HFA3624 Data Sheet November 1998 File Number 4066.8 2.4GHz Up/Down Converter Features The Intersil 2.4GHz PRISM™ chip set is a highly integrated five-chip solution for RF modems employing Direct Sequence Spread Spectrum (DSSS) signaling. The HFA3624 RF/IF converter is one of the five chips in the PRISM™ chip set (see Figure 1 for the typical application circuit). • Complete Receive/Transmit Front End The HFA3624 Up/Down converter is a monolithic bipolar device for up/down conversion applications in the 2.4GHz to 2.5GHz range. Manufactured in the Intersil UHF1X process, the device consists of a low noise amplifier and down conversion mixer in the receive section and an up conversion mixer with power preamp in the transmit section. An energy saving power enable control feature assures isolation between the receive and transmit circuits for time division multiplexed systems. The device requires low drive levels from the local oscillator and is housed in a small outline 28 lead SSOP package ideally suited for PCMCIA card applications. Applications ™ • RF Frequency Range . . . . . . . . . . . . . . 2.4GHz to 2.5GHz • IF Operation . . . . . . . . . . . . . . . . . . . . . 10MHz to 400MHz • Single Supply Battery Operation . . . . . . . . . 2.7V to 5.5V • Independent Receive/Transmit Power Enable Mode • Systems Targeting IEEE 802.11 Standard • PCMCIA Wireless Transceiver • Wireless Local Area Network Modems • TDMA Packet Protocol Radios • Part 15 Compliant Radio Links • Portable Battery Powered Equipment Block Diagram Ordering Information PART NUMBER TEMP. RANGE (oC) PACKAGE HFA3624IA -40 to 85 28 Ld SSOP HFA3624IA96 -40 to 85 Tape and Reel PKG. NO. M28.15 RX BIAS RX_PE RXM_RF LNA_RX_OUT RXM_IF+ RXM_IF- Pinout RXM HFA3624 (SSOP) TOP VIEW LNA_RX_IN LNA LO_BY LO_IN LOB LNA_RX_VCC2 1 28 RX_PE GND 2 27 RX_VCC LNA_RX_OUT 3 26 RXM_RF GND 4 25 GND LNA_RX_VCC1 5 24 RXM_IF+ GND 6 23 RXM_IF- LNA_RX_IN 7 22 LO_BY PRE_TX_OUT 8 21 LO_IN GND 9 20 TXM_IF- PRE_TX_VCC2 10 GND 11 19 TXM_IF+ PRE_TX_IN 12 17 TXM_RF GND 13 16 TX_VCC PRE_TX_OUT PRE TXM PRE_TX_IN TXM_IFTXM_IF+ TXM_RF TX BIAS TX_PE 18 GND 15 TX_PE PRE_TX_VCC1 14 2-27 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 PRISM® is a registered trademark of Intersil Corporation. PRISM logo is a trademark of Intersil Corporation. HFA3624 HSP3824 HFA3724 (FILE# 4064) TUNE/SELECT HFA3424 (NOTE) RXI (FILE# 4131) A/D DESPREAD RXQ I ÷2 (FILE# 4066) 0o/90o M M U U X X RSSI A/D A/D CCA TXI SPREAD RFPA VCO HFA3925 VCO 802.11 MAC-PHY INTERFACE CTRL HFA3624 UP/DOWN CONVERTER DPSK DEMOD DATA TO MAC (FILE# 4067) TXQ Q DPSK MOD. (FILE# 4132) QUAD IF MODULATOR DSSS BASEBAND PROCESSOR DUAL SYNTHESIZER HFA3524 (FILE# 4062) PRISM™ CHIP SET FILE #4063 NOTE: Required for systems targeting 802.11 Specifications. FIGURE 1. TYPICAL TRANSCEIVER APPLICATION CIRCUIT USING THE HFA3624 For additional information on the PRISM™ chip set, call (407) 724-7800 to access Intersil’ AnswerFAX system. When prompted, key in the four-digit document number (File #) of the datasheets you wish to receive. 2-28 The four-digit file numbers are shown in Figure 1, and correspond to the appropriate circuit. HFA3624 Absolute Maximum Ratings Thermal Information Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V Voltage on Any Other Pin. . . . . . . . . . . . . . . . . . . -0.3 to VCC +0.3V Thermal Resistance (Typical, Note 1) θJA (oC/W) 28 Lead Plastic SSOP . . . . . . . . . . . . . . . . . . . . . . . 