MACH 4 Data Sheet

Mach® 4 CPLD Device Datasheet
June 2010
Select Devices Discontinued!
Product Change Notifications (PCNs) have been issued to convert or discontinue select
devices in this data sheet.
The original datasheet pages have not been modified and do not reflect those changes.
Please refer to the table below for reference PCN and current product status.
Product Line
M4-32/32
Ordering Part Number
M4-32/32-7JC
M4-32/32-10JC
M4-32/32-12JC
M4-32/32-15JC
M4-32/32-10JI
M4-32/32-12JI
M4-32/32-14JI
M4-32/32-18JI
M4-32/32-7VC
M4-32/32-10VC
M4-32/32-12VC
M4-32/32-15VC
M4-32/32-10VI
M4-32/32-12VI
M4-32/32-14VI
M4-32/32-18VI
M4-32/32-7VC48
M4-32/32-10VC48
M4-32/32-12VC48
M4-32/32-15VC48
M4-32/32-10VI48
M4-32/32-12VI48
M4-32/32-14VI48
M4-32/32-18VI48
Product Status
Reference PCN
Converted to M4A5
Contact
[email protected]
for more info.
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
Product Line
M4-64/32
M4-96/48
M4-128/64
Ordering Part Number
M4-64/32-7JC
M4-64/32-10JC
M4-64/32-12JC
M4-64/32-15JC
M4-64/32-10JI
M4-64/32-12JI
M4-64/32-14JI
M4-64/32-18JI
M4-64/32-7VC
M4-64/32-10VC
M4-64/32-12VC
M4-64/32-15VC
M4-64/32-10VI
M4-64/32-12VI
M4-64/32-14VI
M4-64/32-18VI
M4-64/32-7VC48
M4-64/32-10VC48
M4-64/32-12VC48
M4-64/32-15VC48
M4-64/32-10VI48
M4-64/32-12VI48
M4-64/32-14VI48
M4-64/32-18VI48
M4-96/48-7VC
M4-96/48-10VC
M4-96/48-12VC
M4-96/48-15VC
M4-96/48-10VI
M4-96/48-12VI
M4-96/48-14VI
M4-96/48-18VI
M4-128/64-7YC
M4-128/64-10YC
M4-128/64-12YC
M4-128/64-15YC
M4-128/64-10YI
M4-128/64-12YI
M4-128/64-14YI
M4-128/64-18YI
Product Status
Reference PCN
Converted to M4A5
Contact
[email protected]
for more info.
Convert to M4A5
Contact
[email protected]
for more info.
Convert to M4A5
Contact
[email protected]
for more info.
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
Product Line
M4-128/64
(Cont’d)
M4-128N/64
M4-192/96
M4-256/128
M4LV-32/32
Ordering Part Number
M4-128/64-7VC
M4-128/64-10VC
M4-128/64-12VC
M4-128/64-15VC
M4-128/64-10VI
M4-128/64-12VI
M4-128/64-14VI
M4-128/64-18VI
M4-128N/64-7JC
M4-128N/64-10JC
M4-128N/64-12JC
M4-128N/64-15JC
M4-128N/64-10JI
M4-128N/64-12JI
M4-128N/64-14JI
M4-128N/64-18JI
M4-192/96-7VC
M4-192/96-10VC
M4-192/96-12VC
M4-192/96-15VC
M4-192/96-10VI
M4-192/96-12VI
M4-192/96-14VI
M4-192/96-18VI
M4-256/128-7YC
M4-256/128-10YC
M4-256/128-12YC
M4-256/128-15YC
M4-256/128-10YI
M4-256/128-12YI
M4-256/128-14YI
M4-256/128-18YI
M4LV-32/32-7JC
M4LV-32/32-10JC
M4LV-32/32-12JC
M4LV-32/32-15JC
M4LV-32/32-10JI
M4LV-32/32-12JI
M4LV-32/32-14JI
M4LV-32/32-18JI
Product Status
Reference PCN
Convert to M4A5
Contact
[email protected]
for more info.
Active / Orderable
Convert to M4A5
Contact
[email protected]
for more info.
Convert to M4A5
Contact
[email protected]
for more info.
Convert to M4A3
Contact
[email protected]
for more info.
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
Product Line
M4LV-32/32
(Cont’d)
M4LV-64/32
Ordering Part Number
M4LV-32/32-7VC
M4LV-32/32-10VC
M4LV-32/32-12VC
M4LV-32/32-15VC
M4LV-32/32-10VI
M4LV-32/32-12VI
M4LV-32/32-14VI
M4LV-32/32-18VI
M4LV-32/32-7VC48
M4LV-32/32-10VC48
M4LV-32/32-12VC48
M4LV-32/32-15VC48
M4LV-32/32-10VI48
M4LV-32/32-12VI48
M4LV-32/32-14VI48
M4LV-32/32-18VI48
M4LV-64/32-7JC
M4LV-64/32-10JC
M4LV-64/32-12JC
M4LV-64/32-15JC
M4LV-64/32-10JI
M4LV-64/32-12JI
M4LV-64/32-14JI
M4LV-64/32-18JI
M4LV-64/32-7VC
M4LV-64/32-10VC
M4LV-64/32-12VC
M4LV-64/32-15VC
M4LV-64/32-10VI
M4LV-64/32-12VI
M4LV-64/32-14VI
M4LV-64/32-18VI
M4LV-64/32-7VC48
M4LV-64/32-10VC48
M4LV-64/32-12VC48
M4LV-64/32-15VC48
M4LV-64/32-10VI48
M4LV-64/32-12VI48
M4LV-64/32-14VI48
M4LV-64/32-18VI48
Product Status
Reference PCN
Convert to M4A3
Contact
[email protected]
for more info.
Convert to M4A3
Contact
[email protected]
for more info.
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
Product Line
M4LV-96/48
M4LV-128/64
M4LV-128N/64
M4LV-192/96
Ordering Part Number
M4LV-96/48-7VC
M4LV-96/48-10VC
M4LV-96/48-12VC
M4LV-96/48-15VC
M4LV-96/48-10VI
M4LV-96/48-12VI
M4LV-96/48-14VI
M4LV-96/48-18VI
M4LV-128/64-7YC
M4LV-128/64-10YC
M4LV-128/64-12YC
M4LV-128/64-15YC
M4LV-128/64-10YI
M4LV-128/64-12YI
M4LV-128/64-14YI
M4LV-128/64-18YI
M4LV-128/64-7VC
M4LV-128/64-10VC
M4LV-128/64-12VC
M4LV-128/64-15VC
M4LV-128/64-10VI
M4LV-128/64-12VI
M4LV-128/64-14VI
M4LV-128/64-18VI
M4LV-128N/64-7JC
M4LV-128N/64-10JC
M4LV-128N/64-12JC
M4LV-128N/64-15JC
M4LV-128N/64-10JI
M4LV-128N/64-12JI
M4LV-128N/64-14JI
M4LV-128N/64-18JI
M4LV-192/96-7VC
M4LV-192/96-10VC
M4LV-192/96-12VC
M4LV-192/96-15VC
M4LV-192/96-10VI
M4LV-192/96-12VI
M4LV-192/96-14VI
M4LV-192/96-18VI
Product Status
Reference PCN
Convert to M4A3
Contact
[email protected]
for more info.
Convert to M4A3
Contact
[email protected]
for more info.
Convert to M4A3
Contact
[email protected]
for more info.
Discontinued
PCN#09-10
Convert to M4A3
Contact
[email protected]
for more info.
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
Product Line
M4LV-256/128
Ordering Part Number
M4LV-256/128-7YC
M4LV-256/128-10YC
M4LV-256/128-12YC
M4LV-256/128-15YC
M4LV-256/128-10YI
M4LV-256/128-12YI
M4LV-256/128-14YI
M4LV-256/128-18YI
M4LV-256/128-7AC
M4LV-256/128-10AC
M4LV-256/128-12AC
M4LV-256/128-15AC
M4LV-256/128-10AI
M4LV-256/128-12AI
M4LV-256/128-14AI
M4LV-256/128-18AI
Product Status
Reference PCN
Convert to M4A3
Contact
[email protected]
for more info.
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
MACH 4 CPLD Family
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
High Performance E2CMOS®
In-System Programmable Logic
FEATURES
◆ High-performance, E2CMOS 3.3-V & 5-V CPLD families
◆ Flexible architecture for rapid logic designs
◆
◆
◆
◆
SE
LE
◆
— Excellent First-Time-FitTM and refit feature
— SpeedLockingTM performance for guaranteed fixed timing
— Central, input and output switch matrices for 100% routability and 100% pin-out retention
High speed
— 7.5ns tPD Commercial and 10ns tPD Industrial
— 111.1MHz fCNT
32 to 256 macrocells; 32 to 384 registers
44 to 256 pins in PLCC, PQFP, TQFP and BGA packages
Flexible architecture for a wide range of design styles
— D/T registers and latches
— Synchronous or asynchronous mode
— Dedicated input registers
— Programmable polarity
— Reset/ preset swapping
Advanced capabilities for easy system integration
— 3.3-V & 5-V JEDEC-compliant operations
— JTAG (IEEE 1149.1) compliant for boundary scan testing
— 3.3-V & 5-V JTAG in-system programming
— PCI compliant (-7/-10/-12 speed grades)
— Safe for mixed supply voltage system designs
— Bus-FriendlyTM inputs and I/Os
— Programmable security bit
— Individual output slew rate control
Advanced E2CMOS process provides high-performance, cost-effective solutions
Supported by ispDesignEXPERTTM software for rapid logic development
— Supports HDL design methodologies with results optimized for MACH 4
— Flexibility to adapt to user requirements
— Software partnerships that ensure customer success
Lattice and third-party hardware programming support
— LatticePROTM software for in-system programmability support on PCs and automated test
equipment
— Programming support on all major programmers including Data I/O, BP Microsystems, Advin,
and System General
C
◆
◆
◆
Publication# 17466
Amendment/0
Rev: N
Issue Date: November 2003
Table 1. MACH 4 Device Features1, 2
M4-32/32
M4LV-32/32
M4-64/32
M4LV-64/32
M4-96/48
M4LV-96/48
M4-128/64
M4LV-128/64
M4-128N/64
M4LV-128N/64
M4-192/96
M4LV-192/96
M4-256/128
M4LV-256/128
Macrocells
32
64
96
128
128
192
256
Maximum User I/O Pins
32
32
48
64
64
96
128
tPD (ns)
7.5
7.5
7.5
7.5
7.5
7.5
7.5
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Feature
fCNT (MHz)
111
111
111
111
111
111
111
tCOS (ns)
5.5
5.5
5.5
5.5
5.5
5.5
5.5
tSS (ns)
5.5
5.5
5.5
5.5
5.5
5.5
5.5
Static Power (mA)
25
25
50
70
70
85
100
JTAG Compliant
Yes
Yes
Yes
Yes
No
Yes
Yes
PCI Compliant
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Notes:
1. For information on the M4-96/96 device, please refer to the M4-96/96 data sheet at www.latticesemi.com.
C
SE
LE
2. “M4-xxx” is for 5-V devices. “M4LV-xxx” is for 3.3-V devices.
2
MACH 4 Family
GENERAL DESCRIPTION
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The MACH® 4 family from Lattice offers an exceptionally flexible architecture and delivers a
superior Complex Programmable Logic Device (CPLD) solution of easy-to-use silicon products
and software tools. The overall benefits for users are a guaranteed and predictable CPLD
solution, faster time-to-market, greater flexibility and lower cost. The MACH 4 devices offer
densities ranging from 32 to 256 macrocells with 100% utilization and 100% pin-out retention.
The MACH 4 family offer 5-V (M4-xxx) and 3.3-V (M4LV-xxx) operation.
MACH 4 products are 5-V or 3.3-V in-system programmable through the JTAG (IEEE Std. 1149.1)
interface. JTAG boundary scan testing also allows product testability on automated test
equipment for device connectivity.
All MACH 4 family members deliver First-Time-Fit and easy system integration with pin-out
retention after any design change and refit. For both 3.3-V and 5-V operation, MACH 4 products
can deliver guaranteed fixed timing as fast as 7.5 ns tPD and 111 MHz fCNT through the
SpeedLocking feature when using up to 20 product terms per output (Table 2).
