. gain B-type decode cut IC Condition (Ta = 25°C, VCC = 9 V, Dolby level 0 dB = PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms) HA12228F/HA12229F Electrical Characteristics HA12228F 120µ 120µ 120µ OFF OFF OFF PB-EQ Maximum output level VOM PB-EQ T.H.D. THD-EQ PB-EQ input conversion noise VN MS sensing level Notes: 1. VCC = 12V 2. VCC = 6.5V 3. For inputting signal to one side channel VON (1) VON (2) MS output low level VOL MS output leakage current IOH Control voltage VIL VIH 120µ 70µ FOR FOR/ REV FOR/ REV SER REP SER 5k 5k 5k (1k) 1k 1k 10k 10k 1k FOR/ REV FOR FOR GV EQ 10k(1) GV EQ 10k(2) 120µ GV EQ 1k PB-EQ gain MUTE attenuation 1k 1k 1k 1k 1k 1k FOR OFF OFF OFF OFF OFF→ ON Vo max S/N THD CTRL (1) CTRL (2) CT MUTE Signal handling Signal to noise ratio Total Harmonic Distortion Channel separation 0 (0) 0 (+12) (+12) No signal No signal Rg=680Ω, DIN-AUDIO THD=1% +14dB 0 0 0 THD=1% Rg=10kΩ, CCIR/ARM (+20) fin PBOUT EQOUT (Hz) level (dB) level (dB) Other No signal 1k 0 Vofs PBOUT offset MUTE 120µ/ SER/ FOR/ ON/OFF 70µ REP REV OFF 70µ SER FOR OFF OFF→ ON IQ GVIA Symbol Item Quiescent current Input Amp. gain IC Condition 13.0 80.0 0.05 0.3 60.0 80.0 80.0 27 27 27 37 27 27 29 29 −36.0 −18.0 −0.2 3.5 −32.0 −14.0 1.0 0.0 0.7 −28.0 dB −10.0 dB V 1.5 2.0 µA V 1.0 VCC V 27 27 27 4 4 4 25 25 1.5 µVrms 37/35 39/33 29 39 39 37 37 mVrms 37 39 29 0.3 % 37/35 39/33 29 dB dB 6 6 6 6 2 2 2 2 2 2 16 16 16 16 17 to 20 3 3 2 1 L COM Remark 15 4 25 6 4 25 6 4 25 6 39 29→2 2→29 4 25→6 6→25 25 6 4 25 25 R dB 37/35 39/33 29 dB dB % dB dB dB L 4 300 600 0.1 33.9 36.9 39.9 29.6 32.6 35.6 37.8 40.8 43.8 12.0 70.0 50.0 70.0 70.0 150 27 0 mV dB −150 19.0 20.0 21.0 R Application Terminal Input Output Min Typ Max Unit 3.0 5.0 8.0 mA Specification (Ta = 25°C, VCC = 9 V, PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms) Test Condition HA12228F/HA12229F HA12229F AUDIO SG SW1 OFF SW2 Lch TAI FIN RIN FIN C21 22µ C19 22µ C1 22µ C2 22µ + C18 0.01µ C3 0.01µ NFI(L) R2 680 R1 680 R27 680 R26 680 40 39 270k + − F/R F/R 1 13k 18k 120/70 180 38 Vref2 37 270k − 180 + 36 GND 35 34 NC 33 2 30 13k 29 18k 120/70 32 Vref1 31 NFI(R) Notes: 1. Resistor tolerance ±1% 2. Capacitor tolerance ±1% 3. Unit R: Ω, C: F AC VM1 ON Rch SW4 SW3 TAI RIN R21 5.1k R8 5.1k R7 5.1k EQ C20 1µ EQ SW6 4 3 R9 10k EX C4 0.1µ 5 R10 18k MUTE-ON/OFF + − MUTE-ON/OFF 26 27 C17 0.1µ EX 28 SW5 Vref3 Vref4 EQOUT(R) EQOUT(L) 24 7 EQ PB R11 10k 2.2µ +C6 6 Dolby B-NR LPF SW8 8 120/70 19 C7 0.1µ 9 10 R17 24k C13 0.01µ MSGv(R) 11 MAOUT 12 MSI 13 MSDET DET 14 VCC 15 MSOUT 16 FOR/REV 17 SER/REP(MS Gv) 18 S/R + − MUTE ON/OFF 20 21 22 C14 0.1µ 23 Dolby B-NR 25 C15 2.2µ R18 10k PB SW7 EQ NC R20 5.1k TAI(R) TAI(L) M-OUT(R) M-OUT(L) RIP BIAS NC DET(R) DET(L) + NC + NC NR ON/ OFF + + MSGv(S) SW12 OFF ON EXT R16 C12 2.4k 1µ OFF ON EXT SW13 C11 0.01µ R15 330k C10 0.33µ R14 