INTERSIL HFA3624IA

HFA3624
Data Sheet
November 1998
File Number 4066.8
2.4GHz Up/Down Converter
Features
The Intersil 2.4GHz PRISM™ chip set
is a highly integrated five-chip solution
for RF modems employing Direct
Sequence Spread Spectrum (DSSS)
signaling. The HFA3624 RF/IF
converter is one of the five chips in the PRISM™ chip set
(see Figure 1 for the typical application circuit).
• Complete Receive/Transmit Front End
The HFA3624 Up/Down converter is a monolithic bipolar
device for up/down conversion applications in the 2.4GHz to
2.5GHz range. Manufactured in the Intersil UHF1X process,
the device consists of a low noise amplifier and down
conversion mixer in the receive section and an up conversion
mixer with power preamp in the transmit section. An energy
saving power enable control feature assures isolation
between the receive and transmit circuits for time division
multiplexed systems. The device requires low drive levels from
the local oscillator and is housed in a small outline 28 lead
SSOP package ideally suited for PCMCIA card applications.
Applications
™
• RF Frequency Range . . . . . . . . . . . . . . 2.4GHz to 2.5GHz
• IF Operation . . . . . . . . . . . . . . . . . . . . . 10MHz to 400MHz
• Single Supply Battery Operation . . . . . . . . . 2.7V to 5.5V
• Independent Receive/Transmit Power Enable Mode
• Systems Targeting IEEE 802.11 Standard
• PCMCIA Wireless Transceiver
• Wireless Local Area Network Modems
• TDMA Packet Protocol Radios
• Part 15 Compliant Radio Links
• Portable Battery Powered Equipment
Block Diagram
Ordering Information
PART NUMBER
TEMP.
RANGE (oC)
PACKAGE
HFA3624IA
-40 to 85
28 Ld SSOP
HFA3624IA96
-40 to 85
Tape and Reel
PKG.
NO.
M28.15
RX BIAS
RX_PE
RXM_RF
LNA_RX_OUT
RXM_IF+
RXM_IF-
Pinout
RXM
HFA3624
(SSOP)
TOP VIEW
LNA_RX_IN
LNA
LO_BY
LO_IN
LOB
LNA_RX_VCC2
1
28 RX_PE
GND
2
27 RX_VCC
LNA_RX_OUT
3
26 RXM_RF
GND
4
25 GND
LNA_RX_VCC1
5
24 RXM_IF+
GND
6
23 RXM_IF-
LNA_RX_IN
7
22 LO_BY
PRE_TX_OUT
8
21 LO_IN
GND
9
20 TXM_IF-
PRE_TX_VCC2 10
GND 11
19 TXM_IF+
PRE_TX_IN 12
17 TXM_RF
GND 13
16 TX_VCC
PRE_TX_OUT
PRE
TXM
PRE_TX_IN
TXM_IFTXM_IF+
TXM_RF
TX BIAS
TX_PE
18 GND
15 TX_PE
PRE_TX_VCC1 14
2-27
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
PRISM® is a registered trademark of Intersil Corporation. PRISM logo is a trademark of Intersil Corporation.
HFA3624
HSP3824
HFA3724
(FILE# 4064)
TUNE/SELECT
HFA3424 (NOTE)
RXI
(FILE# 4131)
A/D
DESPREAD
RXQ
I
÷2
(FILE# 4066)
0o/90o
M
M
U
U
X
X
RSSI
A/D
A/D
CCA
TXI
SPREAD
RFPA
VCO
HFA3925
VCO
802.11
MAC-PHY
INTERFACE
CTRL
HFA3624
UP/DOWN
CONVERTER
DPSK
DEMOD
DATA TO MAC
(FILE# 4067)
TXQ
Q
DPSK
MOD.
(FILE# 4132)
QUAD IF MODULATOR
DSSS BASEBAND PROCESSOR
DUAL SYNTHESIZER
HFA3524 (FILE# 4062)
PRISM™ CHIP SET FILE #4063
NOTE: Required for systems targeting 802.11 Specifications.
FIGURE 1. TYPICAL TRANSCEIVER APPLICATION CIRCUIT USING THE HFA3624
For additional information on the PRISM™ chip set, call
(407) 724-7800 to access Intersil’ AnswerFAX system. When
prompted, key in the four-digit document number (File #) of
the datasheets you wish to receive.
2-28
The four-digit file numbers are shown in Figure 1, and
correspond to the appropriate circuit.
