APW7307

APW7307
24V 3A 500kHz Synchronous Buck Converter
Features
General Description
•
Wide Input Voltage from 4.5V to 24V
•
3A Continuous Output Current
•
Adjustable Output Voltage from 0.807V to 13V
•
Integrated Low RDS(ON) MOSFETs
•
Fixed 500kHz Switching Frequency
•
Stable with Low ESR Ceramic Output Capacitors
•
Power-On-Reset Detection
•
Over-Temperature Protection
•
Current-Limit Protection with HICCUP Mode
•
Small TSOT-23-8A Package
•
Lead Free and Green Devices Available
APW7307 is a 3A synchronous buck converter with integrated low R DS(ON) power MOSFETs. The APW7307
design with a current-mode control scheme, can convert
wide input voltage of 4.5V to 24V to the output voltage
adjustable from 0.807V to 13V to provide excellent output
voltage regulation.
The APW7307 is equipped advance asynchronous modulation mode operation. Increase efficiency at light load.
The APW7307 is also equipped with Power-on-reset, soft
start, and whole protections (under-voltage,
over-temperature, and current-limit) into a single package.
This device, available TSOT-23-8A, provides a very compact system solution external components and PCB area.
(RoHS Compliant)
Applications
Pin Configuration
•
Notebook Systems and I/O Power
•
Digital Set-Top Boxes
•
Flat-Panel Television and Monitors
•
Distributed Power Systems
POK 1
VIN 2
SW 3
GND 4
8
7
6
5
FB
VCC
EN
BST
APW 7307
TSOT -23- 8A
Simplified Application Circuit
VIN
VIN
BST
CIN
VCC
L1
APW7307
V OUT
SW
POK
FB
ON
OFF
COUT
GND
EN
ANP EC res erves the right to ma ke cha nges to imp rove relia bility or m anufac turab ility witho ut no tice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
1
www.anpec.com.tw
APW7307
Ordering and Marking Information
APW7307
Assembly Material
Package Code
AZ : TSOT-23-8A
Operating Junction Temperature
I: -40 to 85o C
Handling Code
TR : Tape & Reel
Handling Code
Temperature Range
Assembly Material
G : Halogen and Lead Free Device
Package Code
APW7307 AZI :
W07X
X - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; w hich
are fully compliant w ith RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-fr ee (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by w eight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
w eight).
Absolute Maximum Ratings (Note
Symbol
VIN, VEN
1)
Parameter
VIN Supply to GND Voltage and EN to GND Voltage
Rating
Unit
-0.3 ~ 27
V
VSW
SW to GND Voltage
-0.3 ~ 27
V
VBST-SW
BST to SW Voltage
-0.3 ~ 6
V
POK, EN, VCC and FB to GND Voltage
-0.3 ~ 6
TJ
Junction Temperature
V
o
150
T STG
Storage Temperature
T SDR
Maximum Lead Soldering Temperature(10 Seconds)
o
-65 ~ 150
o
260
C
C
C
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability
Thermal Characteristics
Symbol
θJA
Parameter
Junction-to-Ambient Resistance in Free Air
Typical Value
(Note 2)
Unit
o
100
C/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Recommended Operating Conditions (Note
Symbol
Parameter
3)
Range
Unit
4.5 ~ 24
V
0 ~ 24
V
Converter Output Voltage
0.807~13
V
Converter Output Current
0~3
A
V IN
VIN Supply Voltage
VEN
EN Input Voltage
VOUT
IOUT
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
2
www.anpec.com.tw
APW7307
Recommended Operating Conditions (Cont.) (Note
Symbol
Range
Unit
Converter Output Capacitance
22 ~ 47
µF
L1
Inductance
1.5 ~ 10
µH
TA
Ambient Temperature
-40 ~ 85
COUT
TJ
Parameter
3)
Junction Temperature
o
o
-40 ~ 125
C
C
Note 3 : Refer to the typical application circuit.
Electrical Characteristics
Unless otherwise specified, these specifications apply over V IN=12V, V EN=3V and TA= -40 to 85 oC. Typical values are at TA=25oC.