88 Package Power Dissipation at 70oC 28 Lead Plastic SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9W Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . .-65oC ≤ TA ≤ 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SSOP - Lead Tips Only) Operating Conditions Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ 85oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω, Unless Otherwise Specified PARAMETER SYMBOL TEMP (oC) MIN TYP MAX UNITS LO INPUT CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RSLO = 50Ω, tested in both RX and TX modes, all unused inputs and outputs are terminated into 50Ω) LO Input Frequency Range LO Input Drive Level LO Input VSWR LO_f 25 2.0 - 2.49 GHz LO_dr 25 -6 -3 3 dBm LO_SWR Full - 1.5 2.0:1 - RECEIVE LNA CHARACTERISTICS (LNA_RX_IN = 2450MHz/-25dBm, RS = RL = 50Ω, Receive Mode) Receive LNA Frequency Range LNA_f 25 2.4 - 2.5 GHz LNA Noise Figure LNA_NF 25 - 3.5 - dB LNA Power Gain LNA_PG Full 13.5 15.5 - dB LNA Reverse Isolation (Source = 2450MHz/-25dBm) LNA_ISO 25 - 30 - dB LNA Output 3rd Order Intercept (LNA_RX_IN = 2449.9MHz, 2450.1MHz / -35dBm) LNA_IP3 25 - 18 - dBm LNA Output 1dB Compression LNA_P1D 25 - 5.5 - dBm LNA_ISWR Full - 1.85:1 2.2:1 - LNA_IRL Full - 10.5 8.5 dB LNA_OSWR Full - 1.6 2.0:1 - LNA_ORL Full - 12.7 9.5 dB LNA Input VSWR LNA Input Return Loss LNA Output VSWR LNA Output Return Loss RECEIVE MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RXM_RF = 2450MHz/-25dBm, RSLO = 50Ω, RSRF = 50Ω, RLIF = 50Ω with external matching network (Note 2), Receive Mode) Mixer RF Frequency Range RXM_RFf 25 2.4 - 2.5 GHz Mixer IF Frequency Range RXM_IFf 25 10 - 400 MHz SSB Noise Figure (Note 3) RXM_NF 25 - 15 - dB Mixer Power Conversion Gain (Note 2) RXM_PG 25 4 6 - dB 85 3 - - dB Mixer IF Output 3rd Order Intercept (RXM_RF = 2449.9MHz, 2450.1MHz/-30dBm) RXM_IP3 25 - 4.0 - dBm Mixer IF Output 1dB Compression RXM_P1D 25 - -5 - dBm Mixer RF Input VSWR (2.4GHz to 2.5GHz) RXM_SWR 25 - 1.5:1 2.0:1 - RXM_IRL 25 - 14.0 9.5 dB IF Open Collector Output Resistance (IF = 280MHz) RXM_ROUT 25 - 1.5 - kΩ IF Open Collector Output Capacitance RXM_COUT 25 - 0.4 - pF Mixer RF Input Return Loss 2-29 HFA3624 Electrical Specifications VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω, Unless Otherwise Specified (Continued) PARAMETER Mixer LO to RF Isolation SYMBOL TEMP (oC) MIN TYP MAX UNITS RXA_LOR 25 - 22 - dB RECEIVE LNA/MIXER CASCADED CHARACTERISTICS (-3dB Loss RF Image Filter between LNA and Mixer, LNA_RX_IN = 2450MHz / 25dBm, RLIF = 250Ω external matching network, (Note 6)) Cascaded Noise Figure CRX_NF 25 - 6.24 - dB Cascaded Power Gain CRX_PG 25 15 18 - dB 85 14 - - dB Cascaded Input IP3 CRX_IP3 25 - -14.1 - dBm Cascaded Input Compression Point CRX_P1D 25 - -23.2 - dBm CRX_dr 25 - +3 - dBm Maximum Input Power (Output may be gain compressed, but functional) TRANSMIT MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, TXM_IF+ = 280MHz/-13dBm, RSIF = 50Ω, RSLO = 50Ω, RLRF = 50Ω, Transmit Mode) IF Input Frequency Range TXM_IFf 25 10 - 400 MHz IF Input Resistance (IF = 280MHz) TXM_RIN 25 - 3 - kΩ IF Input Capacitance (IF = 280MHz) TXM_CIN 25 - 0.5 - pF TXM_PG50 25 -6 -3.4 - dB 85 -7.5 - - dB 25 -0.5 2.1 - dB 85 -2 - - dB Power Conversion Gain (RSIF = 50Ω) Power Conversion Gain (RSIF = 250Ω) (Notes 4, 5) TXM_PG250 Transmit Mixer LO Leakage TXM_LEAK 25 - -20 -18 dBm RF Output Frequency Range TXM_RFf 25 2.4 - 2.5 GHz TXM_OSWR Full - 1.5 2.0:1 - TXM_RF Return Loss TXM_ORL Full - 14 9.5 