HFA3624
Absolute Maximum Ratings
Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V
Voltage on Any Other Pin. . . . . . . . . . . . . . . . . . . -0.3 to VCC +0.3V
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
28 Lead Plastic SSOP . . . . . . . . . . . . . . . . . . . . . . .
88
Package Power Dissipation at 70oC
28 Lead Plastic SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9W
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . .-65oC ≤ TA ≤ 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SSOP - Lead Tips Only)
Operating Conditions
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω,
Unless Otherwise Specified
PARAMETER
SYMBOL
TEMP (oC)
MIN
TYP
MAX
UNITS
LO INPUT CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RSLO = 50Ω, tested in both RX and TX modes, all unused inputs and
outputs are terminated into 50Ω)
LO Input Frequency Range
LO Input Drive Level
LO Input VSWR
LO_f
25
2.0
-
2.49
GHz
LO_dr
25
-6
-3
3
dBm
LO_SWR
Full
-
1.5
2.0:1
-
RECEIVE LNA CHARACTERISTICS (LNA_RX_IN = 2450MHz/-25dBm, RS = RL = 50Ω, Receive Mode)
Receive LNA Frequency Range
LNA_f
25
2.4
-
2.5
GHz
LNA Noise Figure
LNA_NF
25
-
3.5
-
dB
LNA Power Gain
LNA_PG
Full
13.5
15.5
-
dB
LNA Reverse Isolation (Source = 2450MHz/-25dBm)
LNA_ISO
25
-
30
-
dB
LNA Output 3rd Order Intercept
(LNA_RX_IN = 2449.9MHz, 2450.1MHz / -35dBm)
LNA_IP3
25
-
18
-
dBm
LNA Output 1dB Compression
LNA_P1D
25
-
5.5
-
dBm
LNA_ISWR
Full
-
1.85:1
2.2:1
-
LNA_IRL
Full
-
10.5
8.5
dB
LNA_OSWR
Full
-
1.6
2.0:1
-
LNA_ORL
Full
-
12.7
9.5
dB
LNA Input VSWR
LNA Input Return Loss
LNA Output VSWR
LNA Output Return Loss
RECEIVE MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RXM_RF = 2450MHz/-25dBm, RSLO = 50Ω, RSRF = 50Ω,
RLIF = 50Ω with external matching network (Note 2), Receive Mode)
Mixer RF Frequency Range
RXM_RFf
25
2.4
-
2.5
GHz
Mixer IF Frequency Range
RXM_IFf
25
10
-
400
MHz
SSB Noise Figure (Note 3)
RXM_NF
25
-
15
-
dB
Mixer Power Conversion Gain (Note 2)
RXM_PG
25
4
6
-
dB
85
3
-
-
dB
Mixer IF Output 3rd Order Intercept
(RXM_RF = 2449.9MHz, 2450.1MHz/-30dBm)
RXM_IP3
25
-
4.0
-
dBm
Mixer IF Output 1dB Compression
RXM_P1D
25
-
-5
-
dBm
Mixer RF Input VSWR (2.4GHz to 2.5GHz)
RXM_SWR
25
-
1.5:1
2.0:1
-
RXM_IRL
25
-
14.0
9.5
dB
IF Open Collector Output Resistance (IF = 280MHz)
RXM_ROUT
25
-
1.5
-
kΩ
IF Open Collector Output Capacitance
RXM_COUT
25
-
0.4
-
pF
Mixer RF Input Return Loss
2-29
HFA3624
Electrical Specifications
VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω,
Unless Otherwise Specified (Continued)
PARAMETER
Mixer LO to RF Isolation
SYMBOL
TEMP (oC)
MIN
TYP
MAX
UNITS
RXA_LOR
25
-
22
-
dB
RECEIVE LNA/MIXER CASCADED CHARACTERISTICS (-3dB Loss RF Image Filter between LNA and Mixer, LNA_RX_IN = 2450MHz / 25dBm, RLIF = 250Ω external matching network, (Note 6))
Cascaded Noise Figure
CRX_NF
25
-
6.24
-
dB
Cascaded Power Gain
CRX_PG
25
15
18
-
dB
85
14
-
-
dB
Cascaded Input IP3
CRX_IP3
25
-
-14.1
-
dBm
Cascaded Input Compression Point
CRX_P1D
25
-
-23.2
-
dBm
CRX_dr
25
-
+3
-
dBm
Maximum Input Power
(Output may be gain compressed, but functional)
TRANSMIT MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, TXM_IF+ = 280MHz/-13dBm, RSIF = 50Ω, RSLO = 50Ω,
RLRF = 50Ω, Transmit Mode)
IF Input Frequency Range
TXM_IFf
25
10
-
400
MHz
IF Input Resistance (IF = 280MHz)
TXM_RIN
25
-
3
-
kΩ
IF Input Capacitance (IF = 280MHz)
TXM_CIN
25
-
0.5
-
pF
TXM_PG50
25
-6
-3.4
-
dB
85
-7.5
-
-
dB
25
-0.5
2.1
-
dB
85
-2
-
-
dB
Power Conversion Gain (RSIF = 50Ω)
Power Conversion Gain (RSIF = 250Ω) (Notes 4, 5)
TXM_PG250
Transmit Mixer LO Leakage
TXM_LEAK
25
-
-20
-18
dBm
RF Output Frequency Range
TXM_RFf
25
2.4
-
2.5
GHz
TXM_OSWR
Full
-
1.5
2.0:1
-
TXM_RF Return Loss
TXM_ORL
Full
-
14
9.5
dB
Mixer Output 1dB Compression
TXM_P1D
25
-
-10.5
-
dBm
Output SSB Noise Figure (RSIF = 50Ω)
TXM_NF50
25
-
18.3
-
dB
Output 3rd Order Intercept (RSIF = 50Ω)
TXM_IP3_50
25
-
1.1
-
dBm
Output SSB Noise Figure (RSIF = 250Ω)
TXM_NF250
25
-
14.5
-
dB
Output 3rd Order Intercept (RSIF = 250Ω)
TXM_IP3_250
25
-
-1.5
-
dBm
TXM_RF VSWR (2.4GHz to 2.5GHz)
TRANSMIT POWER PRE-AMP CHARACTERISTICS (PRE_IN = 2450MHz/-13dBm, RS = RL = 50Ω, Transmit Mode)
Power Pre-Amp Frequency Range
PRE_f
25
2.4
-
2.5
GHz
PRE_PG
25
10.8
12.3
-
dB
85
7.8
-
-
dB
PRE_P1D
25
5.0
5.6
-
dBm
PRE_AMP Noise Figure
PRE_NF
25
-
5.7
-
dB
PRE_AMP Output 3rd Order Intercept
PRE_IP3
25
-
15.3
-
dBm
PRE_ISWR
Full
-
1.3:1
2.0:1
-
PRE_IRL
Full
-
17.7
9.5
dB
PRE_OSWR
Full
-
1.3:1
2.0:1
-
PRE_ORL
Full
-
17.7
9.5
dB
Power Gain
PRE_AMP Output 1dB Compression
PRE_AMP Input VSWR (2.4GHz to 2.5GHz)