Parameter
Symbol
Test Conditions
APW7307
Min
Typ
Max
Unit
SUPPLY CURRENT
IVIN
IVIN_SD
VIN Supply Current
VFB =0.9V, SW=NC
-
1
1.2
mA
VIN Shutdown Supply Current
VEN =0V
-
-
10
µA
3.7
3.9
4.1
V
-
0.6
-
V
-
0.807
-
V
-1
-
+1
%
POWER-ON-RESET (POR)
VIN POR Voltage Threshold
VIN Rising
VIN POR Hysteresis
REFERENCE VOLTAGE
VREF
Reference Voltage
Output Voltage Accuracy
TJ =25°C, IOUT =10mA
IFB
FB input current
-
10
50
nA
V VCC
VCC Regulator
-
5
-
V
-
3
-
%
570
kHz
VCC Load Regulation
IVCC=3mA
OSCI LLATOR AND DUTY CYCLE
FSW
Switching Frequency
430
500
DAMX
Maximum Duty Cycle
-
93
-
%
Minimum on-time
-
-
100
ns
-
100
-
mΩ
POWER MOSFET
High Side MOSFET Resistance
-
40
-
mΩ
High Side Switch Leakage Current
VEN =0V, V IN=24V, VSW =0V
-
-
1
µA
Low Side Switch Leakage Current
VEN =0V, V IN=24V, VSW =24V
-
-
1
µA
4
5
6
A
Under-Voltage Protection (UVP)
40
50
60
%VREF
FB Over Voltage Protection
Low Side MOSFET Resistance
PROTECTIONS
ILIM
T OTR
High Side MOSFET Current-Limit
120
125
130
%VREF
FB OVP Hysteresis
-
20
-
%VREF
Hiccup Delay time
-
1
-
T SS
OTP Rising Threshold (Note 4)
-
150
-
o
OTP Hysteresis (Note 4)
-
30
-
o
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
3
C
C
www.anpec.com.tw
APW7307
Electrical Characteristics (cont.)
Unless otherwise specified, these specifications apply over V IN=12V, V EN=3V and TA= -40 to 85 oC. Typical values are at TA=25oC.
Parameter
Symbol
Test Conditions
APW7307
Unit
Min
Typ
Max
-
1.5
-
ms
1.2
1.4
1.6
V
-
0.2
-
V
-
8
-
µs
-
2
-
µA
90
-
%
-
85
-
%
120
125
130
%
SOFT-START, ENABLE
T SS
Soft Start Time
EN Rising Threshold Voltage
EN Falling Threshold Hysteresis
EN turn off delay
EN Input Current
VEN =2V
POWER-OK INDICATOR
POK in from Lower (POK
Goes High)
V POK
POK Threshold
POK out from normal
falling (POK Goes Low)
POK out from normal rising
(POK Goes Low)
IPOK
-
POK Leakage Current
V POK=5V
-
0.1
1
µA
POK Sink Current
V POK=0.5V
-
5
-
mA
POK Enable Delay Time
from 90% VOUT to POK
High
-
250
-
µs
Note4: Guaranteed by design.
Pin Description
PIN
FUNCTION
NO.
NAME
1
POK
2
VIN
3
SW
4
GND
Signal and power ground.
5
BST
High-Side Gate Drive Boost Input. BS supplies the voltage to drive the high-side N-channel MOSFET. At least
10nF capacitor should be connected from SW to BST to supply the high side switch.
6
EN
Enable Input. EN is a digital input that turns the regulator on or off. EN threshold is 1.4V with 0.2V hysteresis.
7
VCC
8
FB
Power Good Output. POK is an open drain output used to indicate the status of the output voltage. Connect
the POK in to VCC through a pull-high resistor.
Power Input. VIN supplies the power to the control circuitry, gate driver. Connecting a ceramic bypass
capacitor and a suitably large capacitor between VIN and GND eliminates switching noise and voltage ripple
on the input to the IC.
Power Switching Output. SW is the Source of the N-Channel power MOSFET to supply power to the output
LC filter.
Bias Supply. Decouple with a 0.1µF capacitor or higher is recommended.
Output feedback Input. The IC senses the feedback voltage via FB and regulates FB voltage at 0.807V.