dB Mixer Output 1dB Compression TXM_P1D 25 - -10.5 - dBm Output SSB Noise Figure (RSIF = 50Ω) TXM_NF50 25 - 18.3 - dB Output 3rd Order Intercept (RSIF = 50Ω) TXM_IP3_50 25 - 1.1 - dBm Output SSB Noise Figure (RSIF = 250Ω) TXM_NF250 25 - 14.5 - dB Output 3rd Order Intercept (RSIF = 250Ω) TXM_IP3_250 25 - -1.5 - dBm TXM_RF VSWR (2.4GHz to 2.5GHz) TRANSMIT POWER PRE-AMP CHARACTERISTICS (PRE_IN = 2450MHz/-13dBm, RS = RL = 50Ω, Transmit Mode) Power Pre-Amp Frequency Range PRE_f 25 2.4 - 2.5 GHz PRE_PG 25 10.8 12.3 - dB 85 7.8 - - dB PRE_P1D 25 5.0 5.6 - dBm PRE_AMP Noise Figure PRE_NF 25 - 5.7 - dB PRE_AMP Output 3rd Order Intercept PRE_IP3 25 - 15.3 - dBm PRE_ISWR Full - 1.3:1 2.0:1 - PRE_IRL Full - 17.7 9.5 dB PRE_OSWR Full - 1.3:1 2.0:1 - PRE_ORL Full - 17.7 9.5 dB Power Gain PRE_AMP Output 1dB Compression PRE_AMP Input VSWR (2.4GHz to 2.5GHz) PRE_AMP Input Return Loss PRE_AMP Output VSWR (2.4GHz to 2.5GHz) PRE_AMP Output Return Loss 2-30 HFA3624 Electrical Specifications VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEMP (oC) MIN TYP MAX UNITS TRANSMIT MIXER/POWER PRE-AMP CASCADED CHARACTERISTICS (TXM_IF+ = 280MHz/-13dBm, -3dB Loss RF Image Filter with no LO suppression between Mixer and Transmit Amp, RL = 50Ω, RSIF = 250Ω (Note 6)) Cascaded Power Gain CTX_PG 25 8 11.4 - dB 85 5.5 - - dB CTX_P1D 25 - -2.0 - dBm Cascaded Output NF CTX_NF 25 - 15 - dB Cascaded Output 3rd Order Intercept CTX_IP3 25 - 7.1 - dBm CTX_LEAK 25 - -8.7 - dBm VCC 25 2.7 - 5.5 V TX_2.7ICC 25 32 49 57 mA 85 43 - 64 mA 25 10 18 20.5 mA 85 19 22.5 24 mA ICC_PD Full - 0.3 10 µA Logic Input Low Level VIL Full -0.2 - 0.8 V Logic Input High Level VIH Full 2.0 - VCC V Logic Low Input Bias Current (VPE = 0V, VCC = 5.5V) IB_LO Full - - 1 µA Logic High Input Bias Current (VPE = 5.5V, VCC = 5.5V) IB_HI Full - - 150 µA TX/RX Power Enable Time (Note 7) PEt Full - 0.25 1 µs TX/RX Power Disable Time (Note 7) PDt Full - 0.25 1 µs Cascaded Output P1dB Cascaded LO Leakage POWER SUPPLY AND LOGIC CHARACTERISTICS Voltage Supply Range Transmit Mode Supply Current (VCC = 2.7V) Receive Mode Supply Current (VCC = 2.7V) RX_ICC Power Down Current (VCC = 5.5V) NOTES: 2. See Figure 5 Test Circuit for 50Ω IF matching network component values. 3. SSB (Single Side Band) Noise Figure measurement requires the use of an IF Reject/Highpass Filter between the Noise Source and the RXM_RF port. This filter prevents IF input noise from interfering with the Mixer IF output Noise Figure Measurement. 4. Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. 5. Implied limit, production measurement uses 50Ω termination at pin 19 (RSIF = 50Ω). Typical transmit conversion gain increase of 5.5dB with application circuit Figure 5 (RSIF = 250Ω). 6. See Figure 2 for Typical Application Circuit. 7. Enable/Disable Time Specifications are tested with the external component values shown in the Figure 5 Test Circuit, with an IF frequency of 280MHz. Specifically the AC coupling capacitors on the TXM_IF+ and TXM_IF- pins are biased up to operating voltage from a fixed internal current source at power up. Increasing these AC coupling capacitors above 1000pF will slow Enable Time proportionately. POWER CONTROL TRUTH TABLE STATE RX_PE TX_PE Power Down (Receive/Transmit Channels Power Down) Low Low Transmit Mode (Receive Channel Power Down) Low High Receive Mode (Transmit Channel Power Down) High Low Not Recommended High High 2-31 HFA3624 Pin Descriptions PINS SYMBOL DESCRIPTION 1 LNA_RX_VCC2 Receive Channel Low Noise Amplifier Output Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 5pF chip capacitor is recommended. 