Table 2. MACH 4 Speed Grades
Speed Grade1
-7
-10
-12
-14
-15
-18
M4-32/32
M4LV-32/32
C
C, I
C, I
I
C
I
M4-64/32
M4LV-64/32
C
C, I
C, I
I
C
I
M4-96/48
M4LV-96/48
C
C, I
C, I
I
C
I
M4-128/64
M4LV-128/64
C
C, I
C, I
I
C
I
M4-128N/64
M4LV-128N/64
C
C, I
C, I
I
C
I
M4-192/96
M4LV-192/96
C
C, I
C, I
I
C
I
M4-256/128
M4LV-256/128
C
C, I
C, I
I
C
I
SE
LE
Device
I = Industrial
C
Note:
1. C = Commercial,
The MACH 4 family offers numerous density-I/O combinations in Thin Quad Flat Pack (TQFP),
Plastic Quad Flat Pack (PQFP), Plastic Leaded Chip Carrier (PLCC), and Ball Grid Array (BGA)
packages ranging from 44 to 256 pins (Table 3). It also offers I/O safety features for mixedvoltage designs so that the 3.3-V devices can accept 5-V inputs, and 5-V devices do not overdrive
3.3-V inputs. Additional features include Bus-Friendly inputs and I/Os, a programmable powerdown mode for extra power savings and individual output slew rate control for the highest speed
transition or for the lowest noise transition.
MACH 4 Family
3
Table 3. MACH 4 Package and I/O Options (Number of I/Os and dedicated inputs in Table)
M4-32/32
M4LV-32/32
M4-64/32
M4LV-64/32
M4-96/48
M4LV-96/48
M4-128/64
M4LV-128/64
M4-128N/64
M4LV-128N/64
M4-192/96
M4LV-192/96
M4LV-256/128
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Package
44-pin PLCC
32+2
32+2
44-pin TQFP
32+2
32+2
48-pin TQFP
32+2
32+2
84-pin PLCC
100-pin TQFP
100-pin PQFP
64+6
48+8
64+6
64+6
144-pin TQFP
96+16
128+14
256-ball BGA
128+14
C
SE
LE
208-pin PQFP
4
MACH 4 Family
FUNCTIONAL DESCRIPTION
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The fundamental architecture of MACH 4 devices (Figure 1) consists of multiple, optimized PAL®
blocks interconnected by a central switch matrix. The central switch matrix allows
communication between PAL blocks and routes inputs to the PAL blocks. Together, the PAL
blocks and central switch matrix allow the logic designer to create large designs in a single
device instead of having to use multiple devices.
The key to being able to make effective use of these devices lies in the interconnect schemes.
In MACH 4 architecture, the macrocells are flexibly coupled to the product terms through the
logic allocator, and the I/O pins are flexibly coupled to the macrocells due to the output switch
matrix. In addition, more input routing options are provided by the input switch matrix. These
resources provide the flexibility needed to fit designs efficiently.
PAL Block
4
SE
LE
Dedicated
Input Pins
Central Switch Matrix
Note 3
33/
34/
36
Logic
Array
Logic 16
Output/
Allocator
Buried
with XOR
Macrocells
Input
Switch
Matrix
16
16
8
Note 1
16
I/O Cells
Clock/Input
Pins
Output Switch Matrix
Note 2
Clock
Generator
I/O
Pins
I/O
Pins
PAL Block
PAL Block
I/O
Pins
17466G-001
Figure 1. MACH 4 Block Diagram and PAL Block Structure
C
Notes:
1. 16 for MACH 4 devices with 1:1 macrocell-I/O cell ratio (see next page).
2. Block clocks do not go to I/O cells in M4(LV)-32/32.
3. M4(LV)-192/96 and M4(LV)-256/128 have dedicated clock pins which cannot be used as inputs and do not connect to the central
switch matrix.
MACH 4 Family
5
Table 4. Architectural Summary of MACH 4 devices
MACH 4 Devices
M4-32/32
M4LV-32/32
2:1
1:1
Input Switch Matrix
Yes
Yes
Input Registers
Yes
No
Central Switch Matrix
Yes
Yes
Output Switch Matrix
Yes
Yes
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
M4-64/32, M4LV-64/32
M4-96/48, M4LV-96/48
M4-128/64, M4LV-128/64
M4-128N/64, M4LV-128N/64
M4-192/96, M4LV-192/96
M4-256/128, M4LV-256/128
Macrocell-I/O Cell
Ratio
The Macrocell-I/O cell ratio is defined as the number of macrocells versus the number of I/O
cells internally in a PAL block (Table 4).
The central switch matrix takes all dedicated inputs and signals from the input switch matrices
and routes them as needed to the PAL blocks. Feedback signals that return to the same PAL block
still must go through the central switch matrix. This mechanism ensures that PAL blocks in MACH
4 devices communicate with each other with consistent, predictable delays.
LE
The central switch matrix makes a MACH 4 device more advanced than simply several PAL
devices on a single chip. It allows the designer to think of the device not as a collection of
blocks, but as a single programmable device; the software partitions the design into PAL blocks
through the central switch matrix so that the designer does not have to be concerned with the
internal architecture of the device.
Each PAL block consists of:
SE
◆
◆
◆
◆
C
◆
Product-term array
Logic allocator
Macrocells
Output switch matrix
I/O cells
Input switch matrix
Clock generator
◆
◆
6
MACH 4 Family
Product-Term Array
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The product-term array consists of a number of product terms that form the basis of the logic
being implemented. The inputs to the AND gates come from the central switch matrix (Table 5),
and are provided in both true and complement forms for efficient logic implementation.
Table 5. PAL Block Inputs
Device
Number of Inputs to PAL Block
M4-32/32 and M4LV-32/32
M4-64/32 and M4LV-64/32
M4-96/48 and M4LV-96/48
M4-128/64 and M4LV-128/64
M4-128N/64 and M4LV-128N/64
33
33
33
33
33
M4-192/96 and M4LV-192/96
M4-256/128 and M4LV-256/128
34
34
Logic Allocator
Within the logic allocator, product terms are allocated to macrocells in “product term clusters.”
The availability and distribution of product term clusters are automatically considered by the
software as it fits functions within a PAL block. The size of a product term cluster has been
optimized to provide high utilization of product terms, making complex functions using many
product terms possible. Yet when few product terms are used, there will be a minimal number
of unused—or wasted—product terms left over. The product term clusters available to each
macrocell within a PAL block are shown in Tables 6 and 7.
SE
LE
Each product term cluster is associated with a macrocell. The size of a cluster depends on the
configuration of the associated macrocell. When the macrocell is used in synchronous mode
(Figure 2a), the basic cluster has 4 product terms. When the associated macrocell is used in
asynchronous mode (Figure 2b), the cluster has 2 product terms. Note that if the product term
cluster is routed to a different macrocell, the allocator configuration is not determined by the
mode of the macrocell actually being driven. The configuration is always set by the mode of the
macrocell that the cluster will drive if not routed away, regardless of the actual routing.
C
In addition, there is an extra product term that can either join the basic cluster to give an
extended cluster, or drive the second input of an exclusive-OR gate in the signal path. If included
with the basic cluster, this provides for up to 20 product terms on a synchronous function that
uses four extended 5-product-term clusters. A similar asynchronous function can have up to 18
product terms.
When the extra product term is used to extend the cluster, the value of the second XOR input
can be programmed as a 0 or a 1, giving polarity control. The possible configurations of the logic
allocator are shown in Figures 3 and 4.
MACH 4 Family
7
Table 6. Logic Allocator for All MACH 4 Devices (except M4(LV)-32/32)
Available Clusters
C0, C1, C2
C0, C1, C2, C3
C1, C2, C3, C4
C2, C3, C4, C5
C3, C4, C5, C6
C4, C5, C6, C7
C5, C6, C7, C8
C6, C7, C8, C9
Output Macrocell
M8
M9
M10
M11
M12
M13
M14
M15
Available Clusters
C7, C8, C9, C10
C8, C9, C10, C11
C9, C10, C11, C12
C10, C11, C12, C13
C11, C12, C13, C14
C12, C13, C14, C15
C13, C14, C15
C14, C15
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Output Macrocell
M0
M1
M2
M3
M4
M5
M6
M7
Table 7. Logic Allocator for M4(LV)-32/32
From n-1
SE
To Macrocell
n
n
0 Default
0 Default
Available Clusters
C8, C9, C10
C8, C9, C10, C11
C9, C10, C11, C12
C10, C11, C12, C13
C11, C12, C13, C14
C12, C13, C14, C15
C13, C14, C15
C14, C15
Logic Allocator
n
To n+1
LE
Basic Product
Term Cluster
Extra
Product
Term
Output Macrocell
M8
M9
M10
M11
M12
M13
M14
M15
To n-1
To n-2
Available Clusters
C0, C1, C2
C0, C1, C2, C3
C1, C2, C3, C4
C2, C3, C4, C5
C3, C4, C5, C6
C4, C5, C6, C7
C5, C6, C7
C6, C7
From n+1
From n+2
Output Macrocell
M0
M1
M2
M3
M4
M5
M6
M7
Prog. Polarity
17466G-005
n
Logic Allocator
n
0 Default
To n+1
Extra
Product
Term
From n+1
From n+2
0 Default
To Macrocell
n
Basic Product
Term Cluster
From n-1
To n-1
To n-2
C
a. Synchronous Mode
Prog. Polarity
b. Asynchronous Mode
Figure 2. Logic Allocator: Configuration of Cluster “n” Set by Mode of Macrocell “n”
8
MACH 4 Family
17466G-006
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
a. Basic cluster with XOR
b. Extended cluster, active high
c. Extended cluster, active low
0
d. Basic cluster routed away;
single-product-term, active high
e. Extended cluster routed away
17466G-007
Figure 3. Logic Allocator Configurations: Synchronous Mode
LE
a. Basic cluster with XOR
b. Extended cluster, active high
0
d. Basic cluster routed away;
single-product-term, active high
SE
c. Extended cluster, active low
e. Extended cluster routed away
17466G-008
Figure 4. Logic Allocator Configurations: Asynchronous Mode
C
Note that the configuration of the logic allocator has absolutely no impact on the speed of the
signal. All configurations have the same delay. This means that designers do not have to decide
between optimizing resources or speed; both can be optimized.
If not used in the cluster, the extra product term can act in conjunction with the basic cluster to
provide XOR logic for such functions as data comparison, or it can work with the D-,T-type flipflop to provide for J-K, and S-R register operation. In addition, if the basic cluster is routed to
another macrocell, the extra product term is still available for logic. In this case, the first XOR
input will be a logic 0. This circuit has the flexibility to route product terms elsewhere without
giving up the use of the macrocell.
Product term clusters do not “wrap” around a PAL block. This means that the macrocells at the
ends of the block have fewer product terms available.
MACH 4 Family
9
Macrocell
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The macrocell consists of a storage element, routing resources, a clock multiplexer, and
initialization control. The macrocell has two fundamental modes: synchronous and
asynchronous (Figure 5). The mode chosen only affects clocking and initialization in the
macrocell.
Power-Up
Reset
PAL-Block
Initialization
Product Terms
SWAP
Common PAL-block resource
Individual macrocell resources
AP
D/T/L
From Logic Allocator
From
PAL-Clock
Generator
AR
Q
To Output and Input
Switch Matrices
Block CLK0
Block CLK1
Block CLK2
Block CLK3
17466G-009
a. Synchronous mode
LE
Power-Up
Reset
SE
Individual
Initialization
Product Term
AP AR
D/T/L Q
From Logic
Allocator
C
From PAL-Block
Clock Generator
To Output and Input
Switch Matrices
Block CLK0
Block CLK1
Individual Clock
Product Term
b. Asynchronous mode
17466G-010
Figure 5. Macrocell
In either mode, a combinatorial path can be used. For combinatorial logic, the synchronous
mode will generally be used, since it provides more product terms in the allocator.
10
MACH 4 Family
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The flip-flop can be configured as a D-type or T-type latch. J-K or S-R registers can be
synthesized. The primary flip-flop configurations are shown in Figure 6, although others are
possible. Flip-flop functionality is defined in Table 8. Note that a J-K latch is inadvisable as it will
cause oscillation if both J and K inputs are HIGH.
AP AR
D
Q
AP AR
D
Q
b. D-type with programmable D polarity
a. D-type with XOR
L
AP AR
L
Q
AP AR
Q
G
G
d. Latch with programmable D polarity
AP AR
T
Q
f. Combinatorial with XOR
e. T-type with programmable T polarity
C
SE
LE
c. Latch with XOR
g. Combinatorial with programmable polarity
17466G-011
Figure 6. Primary Macrocell Configurations
MACH 4 Family
11
Table 8. Register/Latch Operation
Input(s)
CLK/LE 1
Q+
D-type Register
D=X
D=0
D=1
0,1, ↓ (↑)
↑ (↓)
↑ (↓)
Q
0
1
T-type Register
T=X
T=0
T=1
0, 1, ↓ (↑)
↑ (↓)
↑ (↓)
Q
Q
Q
D-type Latch
D=X
D=0
D=1
1(0)
0(1)
0(1)
Q
0
1
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Configuration
Note:
1. Polarity of CLK/LE can be programmed
Although the macrocell shows only one input to the register, the XOR gate in the logic allocator
allows the D-, T-type register to emulate J-K, and S-R behavior. In this case, the available product
terms are divided between J and K (or S and R). When configured as J-K, S-R, or T-type, the
extra product term must be used on the XOR gate input for flip-flop emulation. In any register
type, the polarity of the inputs can be programmed.