PRE_AMP Input Return Loss
PRE_AMP Output VSWR (2.4GHz to 2.5GHz)
PRE_AMP Output Return Loss
2-30
HFA3624
Electrical Specifications
VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω,
Unless Otherwise Specified (Continued)
PARAMETER
SYMBOL
TEMP (oC)
MIN
TYP
MAX
UNITS
TRANSMIT MIXER/POWER PRE-AMP CASCADED CHARACTERISTICS (TXM_IF+ = 280MHz/-13dBm, -3dB Loss RF Image Filter with no LO
suppression between Mixer and Transmit Amp, RL = 50Ω, RSIF =
250Ω (Note 6))
Cascaded Power Gain
CTX_PG
25
8
11.4
-
dB
85
5.5
-
-
dB
CTX_P1D
25
-
-2.0
-
dBm
Cascaded Output NF
CTX_NF
25
-
15
-
dB
Cascaded Output 3rd Order Intercept
CTX_IP3
25
-
7.1
-
dBm
CTX_LEAK
25
-
-8.7
-
dBm
VCC
25
2.7
-
5.5
V
TX_2.7ICC
25
32
49
57
mA
85
43
-
64
mA
25
10
18
20.5
mA
85
19
22.5
24
mA
ICC_PD
Full
-
0.3
10
µA
Logic Input Low Level
VIL
Full
-0.2
-
0.8
V
Logic Input High Level
VIH
Full
2.0
-
VCC
V
Logic Low Input Bias Current (VPE = 0V, VCC = 5.5V)
IB_LO
Full
-
-
1
µA
Logic High Input Bias Current (VPE = 5.5V, VCC = 5.5V)
IB_HI
Full
-
-
150
µA
TX/RX Power Enable Time (Note 7)
PEt
Full
-
0.25
1
µs
TX/RX Power Disable Time (Note 7)
PDt
Full
-
0.25
1
µs
Cascaded Output P1dB
Cascaded LO Leakage
POWER SUPPLY AND LOGIC CHARACTERISTICS
Voltage Supply Range
Transmit Mode Supply Current (VCC = 2.7V)
Receive Mode Supply Current (VCC = 2.7V)
RX_ICC
Power Down Current (VCC = 5.5V)
NOTES:
2. See Figure 5 Test Circuit for 50Ω IF matching network component values.
3. SSB (Single Side Band) Noise Figure measurement requires the use of an IF Reject/Highpass Filter between the Noise Source and the RXM_RF
port. This filter prevents IF input noise from interfering with the Mixer IF output Noise Figure Measurement.
4. Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
5. Implied limit, production measurement uses 50Ω termination at pin 19 (RSIF = 50Ω). Typical transmit conversion gain increase of 5.5dB with
application circuit Figure 5 (RSIF = 250Ω).
6. See Figure 2 for Typical Application Circuit.
7. Enable/Disable Time Specifications are tested with the external component values shown in the Figure 5 Test Circuit, with an IF frequency of
280MHz. Specifically the AC coupling capacitors on the TXM_IF+ and TXM_IF- pins are biased up to operating voltage from a fixed internal
current source at power up. Increasing these AC coupling capacitors above 1000pF will slow Enable Time proportionately.
POWER CONTROL TRUTH TABLE
STATE
RX_PE
TX_PE
Power Down
(Receive/Transmit Channels Power Down)
Low
Low
Transmit Mode
(Receive Channel Power Down)
Low
High
Receive Mode
(Transmit Channel Power Down)
High
Low
Not Recommended
High
High
2-31
HFA3624
Pin Descriptions
PINS
SYMBOL
DESCRIPTION
1
LNA_RX_VCC2
Receive Channel Low Noise Amplifier Output Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 5pF chip capacitor is recommended.
3
LNA_RX_OUT
Receive Channel Low Noise Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω,
over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires
AC coupling.
5
LNA_RX_VCC1
Receive Channel Low Noise Amplifier Input Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended.
7
LNA_RX_IN
Receive Channel Low Noise Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over
the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC
coupling.
8
PRE_TX_OUT
Transmit Channel Power Pre-Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω,
over the operating frequency range, is achieved with on chip narrowband tuned circuit. This pin requires AC
coupling.
10
PRE_TX_VCC2
Transmit Channel Power Pre-Amplifier Output Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended.
12
PRE_TX_IN
Transmit Channel Power Pre-Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over
the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC
coupling.
14
PRE_TX_VCC1
Transmit Channel Power Pre-Amplifier Input Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended.
15
TX_PE
Transmit Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table”
on previous page.
16
TX_VCC
Transmit Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF
chip capacitor is recommended.
17
TXM_RF
Transmit Channel Mixer RF Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling.
19
TXM_IF+
Transmit Channel Mixer IF+ Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input
impedance differential pair. Either input (or both inputs for special applications) may be used for the IF signal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC
coupled to the transmit IF signal. The high impedance input requires external termination. The specified input impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz.