3 LNA_RX_OUT Receive Channel Low Noise Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. 5 LNA_RX_VCC1 Receive Channel Low Noise Amplifier Input Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. 7 LNA_RX_IN Receive Channel Low Noise Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. 8 PRE_TX_OUT Transmit Channel Power Pre-Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with on chip narrowband tuned circuit. This pin requires AC coupling. 10 PRE_TX_VCC2 Transmit Channel Power Pre-Amplifier Output Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. 12 PRE_TX_IN Transmit Channel Power Pre-Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. 14 PRE_TX_VCC1 Transmit Channel Power Pre-Amplifier Input Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. 15 TX_PE Transmit Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table” on previous page. 16 TX_VCC Transmit Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. 17 TXM_RF Transmit Channel Mixer RF Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. 19 TXM_IF+ Transmit Channel Mixer IF+ Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input impedance differential pair. Either input (or both inputs for special applications) may be used for the IF signal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC coupled to the transmit IF signal. The high impedance input requires external termination. The specified input impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input Impedance will increase at lower IF frequencies. This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade Transmit Enable Time. 20 TXM_IF- Transmit Channel Mixer IF- Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input impedance differential pair. Either input (or both for special applications) may be used for the IF signal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC coupled to the transmit IF signal. The high impedance input requires external termination. The specified input impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input impedance will increase at lower IF frequencies. This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade Transmit Enable Time. 21 LO_IN Local Oscillator Input (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair with a mutual broadband 50Ω impedance. Refer to the LO_BY pin for details. The recommended LO power is 3dBm, however usable performance is obtained for the range -6dBm to +3dBm. The LO_IN pin requires AC coupling. 22 LO_BY Local Oscillator Input Bypass (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair with a mutual broadband 50Ω input impedance. The LO_BY pin can be used as a signal input, but may have slightly degraded performance due to a clamp circuit to GND. Typically the LO_BY pin is bypassed to GND with a 5pF capacitor. The LO_BY pin requires AC coupling. 2-32 HFA3624 Pin Descriptions (Continued) PINS SYMBOL DESCRIPTION 23 RXM_IF- Receive Channel Mixer IF- Output (10MHz to 400MHz). The RXM_IF+ and RXM_IF- pins form a complimentary open collector output driver pair. The open collector outputs require an external load to VCC not to exceed 500Ω, for the Single Ended IF case shown in Figure 3, or 1kΩ for the Differential IF cases shown in Figures 2 and 4. This pin requires AC coupling. 