AOT264L/AOB264L 60V N-Channel MOSFET General Description Product Summary The AOT264L/AOB264L combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON).This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS ID (at VGS=10V) 60V 140A RDS(ON) (at VGS=10V) < 3.2mΩ (< 3.0mΩ ) RDS(ON) (at VGS = 6V) < 3.5mΩ (< 3.3mΩ ) ∗ ∗ 100% UIS Tested 100% Rg Tested TO220 Top View Top View Bottom View D TO-263 D2PAK Bottom View D D D D G G D S S D S G Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current G Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Steady-State Steady-State A A IAS, IAR 100 A EAS, EAR 500 mJ 333 W 167 2.1 RθJA RθJC W 1.3 TJ, TSTG Symbol t ≤ 10s V 19 PDSM TA=70°C ±20 15 PD TC=100°C Units V 480 IDSM TA=70°C Maximum 60 110 IDM TA=25°C Continuous Drain Current S S 140 ID TC=100°C G G -55 to 175 Typ 12 48 0.35 °C Max 15 60 0.45 Units °C/W °C/W °C/W * Surface mount package TO263 Rev0 : Dec 2010 www.aosmd.com Page 1 of 6 AOT264L/AOB264L Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current Conditions Min ID=250µA, VGS=0V Typ Max 60 V VDS=60V, VGS=0V 1 TJ=55°C µA 5 IGSS Gate-Body leakage current VDS=0V, VGS= ±20V VGS(th) Gate Threshold Voltage VDS=VGS ID=250µA 2.2 ID(ON) On state drain current VGS=10V, VDS=5V 480 Units 100 nA 2.7 3.2 V 2.4 3.2 4 4.8 VGS=6V, ID=20A TO220 2.7 3.5 VGS=10V, ID=20A TO263 2.3 3.0 2.6 80 3.3 Forward Transconductance VGS=6V, ID=20A TO263 VDS=5V, ID=20A VSD Diode Forward Voltage IS=1A,VGS=0V 0.65 IS Maximum Body-Diode Continuous CurrentG VGS=10V, ID=20A TO220 RDS(ON) gFS Static Drain-Source On-Resistance TJ=125°C DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance 5500 VGS=0V, VDS=30V, f=1MHz Gate Source Charge 6960 1 V 140 A 8400 840 0.4 62 VGS=10V, VDS=30V, ID=20A mΩ S pF pF 30 VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs A pF 0.9 1.4 78 94 Ω nC 25 nC nC Qgd Gate Drain Charge 5 tD(on) Turn-On DelayTime 23 ns tr Turn-On Rise Time 7 ns VGS=10V, VDS=30V, RL=1.5Ω, RGEN=3Ω tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 18 26 34 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 105 155 202 45 ns 8 ns ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allow s it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse ratin g. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev0 : Dec 2010 www.aosmd.com Page 2 of 6 AOT264L/AOB264L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V 6V 80 VDS=5V 80 4.5V 60 ID(A) ID (A) 60 4V 40 40 20 20 125°C 25°C Vgs=3.5V 0 0 0 1 2 3 4 1 5 3 4 5 6 2.2 Normalized On-Resistance RDS(ON) (mΩ ) 6 4 VGS=4.5V 2 VGS=10V 0 2 VGS=10V ID=20A 1.8 17 5 2 10 1.6 VGS=6V ID=20A 1.4 1.2 1 0.8 0 5 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0 25 50 75 100 125 150 175 200 0 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 18 (Note E) 1.0E+02 8 ID=20A 1.0E+01 40 6 1.0E+00 125°C IS (A) RDS(ON) (mΩ ) 2 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 4 125°C 1.0E-01 25°C 1.0E-02 1.0E-03 2 1.0E-04 25°C 0 1.0E-05 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev0 : Dec 2010 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT264L/AOB264L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 10000 VDS=30V ID=20A 8000 Capacitance (pF) VGS (Volts) 8 6 4 Ciss 6000 4000 Coss 2 2000 0 0 Crss 0 10 20 30 40 50 60 70 Qg (nC) Figure 7: Gate-Charge Characteristics 80 0 10 20 30 40 50 VDS (Volts) Figure 8: Capacitance Characteristics 60 600 1000.0 10µs RDS(ON) limited 10µs 100µs 1ms 10ms DC 10.0 1.0 TJ(Max)=175°C TC=25°C 0.1 0.1 1 VDS (Volts) 17 5 2 10 400 300 0.0 0.01 TJ(Max)=175°C TC=25°C 500 Power (W) ID (Amps) 100.0 10 100 200 0.001 0.01 0.1 1 0 10 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=0.45°C/W 1 PD 0.1 Ton T Single Pulse 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev0 : Dec 2010 www.aosmd.com Page 4 of 6 AOT264L/AOB264L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 400 TA=25°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C 100 TA=150°C TA=125°C 10 300 200 100 0 1 10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 0 150 25 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 1000 TA=25°C Power (W) 120 Current rating ID(A) 175 90 60 100 17 5 2 10 10 30 0 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 175 1 0.001 0.1 10 0 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=60°C/W 0.1 PD 0.01 Ton Single Pulse 0.001 0.01 0.1 1 10 T 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev0 : Dec 2010 www.aosmd.com Page 5 of 6 AOT264L/AOB264L Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev0 : Dec 2010 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6