Connecting FB with a resistor-divider from the converter’s output to set the output voltage.
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
4
www.anpec.com.tw
APW7307
Typical Operating Characteristics
Reference Voltage vs. Junction
Temperature
0.817
Shutdown Current vs. Input
Voltage
12
Shutdown Current (uA)
Reference Voltage (V)
10
0.812
0.807
0.802
8
6
4
2
0.797
-40
0
-20
0
20
40
60
80
100 120 140
4
Junction Temperature (oC)
16
20
24
Load Regulation
0.5
Output Voltage Variation (%)
Supply Current (mA)
12
Input Voltage(V)
Supply Current vs. Input
Voltage
0.9
8
0.8
0.7
0
-0.5
-1
-1.5
0.6
4
8
12
16
20
0
24
0.4
0.8
1.2
1.6
2
Output Current (A)
Input Voltage(V)
Line Regulation
Output Voltage Variation (%)
0.3
0.2
0.1
0
-0.1
4
8
12
16
20
24
Input Voltage(V)
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
5
www.anpec.com.tw
APW7307
Typical Operating Characteristics
100
95
95
90
90
Efficiency (%)
Efficiency (%)
100
Efficiency vs. Load Current
FSW=500kHz , VOUT =5V
Efficiency vs. Load Current
FSW=500kHz , VI N=12V
85
80
75
70
80
75
70
VOUT=5V
VOUT=3.3V
65
85
VIN=12V
VIN=6.5V
VIN=19V
65
VOUT=1.2V
60
0.01
60
0.1
1
10
0.01
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
0.1
1
10
Output Current (A)
Output Current (A)
6
www.anpec.com.tw
APW7307
Operating Waveforms
Refer to the typical application circuit. The test condition is V IN=12V, TA= 25oC unless otherwise specified.
Power On
Power Off
VIN
1
2
VIN
1
V OUT
VOUT
2
VSW
V SW
3
3
CH1: VIN, 5V/Div
CH2: V OUT , 2V/Div
CH3: VSW, 10V/Div
TIME: 2ms/Div
CH1: V IN, 5V/Div
CH2: V OUT , 2V/Div
CH3: VSW, 10V/Div
TIME: 2ms/Div
Shutdown
Enable
V EN
1
2
3
V EN
1
V OUT
2
VSW
VS W
3
CH1: V EN , 2V/Div
CH2: VOUT, 2V/Div
CH3: V SW, 10V/Div
TIME: 50us/Div
CH1: VEN, 2V/Div
CH2: VOUT , 2V/Div
CH3: VSW, 10V/Div
TIME: 2ms/Div
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
V OUT
7
www.anpec.com.tw
APW7307
Operating Waveforms
Refer to the typical application circuit. The test condition is V IN=12V, TA= 25oC unless otherwise specified.
Short-Current Recovery
Short-Current Entry
VOUT
VOUT
1
1
V SW
VSW
2
2
IL
IL
3
3
CH1: VOUT , 2V/Div
CH2: VSW,10V/Div
CH3: IL,2A/Div
TIME: 2ms/Div
CH1: VOUT, 2V/Div
CH2: VSW,10V/Div
CH3: IL,2A/Div
TIME: 2ms/Div
Load Transient
Vout Ripple
VOUT
VOUT
1
1
VS W
VS W
2
2
I OUT
IL
3
3
CH1: VOUT, 50mV/Div,AC
CH2: VSWX ,10V/Div
CH3: IL,2A/Div
TIME: 2us/Div
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
8
CH1: VOUT , 100mV/DIV,AC
CH2: VSW ,10V/Div
CH3: IOUT,1A/Div
TIME: 50us/Div
www.anpec.com.tw
APW7307
Block Diagram
VIN
POR
RSEN
VCC
VCC
Regulator
Current Limit
Comparator
Slope
Compensation
BST
∑
SW
Oscillator
EN
Logic
Control
VCC
FB
GND
Soft-Start
VREF
POK
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
9
www.anpec.com.tw
APW7307
Typical Application Circuit
Dual Power Input : VIN Pre-existing & VOUT setting less than VIN POR
VIN
12V
VIN
BST
R4
20
C IN
22µF
C4
0.1µF L1
VCC
R7
100k
C6
0.1µF
APW7307
VOUT
3.3V/3A
SW
4.7 µH
POK
R1
40.2k
COUT
22µFx2
FB
R2
12.7k
R3
33k
ON
GND
OFF
EN
Single Power Input : VIN divided to EN & VOUT setting more than VIN POR
VIN
12V
VIN
BST
C IN
22µF
R6
68k
C4
0.1µF
V CC
R5
100 k
C6
0. 1µF
R4
20
SW
APW 7307
V OUT
5V/ 3A
L1
4.7µH
R1
40.2k
POK
FB
R3
20k
R7
15k
C OUT
22µFx2
R2
7.74k
GND
EN
Table 1. Componments Selection for Different Output Voltage
V OUT (V)
R1 (kΩ )
R2 (k Ω)
R3 (k Ω )