3.9k SW11 + + + R19 10k SW14 70 120 EXT SW15 SER REP EXT 100µ +C22 FOR REV EXT DC SOURCE1 DC SOURCE3 DC SOURCE2 (5V) Lch Rch SW10 PBL PBR MS DC VM NOISE METER WITH CCIR/ARM FILTER AND DIN/AUDIO FILTER NOISE METER OSCILLO SCOPE DISTORTION ANALYZER AC VM2 SW9 HA12228F/HA12229F Test Circuit HA12228F/HA12229F Characteristic Curves Decode Cut vs. Frequency (HA12228F) 0 0dB −10dB −20dB −4 −6 −30dB −8 −10 −12 100 −40dB VCC = 9 V TAI→PBOUT NR-ON 1k Frequency (Hz) 10k Quiescent Current vs. Supply Voltage (HA12228F) 13 all "L" 120µ NR-ON No signal 12 Quiescent Current (mA) Decode Cut (dB) −2 11 10 9 8 7 6 6 7 8 9 10 11 Supply Voltage (V) 12 13 20k HA12228F/HA12229F Input Amp. Gain vs. Frequency (HA12228F) 30 VCC = 9 V TAI→PBOUT NR-OFF Gain (dB) 20 10 0 −10 −20 10 100 1k 10k Frequency (Hz) 100k 1M Total Harmonic Distortion vs. Frequency (HA12228F) (1) 1 −10 dB 0 dB 10 dB VCC = 9 V TAI→PBOUT NR-OFF T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k 20k HA12228F/HA12229F Total Harmonic Distortion vs. Frequency (HA12228F) (2) 1 −10 dB 0 dB 10 dB VCC = 9 V TAI→PBOUT NR-ON T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k T.H.D. (%) Total Harmonic Distortion vs. Output Level (HA12228F) (1) 10 100 Hz 1 kHz 10 kHz VCC = 9 V TAI→PBOUT 0 dB = 300 mVrms 1 NR-OFF 0.1 0.01 −15 −10 −5 0 5 10 Output Level Vout (dB) 15 20 20k HA12228F/HA12229F T.H.D. (%) Total Harmonic Distortion vs. Output Level (HA12228F) (2) 10 100 Hz 1 kHz 10 kHz VCC = 9 V TAI→PBOUT 0 dB = 300 mVrms 1 NR-ON 0.1 0.01 −15 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1) 1 100 Hz 1 kHz 10 kHz TAI→PBOUT = 300 mVrms NR-OFF T.H.D. (%) 0.1 0.01 0.001 5 6 7 8 9 10 Supply Voltage (V) 11 12 13 HA12228F/HA12229F Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2) 1 100 Hz 1 kHz 10 kHz TAI→PBOUT = 300 mVrms NR-ON T.H.D. (%) 0.1 0.01 0.001 5 6 7 8 9 10 Supply Voltage (V) 11 12 13 Signal Handling (HA12228F) 40 35 NR-OFF NR-ON TAI→PBOUT = 300 mVrms f = 1 kHz, T.H.D. = 1% Vomax (dB) 30 25 20 15 10 5 0 6 7 8 9 10 11 12 13 Supply Voltage (V) 14 15 16 HA12228F/HA12229F Signal to Noise Ratio vs. Supply Voltage (HA12228F) 90 Signal to Noise Ratio (dB) 85 80 75 70 NR-OFF NR-ON TAI→PBOUT = 300 mVrms f = 1 kHz CCIR/ARM filter 65 6 7 8 9 10 11 Supply Voltage (V) 12 13 EQ Amp. Gain vs. Frequency (HA12228F) 70 60 50 EQ Gain (dB) 120µ 40 30 70µ 20 10 0 −10 10 VCC = 9 V Fin→EQOUT 100 1k 10k Frequency (Hz) 100k 1M HA12228F/HA12229F Total Harmonic Distortion vs. Frequency (HA12228F) 1 120µ 70µ VCC = 9 V Fin→EQOUT Vout = +20 dB 0 dB = 60 mVrms T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k Total Harmonic Distortion vs. Output Level (HA12228F) (1) 10 T.H.D. (%) 1 0.1 0.01 0.001 −5 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 120µ 0 dB = 60 mVrms 0 5 10 15 20 25 Output Level Vout (dB) 30 35 20k HA12228F/HA12229F Total Harmonic Distortion vs. Output