The input Impedance will increase at lower IF frequencies.
This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade
Transmit Enable Time.
20
TXM_IF-
Transmit Channel Mixer IF- Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input
impedance differential pair. Either input (or both for special applications) may be used for the IF signal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC coupled to
the transmit IF signal. The high impedance input requires external termination. The specified input impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input
impedance will increase at lower IF frequencies.
This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade
Transmit Enable Time.
21
LO_IN
Local Oscillator Input (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair with a
mutual broadband 50Ω impedance. Refer to the LO_BY pin for details. The recommended LO power is 3dBm, however usable performance is obtained for the range -6dBm to +3dBm. The LO_IN pin requires AC
coupling.
22
LO_BY
Local Oscillator Input Bypass (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair
with a mutual broadband 50Ω input impedance. The LO_BY pin can be used as a signal input, but may
have slightly degraded performance due to a clamp circuit to GND. Typically the LO_BY pin is bypassed to
GND with a 5pF capacitor. The LO_BY pin requires AC coupling.
2-32
HFA3624
Pin Descriptions
(Continued)
PINS
SYMBOL
DESCRIPTION
23
RXM_IF-
Receive Channel Mixer IF- Output (10MHz to 400MHz). The RXM_IF+ and RXM_IF- pins form a complimentary open collector output driver pair. The open collector outputs require an external load to VCC not to
exceed 500Ω, for the Single Ended IF case shown in Figure 3, or 1kΩ for the Differential IF cases shown in
Figures 2 and 4. This pin requires AC coupling.
24
RXM_IF+
Receive Channel Mixer IF+ Output (10MHz to 400MHz) The RXM_IF+ and RXM_IF- pins form a complimentary open collector output driver pair. The open collector outputs require an external load to VCC not to
exceed 500Ω, for the Single Ended IF case shown in Figure 3, or 1kΩ for the Differential IF cases shown in
Figures 2 and 4. This pin requires AC coupling.
26
RXM_RF
Receive Channel Mixer RF Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling.
27
RX_VCC
Receive Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF
chip capacitor is recommended.
28
RX_PE
Receive Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table”
on previous page.
2, 4, 6, 9, 11,
13, 18, 25
GND
Circuit Ground Pins (Qty 8). Internally connected.
Typical Application Circuits
-3dB/50Ω BPF
2450MHz
LFJ30-03B2442B084
muRata
RECEIVE
ENABLE
VCC = 2.7V
C32
C14
C12
RXA_VCC2
GND
RXA_OUT
C13
GND
RXA_VCC1
RF INPUT
2450MHz
50Ω
GND
C41
RXA_IN
TXA_OUT
RF OUTPUT
2450MHz
50Ω
GND
C40
C11
TXA_VCC2
GND
TXA_IN
GND
TXA_VCC1
28
1
2
RX BIAS
3
26
25
4
RXM
5
6
RXA
7
HFA3624
8
LOB
9
10
TXA
TXM
11
12
13
27
TX BIAS
14
24
C21
RX_PE
RX_VCC
RXM_RF
GND
C25
RXM_IF+ 22
RXM_IF- 22
23
LO_BY C27
22
LO_IN
21
TXM_IF- C28
20
TXM_IF+
19
GND
18
C23
TXM_RF
17
TX_VCC
16
TX_PE
C19
15
C51
L46
C45
R50
LO INPUT
2170MHz
50Ω
C26
C37
L47
R35
250Ω
IF INPUT
280MHz, 250Ω
C10
C15
TRANSMIT