The clock input to the flip-flop can select any of the four PAL block clocks in synchronous mode,
with the additional choice of either polarity of an individual product term clock in the
asynchronous mode.
LE
The initialization circuit depends on the mode. In synchronous mode (Figure 7), asynchronous
reset and preset are provided, each driven by a product term common to the entire PAL block.
Power-Up
Reset
Power-Up
Preset
SE
PAL-Block
Initialization
Product Terms
PAL-Block
Initialization
Product Terms
AR
Q
AP
D/L
AR
Q
C
AP
D/T/L
b. Power-up preset
a. Power-up reset
17466G-012
Figure 7. Synchronous Mode Initialization Configurations
12
MACH 4 Family
17466G-013
A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged,
providing flexibility. In asynchronous mode (Figure 8), a single individual product term is
provided for initialization. It can be selected to control reset or preset.
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Power-Up
Preset
Power-Up
Reset
Individual
Preset
Product Term
Individual
Reset
Product Term
AP
D/L/T
AP
D/L/T
AR
Q
a. Reset
AR
Q
b. Preset
17466G-014
17466G-015
Figure 8. Asynchronous Mode Initialization Configurations
SE
LE
Note that the reset/preset swapping selection feature effects power-up reset as well. The
initialization functionality of the flip-flops is illustrated in Table 9. The macrocell sends its data
to the output switch matrix and the input switch matrix. The output switch matrix can route this
data to an output if so desired. The input switch matrix can send the signal back to the central
switch matrix as feedback.
Table 9. Asynchronous Reset/Preset Operation
AR
AP
CLK/LE1
Q+
0
0
X
See Table 8
0
1
X
1
1
0
X
0
1
1
X
0
C
Note:
1. Transparent latch is unaffected by AR, AP
MACH 4 Family
13
Output Switch Matrix
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The output switch matrix allows macrocells to be connected to any of several I/O cells within a
PAL block. This provides high flexibility in determining pinout and allows design changes to
occur without effecting pinout.
I/O cell
MUX
LE
macrocells
In MACH 4 devices with 2:1 Macrocell-I/O cell ratio, each PAL block has twice as many
macrocells as I/O cells. The MACH 4 output switch matrix allows for half of the macrocells to
drive I/O cells within a PAL block, in combinations according to Figure 9. Each I/O cell can
choose from eight macrocells; each macrocell has a choice of four I/O cells. The MACH 4 devices
with 1:1 Macrocell-I/O cell ratio allow each macrocell to drive one of eight I/O cells (Figure 9).
SE
Each I/O cell can
choose one of 8
macrocells in
all MACH 4
devices.
M0
M0
I/O0
M1
M1
I/O1
M2
M2
I/O2
M3
M3
I/O3
M4
I/O0
M4
I/O4
M5
I/O1
M5
I/O5
M6
I/O2
M6
I/O6
M7
I/O3
M7
I/O7
M8
I/O4
M8
I/O8
M9
I/O5
M9
I/O9
M10
I/O6
M10
I/O10
M11
I/O7
M11
I/O11
M12
M12
I/O12
M13
M13
I/O13
M14
M14
I/O14
M15
M15
I/O15
Each macrocell can drive
one of 4 I/O cells in
MACH 4 devices with
2:1 macrocell-I/O cell ratio.
C
Figure 9. MACH 4 Output Switch Matrix
14
MACH 4 Family
Each macrocell can drive
one of 8 I/O cells in
M4(LV)-32/32 devices.
Table 10. Output Switch Matrix Combinations for MACH 4 Devices with 2:1
Macrocell-I/O Cell Ratio
Routable to I/O Cells
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Macrocell
M0, M1
I/O0, I/O5, I/O6, I/O7
M2, M3
I/O0, I/O1, I/O6, I/O7
M4, M5
I/O0, I/O1, I/O2, I/O7
M6, M7
I/O0, I/O1, I/O2, I/O3
M8, M9
I/O1, I/O2, I/O3, I/O4
M10, M11
I/O2, I/O3, I/O4, I/O5
M12, M13
I/O3, I/O4, I/O5, I/O6
M14, M15
I/O4, I/O5, I/O6, I/O7
I/O Cell
Available Macrocells
I/O0
M0, M1, M2, M3, M4, M5, M6, M7
I/O1
M2, M3, M4, M5, M6, M7, M8, M9
I/O2
M4, M5, M6, M7, M8, M9, M10, M11
I/O3
M6, M7, M8, M9, M10, M11, M12, M13
I/O4
M8, M9, M10, M11, M12, M13, M14, M15
I/O5
M0, M1, M10, M11, M12, M13, M14, M15
I/O6
M0, M1, M2, M3, M12, M13, M14, M15
I/O7
M0, M1, M2, M3, M4, M5, M14, M15
LE
Table 11. Output Switch Matrix Combinations for M4(LV)-32/32
Routable to I/O Cells
M0, M1, M2, M3, M4, M5, M6, M7
I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7
M8, M9, M10, M11, M12, M13, M14, M15
I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15
I/O Cell
Available Macrocells
I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7
M0, M1, M2, M3, M4, M5, M6, M7
I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15
M8, M9, M10, M11, M12, M13, M14, M15
C
SE
Macrocell
MACH 4 Family
15
I/O Cell
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The I/O cell (Figures 10 and 11) simply consists of a programmable output enable, a feedback
path, and flip-flop (except MACH 4 devices with 1:1 macrocell-I/O cell ratio.) An individual
output enable product term is provided for each I/O cell. The feedback signal drives the input
switch matrix.
Individual
Output Enable
Product Term
From Output
Switch Matrix
To
Input
Switch
Matrix
Individual
Output Enable
Product Term
From Output
Switch Matrix
Q D/L
To
Input
Switch
Matrix
Block CLK0
Block CLK1
Block CLK2
Block CLK3
Power-up reset
17466G-017
Figure 10. I/O Cell for MACH 4 Devices with 2:1
Macrocell-I/O Cell Ratio
17466G-018
Figure 11. I/O Cell for MACH 4 Devices with 1:1
Macrocell-I/O Cell Ratio
LE
The I/O cell (Figure 10) contains a flip-flop, which provides the capability for storing the input
in a D-type register or latch. The clock can be any of the PAL block clocks. Both the direct and
registered versions of the input are sent to the input switch matrix. This allows for such functions
as “time-domain-multiplexed” data comparison, where the first data value is stored, and then the
second data value is put on the I/O pin and compared with the previous stored value.
SE
Note that the flip-flop used in the MACH 4 I/O cell is independent of the flip-flops in the
macrocells. It powers up to a logic low.
Zero-Hold-Time Input Register
C
The MACH 4 devices have a zero-hold-time (ZHT) fuse which controls the time delay associated
with loading data into all I/O cell registers and latches. When programmed, the ZHT fuse
increases the data path setup delays to input storage elements, matching equivalent delays in
the clock path. When the fuse is erased, the setup time to the input storage element is minimized.
This feature facilitates doing worst-case designs for which data is loaded from sources which
have low (or zero) minimum output propagation delays from clock edges.
Input Switch Matrix
The input switch matrix (Figures 12 and 13) optimizes routing of inputs to the central switch
matrix. Without the input switch matrix, each input and feedback signal has only one way to
enter the central switch matrix. The input switch matrix provides additional ways for these
signals to enter the central switch matrix.
16
MACH 4 Family
From I/O Pin
From Macrocell
Registered/Latched
Direct
From Macrocell 2
To Central Switch Matrix
To Central Switch Matrix
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
From Macrocell 1
From Input Cell
17466G-002
17466G-003
Figure 12. MACH 4 with 2:1 Macrocell-I/O Cell Ratio
- Input Switch Matrix
Figure 13. MACH 4 with 1:1 Macrocell-I/O Cell Ratio
- Input Switch Matrix
PAL Block Clock Generation
SE
LE
Each MACH 4 device has four clock pins that can also be used as inputs. These pins drive a
clock generator in each PAL block (Figure 14). The clock generator provides four clock signals
that can be used anywhere in the PAL block. These four PAL block clock signals can consist of
a large number of combinations of the true and complement edges of the global clock signals.
Table 12 lists the possible combinations.
GCLK0
Block CLK0
(GCLK0 or GCLK1)
GCLK1
Block CLK1
(GCLK1 or GCLK0)
GCLK2
Block CLK2
(GCLK2 or GCLK3)
GCLK3
C
Block CLK3
(GCLK3 or GCLK2)
17466G-004
Figure 14. PAL Block Clock Generator 1
Note:
1. M4(LV)-32/32 and M4(LV)-64/32 have only two clock pins, GCLK0 and GCLK1. GCLK2 is tied to GCLK0, and GCLK3 is tied to
GCLK1.
MACH 4 Family
17
Table 12. PAL Block Clock Combinations1
Block CLK0
GCLK1
GCLK1
GCLK0
GCLK0
X
X
X
X
Block CLK2
Block CLK3
X
X
X
X
GCLK2 (GCLK0)
GCLK3 (GCLK1)
GCLK2 (GCLK0)
GCLK3 (GCLK1)
X
X
X
X
GCLK3 (GCLK1)
GCLK3 (GCLK1)
GCLK2 (GCLK0)
GCLK2 (GCLK0)
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
GCLK0
GCLK1
GCLK0
GCLK1
X
X
X
X
Block CLK1
Note:
1. Values in parentheses are for the M4(LV)-32/32 and M4(LV)-64/32.
C
SE
LE
This feature provides high flexibility for partitioning state machines and dual-phase clocks. It
also allows latches to be driven with either polarity of latch enable, and in a master-slave
configuration.
18
MACH 4 Family
MACH 4 TIMING MODEL
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
The primary focus of the MACH 4 timing model is to accurately represent the timing in a MACH
4 device, and at the same time, be easy to understand. This model accurately describes all
combinatorial and registered paths through the device, making a distinction between internal
feedback and external feedback. A signal uses internal feedback when it is fed back into the
switch matrix or block without having to go through the output buffer. The input register
specifications are also reported as internal feedback. When a signal is fed back into the switch
matrix after having gone through the output buffer, it is using external feedback.
The parameter, tBUF, is defined as the time it takes to go from feedback through the output buffer
to the I/O pad. If a signal goes to the internal feedback rather than to the I/O pad, the parameter
designator is followed by an “i”. By adding tBUF to this internal parameter, the external parameter
is derived. For example, tPD = tPDi + tBUF. A diagram representing the modularized MACH 4
timing model is shown in Figure 15. Refer to the Technical Note entitled MACH 4 Timing and
High Speed Design for a more detailed discussion about the timing parameters.
(External Feedback)
(Internal Feedback)
COMB/DFF/TFF/
LATCH/SR*/JK*
IN
LE
tPL
tSS(T)
tSA(T)
tH(S/A)
tS(S/A)L
tH(S/A)L
tSRR
SE
INPUT REG/
INPUT LATCH
tSIRS
tHIRS
tSIL
tHIL
tSIRZ
tHIRZ
tSILZ
tHILZ
tPDILi
tICOSi
tIGOSi
tPDILZi
tSLW
*emulated
Central
Switch
Matrix
tPDi
Q
tPDLi
tCO(S/A)i
tGO(S/A)i
tSRi
S/R
Q
OUT
tBUF
tEA
tER
C
BLK CLK
17466G-025
Figure 15. MACH 4 Timing Model
SPEEDLOCKING FOR GUARANTEED FIXED TIMING
The MACH 4 architecture allows allocation of up to 20 product terms to an individual macrocell
with the assistance of an XOR gate without incurring additional timing delays.
The design of the switch matrix and PAL blocks guarantee a fixed pin-to-pin delay that is
independent of the logic required by the design. Other competitive CPLDs incur serious timing
delays as product terms expand beyond their typical 4 or 5 product term limits. Speed and
SpeedLocking combine to give designs easy access to the performance required in today’s
designs.
MACH 4 Family
19
IEEE 1149.1-COMPLIANT BOUNDARY SCAN TESTABILITY
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
All MACH 4 devices, except the M4(LV)-128N/64, have boundary scan cells and are compliant
to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the
device is mounted through a serial scan path that can access all critical logic nodes. Internal
registers are linked internally, allowing test data to be shifted in and loaded directly onto test
nodes, or test node data to be captured and shifted out for verification. In addition, these devices
can be linked into a board-level serial scan path for more complete board-level testing.