Level (HA12228F) (2) 10 T.H.D. (%) 1 0.1 0.01 0.001 −5 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 70µ 0 dB = 60 mVrms 0 5 10 15 20 25 Output Level Vout (dB) 30 35 Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1) 1 T.H.D. (%) 0.1 0.01 0.001 6 100 Hz 1 kHz 10 kHz Fin→EQOUT 120µ 0 dB = 60 mVrms Vout = +10 dB 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2) 1 T.H.D. (%) 0.1 0.01 0.001 6 100 Hz 1 kHz 10 kHz Fin→EQOUT 70µ 0 dB = 60 mVrms Vout = +10 dB 7 8 9 10 11 Supply Voltage (V) 12 13 12 13 Signal Handling (HA12228F) (1) 40 Vomax (dB) 35 Fin→EQOUT 120µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 7 8 9 10 11 Supply Voltage (V) HA12228F/HA12229F Signal Handling (HA12228F) (2) 40 Vomax (dB) 35 Fin→EQOUT 70µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 7 8 9 10 11 Supply Voltage (V) 12 13 Signal to Noise Ratio vs. Supply Voltage (HA12228F) 80 Signal to Noise Ratio (dB) 75 70 120µ 70µ Fin→EQOUT 0 dB = 60 mVrms f = 1 kHz Din-Audio filter 65 60 55 50 45 40 6 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Ripple Rejection Ratio vs. Frequency (HA12228F) (1) 20 Ripple Rejection Ratio R.R.R. (dB) 10 0 NR-on NR-off VCC = 9 V Vin = 100 mVrms PBOUT −10 −20 −30 −40 −50 −60 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (HA12228F) (2) 20 Ripple Rejection Ratio R.R.R. (dB) 10 0 70µs 120µs VCC = 9 V Vin = 100 mVrms EQOUT FOR mode −10 −20 −30 −40 −50 −60 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F −40 Channel Separation vs. Frequency (HA12228F) (1) VCC = 9 V Fin(L)→EQOUT(L→R) Vout = +12 dB Channel Separation (dB) −50 −60 −70 −80 −90 10 −50 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (HA12228F) (2) VCC = 9 V TAI(L)→PBOUT(L→R) Vout = +12 dB Channel Separation (dB) −60 −70 −80 −90 −100 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F Crosstalk vs. Frequency (HA12228F) −40 Crosstalk (dB) −50 VCC = 9 V Fin(L)→Rin(L) EQOUT(L) Vout = +12 dB −60 −70 −80 −90 10 100 1k Frequency (Hz) 10k 100k Mute Attenuation vs. Frequency (HA12228F) −40 VCC = 9 V TAI→PBOUT Vout = +12 dB Mute Attenuation (dB) −60 −80 −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F MS Amp. Gain vs. Frequency (HA12228F) (1) 50 VCC = 9 V TAI (SER mode) 40 Gain (dB) 30 20 MAOUT 10 0 −10 MSI −20 10 100 1k Frequency (Hz) 10k 100k MS Amp. Gain vs. Frequency (HA12228F) (2) 50 40 MAOUT Gain (dB) 30 20 MSI 10 0 −10 −20 10 VCC = 9 V TAI (REP mode) 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F MS Sensing Level vs. Frequency (HA12228F) 10 MS Sensing Level (dB) 0 −10 SER L→H SER H→L REP L→H REP H→L VCC = 9 V TAI→PBOUT f = 5 kHz 0 dB = 300 mVrms −20 −30 −40 10 100 1k Frequency (Hz) 10k 100k No-Signal Sensing Time vs. Resistance (HA12228F) No-Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT NR off f = 5 kHz PBOUT 10 MSOUT C10 0.33µ 14 VCC R15 1 10k 100k 1M Resistance R15 (Ω) 10M HA12228F/HA12229F Signal Sensing Time vs. Capacitance (HA12228F) 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT NR off f = 5 kHz PBOUT 10 MSOUT C10 14 VCC R15 330k 1 0.001 0.01 0.1 Capacitance C10 (µF) 1 10 Quiescent Current vs. Supply Voltage (HA12229F) 7 all "L" 120µ No signal 6.5 Quiescent Current (mA) Signal Sensing Time (ms) 1000 6 5.5 5 4.5 4 6 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Input Amp. Gain vs. Frequency (HA12229F) 30 VCC = 9 V TAI→PBOUT Gain (dB) 20 10 0 −10 −20 10 100 1k 10k Frequency (Hz) 100k 1M Total Harmonic Distortion vs. Frequency (HA12229F) 1 −10 dB 0 dB 10 dB VCC = 9 V TAI→PBOUT T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k 20k HA12228F/HA12229F Total Harmonic Distortion vs. Output Level (HA12229F) 10 100 Hz 1 kHz 10 kHz VCC = 9 V TAI→PBOUT 0 dB = 300 mVrms T.H.D. (%) 1 0.1 0.01 −15 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Supply Voltage (HA12229F) 1 100 Hz 1 kHz 10 kHz TAI→PBOUT = 300 mVrms T.H.D. (%) 0.1 0.01 0.001 5 6 7 8 9 10 Supply Voltage (V) 11 12 13 HA12228F/HA12229F Signal Handling (HA12229F) 40 35 TAI→PBOUT = 300 mVrms f = 1 kHz, T.H.D. = 1% Vomax (dB) 30 25 20 15 10 5 0 6 7 8 9 10 11 12 13 Supply Voltage (V) 14 15 16 Signal to Noise Ratio vs. Supply Voltage (HA12229F) 90 TAI→PBOUT = 300 mVrms f = 1 kHz CCIR/ARM filter Signal to Noise Ratio (dB) 85 80 75 70 65 6 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F EQ Amp. Gain vs. Frequency (HA12229F) 70 60 50 EQ Gain (dB) 120µ 40 30 70µ 20 10 0 −10 10 VCC = 9 V Fin→EQOUT 100 1k 10k Frequency (Hz) 100k 1M Total Harmonic Distortion vs. Frequency (HA12229F) 1 120µ 70µ VCC = 9 V Fin→EQOUT Vout = +20 dB 0 dB = 60 mVrms T.H.D. (%) 0.1 0.01 0.001 100 1k Frequency (Hz) 10k 20k HA12228F/HA12229F Total Harmonic Distortion vs. Output Level (HA12229F) (1) 10 T.H.D. (%) 1 0.1 0.01 0.001 −5 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 120µ 0 dB = 60 mVrms 0 5 10 15 20 25 Output Level Vout (dB) 30 35 Total Harmonic Distortion vs. Output Level (HA12229F) (2) 10 T.H.D. (%) 1 0.1 0.01 0.001 −5 100 Hz 1 kHz 10 kHz VCC = 9 V Fin→EQOUT 70µ 0 dB = 60 mVrms 0 5 10 15 20 25 Output Level Vout (dB) 30 35 HA12228F/HA12229F Total Harmonic Distortion vs. Supply Voltage (HA12229F) (1) 1 T.H.D. (%) 0.1 0.01 0.001 6 100 Hz 1 kHz 10 kHz Fin→EQOUT 120µ 0 dB = 60 mVrms Vout = +10 dB 7 8 9 10 11 Supply Voltage (V) 12 13 Total Harmonic Distortion vs. Supply Voltage (HA12229F) (2) 1 T.H.D. (%) 0.1 0.01 0.001 6 100 Hz 1 kHz 10 kHz Fin→EQOUT 70µ 0 dB = 60 mVrms Vout = +10 dB 7 8 9 10 11 Supply Voltage (V) 12 13 HA12228F/HA12229F Signal Handling (HA12229F) (1) 40 Vomax (dB) 35 Fin→EQOUT 120µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 7 8 9 10 11 Supply Voltage (V) 12 13 12 13 Signal Handling (HA12229F) (2) 40 Vomax (dB) 35 Fin→EQOUT 70µ 0 dB = 60 mVrms f = 1 kHz T.H.D. = 1% 30 25 