24 RXM_IF+ Receive Channel Mixer IF+ Output (10MHz to 400MHz) The RXM_IF+ and RXM_IF- pins form a complimentary open collector output driver pair. The open collector outputs require an external load to VCC not to exceed 500Ω, for the Single Ended IF case shown in Figure 3, or 1kΩ for the Differential IF cases shown in Figures 2 and 4. This pin requires AC coupling. 26 RXM_RF Receive Channel Mixer RF Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. 27 RX_VCC Receive Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. 28 RX_PE Receive Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table” on previous page. 2, 4, 6, 9, 11, 13, 18, 25 GND Circuit Ground Pins (Qty 8). Internally connected. Typical Application Circuits -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata RECEIVE ENABLE VCC = 2.7V C32 C14 C12 RXA_VCC2 GND RXA_OUT C13 GND RXA_VCC1 RF INPUT 2450MHz 50Ω GND C41 RXA_IN TXA_OUT RF OUTPUT 2450MHz 50Ω GND C40 C11 TXA_VCC2 GND TXA_IN GND TXA_VCC1 28 1 2 RX BIAS 3 26 25 4 RXM 5 6 RXA 7 HFA3624 8 LOB 9 10 TXA TXM 11 12 13 27 TX BIAS 14 24 C21 RX_PE RX_VCC RXM_RF GND C25 RXM_IF+ 22 RXM_IF- 22 23 LO_BY C27 22 LO_IN 21 TXM_IF- C28 20 TXM_IF+ 19 GND 18 C23 TXM_RF 17 TX_VCC 16 TX_PE C19 15 C51 L46 C45 R50 LO INPUT 2170MHz 50Ω C26 C37 L47 R35 250Ω IF INPUT 280MHz, 250Ω C10 C15 TRANSMIT ENABLE -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata FIGURE 2. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION WITH 250Ω IF IMPEDANCE 2-33 IF OUTPUT 280MHz 250Ω C48 HFA3624 Typical Application Circuits (Continued) -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata RECEIVE ENABLE VCC = 2.7V C32 C14 C12 RXA_VCC2 GND RXA_OUT C13 GND RXA_VCC1 RF INPUT 2450MHz 50Ω GND C41 RXA_IN TXA_OUT RF OUTPUT 2450MHz 50Ω GND C40 C11 TXA_VCC2 GND TXA_IN GND TXA_VCC1 28 1 2 RX BIAS 27 3 26 4 25 RXM 5 6 24 23 RXA 7 HFA3624 22 8 LOB 21 20 9 10 TXA TXM 19 11 18 12 17 13 TX BIAS 16 15 14 C21 RX_PE RX_VCC RXM_RF GND C25 RXM_IF+ 22 RXM_IFLO_BY L46 C27 LO_IN TXM_IF- C28 TXM_IF+ GND TXM_RF C37 C23 TX_VCC TX_PE C19 C15 TRANSMIT ENABLE -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata FIGURE 3. SINGLE ENDED IF OUTPUT WITH 250Ω IF IMPEDANCE C51 LO INPUT 2170MHz 50Ω C26 C10 2-34 R50 R35 250Ω IF INPUT 280MHz, 250Ω IF OUTPUT 280MHz 250Ω C48 HFA3624 Typical Application Circuits (Continued) -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata RECEIVE ENABLE VCC = 2.7V C14 C32 C31 C12 RXA_VCC2 GND RXA_OUT C13 GND RXA_VCC1 RF INPUT 2450MHz 50Ω GND C41 RXA_IN TXA_OUT RF OUTPUT 2450MHz 50Ω GND C40 C11 TXA_VCC2 GND TXA_IN GND TXA_VCC1 C15 28 1 2 RX BIAS 27 3 26 4 25 RXM 5 6 24 23 RXA 7 HFA3624 22 8 LOB 21 20 9 10 TXA TXM 18 11 17 12 13 19 TX BIAS 16 15 14 C21 RX_PE RX_VCC RXM_RF GND IF OUTPUT 280MHz XFMR 250Ω 500Ω:250Ω (2:1) C25 RXM_IF+ 22 RXM_IF- 22 R50 C4 C27 LO_BYC27 C26 LO INPUT 2170MHz 50Ω C37 IF INPUT 280MHz 250Ω LO_IN TXM_IF- C28 TXM_IF+ GND TXM_RF C23 R35 250Ω TX_VCC TX_PE C19 C10 TRANSMIT ENABLE -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata FIGURE 4. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION USING TRANSFORMER INTO 250Ω 2-35 HFA3624 Typical Application Circuits (Continued) RECEIVE ENABLE VCC = 2.7V C13 2.2µF C1 200pF C11 2200pF C15 5pF C10 200pF LNA_VCC2 C16 5pF RECEIVE AMP RF OUTPUT 50Ω GND C3 5pF LNA_OUT C7 200pF GND LNA_VCC1 SIG. GEN. 2450MHz 50Ω TRANSMIT AMP RF OUTPUT 50Ω SIG. GEN. 2450MHz 50Ω GND C8 5pF LNA_IN C9 5pF PRE_OUT C26 200pF TXA_VCC2 C4 5pF PRE_IN GND GND GND PRE_VCC1 1 28 RX BIAS 2 3 27 RXM 26 4 25 5 24 LNA 6 HFA3624 7 8 PRE LOB AMP 9 10 TXM 