V23990 P541 x2x D4 19

V23990-P541-*2*-PM
application sheet
Output Inverter Application
flow PIM 0
600 V / 6 A
General conditions
3phase SPWM
V GEon = 15 V
0V
V GEoff =
R gon = 32 Ω
R goff = 16 Ω
Figure 1
IGBT
Figure 2
FWD
Typical average static loss as a function of output current
Typical average static loss as a function of output current
P loss = f(I out)
P loss = f(I out)
16
Mi*cosf i= -1
Ploss (W)
Ploss (W)
25
20
12
Mi*cosfi = 1
15
8
10
4
5
Mi*cosfi = 1
Mi*cosfi = -1
0
0
At
Tj =
4
125
8
12
I out (A)
0
0
16
8
12
16
I out (A)
At
Tj =
°C
Mi*cosφ from -1 to 1 in steps of 0,2
125
°C
Mi*cosφ from -1 to 1 in steps of 0,2
Figure 3
IGBT
Typical average switching loss
as a function of output current
4
Figure 4
FWD
Typical average switching loss
as a function of output current
P loss = f(I out)
P loss = f(I out)
1,5
fsw = 16kHz
Ploss (W)
Ploss (W)
6
5
1,2
fsw = 16kHz
4
0,9
3
0,6
2
0,3
1
fsw = 2kHz
fsw = 2kHz
0
0,0
0
4
8
12
16
0
I out (A)
At
Tj =
125
At
Tj =
°C
DC-link = 320
V
f sw from 2 kHz to 16 kHz in steps of factor 2
copyright Vincotech
4
125
8
12
I out (A)
16
°C
DC-link = 320
V
f sw from 2 kHz to 16 kHz in steps of factor 2
1
29 Feb. 2016 / Revision 4
V23990-P541-*2*-PM
application sheet
Output Inverter Application
flow PIM 0
Figure 5
Phase
600 V / 6 A
Figure 6
Typical available 50Hz output current
as a function Mi*cosφ
I out = f(Mi*cos φ )
Phase
Typical available 50Hz output current
as a function of switching frequency I out = f(f sw)
10
Iout (A)
Iout (A)
10
Th = 60°C
Th = 60°C
8
8
Th = 100°C
Th = 100°C
6
6
4
4
2
2
0
0
-1,0
-0,5
0,0
0,5
1,0
1
Mi*cos φ
At
Tj =
125
At
Tj =
°C
DC-link = 320
V
f sw =
4
kHz
T h from
60 °C to 100 °C in steps of 5 °C
10
125
fsw (kHz)
100
°C
DC-link = 320
V
Mi*cos φ =0,8
T h from
60 °C to 100 °C in steps of 5 °C
Figure 7
Phase
Figure 8
Typical available 50Hz output current as a function of
Mi*cos φ and switching frequency
I out = f(f sw, Mi*cos φ )
-1,00
Iout (A)
-0,60
Iout (Apeak)
9
Mi*cosfi
-0,80
Phase
Typical available 0Hz output current as a function
of switching frequency
I outpeak = f(f sw)
Th = 60°C
8
Th = 100°C
7
-0,40
6
8,5-9,0
-0,20
5
0,00
4
0,20
8,0-8,5
3
0,40
1
2
4
8
16
32
0,60
2
0,80
1
1,00
0
64
1
fsw (kHz)
At
Tj =
10
100
fsw (kHz)
125
°C
At
Tj =
DC-link = 320
Th =
80
V
°C
DC-link = 320
V
T h from
60 °C to 100 °C in steps of 5 °C
Mi =
copyright Vincotech
2
125
°C
0
29 Feb. 2016 / Revision 4
V23990-P541-*2*-PM
application sheet
Output Inverter Application
flow PIM 0
Figure 9
Inverter
Figure 10
Typical available peak output power as a function of
heatsink temperature
P out=f(T h)
Inverter
Typical efficiency as a function of output power
efficiency=f(Pout)
2,5
100
efficiency (%)
Pout (kW)
600 V / 6 A
2kHz
2,0
16kHz
99
2kHz
1,5
98
1,0
97
16kHz
0,5
96
0,0
60
65
At
Tj =
125
DC-link = 320
Mi =
1
cos φ=
f sw from
70
75
80
85
90
95
Th ( o C)
95
100
0
At
Tj =
°C
V
1
125
DC-link = 320
Mi =
1
0,80
2 kHz to 16 kHz in steps of factor 2
cos φ=
f sw from
Figure 11
2
3
4
P out (kW)
5
°C
V
0,80
2 kHz to 16 kHz in steps of factor 2
Inverter
Overload (%)
Typical available overload factor as a function of
motor power and switching frequency P peak / P nom=f(P nom,fsw)
500
450
400
350
300
250
200
Switching frequency (kHz)
150
Motor nominal power (HP/kW)
100
0,50 / 0,37
0,75 / 0,55
1,00 / 0,74
1,50 / 1,10
2,00 / 1,47
3,00 / 2,21
1
479
320
240
160
120
0
2
479
320
240
160
120
0
4
479
320
240
160
120
0
8
479
320
240
160
120
0
16
479
320
240
160
120
0
At
Tj =
125
DC-link = 320
°C
V
Mi =
1
cos φ=
f sw from
Th =
0,8
1 kHz to 16kHz in steps of factor 2
80
°C
Motor eff =0,85
copyright Vincotech
3
29 Feb. 2016 / Revision 4