ENABLE
-3dB/50Ω BPF
2450MHz
LFJ30-03B2442B084
muRata
FIGURE 2. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION WITH 250Ω IF IMPEDANCE
2-33
IF OUTPUT
280MHz
250Ω
C48
HFA3624
Typical Application Circuits
(Continued)
-3dB/50Ω BPF
2450MHz
LFJ30-03B2442B084
muRata
RECEIVE
ENABLE
VCC = 2.7V
C32
C14
C12
RXA_VCC2
GND
RXA_OUT
C13
GND
RXA_VCC1
RF INPUT
2450MHz
50Ω
GND
C41
RXA_IN
TXA_OUT
RF OUTPUT
2450MHz
50Ω
GND
C40
C11
TXA_VCC2
GND
TXA_IN
GND
TXA_VCC1
28
1
2
RX BIAS
27
3
26
4
25
RXM
5
6
24
23
RXA
7
HFA3624
22
8
LOB
21
20
9
10
TXA
TXM
19
11
18
12
17
13
TX BIAS
16
15
14
C21
RX_PE
RX_VCC
RXM_RF
GND
C25
RXM_IF+
22
RXM_IFLO_BY
L46
C27
LO_IN
TXM_IF- C28
TXM_IF+
GND
TXM_RF
C37
C23
TX_VCC
TX_PE
C19
C15
TRANSMIT
ENABLE
-3dB/50Ω BPF
2450MHz
LFJ30-03B2442B084
muRata
FIGURE 3. SINGLE ENDED IF OUTPUT WITH 250Ω IF IMPEDANCE
C51
LO INPUT
2170MHz
50Ω
C26
C10
2-34
R50
R35
250Ω
IF INPUT
280MHz, 250Ω
IF OUTPUT
280MHz
250Ω
C48
HFA3624
Typical Application Circuits
(Continued)
-3dB/50Ω BPF
2450MHz
LFJ30-03B2442B084
muRata
RECEIVE
ENABLE
VCC = 2.7V
C14
C32
C31
C12
RXA_VCC2
GND
RXA_OUT
C13
GND
RXA_VCC1
RF INPUT
2450MHz
50Ω
GND
C41
RXA_IN
TXA_OUT
RF OUTPUT
2450MHz
50Ω
GND
C40
C11
TXA_VCC2
GND
TXA_IN
GND
TXA_VCC1
C15
28
1
2
RX BIAS
27
3
26
4
25
RXM
5
6
24
23
RXA
7
HFA3624
22
8
LOB
21
20
9
10
TXA
TXM
18
11
17
12
13
19
TX BIAS
16
15
14
C21
RX_PE
RX_VCC
RXM_RF
GND
IF OUTPUT
280MHz
XFMR 250Ω
500Ω:250Ω
(2:1)
C25
RXM_IF+
22
RXM_IF-
22
R50
C4
C27
LO_BYC27
C26
LO INPUT
2170MHz
50Ω
C37
IF INPUT
280MHz
250Ω
LO_IN
TXM_IF- C28
TXM_IF+
GND
TXM_RF
C23
R35
250Ω
TX_VCC
TX_PE
C19
C10
TRANSMIT
ENABLE
-3dB/50Ω BPF
2450MHz
LFJ30-03B2442B084
muRata
FIGURE 4. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION USING TRANSFORMER INTO 250Ω
2-35
HFA3624
Typical Application Circuits
(Continued)
RECEIVE
ENABLE
VCC = 2.7V
C13
2.2µF
C1
200pF
C11
2200pF
C15
5pF
C10
200pF
LNA_VCC2
C16
5pF
RECEIVE
AMP RF
OUTPUT
50Ω
GND
C3
5pF
LNA_OUT
C7
200pF
GND
LNA_VCC1
SIG. GEN.
2450MHz
50Ω
TRANSMIT
AMP RF
OUTPUT
50Ω
SIG. GEN.
2450MHz
50Ω
GND
C8
5pF
LNA_IN
C9
5pF
PRE_OUT
C26
200pF
TXA_VCC2
C4
5pF
PRE_IN
GND
GND
GND
PRE_VCC1
1
28
RX
BIAS
2
3
27
RXM
26
4
25
5
24
LNA
6
HFA3624
7
8
PRE LOB
AMP
9
10
TXM
11
12
TX
BIAS
13
14
C19
200pF
RX_PE
SIG. GEN.
2450MHz
50Ω
RX_VCC
RXM_RF
C14
GND
5pF
22
RXM_IF+
C6
470pF
C17
2.7pF
22
RXM_IF23
LO_BY C20
22
C28
LO_IN 10pF
21
C24
TXM_IF10pF
20
TXM_IF+ 470pF
19
GND
C22
C21
18
5pF
470pF
TXM_RF
17
TX_VCC
16
TX_PE
15
C23
200pF
IF OUTPUT
280MHz
50Ω
L3
12nH
R6
2kΩ
L2
39nH
L1
68nH
C5
6.8pF
C18
SIG. GEN.
470pF
2170MHz
50Ω
L4
47nH
R5
250Ω
SIG. GEN.
280MHz
50Ω
C25
1.5pF
TRANSMIT.
MIXER
RF OUTPUT
50Ω
C2
200pF
TRANSMIT
ENABLE
FIGURE 5. OPTIMIZED LAB EVALUATION CIRCUIT
Typical Performance Curves
VCC = 2.7V
TA = 25oC
-3
1dB
COMPRESSION
POINT
POWER GAIN (dB)
15
14
1dB
13
VCC = 2.7V
TA = 25oC
1dB
COMPRESSION
POINT
-4
1dB
-5
-6
-7
12
-25
CONVERSION GAIN (dB)
16
-21
-17
-13
-9
-5
IF INPUT POWER (dBm)
FIGURE 6. TRANSMIT PRE-AMP 1dB COMPRESSION
2-36
-20
-17
-14
-11
-8
IF INPUT POWER (dBm)
FIGURE 7. TRANSMIT MIXER 1dB COMPRESSION
-5
HFA3624
Typical Performance Curves
(Continued)
VCC = 2.7V
TA = 25oC
VCC = 2.7V
TA = 25oC
30
10
DUT
0
MAG (dB)
MAG (dB)