IEEE 1149.1-COMPLIANT IN-SYSTEM PROGRAMMING
Programming devices in-system provides a number of significant benefits including: rapid
prototyping, lower inventory levels, higher quality, and the ability to make in-field modifications.
All MACH 4 devices provide In-System Programming (ISP) capability through their Boundary
ScanTest Access Ports. This capability has been implemented in a manner that ensures that the
port remains compliant to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication
interface through which ISP is achieved, customers get the benefit of a standard, well-defined
interface.
LE
MACH 4 devices can be programmed across the commercial temperature and voltage range. The
PC-based LatticePRO software facilitates in-system programming of MACH 4 devices. LatticePRO
takes the JEDEC file output produced by the design implementation software, along with
information about the JTAG chain, and creates a set of vectors that are used to drive the JTAG
chain. LatticePRO software can use these vectors to drive a JTAG chain via the parallel port of a
PC. Alternatively, LatticePRO software can output files in formats understood by common
automated test equipment. This equpment can then be used to program MACH 4 devices during
the testing of a circuit board.
PCI COMPLIANT
SE
MACH 4 devices in the -7/-10/-12 speed grades are compliant with the PCI Local Bus
Specification version 2.1, published by the PCI Special Interest Group (SIG). The 5-V devices are
fully PCI-compliant. The 3.3-V devices are mostly compliant but do not meet the PCI condition
to clamp the inputs as they rise above VCC because of their 5-V input tolerant feature.
SAFE FOR MIXED SUPPLY VOLTAGE SYSTEM DESIGNS
C
Both the 3.3-V and 5-V VCC MACH 4 devices are safe for mixed supply voltage system designs.
The 5-V devices will not overdrive 3.3-V devices above the output voltage of 3.3 V, while they
accept inputs from other 3.3-V devices. The 3.3-V device will accept inputs up to 5.5 V. Both the
5-V and 3.3-V versions have the same high-speed performance and provide easy-to-use mixedvoltage design capability.
BUS-FRIENDLY INPUTS AND I/OS
All MACH 4 devices have inputs and I/Os which feature the Bus-Friendly circuitry incorporating
two inverters in series which loop back to the input. This double inversion weakly holds the
input at its last driven logic state. While it is good design practice to tie unused pins to a known
state, the Bus-Friendly input structure pulls pins away from the input threshold voltage where
noise can cause high-frequency switching. At power-up, the Bus-Friendly latches are reset to a
logic level “1.” For the circuit diagram, please refer to the document entitled MACH Endurance
Characteristics on the Lattice/Vantis Data Book CD-ROM or Lattice web site.
20
MACH 4 Family
POWER MANAGEMENT
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Each individual PAL block in MACH 4 devices features a programmable low-power mode, which
results in power savings of up to 50%. The signal speed paths in the low-power PAL block will
be slower than those in the non-low-power PAL block. This feature allows speed critical paths
to run at maximum frequency while the rest of the signal paths operate in the low-power mode.
PROGRAMMABLE SLEW RATE
Each MACH 4 device I/O has an individually programmable output slew rate control bit. Each
output can be individually configured for the higher speed transition (3 V/ns) or for the lower
noise transition (1 V/ns). For high-speed designs with long, unterminated traces, the slow-slew
rate will introduce fewer reflections, less noise, and keep ground bounce to a minimum. For
designs with short traces or well terminated lines, the fast slew rate can be used to achieve the
highest speed. The slew rate is adjusted independent of power.
POWER-UP RESET/SET
All flip-flops power up to a known state for predictable system initialization. If a macrocell is
configured to SET on a signal from the control generator, then that macrocell will be SET during
device power-up. If a macrocell is configured to RESET on a signal from the control generator
or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee
initialization values, the VCC rise must be monotonic, and the clock must be inactive until the
reset delay time has elapsed.
SECURITY BIT
C
SE
LE
A programmable security bit is provided on the MACH 4 devices as a deterrent to unauthorized
copying of the array configuration patterns. Once programmed, this bit defeats readback of the
programmed pattern by a device programmer, securing proprietary designs from competitors.
Programming and verification are also defeated by the security bit. The bit can only be reset by
erasing the entire device.
MACH 4 Family
21
M4(LV)-192/96, M4(LV)-256/128
CLK0
CLK1
CLK2
CLK3
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
M4(LV)-64/32, M4(LV)-96/48,
M4(LV)-128/64
CLOCK
GENERATOR
A
A
B
4
16
17
17
17
0
M0
C0
MACROCELL
M0
M1
C1
M1
MACROCELL
M2
MACROCELL
M3
C3
OUTPUT SWITCH MATRIX
LOGIC ALLOCATOR
CENTRAL SWITCH MATRIX
M7
M7
MACROCELL
M8
MACROCELL
M8
LE
SE
M9
MACROCELL
M10
MACROCELL
M11
MACROCELL
M12
MACROCELL
C
C15
89
O4
I/O
CELL
O5
I/O
CELL
O6
I/O
CELL
O7
I/O
CELL
M13
MACROCELL
M14
MACROCELL
M15
MACROCELL
M15
16
INPUT SWITCH
MATRIX
16
Figure 16. PAL Block for MACH 4 with 2:1 Macrocell - I/O Cell Ratio
22
I/O4
I/O5
I/O6
M14
B
24
I/O3
M12
M13
C14
I/O
CELL
I/O2
M10
M11
C13
O3
I/O1
M6
MACROCELL
M6
M9
C12
I/O
CELL
MACROCELL
M5
C6
C11
O2
I/O0
M4
M5
C10
I/O
CELL
MACROCELL
M4
C5
C9
O1
MACROCELL
M3
C4
C8
I/O
CELL
M2
C2
C7
O0
MACH 4 Family
I/O7
CLK0/I0
CLK0/I1
CLOCK
GENERATOR
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
16
2
0
M0
M0
MACROCELL
M1
MACROCELL
M2
MACROCELL
M3
MACROCELL
M4
MACROCELL
C5
M5
MACROCELL
C6
M6
MACROCELL
M7
MACROCELL
M8
MACROCELL
M9
MACROCELL
M10
MACROCELL
C11 M11
MACROCELL
C12
M12
MACROCELL
C13 M13
MACROCELL
C14
M14
MACROCELL
C15 M15
MACROCELL
C0
O0
I/O
CELL
O1
I/O
CELL
O2
I/O
CELL
O3
I/O
CELL
O4
I/O
CELL
O5
I/O
CELL
O6
I/O
CELL
O7
I/O
CELL
O8
I/O
CELL
O9
I/O
CELL
O10
I/O
CELL
O11
I/O
CELL
O12
I/O
CELL
O13
I/O
CELL
M1
C1
M3
C3
M4
C4
C7
C8
M6
LOGIC ALLOCATOR
CENTRAL SWITCH MATRIX
M5
OUTPUT SWITCH MATRIX
M2
C2
M7
M8
M9
C10
M10
M11
M12
C
M13
OUTPUT SWITCH MATRIX
SE
LE
C9
M14
O14
I/O
CELL
O15
I/O
CELL
M15
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
97
17
16
32
INPUT
SWITCH
MATRIX
16
Figure 17. PAL Block for M4(LV)-32/32
MACH 4 Family
17466H-042
23
BLOCK DIAGRAM – M4(LV)-32/32
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Block A
I/O8–I/O15
I/O0–I/O7
8
8
I/O Cells
Clock Generator
I/O Cells
8
8
8
Output Switch
Matrix
8
4
8
8
Output Switch
Matrix
8
4
8
8
Macrocells
C
8
Input Switch
Matrix
2
66 X 98
AND Logic Array
and Logic Allocator
16
16
33
Central Switch Matrix
2
2
33
16
Input Switch
Matrix
16
8
2
OE
Input Switch
Matrix
66 X 98
AND Logic Array
and Logic Allocator
OE
8
Macrocells
Macrocells
8
8
4
8
8
Output Switch
Matrix
Clock Generator
LE
CLK0/I0, CLK1/I1
Input Switch
Matrix
8
OE
OE
Macrocells
SE
8
8
8
I/O Cells
4
8
8
8
Output Switch
Matrix
8
I/O Cells
8
8
I/O16–I/O23
I/O24–I/O31
Block B
17466H-019
24
MACH 4 Family
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
BLOCK DIAGRAM – M4(LV)-64/32
Block A
Block D
I/O0–I/O7
I/O24–I/O31
8
8
I/O Cells
8
8
Output Switch
Matrix
16
4
16
16
8
4
Output Switch
Matrix
8
16
4
16
Macrocells
Input Switch
Matrix
16
66 X 90
AND Logic Array
and Logic Allocator
2
24
33
24
Central Switch Matrix
2
2
Input Switch
Matrix
66 X 90
AND Logic Array
and Logic Allocator
2
33
24
66 X 90
AND Logic Array
and Logic Allocator
2
16
16
8
4
Output Switch
Matrix
8
16
Macrocells
16
16
Clock Generator
Clock Generator
Macrocells
4
24
Input Switch
Matrix
33
OE
LE
CLK0/I0, CLK1/I1
16
33
OE
C
OE
OE
SE
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
2
16
Input Switch
Matrix
4
Clock Generator
Clock Generator
I/O Cells
I/O Cells
16
4
16
8
4
Output Switch
Matrix
16
8
I/O Cells
8
8
I/O8–I/O15
I/O16–I/O23
Block B
Block C
17466H-020
MACH 4 Family
25
LE
4
8
Block B
16
Clock Generator
Clock Generator
CLK0/I0, CLK1/I1,
CLK2/I4, CLK3/I5
26
4
MACH 4 Family
4
8
Block A
OE
OE
4
Block E
8
I/O Cells
8
Output Switch
Matrix
I/O32–I/O39
4
8
Block D
16
Clock Generator
I/O24–I/O31
8
I/O Cells
8
Output Switch
Matrix
16
Macrocells
16
66 X 90
AND Logic Array
and Logic Allocator
33
24
16
16
Input Switch
Matrix
8
OE
4
24
4
4
4
4
4
8
OE
16
Input Switch
Matrix
16
OE
Macrocells
4
16
Central Switch Matrix
33
66 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
Block F
I/O40–I/O47
8
I/O Cells
8
Output Switch
Matrix
16
Macrocells
16
66 X 90
AND Logic Array
and Logic Allocator
33
33
66 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
16
Output Switch
Matrix
8
I/O Cells
8
I/O0–I/O7
16
16
24
24
16
16
Input Switch
Matrix
4
24
24
4
4
16
Output Switch
Matrix
OE
16
66 X 90
AND Logic Array
and Logic Allocator
33
16
16
Input Switch
Matrix
33
66 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
16
Output Switch
Matrix
8
Input Switch
Matrix
4
8
8
I/O Cells
8
I/O8–I/O15
Input Switch
Matrix
4
Clock Generator
4
4
4
I/O Cells
8
I/O16–I/O23
4
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
C
Block C
SE
BLOCK DIAGRAM – M4(LV)-96/48
I2, I3, I6, I7
Clock Generator
Clock Generator
17466G-021
16
Clock Generator
MACH 4 Family
4
8
Block B
16
4
8
Block A
OE
4
Block F
8
I/O Cells
8
Output Switch
Matrix
I/O40–I/O47
4
8
Block E
Clock Generator
I/O32–I/O39
8
I/O Cells
8
16
16
16
Input Switch
Matrix
16
Macrocells
4
4
8
Block G
I/O48–I/O55
8
I/O Cells
8
Output Switch
Matrix
16
Macrocells
16
66 X 90
AND Logic Array
and Logic Allocator
33
33
16
24
24
16
16
4
4
4
4
4
8
OE
Output Switch
Matrix
OE
4
4
OE
16
Input Switch
Matrix
16
24
16
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Central Switch Matrix