R 4 (Ω )
L ( µH)
C O U T (µF )
1.05
20.5
68.1
100
20~60
1.5
44
1.2
20.5
42.1
75
20~60
1.8
44
3.3
40.2
13
33
20~60
4.7
44
5
40.2
7.74
20
20~60
4.7
44
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
10
www.anpec.com.tw
APW7307
Function Description
Main Control Loop
Over-Current-Protection and Hiccup
The APW7307 is a constant frequency, synchronous rectifier and current-mode swi tchi ng regul ator. In normal
operation, the internal upper power MOSFET is turned on
each cycle. The peak inductor current at which ICMP turn
off the upper MOSFET is controlled by the voltage on the
COMP node, which is the output of the error amplifier
(EAMP). An external resistive divider connected between
VOUT and ground allows the EAMP to receive an output
fee dback vol tage VFB at FB pin. Whe n th e lo ad curre nt
increases, it causes a slightly decrease in VFB relative to
the 0.80 7V re feren ce, w hich in tu rn ca uses the C OMP
vo lta ge to i ncrease un til the avera ge i ndu cto r cu rre nt
matches the new load current.
TheAPW7307 has a cycle-by-cycle over-current limit when
the i nductor current pe ak value exceeds the set cu rrent
limit threshold. Meanwhile, the output voltage drops until
FB is below the Under-Volta ge (UV) threshold below the
reference. Once UV is triggered, the APW7307 enters hiccup mode to periodically restart the part. This protection
mode is especially useful when the output is dead-shorted
to ground. The average short circuit current is greatly redu ce d to all evi ate the rma l iss ue s and to protect the
regulator. The APW7307 exits the hiccup mode once the
over-current condition is removed.
Over-Temperature Protection (OTP)
Enable/Shutdown
The over-temperature circuit limits the junction temperature of the APW7307. When the junction temperature exceeds 150oC, a thermal sensor tu rns off the both power
MOSFETs, allowing the devices to cool. The thermal sensor allows the converters to start a soft-start process and
regulate the output voltage a gain after the jun ction temperature cools by 30oC. The OTP is designed with a 30oC
hys teresi s to l ower the average Junction Te mperature
(TJ ) during continuous th ermal overload co nditions , increasing the lifetime of the device.
Driving EN to the ground places the APW7307 in shutdown mode. When in shutdown, the internal power
MOSFETs turn off, all internal circuitry shuts down and
the quiescent supply current reduces to 1µA typical.
Under Voltage Lockout (UVLO)
An under-voltage lockout function prevents the device from
operating if the input voltage on VIN is lower than approximately 3.9V. Th e devi ce automatically e nters the sh utdow n mode if th e vol tage o n VIN drops below appro ximately 3.9V. This under-voltage lockout function is impleme nte d i n ord er to pre ven t the ma lfu nction in g o f the
converter.
Over-Voltage Protection (OVP)
The over-voltage function monitors the output voltage by
FB pin. Once the FB voltage exceeds 125% of the referen ce vol tage , the ove r-volta ge pro tectio n co mpa rator
forces the low-side MOSFET on. This action actively pulls
do wn the output vol tage to preven t the e nd device be
damage. As soon as the output voltage is below 105% of
the re ference vo ltage, the low-side MOSFET off and the
OVP comp arato r is disen gaged . The chip restores its
normal operation.