20 15 6 7 8 9 10 11 Supply Voltage (V) HA12228F/HA12229F Signal to Noise Ratio vs. Supply Voltage (HA12229F) 80 Signal to Noise Ratio (dB) 75 70 120µ 70µ Fin→EQOUT 0 dB = 60 mVrms f = 1 kHz Din-Audio filter 65 60 55 50 45 40 6 7 8 9 10 11 Supply Voltage (V) 12 13 Ripple Rejection Ratio vs. Frequency (HA12229F) (1) 20 Ripple Rejection Ratio R.R.R. (dB) 10 VCC = 9 V Vin = 100 mVrms PBOUT 0 −10 −20 −30 −40 −50 −60 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F Ripple Rejection Ratio vs. Frequency (HA12229F) (2) 20 Ripple Rejection Ratio R.R.R. (dB) 10 0 120µs 70µs VCC = 9 V Vin = 100 mVrms EQOUT FOR mode −10 −20 −30 −40 −50 −60 10 −40 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (HA12229F) (1) VCC = 9 V Fin(L)→EQOUT(L→R) Vout = +12 dB Channel Separation (dB) −50 −60 −70 −80 −90 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F −50 Channel Separation vs. Frequency (HA12229F) (2) VCC = 9 V TAI(L)→PBOUT(L→R) Vout = +12 dB Channel Separation (dB) −60 −70 −80 −90 −100 10 100 Crosstalk (dB) 10k 100k Crosstalk vs. Frequency (HA12229F) −40 −50 1k Frequency (Hz) VCC = 9 V Fin(L)→Rin(L) EQOUT(L) Vout = +12 dB −60 −70 −80 −90 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F Mute Attenuation vs. Frequency (HA12229F) −40 VCC = 9 V TAI→PBOUT Vout = +12 dB Mute Attenuation (dB) −60 −80 −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k MS Amp. Gain vs. Frequency (HA12229F) (1) 50 VCC = 9 V TAI (SER mode) 40 Gain (dB) 30 20 MAOUT 10 0 −10 MSI −20 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F MS Amp. Gain vs. Frequency (HA12229F) (2) 50 40 MAOUT Gain (dB) 30 20 10 MSI 0 −10 −20 10 VCC = 9 V TAI (REP mode) 100 1k Frequency (Hz) 10k 100k MS Sensing Level vs. Frequency (HA12229F) 10 MS Sensing Level (dB) 0 −10 SER L→H SER H→L REP L→H REP H→L VCC = 9 V TAI→PBOUT f = 5 kHz 0 dB = 300 mVrms −20 −30 −40 10 100 1k Frequency (Hz) 10k 100k HA12228F/HA12229F No-Signal Sensing Time vs. Resistance (HA12229F) No-Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT f = 5 kHz PBOUT 10 MSOUT C10 0.33µ 14 VCC R15 1 10k 100k 1M 10M Resistance R15 (Ω) Signal Sensing Time vs. Capacitance (HA12229F) Signal Sensing Time (ms) 1000 100 SER 0 dB SER −5 dB SER −10 dB REP 0 dB REP −5 dB REP −10 dB VCC = 9 V TAI→PBOUT f = 5 kHz PBOUT 10 MSOUT C10 14 VCC R15 330k 1 0.001 0.01 0.1 Capacitance C10 (µF) 1 10 HA12228F/HA12229F Package Dimensions 31 20 40 11 10 0.575 0.10 *Dimension including the plating thickness Base material dimension M *0.17 ± 0.05 0.15 ± 0.04 0.13 1.40 1.70 Max 1 *0.25 ± 0.05 0.22 ± 0.04 0.09 0.13 +– 0.05 9.0 ± 0.2 9.0 ± 0.2 7.0 30 21 0.65 Unit: mm 1.0 0.575 0° – 8° 0.50 ± 0.10 Hitachi Code JEDEC EIAJ Mass (reference value) FP-40B — Conforms 0.2 g Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica Europe Asia Japan : : : : http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0