24
4
4
Input Switch
Matrix
8
OE
Macrocells
OE
16
66 X 90
AND Logic Array
and Logic Allocator
16
16
Block H
I/O56–I/O63
8
I/O Cells
8
Output Switch
Matrix
16
Macrocells
16
66 X 90
AND Logic Array
and Logic Allocator
33
33
66 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
16
Output Switch
Matrix
8
I/O Cells
8
I/O0–I/O7
16
16
24
24
16
16
Input Switch
Matrix
4
4
33
33
66 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
16
Output Switch
Matrix
8
I/O Cells
8
I/O8–I/O15
OE
16
66 X 90
AND Logic Array
and Logic Allocator
24
24
4
4
8
8
Output Switch
Matrix
OE
33
16
Input Switch
Matrix
33
66 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
16
16
4
I/O Cells
8
Input Switch
Matrix
4
8
Output Switch
Matrix
8
I/O Cells
8
I/O16–I/O23
Input Switch
Matrix
4
4
4
Block D
I/O24–I/031
Clock Generator
4
Clock Generator
Input Switch
Matrix
4
LE
Block C
Clock Generator
2
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
C
SE
BLOCK DIAGRAM – M4(LV)-128N/64 AND M4(LV)-128/64
I2, I5
Clock Generator
Clock Generator
Clock Generator
CLK0/I0, CLK1/I1,
CLK2/I3, CLK3/I4
17466H-022
27
BLOCK DIAGRAM – M4(LV)-192/96
Block B
I/O8–I/O15
Block L
I/O88–I/O95
Block K
I/O80–I/O87
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Block A
I/O0–I/O7
24
4
16
16
68 X 90
AND Logic Array
and Logic Allocator
34
8
4
16
Macrocells
16
16
68 X 90
AND Logic Array
and Logic Allocator
4
24
34
Output Switch
Matrix
16
16
16
68 X 90
AND Logic Array
and Logic Allocator
4
4
8
4
OE
Macrocells
Macrocells
24
34
8
4
Output Switch
Matrix
Input Switch
Matrix
68 X 90
AND Logic Array
and Logic Allocator
4
16
Input Switch
Matrix
16
Input Switch
Matrix
16
Macrocells
8
16
OE
16
16
Clock Generator
4
8
I/O Cells
8
4
OE
8
16
4
Clock Generator
16
8
Output Switch
Matrix
OE
4
Clock Generator
8
Output Switch
Matrix
8
I/O Cells
I/O Cells
Clock Generator
I/O Cells
4
4
8
Input Switch
Matrix
8
CLK0–CLK3
24
34
I/O72–I/O79 Block J
I/O64–I/O71 Block I
Block C I/O16–I/O23
Block D I/O24–I/O31
8
8
8
8
16
16
Output Switch
Matrix
8
4
8
4
Output Switch
Matrix
8
I/O Cells
8
8
I/O40–I/O47
Block F
8
4
8
4
I0–I15
8
8
I/O48–I/O55
Block G
16
Macrocells
16
16
24
68 X 90
AND Logic Array
and Logic Allocator
4
16
16
4
8
4
Input Switch
Matrix
Clock Generator
OE
Output Switch
Matrix
I/O Cells
16
34
16
16
4
24
34
24
Macrocells
4
68 X 90
AND Logic Array
and Logic Allocator
4
16
16
Input Switch
Matrix
4
16
Macrocells
OE
4
Output Switch
Matrix
16
24
68 X 90
AND Logic Array
and Logic Allocator
Macrocells
I/O Cells
I/O32–I/O39
Block E
OE
34
16
16
Clock Generator
34
68 X 90
AND Logic Array
and Logic Allocator
8
4
16
Input Switch
Matrix
Input Switch
Matrix
16
68 X 90
AND Logic Array
and Logic Allocator
34
8
4
16
34
16
Macrocells
16
16
4
4
Output Switch
Matrix
Clock Generator
4
8
4
OE
Input Switch
Matrix
68 X 90
AND Logic Array
and Logic Allocator
C
SE
24
8
4
Macrocells
Clock Generator
LE
34
16
68 X 90
AND Logic Array
and Logic Allocator
24
34
24
16
4
Input Switch
Matrix
24
16
Central Switch Matrix
OE
68 X 90
AND Logic Array
and Logic Allocator
4
Macrocells
OE
Input Switch
Matrix
16
8
16
16
Macrocells
Clock Generator
16
16
Clock Generator
4
Clock Generator
8
16
4
OE
16
8
Output Switch
Matrix
OE
4
Clock Generator
8
Output Switch
Matrix
I/O Cells
I/O Cells
I/O Cells
Input Switch
Matrix
I/O Cells
Output Switch
Matrix
16
8
I/O Cells
8
I/O56–I/O63
Block H
17466G-067
28
MACH 4 Family
BLOCK DIAGRAM – M4(LV)-256/128
Block A
I/O0–I/O7
Block P
I/O120–I/O127
CLK0–CLK3
Block O
I/O112–I/O119
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Block B
I/O8–I/O15
8
16
4
Output Switch
Matrix
8
Input Switch
Matrix
16
4
8
4
68 X 90
AND Logic Array
and Logic Allocator
4
8
I/O Cells
8
8
I/O56–I/O63
Block H
4
8
4
Input Switch
Matrix
OE
OE
Input Switch
Matrix
Clock Generator
16
8
4
Output Switch
Matrix
8
I/O Cells
14
I0–I13
MACH 4 Family
34
8
I/O64–I/O71
Block I
24
68 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
16
16
24
34
4
16
16
4
8
4
16
16
68 X 90
AND Logic Array
and Logic Allocator
4
16
16
4
16
Macrocells
24
Macrocells
Macrocells
Output Switch
Matrix
16
24
68 X 90
AND Logic Array
and Logic Allocator
4
8
4
OE
OE
34
8
4
16
68 X 90
AND Logic Array
and Logic Allocator
34
Output Switch
Matrix
Input Switch
Matrix
Clock Generator
Clock Generator
16
16
34
I/O Cells
I/O48–I/O55
Block G
8
4
4
4
16
16
I/O Cells
Output Switch
Matrix
34
16
Macrocells
16
16
Input Switch
Matrix
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
C
16
24
I/O104–I/O111 Block N
I/O96–I/O103 Block M
I/O88–I/O95 Block L
I/O80–I/O87 Block K
8
4
OE
OE
34
8
I/O Cells
8
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
16
8
Macrocells
24
34
24
4
16
4
8
16
OE
Input Switch
Matrix
SE
16
68 X 90
AND Logic Array
and Logic Allocator
24
16
16
Macrocells
4
Output Switch
Matrix
8
OE
4
4
I/O Cells
8
Output Switch
Matrix
8
8
OE
8
Clock Generator
4
16
16
8
I/O Cells
Clock Generator
LE
8
8
16
Input Switch
Matrix
8
I/O Cells
Output Switch
Matrix
I/O Cells
8
16
4
I/O Cells
Block C I/O16–I/O23
Block D I/O24–I/O31
Block E I/O32–I/O39
Block F I/O40–I/O47
Output Switch
Matrix
8
16
16
4
Input Switch
Matrix
4
8
I/O Cells
OE
8
16
Macrocells
16
16
4
4
OE
4
8
Output Switch
Matrix
4
24
68 X 90
AND Logic Array
and Logic Allocator
16
Macrocells
Macrocells
16
16
4
34
Clock Generator
8
4
24
34
24
16
16
68 X 90
AND Logic Array
and Logic Allocator
24
68 X 90
AND Logic Array
and Logic Allocator
16
16
4
Clock Generator
Output Switch
Matrix
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
16
4
Clock Generator
16
16
34
16
Macrocells
16
34
Clock Generator
16
4
34
Output Switch
Matrix
Macrocells
Clock Generator
68 X 90
AND Logic Array
and Logic Allocator
8
4
16
Input Switch
Matrix
24
34
8
4
16
68 X 90
AND Logic Array
and Logic Allocator
4
4
OE
34
16
16
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
24
34
24
Input Switch
Matrix
4
8
4
Output Switch
Matrix
Central Switch Matrix
24
16
Clock Generator
OE
68 X 90
AND Logic Array
and Logic Allocator
4
Macrocells
OE
Input Switch
Matrix
16
Input Switch
Matrix
16
Macrocells
8
16
Input Switch
Matrix
16
16
Clock Generator
4
8
I/O Cells
8
4
OE
8
16
4
OE
16
8
Output Switch
Matrix
Clock Generator
4
Clock Generator
8
Output Switch
Matrix
8
I/O Cells
I/O Cells
Input Switch
Matrix
I/O Cells
4
4
8
Input Switch
Matrix
8
Output Switch
Matrix
16
8
I/O Cells
8
I/O72–I/O79
Block J
17466G-024
29
OPERATING RANGES
M4
Commercial (C) Devices
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C
Ambient Temperature (TA)
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°C
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
ABSOLUTE MAXIMUM RATINGS
Ambient Temperature
with Power Applied . . . . . . . . . . . . . . -55°C to +100°C
Device Junction Temperature . . . . . . . . . . . . . +130°C
Supply Voltage
with Respect to Ground . . . . . . . . . . . -0.5 V to +7.0 V
DC Input Voltage . . . . . . . . . . . . -0.5 V to VCC + 0.5 V
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V
Latchup Current (TA = -40°C to +85°C). . . . . . . 200 mA
Str esses above those listed under Absolute Maximum
Ratings may cause permanent device failure. Functionality at
or above these limits is not implied. Exposure to Absolute
Maximum Ratings for extended periods may affect device
reliability.
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V
Industrial (I) Devices
Ambient Temperature (TA)
Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . . +4.50 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.
5-V DC CHARACTERISTICS OVER OPERATING RANGES
Parameter
Symbol
VOH
VOL
Output HIGH Voltage
VIL
IIH
SE
IIL
IOZH
IOZL
ISC
Test Conditions
IOH = –3.2 mA, VCC = Min, VIN = VIH or VIL
Min
Typ
Max
2.4
Unit
V
IOH = 0 mA, VCC = Max, VIN = VIH or VIL
3.3
V
Output LOW Voltage
IOL = 24 mA, VCC = Min, VIN = VIH or VIL (Note 1)
0.5
V
Input HIGH Voltage
Guaranteed Input Logical HIGH Voltage for all Inputs
(Note 2)
Input LOW Voltage
Guaranteed Input Logical LOW Voltage for all Inputs
(Note 2)
0.8
V
Input HIGH Leakage Current
VIN = 5.25 V, VCC = Max (Note 3)
10
µA
Input LOW Leakage Current
VIN = 0 V, VCC = Max (Note 3)
–10
µA
Off-State Output Leakage Current HIGH
VOUT = 5.25 V, VCC = Max, VIN = VIH or VIL (Note 3)
10
µA
Off-State Output Leakage Current LOW
VOUT = 0 V, VCC = Max , VIN = VIH or VIL (Note 3)
Output Short-Circuit Current
VOUT = 0.5 V, VCC = Max (Note 4)
LE
VIH
Parameter Description
2.0
–30
V
–10
µA
–160
mA
C
Notes:
1. Total IOL for one PAL block should not exceed 64 mA.
2. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.
3. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.
MACH 4 Family
30
OPERATING RANGES
M4LV
Commercial (C) Devices
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C
Ambient Temperature (TA)
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°C
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
ABSOLUTE MAXIMUM RATINGS
Ambient Temperature
with Power Applied . . . . . . . . . . . . . . -55°C to +100°C
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V
Device Junction Temperature . . . . . . . . . . . . . +130°C
Industrial (I) Devices
Supply Voltage
with Respect to Ground . . . . . . . . . . . -0.5 V to +4.5 V
Ambient Temperature (TA)
Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C
DC Input Voltage . . . . . . . . . . . . . . . . . -0.5 V to 6.0 V
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V
Latchup Current (TA = -40°C to +85°C). . . . . . . 200 mA
Operating ranges define those limits between which the functionality of the device is guaranteed.
Str esses above those listed under Absolute Maximum
Ratings may cause permanent device failure. Functionality at
or above these limits is not implied. Exposure to Absolute
Maximum Ratings for extended periods may affect device
reliability.