20
DUT + FIXTURE
-10
10
DUT + FIXTURE
0
-20
DUT
1.0
2.0
1.0
3.0
2.0
FIGURE 8. PRE-AMPLIFIER S11 LOG MAG INPUT RETURN
LOSS
FIGURE 9. PRE-AMPLIFIER S21 LOG MAG FORWARD GAIN
VCC = 2.7V
TA = 25oC
VCC = 2.7V
TA = 25oC
-20
0
DUT
-30
DUT + FIXTURE
MAG (dB)
MAG (dB)
3.0
FREQUENCY (GHz)
FREQUENCY (GHz)
-40
-10
-20
DUT
-50
DUT + FIXTURE
-30
1.0
2.0
3.0
1.0
2.0
FREQUENCY (GHz)
3.0
FREQUENCY (GHz)
FIGURE 10. PRE-AMPLIFIER S12 LOG MAG REVERSE
ISOLATION
FIGURE 11. PRE-AMPLIFIER S22 LOG MAG OUTPUT RETURN
LOSS
VCC = 2.7V
TA = 25oC
VCC = 2.7V
TA = 25oC
30
10
DUT
0
MAG (dB)
MAG (dB)
20
DUT
-10
10
DUT + FIXTURE
0
-20
DUT + FIXTURE
-10
1.0
2.0
FREQUENCY (GHz)
FIGURE 12. LNA S11 LOG MAG INPUT RETURN LOSS
2-37
3.0
1.0
2.0
FREQUENCY (GHz)
FIGURE 13. LNA S21 LOG MAG FORWARD GAIN
3.0
HFA3624
Typical Performance Curves
0
VCC = 2.7V
TA = 25oC
-20
10
-40
DUT
-60
VCC = 2.7V
TA = 25oC
0
DUT + FIXTURE
MAG (dB)
MAG (dB)
(Continued)
DUT
-10
-20
DUT + FIXTURE
-80
-30
1.0
2.0
3.0
1.0
2.0
FREQUENCY (GHz)
3.0
FREQUENCY (GHz)
FIGURE 14. LNA S12 LOG MAG REVERSE ISOLATION
FIGURE 15. LNA S22 LOG MAG OUTPUT RETURN LOSS
0
VCC = 2.7V, (NOTE)
TA = 25oC
10
-10
0
-20
MAG (dB)
MAG (dB)
VCC = 2.7V
TA = 25oC
-10
-30
-40
-20
1.0
2.0
230
3.0
250
290
270
310
330
FREQUENCY (MHz)
FREQUENCY (GHz)
NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
FIGURE 16. TRANSMIT MIXER S22 LOG MAG RF OUTPUT
RETURN LOSS
FIGURE 17. TRANSMIT MIXER S11 LOG MAG IF INPUT
RETURN LOSS
2.3
VCC = 2.7V
TA = 25oC
10
MAG (dB)
MAG (dB)
0.3
-1.7
0
-10
-3.7
VCC = 2.7V, (NOTE)
TA = 25oC, LO = 2.17GHz
2.4
-20
2.45
2.5
FREQUENCY (GHz)
NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
FIGURE 18. TRANSMIT MIXER CONVERSION GAIN vs IF
FREQUENCY SWEEP
2-38
1.0
2.0
FREQUENCY (GHz)
FIGURE 19. RECEIVE MIXER S11 LOG MAG RF INPUT
RETURN LOSS
3.0
HFA3624
Typical Performance Curves
(Continued)
7
VCC = 2.7V
TA = 25oC
VCC = 2.7V, TA = 25oC
RF = 2.45GHz
0
MAG (dB)
MAG (dB)
5
-10
3
1
-20
230
250
270
290
310
330
230
250
FREQUENCY (MHz)
FIGURE 20. RECEIVE MIXER S22 LOG MAG IF OUTPUT
RETURN LOSS
MAG (dB)
MAG (dB)
330
0
-10
-20
-10
-20
-30
-30
1.0
2.0
1.0
3.0
2.0
FIGURE 22. LO_IN S11 LOG MAG RECEIVE MODE LO INPUT
RETURN LOSS
FIGURE 23. LO_IN S11 LOG MAG TRANSMIT MODE LO INPUT
RETURN LOSS
23
19
THIRD ORDER INTERCEPT (dBm)
TA = 25oC
18
5.5V
17
4.0V
3.0V
2.7V
14
13
2.3
2.35
2.4
2.45
2.5
2.55
2.6
FREQUENCY (GHz)
FIGURE 24. LOW NOISE AMPLIFIER GAIN vs FREQUENCY
2-39
3.0
FREQUENCY (GHz)
FREQUENCY (GHz)
GAIN (dB)
310
VCC = 2.7V
TA = 25oC
0
15
290
FIGURE 21. RECEIVE MIXER CONVERSION GAIN vs LO
FREQUENCY SWEEP
VCC = 2.7V
TA = 25oC
16
270
FREQUENCY (MHz)
TA = 25oC, F1 -F2 = 200kHz
22
21
5.5V
20
19
4.0V
18
3.0V
17
2.7V
16
15
2.3
2.35
2.4
2.45
2.5
2.55
2.6
FREQUENCY (GHz)
FIGURE 25. LOW NOISE AMPLIFIER IP3 vs FREQUENCY
HFA3624
Typical Performance Curves
(Continued)
15
4.3
TA = 25oC
4.2
13
4.0
3.9
GAIN (dB)
NOISE FIGURE (dB)
4.1
5.5V
3.8
3.7
4.0V
3.6
3.0V
3.5
2.7V
3.4
2.3
12
2.7V
5.5V
11
10
9
2.35
2.4
2.45
2.5
2.55
8
2.3
2.6
2.35
2.4
2.45
2.5
2.55
2.6
FREQUENCY (GHz)
FREQUENCY (GHz)
FIGURE 26. LOW NOISE AMPLIFIER NOISE FIGURE vs
FREQUENCY
FIGURE 27. PRE-AMPLIFIER GAIN vs FREQUENCY
10
7.3
TA = 25oC