11 12 TX BIAS 13 14 C19 200pF RX_PE SIG. GEN. 2450MHz 50Ω RX_VCC RXM_RF C14 GND 5pF 22 RXM_IF+ C6 470pF C17 2.7pF 22 RXM_IF23 LO_BY C20 22 C28 LO_IN 10pF 21 C24 TXM_IF10pF 20 TXM_IF+ 470pF 19 GND C22 C21 18 5pF 470pF TXM_RF 17 TX_VCC 16 TX_PE 15 C23 200pF IF OUTPUT 280MHz 50Ω L3 12nH R6 2kΩ L2 39nH L1 68nH C5 6.8pF C18 SIG. GEN. 470pF 2170MHz 50Ω L4 47nH R5 250Ω SIG. GEN. 280MHz 50Ω C25 1.5pF TRANSMIT. MIXER RF OUTPUT 50Ω C2 200pF TRANSMIT ENABLE FIGURE 5. OPTIMIZED LAB EVALUATION CIRCUIT Typical Performance Curves VCC = 2.7V TA = 25oC -3 1dB COMPRESSION POINT POWER GAIN (dB) 15 14 1dB 13 VCC = 2.7V TA = 25oC 1dB COMPRESSION POINT -4 1dB -5 -6 -7 12 -25 CONVERSION GAIN (dB) 16 -21 -17 -13 -9 -5 IF INPUT POWER (dBm) FIGURE 6. TRANSMIT PRE-AMP 1dB COMPRESSION 2-36 -20 -17 -14 -11 -8 IF INPUT POWER (dBm) FIGURE 7. TRANSMIT MIXER 1dB COMPRESSION -5 HFA3624 Typical Performance Curves (Continued) VCC = 2.7V TA = 25oC VCC = 2.7V TA = 25oC 30 10 DUT 0 MAG (dB) MAG (dB) 20 DUT + FIXTURE -10 10 DUT + FIXTURE 0 -20 DUT 1.0 2.0 1.0 3.0 2.0 FIGURE 8. PRE-AMPLIFIER S11 LOG MAG INPUT RETURN LOSS FIGURE 9. PRE-AMPLIFIER S21 LOG MAG FORWARD GAIN VCC = 2.7V TA = 25oC VCC = 2.7V TA = 25oC -20 0 DUT -30 DUT + FIXTURE MAG (dB) MAG (dB) 3.0 FREQUENCY (GHz) FREQUENCY (GHz) -40 -10 -20 DUT -50 DUT + FIXTURE -30 1.0 2.0 3.0 1.0 2.0 FREQUENCY (GHz) 3.0 FREQUENCY (GHz) FIGURE 10. PRE-AMPLIFIER S12 LOG MAG REVERSE ISOLATION FIGURE 11. PRE-AMPLIFIER S22 LOG MAG OUTPUT RETURN LOSS VCC = 2.7V TA = 25oC VCC = 2.7V TA = 25oC 30 10 DUT 0 MAG (dB) MAG (dB) 20 DUT -10 10 DUT + FIXTURE 0 -20 DUT + FIXTURE -10 1.0 2.0 FREQUENCY (GHz) FIGURE 12. LNA S11 LOG MAG INPUT RETURN LOSS 2-37 3.0 1.0 2.0 FREQUENCY (GHz) FIGURE 13. LNA S21 LOG MAG FORWARD GAIN 3.0 HFA3624 Typical Performance Curves 0 VCC = 2.7V TA = 25oC -20 10 -40 DUT -60 VCC = 2.7V TA = 25oC 0 DUT + FIXTURE MAG (dB) MAG (dB) (Continued) DUT -10 -20 DUT + FIXTURE -80 -30 1.0 2.0 3.0 1.0 2.0 FREQUENCY (GHz) 3.0 FREQUENCY (GHz) FIGURE 14. LNA S12 LOG MAG REVERSE ISOLATION FIGURE 15. LNA S22 LOG MAG OUTPUT RETURN LOSS 0 VCC = 2.7V, (NOTE) TA = 25oC 10 -10 0 -20 MAG (dB) MAG (dB) VCC = 2.7V TA = 25oC -10 -30 -40 -20 1.0 2.0 230 3.0 250 290 270 310 330 FREQUENCY (MHz) FREQUENCY (GHz) NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 16. TRANSMIT MIXER S22 LOG MAG RF OUTPUT RETURN LOSS FIGURE 17. TRANSMIT MIXER S11 LOG MAG IF INPUT RETURN LOSS 2.3 VCC = 2.7V TA = 25oC 10 MAG (dB) MAG (dB) 0.3 -1.7 0 -10 -3.7 VCC = 2.7V, (NOTE) TA = 25oC, LO = 2.17GHz 2.4 -20 2.45 2.5 FREQUENCY (GHz) NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 18. TRANSMIT MIXER CONVERSION GAIN vs IF FREQUENCY SWEEP 2-38 1.0 2.0 FREQUENCY (GHz) FIGURE 19. RECEIVE MIXER S11 LOG MAG RF INPUT RETURN LOSS 3.0 HFA3624 Typical Performance Curves (Continued) 7 VCC = 2.7V TA = 25oC VCC = 2.7V, TA = 25oC RF = 2.45GHz 0 MAG (dB) MAG (dB) 5 -10 3 1 -20 230 250 270 290 310 330 230 250 FREQUENCY (MHz) FIGURE 20. RECEIVE MIXER S22 LOG MAG IF OUTPUT RETURN LOSS MAG (dB) MAG (dB) 330 0 -10 -20 -10 -20 -30 -30 1.0 2.0 1.0 3.0 2.0 FIGURE 22. LO_IN S11 LOG MAG RECEIVE MODE LO INPUT RETURN LOSS FIGURE 23. LO_IN S11 LOG MAG TRANSMIT MODE LO INPUT RETURN LOSS 23 19 THIRD ORDER INTERCEPT (dBm) TA = 25oC 18 5.5V 17 4.0V 3.0V 2.7V 14 13 2.3 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz) FIGURE 24. LOW NOISE AMPLIFIER GAIN vs FREQUENCY 2-39 3.0 FREQUENCY (GHz) FREQUENCY (GHz) GAIN (dB) 310 VCC = 2.7V TA = 25oC 0 15 290 FIGURE 