3.3-V DC CHARACTERISTICS OVER OPERATING RANGES
Parameter
Symbol
VOH
VIH
VIL
SE
IIH
IIL
IOZH
VCC = Min
VIN = VIH or VIL
Output LOW Voltage
VCC = Min
VIN = VIH or VIL
(Note 1)
ISC
Min
Typ
Max
Unit
IOH = –100 µA
VCC – 0.2
V
IOH = –3.2 mA
2.4
V
IOL = 100 µA
0.2
V
IOL = 24 mA
0.5
V
Input HIGH Voltage
Guaranteed Input Logical HIGH Voltage for all
Inputs
2.0
5.5
V
Input LOW Voltage
Guaranteed Input Logical LOW Voltage for all
Inputs
–0.3
0.8
V
Input HIGH Leakage Current
VIN = 3.6 V, VCC = Max (Note 2)
5
µA
Input LOW Leakage Current
VIN = 0 V, VCC = Max (Note 2)
–5
µA
Off-State Output Leakage Current HIGH
VOUT = 3.6 V, VCC = Max
VIN = VIH or VIL (Note 2)
5
µA
Off-State Output Leakage Current LOW
VOUT = 0 V, VCC = Max
VIN = VIH or VIL (Note 2)
–5
µA
–160
mA
C
IOZL
Test Conditions
Output HIGH Voltage
LE
VOL
Parameter Description
Output Short-Circuit Current
VOUT = 0.5 V, VCC = Max (Note 3)
–15
Notes:
1. Total IOL for one PAL block should not exceed 64 mA.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
MACH 4 Family
31
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1
-7
Max
Min
-12
-14
-15
-18
Max Min Max Min Max Min Max Min Max
Unit
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Min
-10
Combinatorial Delay:
tPDi
tPD
Internal combinatorial propagation delay
5.5
8.0
10.0
12.0
13.0
16.0
ns
Combinatorial propagation delay
7.5
10.0
12.0
14.0
15.0
18.0
ns
Registered Delays:
tSS
tSST
tSA
tSAT
tHS
tHA
tCOSi
tCOS
tCOAi
tCOA
Synchronous clock setup time, D-type register
5.5
6.0
7.0
10.0
10.0
12.0
ns
Synchronous clock setup time, T-type register
6.5
7.0
8.0
11.0
11.0
13.0
ns
Asynchronous clock setup time, D-type register
3.5
4.0
5.0
8.0
8.0
10.0
ns
Asynchronous clock setup time, T-type register
4.5
5.0
6.0
9.0
9.0
11.0
ns
Synchronous clock hold time
0.0
0.0
0.0
0.0
0.0
0.0
ns
Asynchronous clock hold time
3.5
4.0
5.0
8.0
8.0
10.0
ns
Synchronous clock to internal output
3.5
4.5
6.0
8.0
8.0
10.0
ns
Synchronous clock to output
5.5
6.5
8.0
10.0
10.0
12.0
ns
Asynchronous clock to internal output
7.5
10.0
12.0
16.0
16.0
18.0
ns
Asynchronous clock to output
9.5
12.0
14.0
18.0
18.0
20.0
ns
Latched Delays:
tSSL
tSAL
tHSL
tHAL
6.0
7.0
8.0
10.0
10.0
12.0
ns
Asynchronous Latch setup time
4.0
4.0
5.0
8.0
8.0
10.0
ns
Synchronous Latch hold time
0.0
0.0
0.0
0.0
0.0
0.0
ns
Asynchronous Latch hold time
4.0
4.0
5.0
8.0
8.0
10.0
ns
Transparent latch to internal output
8.0
10.0
12.0
15.0
15.0
18.0
ns
Propagation delay through transparent latch to output
10.0
12.0
14.0
17.0
17.0
20.0
ns
LE
tPDLi
Synchronous Latch setup time
tPDL
tGOSi
tGOS
4.0
5.5
8.0
9.0
9.0
10.0
ns
Synchronous Gate to output
6.0
7.5
10.0
11.0
11.0
12.0
ns
Asynchronous Gate to internal output
9.0
11.0
14.0
17.0
17.0
20.0
ns
11.0
13.0
16.0
19.0
19.0
22.0
ns
SE
tGOAi
Synchronous Gate to internal output
tGOA
Asynchronous Gate to output
Input Register Delays:
tSIRS
tHIRS
tICOSi
Input register setup time
2.0
2.0
2.0
2.0
2.0
2.0
ns
Input register hold time
3.0
3.0
3.0
4.0
4.0
4.0
ns
Input register clock to internal feedback
3.5
4.5
6.0
6.0
6.0
6.0
ns
C
Input Latch Delays:
tSIL
tHIL
tIGOSi
tPDILi
Input latch setup time
2.0
2.0
2.0
2.0
2.0
2.0
ns
Input latch hold time
3.0
3.0
3.0
4.0
4.0
4.0
ns
Input latch gate to internal feedback
4.0
4.0
4.0
5.0
5.0
6.0
ns
Transparent input latch to internal feedback
2.0
2.0
2.0
2.0
2.0
2.0
ns
Input Register Delays with ZHT Option:
tSIRZ
Input register setup time - ZHT
6.0
6.0
6.0
6.0
6.0
6.0
ns
tHIRZ
Input register hold time - ZHT
0.0
0.0
0.0
0.0
0.0
0.0
ns
32
MACH 4 Family
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-7
Min
-10
Max
Min
-12
-14
-15
-18
Max Min Max Min Max Min Max Min Max
Unit
tSILZ
tHILZ
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Input Latch Delays with ZHT Option:
Input latch setup time - ZHT
6.0
6.0
6.0
6.0
6.0
6.0
ns
Input latch hold time - ZHT
0.0
0.0
0.0
0.0
0.0
0.0
ns
tPDILZi Transparent input latch to internal feedback - ZHT
6.0
6.0
6.0
6.0
6.0
6.0
ns
Output buffer delay
2.0
2.0
2.0
2.0
2.0
2.0
ns
Slow slew rate delay adder
2.5
2.5
2.5
2.5
2.5
2.5
ns
Output enable time
9.5
10.0
12.0
15.0
15.0
17.0
ns
Output disable time
9.5
10.0
12.0
15.0
15.0
17.0
ns
2.5
2.5
2.5
2.5
2.5
2.5
ns
Asynchronous reset or preset to internal register output
10.0
12.0
14.0
18.0
18.0
20.0
ns
Asynchronous reset or preset to register output
12.0
14.0
16.0
20.0
20.0
22.0
ns
Output Delays:
tBUF
tSLW
tEA
tER
Power Delay:
tPL
Power-down mode delay adder
Reset and Preset Delays:
tSRi
tSR
tSRR
tSRW
Asynchronous reset and preset register recovery time
8.0
8.0
10.0
15.0
15.0
17.0
ns
Asynchronous reset or preset width
10.0
10.0
12.0
15.0
15.0
17.0
ns
Global clock width low
3.0
5.0
6.0
6.0
6.0
7.0
ns
Global clock width high
3.0
5.0
6.0
6.0
6.0
7.0
ns
Product term clock width low
4.0
5.0
8.0
9.0
9.0
10.0
ns
Product term clock width high
4.0
5.0
8.0
9.0
9.0
10.0
ns
Global gate width low (for low transparent) or high
(for high transparent)
5.0
5.0
6.0
6.0
6.0
7.0
ns
Product term gate width low (for low transparent) or
high (for high transparent)
4.0
5.0
6.0
9.0
9.0
11.0
ns
Input register clock width low
4.5
5.0
6.0
6.0
6.0
7.0
ns
Input register clock width high
4.5
5.0
6.0
6.0
6.0
7.0
ns
Input latch gate width
5.0
5.0
6.0
6.0
7.0
ns
Clock/LE Width:
tWLS
tWHS
tWLA
LE
tWHA
tGWS
tGWA
SE
tWIRL
tWIRH
6.0
C
tWIL
MACH 4 Family
33
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-7
Max
Min
-12
-14
-15
-18
Max Min Max Min Max Min Max Min Max
Unit
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Min
-10
Frequency:
fMAXS
fMAXA
90.9
80.0
66.7
50.0
50.0
41.7
MHz
External feedback, T-type, Min of 1/(tWLS + tWHS) or
1/(tSST + tCOS)
83.3
74.1
62.5
47.6
47.6
40.0
MHz
Internal feedback (fCNT), D-type,
Min of 1/(tWLS + tWHS) or 1/(tSS + tCOSi)
111.1
95.2
76.9
55.6
55.6
45.5
MHz
Internal feedback (fCNT), T-type,
Min of 1/(tWLS + tWHS) or 1/(tSST + tCOSi)
100.0
87.0
71.4
52.6
52.6
43.5
MHz
No feedback2, Min of 1/(tWLS + tWHS), 1/(tSS + tHS) or
153.8
1/(tSST + tHS)
100.0
83.3
83.3
83.3
71.4
MHz
External feedback, D-type, Min of 1/(tWLA + tWHA) or
1/(tSA + tCOA)
76.9
62.5
52.6
38.5
38.5
33.3
MHz
External feedback, T-type, Min of 1/(tWLA + tWHA) or
1/(tSAT + tCOA)
71.4
58.8
50.0
37.0
37.0
32.3
MHz
Internal feedback (fCNTA), D-type,
Min of 1/(tWLA + tWHA) or 1/(tSA + tCOAi)
90.9
71.4
58.8
41.7
41.7
35.7
MHz
Internal feedback (fCNTA), T-type,
Min of 1/(tWLA + tWHA) or 1/(tSAT + tCOAi)
83.3
66.7
55.6
40.0
40.0
34.5
MHz
No feedback2, Min of 1/(tWLA + tWHA),
1/(tSA + tHA) or 1/(tSAT + tHA)
125.0
100.0
62.5
55.6
55.6
50.0
MHz
Maximum input register frequency,
Min of 1/(tWIRH + tWIRL) or 1/(tSIRS + tHIRS)
111.0
100.0
83.3
83.3
83.3
71.4
MHz
LE
fMAXI
External feedback, D-type, Min of 1/(tWLS + tWHS) or
1/(tSS + tCOS)
Notes:
1. See “MACH Switching Test Circuit” document on the Literature Download page of the Lattice web site.
2. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.
SE
CAPACITANCE 1
Parameter Symbol
CIN
CI/O
Parameter Description
Typ
Unit
Input capacitance
VIN=2.0 V
Test Conditions
3.3 V or 5 V, 25°C, 1 MHz
6
pF
Output capacitance
VOUT=2.0V
3.3 V or 5 V, 25°C, 1 MHz
8
pF
C
Note:
1. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where
this parameter may be affected.
34
MACH 4 Family
ICC vs. FREQUENCY
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
These curves represent the typical power consumption for a particular device at system frequency. The selected “typical” pattern is a 16-bit up-down counter. This pattern fills the device and
exercises every macrocell. Maximum frequency shown uses internal feedback and a D-type register. Power/Speed are optimized to obtain the highest counter frequency and the lowest power.
The highest frequency (LSBs) is placed in common PAL blocks, which are set to high power. The
lowest frequency signals (MSBs) are placed in a common PAL block and set to lowest power.