9
5.5V
7.0
3.0V
7
2.7V
6
IF = 280MHz
7.1
4.0V
8
TA = 25oC
7.2
GAIN (dB)
1dB COMPRESSION (dBm)
TA = 25oC
4.0V
3.0V
14
5
6.9
5.5V
4.0V
6.8
6.7
3.0V
2.7V
6.6
6.5
6.4
4
6.3
6.2
2.3
3
2.3
2.35
2.4
2.45
2.5
2.55
2.6
2.35
FIGURE 28. PRE-AMPLIFIER RF OUTPUT 1dB COMPRESSION
vs FREQUENCY
2.5
2.55
2.6
16.5
TA = 25oC
TA = 25oC, IF = 280MHz
F1 -F2 = 200kHz
IF = 280MHz
16.0
5.5V
6.0
NOISE FIGURE (dB)
THIRD ORDER INTERCEPT (dBm)
2.45
FIGURE 29. RECEIVE MIXER GAIN vs RF FREQUENCY
FOR FIXED IF FREQUENCY
7.0
6.5
2.4
RF FREQUENCY (GHz)
FREQUENCY (GHz)
4.0V
5.5
3.0V
5.0
2.7V
4.5
4.0
5.5V
15.0
4.0V
14.5
3.0V
2.7V
14.0
3.5
3
2.3
15.5
2.35
2.4
2.45
2.5
2.55
RF FREQUENCY (GHz)
FIGURE 30. RECEIVE MIXER IP3 vs RF FREQUENCY
2-40
2.6
13.5
2.3
2.35
2.4
2.45
2.5
2.55
RF FREQUENCY (GHz)
FIGURE 31. RECEIVE MIXER SSB NOISE FIGURE vs RF
FREQUENCY
2.6
HFA3624
Typical Performance Curves
(Continued)
-34
-24.0
-24.5
TA = 25oC, LO_IN = -3dBm
TA = 25oC, LO_IN = -3dBm
-35
5.5V
-25.0
POWER (dBm)
POWER (dBm)
-25.5
-26.0
-26.5
-27.0
4.0V
-36
5.5V
4.0V
-27.5
-28.0
-28.5
-29.0
2.02
2.7V
3.0V
-37
-38
-39
2.7V
3.0V
2.07
-40
2.12
2.17
2.22
LO FREQUENCY (GHz)
2.27
-41
2.02
2.32
FIGURE 32. RECEIVE MIXER LO TO RF PORT LEAKAGE vs LO
FREQUENCY
2.07
2.27
2.32
FIGURE 33. RECEIVE MIXER LO TO IF PORT LEAKAGE vs LO
FREQUENCY
-6
6
TA = 25oC, IF = 280MHz (NOTE)
TA = 25oC, IF = 280MHz (NOTE)
5.5V
-7
1dB COMPRESSION (dBm)
5
5.5V
4
GAIN (dB)
2.12
2.17
2.22
LO FREQUENCY (GHz)
4.0V
3
3.0V
2
2.7V
1
4.0V
-8
-9
3.0V
-10
2.7V
-11
-12
0
-13
2.3
-1
2.3
2.35
2.4
2.45
2.5
2.55
2.6
2.35
2.4
2.45
2.5
RF FREQUENCY (GHz)
RF FREQUENCY (GHz)
NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
FIGURE 34. TRANSMIT MIXER GAIN vs RF FREQUENCY
2.55
2.6
NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
FIGURE 35. TRANSMIT MIXER OUTPUT 1dB COMPRESSION
vs RF FREQUENCY
16.5
TA = 25oC, IF = 280MHz (NOTE)
-17
16
TA = 25oC, LO_IN = -3dBm
-19
-20
15
POWER (dBm)
NOISE FIGURE (dB)
-18
15.5
5.5V
14.5
4.0V
14
3.0V
2.7V
13.5
13
2.3
-21
-22
-23
-24
2.7V
-25
3.0V
-26
4.0V
-27
5.5V
-28
2.35
2.4
2.45
2.5
RF FREQUENCY (GHz)
2.55
2.6
NOTE: Transmit mixer measured with Impedance Transform Network
250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
FIGURE 36. TRANSMIT MIXER SSB NOISE FIGURE
vs RF FREQUENCY
2-41
-29
-30
2.02
2.07
2.12
2.17
2.22
2.27
2.32
LO FREQUENCY (GHz)
FIGURE 37. TRANSMIT MIXER LO TO RF PORT LEAKAGE
vs LO FREQUENCY
HFA3624
Typical Performance Curves
(Continued)
40
-34
-35
TA = 25oC, LO_IN = -3dBm
35
-36
-38
30
2.7V
3.0V
ICC (mA)
POWER (dBm)
-37
-39
-40
4.0V
5.5V
-41
+5.5V
25
20
-42
+2.7V
15
-43
-44
2.02
2.07
2.12
2.17
2.22
RF FREQUENCY (GHz)
2.27
10
-40 -30 -20 -10
2.32
FIGURE 38. TRANSMIT MIXER LO TO IF PORT LEAKAGE
vs LO FREQUENCY
50
60
70
85
FIGURE 39. RECEIVE MODE ICC vs TEMPERATURE
17.5
120
110
17.0
100
+5.5V
90
16.5
+5.5V
80
GAIN (dB)
ICC (mA)
0
10 20 30 40
TEMPERATURE (oC)
70
60
50
+2.7V
16.0
15.5
15.0
+2.7V
40
14.5
30
20
-40 -30 -20 -10
0
10 20 30 40
TEMPERATURE (oC)
50
60
70
14.0
-40 -30 -20 -10
85
FIGURE 40. TRANSMIT MODE ICC vs TEMPERATURE
60
70
85
15
IF = 280MHz, RF = 2.45GHz
LO = -3dBm
7.5
14
13
+5.5V
7.0
12
GAIN (dB)
GAIN (dB)
50