21. RECEIVE MIXER CONVERSION GAIN vs LO FREQUENCY SWEEP VCC = 2.7V TA = 25oC 16 270 FREQUENCY (MHz) TA = 25oC, F1 -F2 = 200kHz 22 21 5.5V 20 19 4.0V 18 3.0V 17 2.7V 16 15 2.3 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz) FIGURE 25. LOW NOISE AMPLIFIER IP3 vs FREQUENCY HFA3624 Typical Performance Curves (Continued) 15 4.3 TA = 25oC 4.2 13 4.0 3.9 GAIN (dB) NOISE FIGURE (dB) 4.1 5.5V 3.8 3.7 4.0V 3.6 3.0V 3.5 2.7V 3.4 2.3 12 2.7V 5.5V 11 10 9 2.35 2.4 2.45 2.5 2.55 8 2.3 2.6 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz) FREQUENCY (GHz) FIGURE 26. LOW NOISE AMPLIFIER NOISE FIGURE vs FREQUENCY FIGURE 27. PRE-AMPLIFIER GAIN vs FREQUENCY 10 7.3 TA = 25oC 9 5.5V 7.0 3.0V 7 2.7V 6 IF = 280MHz 7.1 4.0V 8 TA = 25oC 7.2 GAIN (dB) 1dB COMPRESSION (dBm) TA = 25oC 4.0V 3.0V 14 5 6.9 5.5V 4.0V 6.8 6.7 3.0V 2.7V 6.6 6.5 6.4 4 6.3 6.2 2.3 3 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.35 FIGURE 28. PRE-AMPLIFIER RF OUTPUT 1dB COMPRESSION vs FREQUENCY 2.5 2.55 2.6 16.5 TA = 25oC TA = 25oC, IF = 280MHz F1 -F2 = 200kHz IF = 280MHz 16.0 5.5V 6.0 NOISE FIGURE (dB) THIRD ORDER INTERCEPT (dBm) 2.45 FIGURE 29. RECEIVE MIXER GAIN vs RF FREQUENCY FOR FIXED IF FREQUENCY 7.0 6.5 2.4 RF FREQUENCY (GHz) FREQUENCY (GHz) 4.0V 5.5 3.0V 5.0 2.7V 4.5 4.0 5.5V 15.0 4.0V 14.5 3.0V 2.7V 14.0 3.5 3 2.3 15.5 2.35 2.4 2.45 2.5 2.55 RF FREQUENCY (GHz) FIGURE 30. RECEIVE MIXER IP3 vs RF FREQUENCY 2-40 2.6 13.5 2.3 2.35 2.4 2.45 2.5 2.55 RF FREQUENCY (GHz) FIGURE 31. RECEIVE MIXER SSB NOISE FIGURE vs RF FREQUENCY 2.6 HFA3624 Typical Performance Curves (Continued) -34 -24.0 -24.5 TA = 25oC, LO_IN = -3dBm TA = 25oC, LO_IN = -3dBm -35 5.5V -25.0 POWER (dBm) POWER (dBm) -25.5 -26.0 -26.5 -27.0 4.0V -36 5.5V 4.0V -27.5 -28.0 -28.5 -29.0 2.02 2.7V 3.0V -37 -38 -39 2.7V 3.0V 2.07 -40 2.12 2.17 2.22 LO FREQUENCY (GHz) 2.27 -41 2.02 2.32 FIGURE 32. RECEIVE MIXER LO TO RF PORT LEAKAGE vs LO FREQUENCY 2.07 2.27 2.32 FIGURE 33. RECEIVE MIXER LO TO IF PORT LEAKAGE vs LO FREQUENCY -6 6 TA = 25oC, IF = 280MHz (NOTE) TA = 25oC, IF = 280MHz (NOTE) 5.5V -7 1dB COMPRESSION (dBm) 5 5.5V 4 GAIN (dB) 2.12 2.17 2.22 LO FREQUENCY (GHz) 4.0V 3 3.0V 2 2.7V 1 4.0V -8 -9 3.0V -10 2.7V -11 -12 0 -13 2.3 -1 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.35 2.4 2.45 2.5 RF FREQUENCY (GHz) RF FREQUENCY (GHz) NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 34. TRANSMIT MIXER GAIN vs RF FREQUENCY 2.55 2.6 NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 35. TRANSMIT MIXER OUTPUT 1dB COMPRESSION vs RF FREQUENCY 16.5 TA = 25oC, IF = 280MHz (NOTE) -17 16 TA = 25oC, LO_IN = -3dBm -19 -20 15 POWER (dBm) NOISE FIGURE (dB) -18 15.5 5.5V 14.5 4.0V 14 3.0V 2.7V 13.5 13 2.3 -21 -22 -23 -24 2.7V -25 3.0V -26 4.0V -27 5.5V -28 2.35 2.4 2.45 2.5 RF FREQUENCY (GHz) 2.55 2.6 NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 36. TRANSMIT MIXER SSB NOISE FIGURE vs RF FREQUENCY 2-41 -29 -30 2.02 2.07 2.12 2.17 2.22 2.27 2.32 LO FREQUENCY (GHz) FIGURE 37. TRANSMIT MIXER LO TO RF PORT LEAKAGE vs LO FREQUENCY HFA3624 Typical Performance Curves (Continued) 40 -34 -35 TA = 25oC, LO_IN = -3dBm 35 -36 -38 30 2.7V 3.0V ICC (mA) POWER (dBm) -37 -39 -40 4.0V 5.5V -41 +5.5V 25 20 -42 +2.7V 15 -43 -44 2.02 2.07 2.12 2.17 2.22 RF FREQUENCY (GHz) 2.27 10 -40 -30 -20 -10 2.32 FIGURE 38. TRANSMIT MIXER LO TO IF PORT LEAKAGE vs LO FREQUENCY 50 60 70 85 FIGURE 39. RECEIVE MODE ICC vs TEMPERATURE 17.5 120 110 17.0 100 +5.5V 90 16.5 +5.5V 80 GAIN (dB) ICC (mA) 0 10 20 30 40 