VCC = 5 V or 3.3 V, TA = 25º C
350
M4(LV)-256/128
300
M4(LV)-192/96
ICC (mA)
250
200
M4(LV)-128/64
150
M4(LV)-96/48
M4(LV)-64/32
100
M4(LV)-32/32
50
130
120
110
100
90
80
70
60
50
40
30
20
10
0
0
Frequency (MHz)
LE
350
VCC = 5 V or 3.3 V, TA = 25º C
300
M4(LV)-256/128
M4(LV)-192/96
200
M4(LV)-128/64
150
M4(LV)-96/48
100
M4(LV)-64/32
M4(LV)-32/32
50
120
100
90
80
70
60
50
40
30
20
10
0
0
110
ICC (mA)
250
C
SE
17466G-066
Figure 18. MACH 4 ICC Curves at High Speed Mode
Frequency (MHz)
17466G-065
Figure 19. MACH 4 ICC Curves at Low Power Mode
MACH 4 Family
35
44-PIN PLCC CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32)
Top View
A2
A2
I/O5
A5
A6
A7
B7
B6
B5
B4
I/O2 A5
I/O1 A6
I/O0 A7
I/O31 D7
I/O30 D6
I/O29 D5
I/O28 D4
5
4
3
2
VCC
A4
I/O3 A4
6
GND
A3
M4(LV)-64/32
I/O4 A3
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
44-Pin PLCC
M4(LV)-64/32
1 44 43 42 41 40
7
39
I/O27
D3
B3
A1
A1
I/O6
8
38
I/O26
D2
B2
A0
A0
I/O7
9
37
I/O25
D1
B1
36
I/O24
D0
B0
M4(LV)-32/32
C
7
TDI
10
CLK0/I0
11
35
TDO
GND
12
34
GND
33
CLK1/I1
32
TMS
I/O Cell (0-7)
M4(LV)-32/32
TCK
13
A8
B0
I/O8
14
A9
B1
I/O9
15
31
I/O23
C0
B8
16
30
I/O22
C1
B9
29
I/O21
C2
B10
A10
B2 I/O10
A11
B3 I/O11
PAL Block (A-D)
17
C7 I/O16
C6 I/O17
C5 I/O18
C4 I/O19
C3 I/O20
B14
B13
B12
B11
B7 I/O15
A15
B15
B6 I/O14
A14
GND
B5 I/O13
A13
VCC
B4 I/O12
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
= Input/Output
C
I/O
VCC
TDI
TCK
TMS
= Supply Voltage
= Test Data In
= Test Clock
= Test Mode Select
TDO = Test Data Out
36
M4(LV)-64/32
17466G-026
SE
LE
M4(LV)-64/32
A12
18 19 20 21 22 23 24 25 26 27 28
MACH 4 Family
44-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32)
Top View
A3
A4
A5
A6
A7
B7
B6
B5
B4
D7
D6
D5
D4
M4(LV)-64/32
44
43
42
41
40
39
38
37
36
35
34
I/O4
I/O3
I/O2
I/O1
I/O0
GND
VCC
I/O31
I/O30
I/O29
I/O28
M4(LV)-64/32
A3
A4
A5
A6
A7
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
44-Pin TQFP
A2
A1
A0
M4(LV)-32/32
1
2
3
4
5
6
7
8
9
10
11
C
7
I/O Cell (0-7)
PAL Block (A-D)
33
32
31
30
29
28
27
26
25
24
23
I/O27 D3
I/O26 D2
I/O25 D1
I/O24 D0
TDO
GND
CLK1/I1
TMS
I/O23 C0
I/O22 C1
I/O21 C2
B3
B2
B1
B0
M4(LV)-32/32
B8
B9
B10
B4
B5
B6
B7
C7
C6
C5
C4
C3
A12
A13
A14
A15
B15
B14
B13
B12
B11
M4(LV)-64/32
SE
LE
M4(LV)-64/32
I/O12
I/O13
I/O14
I/O15
VCC
GND
I/O16
I/O17
I/O18
I/O19
I/O20
12
13
14
15
16
17
18
19
20
21
22
A8
A9
A10
A11
I/O5
I/O6
I/O7
TDI
CLK0/I0
GND
TCK
I/O8
B0
I/O9
B1
B2 I/O10
B3 I/O11
A2
A1
A0
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
= Input/Output
C
I/O
VCC
TDI
TCK
TMS
= Supply Voltage
= Test Data In
= Test Clock
= Test Mode Select
TDO = Test Data Out
MACH 4 Family
37
48-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32)
Top View
A3
A4
A5
A6
A7
B7
B6
B5
B4
D7
D6
D5
D4
M4(LV)-64/32
48
47
46
45
44
43
42
41
40
39
38
37
I/O4
I/O3
I/O2
I/O1
I/O0
GND
NC
VCC
I/O31
I/O30
I/O29
I/O28
M4(LV)-64/32
A3
A4
A5
A6
A7
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
48-Pin TQFP
I/O5
I/O6
I/O7
TDI
CLK0/I0
NC
GND
TCK
B0 I/O8
B1 I/O9
B2 I/O10
B3 I/O11
A2
A1
A0
A2
A1
A0
M4(LV)-32/32
C
7
I/O Cell (0-7)
PAL Block (A-D)
36
35
34
33
32
31
30
29
28
27
26
25
I/O27 D3
I/O26 D2
I/O25 D1
I/O24 D0
TDO
GND
NC
CLK1/I1
TMS
I/O23 C0
I/O22 C1
I/O21 C2
B3
B2
B1
B0
M4(LV)-32/32
B8
B9
B10
C7
C6
C5
C4
C3
B15
B14
B13
B12
B11
B4
B5
B6
B7
A12
A13
A14
A15
PIN DESIGNATIONS
CLK/I = Clock or Input
C
GND = Ground
I/O
VCC
NC
TDI
= Input/Output
= Supply Voltage
= No Connect
= Test Data In
TCK
= Test Clock
TMS
= Test Mode Select
TDO = Test Data Out
38
M4(LV)-64/32
17466G-028
SE
LE
M4(LV)-64/32
I/O12
I/O13
I/O14
I/O15
VCC
NC
GND
I/O16
I/O17
I/O18
I/O19
I/O20
13
14
15
16
17
18
19
20
21
22
23
24
A8
A9
A10
A11
1
2
3
4
5
6
7
8
9
10
11
12
MACH 4 Family
100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-96/48)
Top View
F7
F6
F5
F4
F3
F2
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
GND
NC
NC
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
I7
VCC
GND
NC
NC
I6
NC
I/O47
I/O46
I/O45
I/O44
I/O43
I/O42
NC
NC
GND
A2
A3
A4
A5
A6
A7
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
100-Pin TQFP
C
7
I/O Cell (0-7)
PAL Block (A-F)
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
NC
TDO
NC
NC
NC
I/O41
I/O40
I/O39
I/O38
I/O37
I/O36
I5/CLK3
GND
VCC
I4/CLK2
I/O35
I/O34
I/O33
I/O32
I/O31
I/O30
NC
NC
NC
NC
F1
F0
E0
E1
E2
E3
E4
E5
E6
E7
D0
D1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
D7
D6
D5
D4
D3
D2
C2
C3
C4
C5
C6
C7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
GND
NC
NC
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
NC
I2
NC
NC
GND
VCC
I3
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
NC
NC
GND
SE
LE
NC
TDI
NC
NC
A1
I/O6
A0
I/O7
B0
I/O8
B1
I/O9
B2 I/O10
B3 I/O11
I0/CLK0
VCC
GND
I1/CLK1
B4 I/O12
B5 I/O13
B6 I/O14
B7 I/O15
C0 I/O16
C1 I/O17
NC
NC
TMS
TCK
NC
17466G-029
PIN DESIGNATIONS
C
CLK/I = Clock or Input
GND = Ground
I
I/O
VCC
NC
= Input
= Input/Output
= Supply Voltage
= No Connect
TDI
= Test Data In
TCK
= Test Clock
TMS
= Test Mode Select
TDO = Test Data Out
MACH 4 Family
39
84-PIN PLCC CONNECTION DIAGRAM (M4(LV)-128N/64)
Top View
H0
H1
H2
H3
H4
H5
H6
H7
GND
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
VCC
GND
VCC
I5
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
A7
A6
A5
A4
A3
A2
A1
A0
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
84-Pin PLCC
Note:
Pin-compatible with the MACH131, MACH231, MACH435.
C
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I
I/O
VCC
40
GND
I/O55 G7
I/O54 G6
I/O53 G5
I/O52 G4
I/O51 G3
I/O50 G2
I/O49 G1
I/O48 G0
CLK3/I4
GND
VCC
CLK2/I3
I/O47 F0
I/O46 F1
I/O45 F2
I/O44 F3
I/O43 F4
I/O42 F5
I/O41 F6
I/O40 F7
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
I2
VCC
GND
VCC
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
GND
11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75
74
12
13
73
72
14
71
15
70
16
17
69
68
18
67
19
C
7
66
20
21
65
64
22
I/O Cell (0-7)
63
23
62
24
PAL Block (A-H)
61
25
60
26
27
59
58
28
57
29
56
30
55
31
54
32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
E0
E1
E2
E3
E4
E5
E6
E7
SE
LE
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
CLK0/I0
VCC
GND
CLK1/I1
C0 I/O16
I/O17
C1
C2 I/O18
C3
I/O19
C4 I/O20
C5 I/O21
C6 I/O22
C7 I/O23
GND
D7
D6
D5
D4
D3
D2
D1
D0
B7
B6
B5
B4
B3
B2
B1
B0
= Input
= Input/Output
= Supply Voltage
MACH 4 Family
17466G-030
100-PIN PQFP CONNECTION DIAGRAM (M4(LV)-128/64)
Top View
C
H0
H1
H2
H3
H4
H5
H6
H7
(82)
(81)
(80)
(79)
(78)
(77)
(76)
(75)
92
91
90
89
88
87
86
85
84
83
82
81
7
I/O Cell (0-7)
PAL Block (A-H)
80
79
78
77
(73) 76
(72) 75
(71) 74
(70) 73
(69) 72
(68) 71
(67) 70
(66) 69
(65) 68
67
66
65
64
(62) 63
(61) 62
(60) 61
(59) 60
(58) 59
(57) 58
(56) 57
(55) 56
(54) 55
(41) 54
53
52
51
GND
GND
TD0
TRST
G7
I/O55
G6
I/O54
G5
I/O53
G4
I/O52
G3
I/O51
G2
I/O50
G1
I/O49
G0
I/O48
I4/CLK3
GND
GND
VCC
VCC
I3/CLK2
F0
I/O47
I/O46
F1
I/O45
F2
I/O44
F3
I/O43
F4
I/O42
F5
I/O41
F6
I/O40
F7
I2
ENABLE
GND
GND
E0
E1
E2
E3
E4
E5
E6
E7
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
VCC
GND
GND
VCC
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
31 (33)
32 (34)
33 (35)
34 (36)
35 (37)
36 (38)
37 (39)
38 (40)
39
40
41
42
43 (45)
44 (46)
45 (47)
46 (48)
47 (49)
48 (50)
49 (51)
50 (52)
1
2
3
4 (83)
5 (12)
6 (13)
7 (14)
8 (15)
9 (16)
10 (17)
11 (18)
12 (19)
13 (20)
14
15
16
17
18 (23)
19 (24)
20 (25)
21 (26)
22 (27)
23 (28)
24 (29)
25 (30)
26 (31)
27
28
29
30
D7
D6
D5
D4
D3
D2
D1
D0
LE
GND
GND
TDI
I5
B7
I/O8
B6
I/O9
B5 I/O10
B4
I/O11
B3 I/O12
B2 I/O13
B1 I/O14
B0 I/O15
IO/CLK0
VCC
VCC
GND
GND
I1/CLK1
C0 I/O16
C1 I/O17
C2 I/O18
C3 I/O19
C4 I/O20
C5 I/O21
C6 I/O22
C7 I/O23
TMS
TCK
GND
GND
(10) 100
(9) 99
(8) 98
(7) 97
(6) 96
(5) 95
(4) 94
(3) 93
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
VCC
GND
GND
VCC
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
A7
A6
A5
A4
A3
A2
A1
A0
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
100-Pin PQFP
17466G-031
SE
Note:
The numbers in parentheses reflect compatible pin numbers for 84-pin PLCC.