Soft-Start
The APW7307 has a built-in soft-start to control the output
voltage rise during start-up. During soft-start, an internal
ramp voltage, connected to the one of the positive inputs
of the error ampli fier, raise s up to rep lace the reference
vol tage (0.807 V typ ical) until the ramp voltag e reaches
the reference voltage. Then, the voltage on FB regulated
at reference voltage.
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
11
www.anpec.com.tw
APW7307
Function Description
Frequency Foldback
The foldback freq uency i s controlled b y the FB voltage.
When the o utput i s short If VOUT setting les s than VIN
POR,suggest using Dual Power Input of Typical Application Circuit.
If VOUT setting more than VIN POR, suggest using Single
Power Input of Typical Application Circuit.
to the grou nd, the freque ncy of the osci llator will be reduced to 0.25 x FSW . This low er frequency allow s the inductor cu rrent to s afely disch arge, there by p reventing
current runaway. The oscillator’s frequencywill gradually
increase to its designed rate when the feedback voltgae
on FB again app roaches 0.807V.
Power OK Indicator
The APW7307 features an open-drain POK pin to indicate output regulation status. In normal operation, when
the output voltage rises 90% of its target value, the POK
goes high. When the output voltage return 85% or 125%
of the target voltage, POK signal will be pulled low
immediately.
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
12
www.anpec.com.tw
APW7307
Application Information
Input Capacitor Selection
Output Voltage Setting
Because buck converters have a pulsating input current,
a low ESR input capacitor is required. This results in the
best input voltage filtering, mi nimizin g the i nterference
with other circuits caused by high input voltage spikes.
Also, the input capacitor must be sufficiently large to stabilize the inpu t voltage during heavy load transients. For
good input voltage filtering, usually a 22µF input capacitor
is sufficient. It can be increased without any limit for better
inp ut-vo ltage filtering . Ceramic capacitors sho w better
performance because of the low ESR value, and they are
less sensitive against voltage transients and spikes compared to tantalum capacitors. Place the input capacitor as
close as possible to the inp ut and GND pin of the device
for better performance.
In th e adjustable version, th e output voltage is set by a
res isti ve d ivid er. The exte rnal res isti ve d ivid er i s co nnected to the output, allowing remote voltage sensing as
shown in “Typ ical App lication Circuits”. The output voltage can be calculated as below:
Inductor Selection
For high efficiencies, the inductor should have a low DC
resistance to minimize conduction losses. Especially at
high-switching frequencies, the core material has a
higher impact on efficiency. When using small chip
inductors, the efficiency is reduced mainly due to higher
inductor core losses. This needs to be considered when
selecting the appropriate inductor. The inductor value
determines the inductor ripple current. The larger the inductor value, the smaller the inductor ripple current and
the lower the conduction losses of the converter.
Conversely, larger inductor values cause a slower load
transient response. A reasonable starting point for setting ripple current, ∆IL, is 40% of maximum output current.
The recommended inductor value can be calculated as
below:
The current-mode control scheme of the APW7307 allows the use of tiny ceramic capacitors. The higher capacitor value provides the good load transients response.
Ceramic capacitors with low ESR values have the lowest
output voltage ripple and are recommended. If required,
tantalum capacitors may be used as well. The output
ripple is the sum of the voltages across the ESR and the
ideal output capacitor.
 R1 
 R1 
VOUT = VREF ⋅ 1+
 = 0.807 ⋅ 1+

 R2 
 R2 
If VOUT setting les s than VIN POR ,suggest using Dual
Power Input of Typical Application Circuit.
If VOUT setting more than VIN POR, suggest using Single
Power Input of Typical Application Circuit.
Output Capacitor Selection
∆VOUT


V
VOUT ⋅ 1 − OUT 
V

IN 
≅
FSW ⋅ L


1

⋅  ESR +

8
⋅
F
⋅
C
SW
OUT 

When choosing the input and output ceramic capacitors,
cho ose th e X5R or X7 R diel ectric form ulatio ns. Th ese
dielectrics have the best temperature and voltag e characteristics of all the ceramics for a given value and size.