TEMPERATURE (oC) 70 60 50 +2.7V 16.0 15.5 15.0 +2.7V 40 14.5 30 20 -40 -30 -20 -10 0 10 20 30 40 TEMPERATURE (oC) 50 60 70 14.0 -40 -30 -20 -10 85 FIGURE 40. TRANSMIT MODE ICC vs TEMPERATURE 60 70 85 15 IF = 280MHz, RF = 2.45GHz LO = -3dBm 7.5 14 13 +5.5V 7.0 12 GAIN (dB) GAIN (dB) 50 FIGURE 41. LOW NOISE AMPLIFIER GAIN vs TEMPERATURE 8.0 6.5 0 10 20 30 40 TEMPERATURE (oC) +2.7V 6.0 +5.5V +2.7V 11 10 9 8 5.5 7 5.0 4.5 -40 -30 -20 -10 6 0 10 20 30 40 50 60 70 TEMPERATURE (oC) FIGURE 42. RECEIVE MIXER GAIN vs TEMPERATURE 2-42 85 5 -40 -30 -20 -10 0 10 20 30 40 50 60 70 TEMPERATURE (oC) FIGURE 43. PRE-AMPLIFIER GAIN vs TEMPERATURE 85 HFA3624 Typical Performance Curves (Continued) 4 -24.5 3 -25.0 LO_IN = -3dBm AT 2.17GHz +5.5V POWER (dBm) GAIN (dB) 2 1 +2.7V 0 IF = 280MHz, RF = 2.45GHz LO = -3dBm -1 -2 -40 -30 -20 -10 0 10 20 30 40 50 60 -25.5 +5.5V -26.0 +2.7V -26.5 -27.0 70 -27.5 -40 -30 -20 -10 85 FIGURE 44. TRANSMIT MIXER GAIN vs TEMPERATURE 20 30 40 50 60 70 85 FIGURE 45. RECIEVE MIXER LO TO RF PORT LEAKAGE vs TEMPERATURE -26.0 -20 LO_IN = -3dBm AT 2.17GHz LO_IN = -3dBm AT 2.17GHz -26.5 -22 +2.7V -23 -27.0 POWER (dBm) POWER (dBm) 10 TEMPERATURE (oC) TEMPERATURE (oC) -21 0 -24 -25 -26 +5.5V -27 -28 +5.5V -27.5 -28.0 +2.7V -28.5 -29 -30 -40 -30 -20 -10 0 10 20 30 40 50 60 70 -29.0 -40 -30 -20 -10 85 TEMPERATURE (oC) 20 30 40 50 60 70 85 FIGURE 47. RECEIVE MIXER LO TO IF PORT LEAKAGE vs TEMPERATURE 5.5 7.3 THIRD ORDER INTERCEPT (dBm) TA = 25oC, IF = 280MHz 7.2 RF = 2.45GHz 7.1 7.0 GAIN (dB) 10 TEMPERATURE (oC) FIGURE 46. TRANSMIT MIXER LO TO RF PORT LEAKAGE vs TEMPERATURE 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 -6 0 -5 -4 -3 -2 -1 0 1 2 LO DRIVE (dBm) FIGURE 48. RECEIVE MIXER GAIN vs LO DRIVE 2-43 3 5 4.5 4 3.5 3 2.5 TA = 25oC, IF = 280MHz RF = 2.45GHz, F1 - F2 = 200kHz 2 1.5 -6 -5 -4 -3 -2 -1 0 1 LO DRIVE (dBm) FIGURE 49. RECEIVE MIXER IP3 vs LO DRIVE 2 3 HFA3624 Typical Performance Curves (Continued) 2.35 16.5 TA = 25oC, RF = 2.45GHz IF = 280MHz (NOTE) 2.30 2.25 15.5 GAIN (dB) NOISE FIGURE (dB) 16 TA = 25oC, IF = 280MHz LO = 2.17GHz 15 14.5 2.20 2.15 2.10 14 2.05 13.5 -6 -5 -4 -3 -2 -1 0 1 2 2.00 -6 3 -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm) LO DRIVE (dBm) NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 50. RECEIVE MIXER SSB NOISE FIGURE vs LO DRIVE FIGURE 51. TRANSMIT MIXER GAIN vs LO DRIVE -9.2 TA = 25oC, RF = 2.45GHz (NOTE) 3.5 -9.4 3.0 -9.5 2.5 +5.5V GAIN (dB) 1dB COMPRESSION (dBm) -9.3 4.0 TA = 25oC, RF = 2.45GHz IF = 280MHz (NOTE) -9.6 -9.7 2.0 +3.0V 1.5 -9.8 1.0 -9.9 0.5 -10.0 -6 +4.0V +2.7V 0 -5 -4 -3 -2 -1 0 LO DRIVE (dBm) 1 2 10 3 20 40 60 80 100 200 NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. NOTE: TXM_IF input matching network modified for each IF frequency as described in Table 1. FIGURE 52. TRANSMIT MIXER OUTPUT 1dB COMPRESSION vs LO DRIVE FIGURE 53. TRANSMIT MIXER GAIN vs IF FREQUENCY TABLE 1. TXM_IF INPUT 50Ω TO 250Ω IMPEDANCE TRANSFORM CIRCUIT COMPONENT VALUES IF FREQ LO CAPACITORS C20, C28 IF BYPASS C24, C21 IF SHUNT C C25 IF SERIES L L4 10MHz 5pF 0.1µF 150pF 1.2µH 20MHz 5pF 0.022µF 68pF 680nH 40MHz 5pF 0.012µF 33pF 330nH 70MHz 5pF 0.0068mF 18pF 180nH 100MHz 7pF 0.0033mF 12pF 120nH 200MHz 7pF 1000pF 3.9pF 68nH 280MHz 10pF 470pF 1.5pF 47nH 400MHz 10pF 330pF 0 33nH NOTE: Refer to Figure 5, pin 19. 2-44 400 IF FREQUENCY (MHz) HFA3624 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 2-45 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029