PIN DESIGNATIONS
I/CLK = Input or Clock
C
GND = Ground
I
I/O
VCC
TDI
TCK
TMS
= Input
= Input/Output
= Supply Voltage
= Test Data In
= Test Clock
= Test Mode Select
TDO = Test Data Out
TRST
= Test Reset
ENABLE = Program
MACH 4 Family
41
100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-128/64)
Top View
H0
H1
H2
H3
H4
H5
H6
H7
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
GND
GND
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
VCC
GND
GND
VCC
I5
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
GND
GND
A7
A6
A5
A4
A3
A2
A1
A0
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
100-Pin TQFP
C
7
I/O Cell (0-7)
E0
E1
E2
E3
E4
E5
E6
E7
PIN DESIGNATIONS
CLK/I = Clock or Input
C
GND = Ground
I
I/O
VCC
TDI
TCK
TMS
= Input
= Input/Output
= Supply Voltage
= Test Data In
= Test Clock
= Test Mode Select
TDO = Test Data Out
TRST
= Test Reset
ENABLE = Program
42
GND
TDO
TRST
I/O55
I/O54
I/O53
I/O52
I/O51
I/O50
I/O49
I/O48
I4/CLK3
GND
VCC
I3/CLK2
I/O47
I/O46
I/O45
I/O44
I/O43
I/O42
I/O41
I/O40
ENABLE
GND
G7
G6
G5
G4
G3
G2
G1
G0
F0
F1
F2
F3
F4
F5
F6
F7
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PAL Block (A-H)
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
GND
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
I2
VCC
GND
GND
VCC
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
GND
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
D7
D6
D5
D4
D3
D2
D1
D0
SE
LE
GND
TDI
B7
I/O8
B6
I/O9
B5 I/O10
B4 I/O11
B3 I/O12
B2 I/O13
B1 I/O14
B0 I/O15
I0/CLK0
VCC
GND
I1/CLK1
C0 I/O16
C1 I/O17
C2 I/O18
C3 I/O19
C4 I/O20
C5 I/O21
C6 I/O22
C7 I/O23
TMS
TCK
GND
MACH 4 Family
17466G-032
144-PIN TQFP CONNECTION DIAGRAM (M4(LV)-192/96)
Top View
L0
L1
L2
L3
L4
L5
L6
L7
A7
A6
A5
A4
A3
A2
A1
A0
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
I/O95
I/O94
I/O93
I/O92
I/O91
I/O90
I/O89
I/O88
GND
VCC
I/O87
I/O86
I/O85
I/O84
I/O83
I/O82
I/O81
I/O80
I1
I0
CLK0
GND
VCC
CLK3
I15
I14
I13
I/O79
I/O78
I/O77
I/O76
I/O75
I/O74
I/O73
I/O72
GND
B7
B6
B5
B4
B3
B2
B1
B0
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
144-Pin TQFP
C
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
7
I/O Cell (0-7)
GND
TDO
NC
I/O71
I/O70
I/O69
I/O68
I/O67
I/O66
I/O65
I/O64
I12
VCC
GND
I11
I10
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
GND
VCC
I/O55
I/O54
I/O53
I/O52
I/O51
I/O50
I/O49
I/O48
NC
GND
K0
K1
K2
K3
K4
K5
K6
K7
J0
J1
J2
J3
J4
J5
J6
J7
I0
I1
I2
I3
I4
I5
I6
I7
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PAL Block (A-L)
H0
H1
H2
H3
H4
H5
H6
H7
G0
G1
G2
G3
G4
G5
G6
G7
SE
LE
E7
E6
E5
E4
E3
E2
E1
E0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
I5
I6
I7
CLK1
GND
VCC
CLK2
I8
I9
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
VCC
GND
I/O40
I/O41
I/O42
I/O43
I/O44
I/O45
I/O46
I/O47
C7
C6
C5
C4
C3
C2
C1
C0
GND
TDI
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
I2
I3
VCC
GND
I4
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
GND
VCC
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
TMS
TCK
GND
F7
F6
F5
F4
F3
F2
F1
F0
D7
D6
D5
D4
D3
D2
D1
D0
17466G-033
PIN DESIGNATIONS
= Clock
C
CLK
GND = Ground
I
I/O
VCC
= Input
= Input/Output
= Supply Voltage
TDI
= Test Data In
TCK
= Test Clock
TMS
= Test Mode Select
17466G-044
TDO = Test Data Out
MACH 4 Family
43
208-PIN PQFP CONNECTION DIAGRAM (M4(LV)-256/128)
Top View
O0
O1
O2
O3
O4
O5
O6
O7
P0
P1
P2
P3
P4
P5
P6
P7
A7
A6
A5
A4
A3
A2
A1
A0
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
GND
I/O15
I/O14
I/O13
I/O12
I/O11
I/O10
I/O9
I/O8
GND
VCC
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
I1
I0
CLK0
VCC
GND
GND
VCC
VCC
GND
GND
VCC
CLK3
I13
I12
I/O127
I/O126
I/O125
I/O124
I/O123
I/O122
I/O121
I/O120
VCC
GND
I/O119
I/O118
I/O117
I/O116
I/O115
I/O114
I/O113
I/O112
GND
B7
B6
B5
B4
B3
B2
B1
B0
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
208-Pin PQFP
C7
C6
C5
C4
C3
C2
C1
C0
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
PIN DESIGNATIONS
SE
LE
E0
E1
E2
E3
E4
E5
E6
E7
GND
TDI
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
VCC
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
I2
I3
GND
VCC
VCC
GND
GND
VCC
VCC
GND
I4
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
GND
VCC
I/O40
I/O41
I/O42
I/O43
I/O44
I/O45
I/O46
I/O47
TMS
TCK
GND
=
=
=
=
=
=
=
=
=
=
=
=
Clock
Ground
Input
Input/Output
No Connect
Supply Voltage
Test Data In
Test Clock
Test Mode Select
Test Data Out
Test Reset
Program
C
7
GND
TDO
TRST
I/O111
I/O110
I/O109
I/O108
I/O107
I/O106
I/O105
I/O104
VCC
GND
I/O103
I/O102
I/O101
I/O100
I/O99
I/O98
I/O97
I/O96
I11
GND
VCC
VCC
GND
GND
VCC
VCC
GND
I10
I9
I/O95
I/O94
I/O93
I/O92
I/O91
I/O90
I/O89
I/O88
GND
VCC
I/O87
I/O86
I/O85
I/O84
I/O83
I/O82
I/O81
I/O80
ENABLE
GND
N7
N6
N5
N4
N3
N2
N1
N0
M7
M6
M5
M4
M3
M2
M1
M0
L0
L1
L2
L3
L4
L5
L6
L7
K0
K1
K2
K3
K4
K5
K6
K7
J0
J1
J2
J3
J4
J5
J6
J7
I0
I1
I2
I3
I4
I5
I6
I7
H7
H6
H5
H4
H3
H2
H1
H0
G7
G6
G5
G4
G3
G2
G1
G0
GND
I/O48
I/O49
I/O50
I/O51
I/O52
I/O53
I/O54
I/O55
GND
VCC
I/O56
I/O57
I/O58
I/O59
I/O60
I/O61
I/O62
I/O63
I5
I6
CLK1
VCC
GND
GND
VCC
VCC
GND
GND
VCC
CLK2
I7
I8
I/O64
I/O66
I/O66
I/O67
I/O68
I/O69
I/O70
I/O71
VCC
GND
I/O72
I/O73
I/O74
I/O75
I/O76
I/O77
I/O78
I/O79
GND
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
C
F0
F1
F2
F3
F4
F5
F6
F7
CLK
GND
I
I/O
N/C
VCC
TDI
TCK
TMS
TDO
TRST
ENABLE
156
155
RECOMMEND TO TIE TO VCC 154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
I/O Cell (0-7)
124
123
PAL Block (A-HX)
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
RECOMMEND TO TIE TO GND 106
105
17466G-044
17466H-066
44
MACH 4 Family
256-BALL BGA CONNECTION DIAGRAM (M4LV-256/128)
Bottom View
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
256-Ball BGA
20
19
18
17
16
15
14
13
I/O105
N1
GND
I/O100
M4
I/O96
M0
12
11
GND
GND
9
8
7
6
5
4
3
2
1
GND
GND
I/O95
L0
I/O91
L4
GND
I/O87
K0
N/C
GND
GND
GND
A
10
A
GND
N/C
GND
I/O108
N4
B
GND
I/O113
O6
N/C
I/O109
N5
I/O106
N2
I/O103
M7
I/O102
M6
I/O98
M2
N/C
I11
N/C
N/C
I/O93
L2
I/O89
L6
I/O88
L7
I/O85
K2
I/O83
K6
I/O82
K5
N/C
GND
B
C
I/O116
O3
N/C
VCC
TRST
I/O111
N7
I/O107
N3
I/O104
N0
I/O101
M5
I/O97
M1
N/C
I10
I/O94
L1
I/O90
L5
I/O86
K1
I/O84
K3
I/O80
K7
ENABLE
VCC
I/O78
J6
I/O74
J2
C
D
I/O120
P7
I/O117
O2
I/O112
O7
VCC
VCC
I/O110
N6
VCC
N/C
I/O99
M3
N/C
I9
I/O92
L3
N/C
VCC
I/O81
K6
VCC
VCC
I/O79
J7
I/O75
J3
I/O71
I7
D
E
I/O123
P4
I/O119
O0
I/O114
O5
TDI
TDO
I/O77
J5
I/O72
J0
I/O68
I4
E
F
GND
I/O122
P5
I/O118
O1
I/O115
O4
I/O76
J4
I/O73
J1
I/O69
I5
GND
F
G
I12
I/O125
P2
I/O121
P6
VCC
VCC
I/O70
I6
I/O65
I1
I8
G
H
GND
I/O127
P0
I/O126
P1
I/O124
P3
I/O67
I3
I/O66
I2
I/O64
I0
GND
H
J
N/C
N/C
N/C
I13
I7
N/C
N/C
N/C
J
K
GND
CLK3
N/C
N/C
N/C
N/C
CLK2
N/C
K
L
N/C
CLK0
N/C
N/C
N/C
N/C
CLK1
GND
L
M
N/C
N/C
N/C
I0
I6
N/C
I/O63
H0
I/O62
H1
M
I/O60
H3
I/O61
H2
I/O59
H4
GND
N
PIN DESIGNATIONS
CLK
GND
I
I/O
N/C
VCC
TDI
TCK
TMS
TDO
TRST
ENABLE
=
=
=
=
=
=
=
=
=
=
=
=
Clock
Ground
Input
Input/Output
No Connect
Supply Voltage
Test Data In
Test Clock
Test Mode Select
Test Data Out
Test Reset
Program
C
7
I/O Cell (0-7)
PAL Block (A-P)
GND
I/O0
A0
I/O2
A2
I/O3
A3
P
I1
I/O1
A1
I/O6
A6
VCC
VCC
I/O57
H6
I/O58
H5
I5
P
R
GND
I/O5
A5
I/O9
B1
N/C
I/O51
G4
I/O54
G1
I/O56
H7
GND
R
T
I/O4
A4
I/O8
B0
I/O12
B4
TCK
TMS
I/O50
G5
I/O55
G0
N/C
T
U
I/O7
A7
I/O11
B3
I/O15
B7
VCC
VCC
I/O18
C5
VCC
I/O24
D7
I/O29
D2
I2
N/C
I/O35
E3
N/C
VCC
N/C
VCC
VCC
I/O48
G7
I/O53
G2
N/C
U
V
I/O10
B2
I/O13
B5
VCC
I/O16
C7
I/O17
C6
I/O21
C2
I/O23
C0
I/O27
D4
I/O31
D0
I3
N/C
I/O33
E1
I/O37
E5
I/O41
F1
I/O43
F3
I/O46
F6
I/O47
F7
VCC
I/O52
G3
N/C
V
W
GND
I/O14
B6
N/C
N/C
I/O19
C4
I/O22
C1
I/O25
D6
I/O28
D3
N/C
N/C
I4
N/C
I/O34
E2
I/O38
E6
I/O39
E7
I/O42
F2
I/O45
F5
N/C
I/O49
G6
GND
W
Y
GND
GND
GND
N/C
I/O20
C3
GND
I/O26
D5
I/O30
D1
GND
GND
GND
GND
I/O32
E0
I/O36
E4
GND
I/O40
F0
I/O44
F4
GND
N/C
GND
Y
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
C
SE
LE
N
17466G-045
MACH 4 Family
45
MACH 4 PRODUCT ORDERING INFORMATION
MACH 4 Devices Commercial & Industrial - 3.3V and 5V
O
C
D N T
IS V
D
E
C
E
R
O T V
N E IC
TI D E
N O S
U R
ED
Lattice/Vantis programmable logic products are available with several ordering options. The order number (Valid Combination) is formed by a combination of:
M4-
256 / 128
-7
Y
C
FAMILY TYPE
M4- = MACH 4 Family (5-V VCC)
M4LV- = MACH 4 Family Low Voltage (3.3-V VCC)
48
OPERATING CONDITIONS
C
= Commercial (0°C to +70°C)
I
= Industrial (-40°C to +85°C)
MACROCELL DENSITY
32 = 32 Macrocells 128N = 128 Macrocells, Non-ISP
64 = 64 Macrocells 192 = 192 Macrocells
96 = 96 Macrocells 256 = 256 Macrocells
128 = 128 Macrocells
I/Os
/32
/48
/64
/96
/128
=
=
=
=
=
PACKAGE TYPE
A
= Ball Grid Array (BGA)
J
= Plastic Leaded Chip Carrier
(PLCC)
V
= Thin Quad Flat Pack (TQFP)
Y
= Plastic Quad Flat Pack (PQFP)
32 I/Os in 44-pin PLCC, 44-pin TQFP or 48-pin TQFP
48 I/Os in 100-pin TQFP
64 I/Os in 84-pin PLCC, 100-pin PQFP or 100-pin TQFP
96 I/Os in 144-pin TQFP
128 I/Os in 208-pin PQFP or 256-ball BGA
SPEED
-7 = 7.5 ns tPD
-10 = 10 ns tPD
-12 = 12 ns tPD
-14 = 14 ns tPD
-15 = 15 ns tPD
-18 = 18 ns tPD
Valid Combinations
Valid Combinations
C
SE
LE
M4-32/32
M4LV-32/32
M4-64/32
M4LV-64/32
M4-96/48
M4LV-96/48
M4-128/64
M4LV-128/64
M4-128N/64
M4LV-128N/64
M4-192/96
M4LV-192/96
M4-256/128
M4LV-256/128
-7, -10, -12, -15
M4-32/32
M4LV-32/32
M4-64/32
M4LV-64/32
M4-96/48
M4LV-96/48
M4-128/64
M4LV-128/64
M4-128N/64
M4LV-128N/64
M4-192/96
M4LV-192/96
M4-256/128
M4LV-256/128
JC, VC, VC48
JC, VC, VC48
JC, VC, VC48
JC, VC, VC48
VC
VC
YC, VC
YC, VC
JC
JC
VC
VC
YC
YC, AC
All MACH devices are dual-marked with both Commercial and
Industrial grades. The Industrial speed grade is slower, i.e.,
M4-256/128-7YC-10YI
46
= 48-pin TQFP for M4(LV)-32/32
or M4(LV)-64/32
-10, -12, -14, -18
JI, VI, VI48
JI, VI, VI48
JI, VI, VI48
JI, VI, VI48
VI
VI
YI, VI
YI, VI
JI
JI
VI
VI
YI
YI, AI
Valid Combinations
Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local
Lattice sales office to confirm availability of specific valid
combinations and to check on newly released
combinations.
MACH 4 Family