V
VOUT 1 − OUT 
V
IN 

L≥
FSW ⋅ ∆IL
IL (MAX ) = IOUT( MAX ) +
1
∆IL
2
To avoid saturation of the inductor, the inductor should be
rated at least for the maximum output current of the converter plus the inductor ripple current.
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
13
www.anpec.com.tw
APW7307
Application Information
OutPut Capacitor Selection
When choosing the input and output ceramic capacitors,
cho ose th e X5R or X7 R diel ectric form ulatio ns. Th ese
dielectrics have the best temperature and voltag e characteristics of all the ceramics for a given value and size.
VIN
IIN
I Q1
IL
CIN
IOUT
V OUT
Q1
SW
ESR
Q2
2. To minimize copper trace connections that can inject
noise into the system, the inductor should be placed as
close as possible to the SW pin to minimize the noise
coupling into other circuits.
3. The output cap acitor should be place clos ed to converter VOUT and GND.
4. Sin ce the fee dback pin and network is a high impedance circuit the feedback network should be routed away
fro m the ind uctor. The feed back pin and feedb ack n etwork should be shielded with a ground plane or trace to
minimize noise coupling into this circuit.
5. A star grou nd conne ction or ground pl ane mini mizes
ground shifts and noise is recommended.
COUT
Recommended Minimum Footprint
0.102
IL
0.026
ILIM
I PEAK
IL
I OUT
0.017
IQ1
0.057
TSOT-23-8A
Layout Consideration
For all switching power supplies, the layout is an important step in the design; especially at high peak currents
and switching frequencies. If the layout is not carefully
done, the regulator might show noise problems and duty
cycle jitter.
1. The input capacitor should be placed close to the VIN
and GND. Connecting the capacitor and VIN/GND with
short and wide trace without any via holes for good input
voltage filtering. The distance between VIN/GND to capacitor less than 2mm respectively is recommended.
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
14
www.anpec.com.tw
To avoid
rated at
verter p
APW7307
Package Information
TSOT-23-8A
D
e
E
E1
SEE VIEW A
c
b
0.25
A
A2
e1
c
Ξ
aaa
A1
NX
L
GAUGE PLANE
SEATING PLANE
VIEW A
S
Y
M
B
O
L
TSOT-23-8A
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
0.70
1.00
0.028
0.039
A1
0.01
0.10
0.000
0.004
0.035
A2
0.70
0.90
0.028
b
0.22
0.40
0.009
0.016
c
0.08
0.20
0.003
0.008
0.122
0.118
D
2.70
310
0.106
E
2.60
3.00
0.102
E1
1.40
1.80
0.055
0.071
e
0.65 BSC
0.026 BSC
e1
1.95 BSC
0.077 BSC
L
0
0.30
0
0.60
o
aaa
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
8
o
0.10
0.012
0.024
0o
8o
0.004
15
www.anpec.com.tw
APW7307
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
TSOT-23-8A
A
H
T1
C
d
D
W
E1
F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.0 MIN.
0.6+0.00
-0.40
3.20±0.20
3.10±
0.20
1.20 ±0.20
4.0±0.10
4.0±
0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
TSOT-23-8A
Tape & Reel
3000
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
16
www.anpec.com.tw
APW7307
Taping Direction Information
TSOT-23-8A
USER DIRECTION OF FEED
AAAX
AAAX
AAAX
AAAX
AAAX
AAAX
AAAX
Classification Profile
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
17
www.anpec.com.tw
APW7307
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
20** seconds
30** seconds
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin )
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (T L)
Time at liquidous (tL)
Peak package body Temperature
(Tp )*
Time (t P)** within 5 °C of the specified
classification temperature (Tc)
Average ramp-down rate (T p to Tsmax)
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp ) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
Package
Thickness
<2.5 mm
≥2.5 mm
Volume mm
<350
235 °C
220 °C
3
Volume mm
≥350
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
18
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150 °C
VHBM≧2KV
VMM≧200V
10ms, 1 tr ≧100mA
www.anpec.com.tw
APW7307
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
C opyright  ANPEC Electronics C orp.
Rev. A.5 - Oct., 2015
19
www.anpec.com.tw