FIGURE 41. LOW NOISE AMPLIFIER GAIN vs TEMPERATURE
8.0
6.5
0 10 20 30 40
TEMPERATURE (oC)
+2.7V
6.0
+5.5V
+2.7V
11
10
9
8
5.5
7
5.0
4.5
-40 -30 -20 -10
6
0
10
20
30
40
50
60
70
TEMPERATURE (oC)
FIGURE 42. RECEIVE MIXER GAIN vs TEMPERATURE
2-42
85
5
-40 -30 -20 -10
0
10
20
30
40
50
60
70
TEMPERATURE (oC)
FIGURE 43. PRE-AMPLIFIER GAIN vs TEMPERATURE
85
HFA3624
Typical Performance Curves
(Continued)
4
-24.5
3
-25.0
LO_IN = -3dBm AT 2.17GHz
+5.5V
POWER (dBm)
GAIN (dB)
2
1
+2.7V
0
IF = 280MHz, RF = 2.45GHz
LO = -3dBm
-1
-2
-40 -30 -20 -10
0
10
20
30
40
50
60
-25.5
+5.5V
-26.0
+2.7V
-26.5
-27.0
70
-27.5
-40 -30 -20 -10
85
FIGURE 44. TRANSMIT MIXER GAIN vs TEMPERATURE
20
30
40
50
60
70
85
FIGURE 45. RECIEVE MIXER LO TO RF PORT LEAKAGE
vs TEMPERATURE
-26.0
-20
LO_IN = -3dBm AT 2.17GHz
LO_IN = -3dBm AT 2.17GHz
-26.5
-22
+2.7V
-23
-27.0
POWER (dBm)
POWER (dBm)
10
TEMPERATURE (oC)
TEMPERATURE (oC)
-21
0
-24
-25
-26
+5.5V
-27
-28
+5.5V
-27.5
-28.0
+2.7V
-28.5
-29
-30
-40 -30 -20 -10
0
10
20
30
40
50
60
70
-29.0
-40 -30 -20 -10
85
TEMPERATURE (oC)
20
30
40
50
60
70
85
FIGURE 47. RECEIVE MIXER LO TO IF PORT LEAKAGE
vs TEMPERATURE
5.5
7.3
THIRD ORDER INTERCEPT (dBm)
TA = 25oC, IF = 280MHz
7.2
RF = 2.45GHz
7.1
7.0
GAIN (dB)
10
TEMPERATURE (oC)
FIGURE 46. TRANSMIT MIXER LO TO RF PORT LEAKAGE vs
TEMPERATURE
6.9
6.8
6.7
6.6
6.5
6.4
6.3
6.2
-6
0
-5
-4
-3
-2
-1
0
1
2
LO DRIVE (dBm)
FIGURE 48. RECEIVE MIXER GAIN vs LO DRIVE
2-43
3
5
4.5
4
3.5
3
2.5
TA = 25oC, IF = 280MHz
RF = 2.45GHz, F1 - F2 = 200kHz
2
1.5
-6
-5
-4
-3
-2
-1
0
1
LO DRIVE (dBm)
FIGURE 49. RECEIVE MIXER IP3 vs LO DRIVE
2
3
HFA3624
Typical Performance Curves
(Continued)
2.35
16.5
TA = 25oC, RF = 2.45GHz
IF = 280MHz (NOTE)
2.30
2.25
15.5
GAIN (dB)
NOISE FIGURE (dB)
16
TA = 25oC, IF = 280MHz
LO = 2.17GHz
15
14.5
2.20
2.15
2.10
14
2.05
13.5
-6
-5
-4
-3
-2
-1
0
1
2
2.00
-6
3
-5
-4
-3
-2
-1
0
1
2
3
LO DRIVE (dBm)
LO DRIVE (dBm)
NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
FIGURE 50. RECEIVE MIXER SSB NOISE FIGURE vs LO DRIVE
FIGURE 51. TRANSMIT MIXER GAIN vs LO DRIVE
-9.2
TA = 25oC, RF = 2.45GHz (NOTE)
3.5
-9.4
3.0
-9.5
2.5
+5.5V
GAIN (dB)
1dB COMPRESSION (dBm)
-9.3
4.0
TA = 25oC, RF = 2.45GHz
IF = 280MHz (NOTE)
-9.6
-9.7
2.0
+3.0V
1.5
-9.8
1.0
-9.9
0.5
-10.0
-6
+4.0V
+2.7V
0
-5
-4
-3
-2
-1
0
LO DRIVE (dBm)
1
2
10
3
20
40
60
80 100
200
NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19.
NOTE: TXM_IF input matching network modified for each IF frequency as described in Table 1.
FIGURE 52. TRANSMIT MIXER OUTPUT 1dB COMPRESSION
vs LO DRIVE
FIGURE 53. TRANSMIT MIXER GAIN vs IF FREQUENCY
TABLE 1. TXM_IF INPUT 50Ω TO 250Ω IMPEDANCE TRANSFORM CIRCUIT
COMPONENT VALUES
IF FREQ
LO CAPACITORS
C20, C28
IF BYPASS
C24, C21
IF SHUNT C
C25
IF SERIES L
L4
10MHz
5pF
0.1µF
150pF
1.2µH
20MHz
5pF
0.022µF
68pF
680nH
40MHz
5pF
0.012µF
33pF
330nH
70MHz
5pF
0.0068mF
18pF
180nH
100MHz
7pF
0.0033mF
12pF
120nH
200MHz
7pF
1000pF
3.9pF
68nH
280MHz
10pF
470pF
1.5pF
47nH
400MHz
10pF
330pF
0
33nH
NOTE: Refer to Figure 5, pin 19.
2-44
400
IF FREQUENCY (MHz)
HFA3624
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
2-45
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029