Datasheet

AOT264L/AOB264L
60V N-Channel MOSFET
General Description
Product Summary
The AOT264L/AOB264L combines advanced trench
MOSFET technology with a low resistance package to
provide extremely low RDS(ON).This device is ideal for boost
converters and synchronous rectifiers for consumer,
telecom, industrial power supplies and LED backlighting.
VDS
ID (at VGS=10V)
60V
140A
RDS(ON) (at VGS=10V)
< 3.2mΩ
(< 3.0mΩ )
RDS(ON) (at VGS = 6V)
< 3.5mΩ
(< 3.3mΩ ∗)
∗
100% UIS Tested
100% Rg Tested
TO-263
D2PAK
TO220
Top View
Bottom View
Top View
Bottom View
D
D
D
D
D
G
D
D
S
S
G
G
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current G
Pulsed Drain Current C
TA=25°C
Avalanche Current
Avalanche energy L=0.1mH C
TC=25°C
Power Dissipation B
TA=25°C
Power Dissipation
A
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
A
Maximum Junction-to-Ambient
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
Steady-State
Steady-State
A
A
IAS, IAR
100
A
EAS, EAR
500
mJ
333
W
167
2.1
RθJA
RθJC
W
1.3
TJ, TSTG
Symbol
t ≤ 10s
V
19
PDSM
TA=70°C
±20
15
PD
TC=100°C
Units
V
110
IDSM
C
Maximum
60
480
IDM
TA=70°C
S
S
140
ID
TC=100°C
Continuous Drain
Current
G
G
-55 to 175
Typ
12
48
0.35
°C
Max
15
60
0.45
Units
°C/W
°C/W
°C/W
* Surface mount package TO263
Rev.2. 0: August 2013
www.aosmd.com
Page 1 of 6
AOT264L/AOB264L
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
Drain-Source Breakdown Voltage
BVDSS
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250µA, VGS=0V
Typ
Max
60
V
VDS=60V, VGS=0V
1
TJ=55°C
µA
5
IGSS
Gate-Body leakage current
VDS=0V, VGS= ±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS ID=250µA
2.2
ID(ON)
On state drain current
VGS=10V, VDS=5V
480
Units
100
nA
2.7
3.2
V
2.4
3.2
4
4.8
VGS=6V, ID=20A
TO220
2.7
3.5
VGS=10V, ID=20A
TO263
2.3
3.0
2.6
80
3.3
Forward Transconductance
VGS=6V, ID=20A
TO263
VDS=5V, ID=20A
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.65
IS
Maximum Body-Diode Continuous CurrentG
VGS=10V, ID=20A
TO220
RDS(ON)
gFS
Static Drain-Source On-Resistance
TJ=125°C
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
5500
VGS=0V, VDS=30V, f=1MHz
Gate Source Charge
6960
mΩ
S
1
V
140
A
8400
840
pF
pF
30
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qgs
A
pF
0.4
0.9
1.4
Ω
60
75
90
nC
VGS=10V, VDS=30V, ID=20A
25
nC
nC
Qgd
Gate Drain Charge
5
tD(on)
Turn-On DelayTime
23
ns
tr
Turn-On Rise Time
7
ns
VGS=10V, VDS=30V, RL=1.5Ω,
RGEN=3Ω
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
45
ns
8
ns
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
18
26
34
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
105
155
202
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev.2. 0: August 2013
www.aosmd.com
Page 2 of 6
AOT264L/AOB264L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
100
10V
6V
80
VDS=5V
80
4.5V
60
ID(A)
ID (A)
60
4V
40
40
20
20
125°C
25°C
VGS=3.5V
0
0
0
1
2
3
4
1
5
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
3
4
5
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
6
2.2
Normalized On-Resistance
RDS(ON) (mΩ
Ω)
6
2
4
VGS=6V
2
VGS=10V
2
VGS=10V
ID=20A
1.8
17
5
VGS=6V 2
ID=20A 10
1.6
1.4
1.2
1
0.8
0
0
5
0
10
15
20
25
30
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
200
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
1.0E+02
8
ID=20A
1.0E+01
40
1.0E+00
125°C
4
IS (A)
RDS(ON) (mΩ
Ω)
6
125°C
1.0E-01
1.0E-02
25°C
1.0E-03
2
1.0E-04
25°C
1.0E-05
0.0
0
2
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
0.2
0.4
0.6
0.8
1.0
1.2
4
Rev.2. 0: August 2013
www.aosmd.com
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOT264L/AOB264L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
10000
VDS=30V
ID=20A
8000
Capacitance (pF)
VGS (Volts)
8
6
4
Ciss
6000
4000
2
2000
0
0
Coss
Crss
0
10
20
30
40
50
60
70
Qg (nC)
Figure 7: Gate-Charge Characteristics
80
0
10
20
30
40
50
VDS (Volts)
Figure 8: Capacitance Characteristics
600
1000.0
TJ(Max)=175°C
TC=25°C
10µs
RDS(ON)
limited
10µs
100µs
1ms
10ms
10.0
DC
1.0
TJ(Max)=175°C
TC=25°C
0.1
500
Power (W)
ID (Amps)
100.0
60
17
5
2
10
400
300
0.0
200
0.01
0.1
1
VDS (Volts)
10
100
0.001
0.01
0.1
1
10
0
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-to-Case
(Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=0.45°C/W
1
PD
0.1
Ton
Single Pulse
T
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev.2. 0: August 2013
www.aosmd.com
Page 4 of 6
AOT264L/AOB264L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
400
TA=25°C
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
TA=100°C
100
TA=150°C
TA=125°C
10
300
200
100
0
1
10
100
1000
Time in avalanche, tA (µ
µs)
Figure 12: Single Pulse Avalanche capability (Note
C)
0
25
50
75
100
125
150
TCASE (°
°C)
Figure 13: Power De-rating (Note F)
1000
150
TA=25°C
Power (W)
120
Current rating ID(A)
175
90
60
100
17
5
2
10
10
30
1
0
0.001
0
25
50
75
100
125
150
TCASE (°
°C)
Figure 14: Current De-rating (Note F)
0.1
10
175
1000
0
18
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJA=60°C/W
40
0.1
PD
0.01
Ton
Single Pulse
T
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev.2. 0: August 2013
www.aosmd.com
Page 5 of 6
AOT264L/AOB264L
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev.2. 0: August 2013
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6